WO2020238031A1 - 3d 显示装置及其制造方法 - Google Patents

3d 显示装置及其制造方法 Download PDF

Info

Publication number
WO2020238031A1
WO2020238031A1 PCT/CN2019/116138 CN2019116138W WO2020238031A1 WO 2020238031 A1 WO2020238031 A1 WO 2020238031A1 CN 2019116138 W CN2019116138 W CN 2019116138W WO 2020238031 A1 WO2020238031 A1 WO 2020238031A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
region
metal nanowires
regions
area
Prior art date
Application number
PCT/CN2019/116138
Other languages
English (en)
French (fr)
Inventor
罗成志
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US16/630,474 priority Critical patent/US11405604B2/en
Publication of WO2020238031A1 publication Critical patent/WO2020238031A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • H04N13/312Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers the parallax barriers being placed behind the display panel, e.g. between backlight and spatial light modulator [SLM]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133538Polarisers with spatial distribution of the polarisation direction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n

Definitions

  • the present invention relates to the field of display technology, in particular to a 3D display device and a manufacturing method thereof.
  • 3D display technology is a technology that uses a series of optical methods to generate parallax between the left and right eyes of a person, thereby receiving different pictures and forming a stereoscopic image in the brain.
  • 3D display can make the picture more realistic, the image is no longer limited to the plane of the screen, as if it can go out of the screen, so that the audience has an immersive feeling.
  • Polarized 3D uses the principle of "vibration direction" of light to decompose the original image.
  • the image is divided into two groups of vertically polarized light and horizontally polarized light by using the display device, and then the 3D glasses use polarized lenses with different polarization directions on the left and right sides so that the user’s left and right eyes can receive the two images. Group pictures, and then synthesize three-dimensional images by the brain.
  • the principle of the polarized 3D display display is as follows. After the polarized light emitted from the polarizer set on the color film substrate passes through the striped ⁇ /2 phase retardation plate, a part of the polarized light will change its polarization state, and then the light passes through the striped polarizers whose polarization directions are perpendicular to each other. The polarized light whose polarization directions are perpendicular to each other will form a 3D image in the brain after being received by the left and right glasses.
  • a striped ⁇ /2 phase retardation plate and a striped polarizer whose polarization directions are perpendicular to each other are needed.
  • a polarizer is originally provided on the color film substrate, resulting in the thickness of the display device. It is very large, and the structure of the display device is extremely complicated.
  • the wavelength range of the polarized light emitted from the polarizer provided on the color filter substrate is very wide, and the striped ⁇ /2 phase retardation plate cannot change the polarization direction of all the emitted light.
  • the existing 3D display technology still has many defects.
  • the purpose of the present invention is to provide a 3D display device and a manufacturing method thereof, so as to solve the technical problems that the thickness of the display device is too thick and the wavelength of light is limited in the prior art.
  • the present invention provides a 3D display device, which includes a thin film transistor glass substrate, a color film glass substrate, a liquid crystal layer, and a ⁇ /4 phase retardation plate.
  • the back side of the thin film transistor glass substrate has a plurality of first regions and a plurality of second regions, and the plurality of first regions and the plurality of second regions are arranged alternately and parallel to each other.
  • the first area is provided with a plurality of metal nanowires extending in a first direction and at equal intervals
  • the second area is provided with a plurality of metal nanowires extending in a second direction and at equal intervals, the first The direction is perpendicular to the second direction.
  • a first alignment layer is provided on the front side of the thin film transistor glass substrate, and the top surface of the first alignment layer has a groove pattern consistent with the extension direction of the metal nanowires on the back side of the thin film transistor glass substrate .
  • the back side of the color filter glass substrate has a plurality of third regions and a plurality of fourth regions, and the plurality of third regions and the plurality of fourth regions are arranged alternately and parallel to each other.
  • the third area is provided with a plurality of metal nanowires extending along the second direction and with equal intervals
  • the fourth area is provided with a plurality of metal nanowires extending along the first direction and with equal intervals.
  • a second alignment layer is provided on the front side of the color film glass substrate, and the top surface of the second alignment layer has a groove pattern consistent with the extending direction of the metal nanowires on the back side of the color film glass substrate .
  • the front side of the color film glass substrate is arranged opposite to the front side of the thin film transistor glass substrate, so that the first area corresponds to the third area, and the second area corresponds to the fourth area.
  • the liquid crystal layer is disposed between the thin film transistor glass substrate and the color film glass substrate;
  • the ⁇ /4 phase retardation plate is attached to the metal nanowire on the back side of the color film glass substrate, where ⁇ is the wavelength of light passing through the 3D display device.
  • the metal nanowires in the first area, the second area, the third area, and the fourth area are made of aluminum, silver, or copper.
  • the metal nanowires in the first area, the second area, the third area, and the fourth area have a width between 100 nanometers and 300 nanometers.
  • the metal nanowires in the first area, the second area, the third area, and the fourth area have a pitch between 100 nanometers and 300 nanometers.
  • the metal nanowires in the first region, the second region, the third region, and the fourth region have a thickness between 20 nanometers and 500 nanometers.
  • the present invention also provides a method for manufacturing a 3D display device, including:
  • a thin film transistor glass substrate is provided, the back side of the thin film transistor glass substrate has a plurality of first regions and a plurality of second regions, and the plurality of first regions and the plurality of second regions are staggered and arranged in parallel with each other;
  • a first alignment layer is formed on the front side of the thin film transistor glass substrate, and the top surface of the first alignment layer has grooves that are consistent with the extension direction of the metal nanowires on the back side of the thin film transistor glass substrate pattern;
  • the back side of the color filter glass substrate has a plurality of third regions and a plurality of fourth regions, and the plurality of third regions and the plurality of fourth regions are arranged in parallel and staggered with each other;
  • a second alignment layer is formed on the front side of the color filter glass substrate, and the top surface of the second alignment layer has grooves that are consistent with the extension direction of the metal nanowires on the back side of the color filter glass substrate pattern;
  • the color filter glass substrate and the thin film transistor glass substrate are bonded together so that the front side of the color filter glass substrate is opposite to the front side of the thin film transistor glass substrate, and the first area and the third area Correspondingly, the second area corresponds to the fourth area;
  • a ⁇ /4 retardation plate is attached to the metal nanowire on the back side of the color filter glass substrate, where ⁇ is the wavelength of the light passing through the 3D display device.
  • the metal nanowires in the first region, the second region, the third region, and the fourth region are made of aluminum, silver, or copper.
  • the metal nanowires in the first region, the second region, the third region, and the fourth region have a width between 100 nanometers and 300 nanometers .
  • the metal nanowires in the first region, the second region, the third region, and the fourth region have a pitch between 100 nanometers and 300 nanometers .
  • the metal nanowires in the first region, the second region, the third region, and the fourth region have a thickness between 20 nanometers and 500 nanometers .
  • the present invention provides a 3D display device and a manufacturing method thereof.
  • metal nanowires perpendicular to each other are arranged on the side of the thin film transistor glass substrate and the color film glass substrate.
  • the metal nanowires can realize the functions of the original polarizers on the glass substrate side of the thin film transistor and the color film glass substrate, and can also make the emitted light into striped polarized light perpendicular to each other. Therefore, the present invention omits the polarizers on the glass substrate side of the thin film transistor and the color film glass substrate, the striped ⁇ /2 phase retardation plate, and the striped polarizers whose polarization directions are perpendicular to each other in the original polarized 3D display. Make the thickness of the 3D display device thinner. Furthermore, according to the structural design of the present invention, the polarization effect is not limited by the wavelength range of light. Therefore, the present invention greatly improves the 3D stereoscopic display effect.
  • FIG. 1 is a schematic structural diagram of a 3D display device according to an embodiment of the present invention.
  • FIG. 2A is a schematic top view of the back side of a thin film transistor glass substrate according to an embodiment of the invention.
  • FIG. 2B is a schematic top view of the front side of a thin film transistor glass substrate according to an embodiment of the invention.
  • 3A is a schematic top view of the back side of a color filter glass substrate according to an embodiment of the present invention.
  • FIG. 3B is a schematic top view of the front side of a color filter glass substrate according to an embodiment of the present invention.
  • the present invention provides a 3D display device, which will be described in detail below.
  • FIG. 1 is a schematic structural diagram of a 3D display device according to an embodiment of the present invention.
  • the 3D display device 1000 includes a thin film transistor glass substrate 100, a color filter glass substrate 200, a liquid crystal layer 300, and a ⁇ /4 phase retardation plate 400.
  • FIG. 2A is a schematic top view of the back side of a thin film transistor glass substrate according to an embodiment of the present invention.
  • the back side 102 of the thin film transistor glass substrate 100 has a plurality of first regions 110 and a plurality of second regions 120, and the plurality of first regions 110 and the plurality of second regions 120 are arranged alternately and parallel to each other.
  • the first region 110 is provided with a plurality of metal nanowires 111 extending along the first direction D1 with equal intervals
  • the second region 120 is provided with a plurality of metal nanowires extending along the second direction D2 with equal intervals.
  • the first direction D1 is perpendicular to the second direction D2. For example, if the first direction D1 is a horizontal direction, the second direction D2 is a vertical direction; or, if the first direction D1 is a vertical direction, then the second direction D2 is a horizontal direction.
  • FIG. 2B is a schematic top view of the front side of a thin film transistor glass substrate according to an embodiment of the present invention.
  • a first alignment layer 150 is provided on the front side 101 of the thin film transistor glass substrate 100, and the top surface of the first alignment layer 150 has an extension of the metal nanowires on the back side 102 of the thin film transistor glass substrate 100. Pattern of grooves in the same direction. That is, the top surface of the first alignment layer 150 has multiple regions 151 and multiple regions 152.
  • the region 151 has a plurality of grooves whose extending direction is consistent with the extending direction of the metal nanowire 111 in the first region 110, and the region 152 has a plurality of grooves whose extending direction is the same as that of the second region 120.
  • the metal nanowire 121 extends in the same groove.
  • the grooves on the top surface of the first alignment layer 150 can control the alignment direction of the liquid crystal molecules.
  • FIG. 3A is a schematic top view of the back side of a color filter glass substrate according to an embodiment of the present invention.
  • the back side 202 of the color filter glass substrate 200 has a plurality of third regions 210 and a plurality of fourth regions 220, and the plurality of third regions 210 and the plurality of fourth regions 220 are arranged alternately and parallel to each other.
  • the third region 210 is provided with a plurality of metal nanowires 211 extending along the second direction D2 with equal intervals
  • the fourth region 220 is provided with a plurality of metal nanowires extending along the first direction D1 with equal intervals. 221.
  • the metal nanowires on the color film glass substrate 200 and the metal nanowires on the thin film transistor glass substrate 100 at the corresponding position are perpendicular to each other.
  • FIG. 3B is a schematic top view of the front side of a color filter glass substrate according to an embodiment of the present invention.
  • a second alignment layer 250 is provided on the front side of the color filter glass substrate 200, and the top surface of the second alignment layer 250 has an extension direction of the metal nanowires on the back side 202 of the color filter glass substrate 200. Consistent groove pattern. That is, the top surface of the second alignment layer 250 has a plurality of regions 251 and a plurality of regions 252.
  • the region 251 has a plurality of grooves whose extending direction is consistent with the extending direction of the metal nanowire 211 in the third region 210, and the region 252 has a plurality of grooves whose extending direction is the same as that of the fourth region 220.
  • the metal nanowires 221 extend in the same groove.
  • the grooves on the top surface of the second alignment layer 250 can control the arrangement direction of the liquid crystal molecules.
  • the front side 101 of the color film glass substrate 200 is arranged opposite to the front side 201 of the thin film transistor glass substrate 100, as shown in FIG. 1.
  • the first area 110 corresponds to the third area 210 and the second area 120 corresponds to the fourth area 220.
  • the liquid crystal layer 300 is disposed between the thin film transistor glass substrate 100 and the color filter glass substrate 200.
  • the ⁇ /4 retarder 400 is attached to the metal nanowire on the back side 202 of the color filter glass substrate 200, where ⁇ is the wavelength of the light passing through the 3D display device.
  • the material of the metal nanowires in the first area, the second area, the third area, and the fourth area is aluminum, silver or copper.
  • the metal nanowires in the first area, the second area, the third area, and the fourth area have a width between 100 nanometers and 300 nanometers.
  • the metal nanowires in the first area, the second area, the third area, and the fourth area have a pitch between 100 nanometers and 300 nanometers.
  • the metal nanowires in the first region, the second region, the third region, and the fourth region have a thickness between 20 nanometers and 500 nanometers.
  • metal nanowires perpendicular to each other are arranged on the side of the thin film transistor glass substrate and the color film glass substrate.
  • the metal nanowires can realize the functions of the original polarizers on the glass substrate side of the thin film transistor and the color film glass substrate, and can also make the emitted light into striped polarized light perpendicular to each other. Therefore, the present invention omits the polarizers on the glass substrate side of the thin film transistor and the color film glass substrate, the striped ⁇ /2 phase retardation plate, and the striped polarizers whose polarization directions are perpendicular to each other in the original polarized 3D display. Make the thickness of the 3D display device thinner. Furthermore, according to the structural design of the present invention, the polarization effect is not limited by the wavelength range of light. Therefore, the present invention greatly improves the 3D stereoscopic display effect.
  • the present invention also provides a method of manufacturing a 3D display device.
  • the method includes the following steps.
  • a thin film transistor glass substrate 100 is provided.
  • the back side 102 of the thin film transistor glass substrate 100 has a plurality of first regions 110 and a plurality of second regions 120, and the plurality of first regions 110 and the plurality of second regions 120 are arranged alternately and parallel to each other.
  • step S200 a plurality of metal nanowires 111 extending along the first direction D1 with equal intervals are formed in the plurality of first regions 110, and a plurality of metal nanowires extending along the second direction D2 with equal intervals are formed. 121 In the second area 120, the first direction D1 is perpendicular to the second direction D2.
  • a metal layer is first deposited on the backside 102 of the thin film transistor glass substrate 100.
  • the material of the metal layer can be aluminum, silver or copper.
  • the metal layer is patterned through a photolithography and etching process to form the metal nanowire 111 and the metal nanowire 121 whose extending directions are perpendicular to each other.
  • the metal nanowires in the first region and the second region have a width between 100 nanometers and 300 nanometers.
  • the metal nanowires in the first region and the second region have a spacing between 100 nanometers and 300 nanometers.
  • the metal nanowires in the first region and the second region have a thickness between 20 nanometers and 500 nanometers.
  • a first alignment layer 150 is formed on the front side 101 of the thin film transistor glass substrate 100, and the top surface of the first alignment layer 150 is on the back side 102 of the thin film transistor glass substrate 100.
  • the metal nanowires 111 and 121 extend in the same groove pattern.
  • a polyimide (PI) solution is applied to the front side 101 of the thin film transistor glass substrate 100, and then the polyimide solution is cured under ultraviolet light by using a mask to form the thin film transistor.
  • the metal nanowires 111 and 121 on the back side 102 of the glass substrate 100 have a groove pattern with the same extending directions.
  • the top surface of the formed first alignment layer 150 has multiple regions 151 and multiple regions 152.
  • the region 151 has a plurality of grooves whose extending direction is consistent with the extending direction of the metal nanowire 111 in the first region 110
  • the region 152 has a plurality of grooves whose extending direction is the same as that of the second region 120.
  • the metal nanowire 121 extends in the same groove.
  • the grooves on the top surface of the first alignment layer 150 can control the alignment direction of the liquid crystal molecules.
  • a color filter glass substrate 200 is provided.
  • the back side 202 of the color filter glass substrate 200 has a plurality of third regions 210 and a plurality of fourth regions 220, the plurality of third regions 210 and the The fourth regions 220 are staggered and arranged in parallel.
  • step S500 a plurality of metal nanowires 211 extending along the second direction D2 with equal intervals are formed in the third region 210, and a plurality of metal nanowires 221 extending along the first direction with equal intervals are formed in the third region 210.
  • step S500 a plurality of metal nanowires 211 extending along the second direction D2 with equal intervals are formed in the third region 210, and a plurality of metal nanowires 221 extending along the first direction with equal intervals are formed in the third region 210.
  • the fourth area 220 In the fourth area 220.
  • a metal layer is first deposited on the back side 202 of the color filter glass substrate 200.
  • the material of the metal layer can be aluminum, silver or copper.
  • the metal layer is patterned by photolithography and etching processes to form the metal nanowires 211 and the metal nanowires 221 whose extending directions are perpendicular to each other.
  • the metal nanowires in the third area and the fourth area have a width between 100 nanometers and 300 nanometers.
  • the metal nanowires in the third area and the fourth area have a spacing between 100 nanometers and 300 nanometers.
  • the metal nanowires in the third area and the fourth area have a thickness between 20 nanometers and 500 nanometers.
  • a second alignment layer 250 is formed on the front side 201 of the color filter glass substrate 200, and the top surface of the second alignment layer 250 is formed on the back side 202 of the color filter glass substrate 200.
  • the metal nanowires 211 and 221 extend in the same groove pattern.
  • a polyimide (PI) solution is applied to the front side 201 of the color film glass substrate 200, and then the polyimide solution is cured under ultraviolet light by using a mask to form the color film glass substrate.
  • the metal nanowires 211 and 221 on the backside 202 of the 200 have a groove pattern with the same extending direction.
  • the top surface of the formed second alignment layer 250 has a plurality of regions 251 and a plurality of regions 252.
  • the region 251 has a plurality of grooves whose extending direction is consistent with the extending direction of the metal nanowire 211 in the third region 210
  • the region 152 has a plurality of grooves whose extending direction is the same as that of the fourth region 220.
  • the metal nanowires 221 extend in the same groove.
  • the grooves on the top surface of the second alignment layer 250 can control the arrangement direction of the liquid crystal molecules.
  • step S700 the color filter glass substrate 200 and the thin film transistor glass substrate 100 are bonded so that the front side 201 of the color filter glass substrate 200 is opposite to the front side 101 of the thin film transistor glass substrate 100, and
  • the first area 110 corresponds to the third area 210, and the second area 120 corresponds to the fourth area 220.
  • the metal nanowires on the color film glass substrate 200 and the metal nanowires on the thin film transistor glass substrate 100 at the corresponding position are perpendicular to each other.
  • a liquid crystal layer 300 is disposed between the thin film transistor glass substrate 100 and the color film glass substrate 200.
  • the color filter glass substrate 200 and the thin film transistor glass substrate 100 may be bonded first, and then liquid crystal molecules are injected into the space defined by the color filter glass substrate 200 and the thin film transistor glass substrate 100.
  • the liquid crystal layer 300 can be formed by one drop filling (ODF); that is, the liquid crystal material is dropped onto one of the glass substrates, and then the other glass substrate is attached to the dropped glass substrate. This glass substrate with liquid crystal material.
  • step S900 finally, attach a ⁇ /4 phase retardation plate 400 to the metal nanowires 211, 221 on the backside 202 of the color film glass substrate 200, where ⁇ is the light passing through the 3D display device 1000 ⁇ wavelength.
  • the material of the metal nanowires in the first area, the second area, the third area, and the fourth area is aluminum, silver or copper.
  • the metal nanowires in the first area, the second area, the third area, and the fourth area have a width between 100 nanometers and 300 nanometers.
  • the metal nanowires in the first area, the second area, the third area, and the fourth area have a pitch between 100 nanometers and 300 nanometers.
  • the metal nanowires in the first region, the second region, the third region, and the fourth region have a thickness between 20 nanometers and 500 nanometers.
  • the present invention provides a 3D display device and a manufacturing method thereof.
  • metal nanowires perpendicular to each other are arranged on the side of the thin film transistor glass substrate and the color film glass substrate.
  • the metal nanowires can realize the functions of the original polarizers on the glass substrate side of the thin film transistor and the color film glass substrate, and can also make the emitted light into striped polarized light perpendicular to each other. Therefore, the present invention omits the polarizers on the glass substrate side of the thin film transistor and the color film glass substrate, the striped ⁇ /2 phase retardation plate, and the striped polarizers whose polarization directions are perpendicular to each other in the original polarized 3D display. Make the thickness of the 3D display device thinner. Furthermore, according to the structural design of the present invention, the polarization effect is not limited by the wavelength range of light. Therefore, the present invention greatly improves the 3D stereoscopic display effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

一种3D显示装置(1000)及其制造方法。薄膜晶体管玻璃基板(100)侧与彩膜玻璃基板(200)侧设置彼此垂直的金属纳米线(111,121,211,221)。金属纳米线(111,121,211,221)可以实现原有薄膜晶体管玻璃基板(100)侧与彩膜玻璃基板(200)侧的偏光片的功能,又能使出射光变成条纹状的互相垂直的偏振光。因此,省略了原有的偏光式3D显示器中薄膜晶体管玻璃基板(100)侧与彩膜玻璃基板(200)侧的偏光片、条纹状的λ/2相位延迟板、条纹状的偏振方向互相垂直的偏光片,使得3D显示装置(1000)的厚度更薄。再者,根据结构设计,偏振效果不会受到光的波长范围限制。因此,大幅提升3D立体显示效果。

Description

3D显示装置及其制造方法 技术领域
本发明涉及显示技术领域,特别涉及一种3D显示装置及其制造方法。
背景技术
3D显示技术是利用一系列光学方法使人左右眼产生视差,从而接受到不同画面,在大脑中形成立体图像的技术。与普通的2D显示相比,3D显示可以让画面更逼真,图像不再局限于屏幕的平面上,仿佛能够走出屏幕外面,让观众有身临其境的感觉。
在不同的3D显示技术中,偏光式3D显示技术由于成本低、立体图像效果好,受到了广泛的使用。偏光式3D是利用光线有“振动方向”的原理来分解原始图像的。更详细地说,先通过利用显示装置把图像分为垂直向偏振光和水平向偏振光两组画面,然后3D眼镜左右分别采用不同偏振方向的偏光镜片以使使用者的左右眼就能接收两组画面,再经大脑合成立体影像。
一般而言,偏光式3D显示显示器的原理如下述。在从设置在彩膜基板上的偏光片出射的偏振光通过条纹状的λ/2相位延迟板后,一部分偏振光会改变偏振状态,然后光再通过条纹状的偏振方向互相垂直的偏光片后而变为偏振方向互相垂直的偏振光,这些偏振方向互相垂直的偏振光分别被左右眼镜接收后就会在大脑中形成3D图像。
然而,为了实现这一目的需要用到条纹状的λ/2相位延迟板和条纹状的偏振方向互相垂直的偏光片,再加上彩膜基板上本来就设置有一偏光片,导致显示装置的厚度甚大,且显示装置的结构极为复杂。另外,从设置在彩膜基板上的偏光片出射的偏振光的波长范围很宽,条纹状的λ/2相位延迟板无法将所有出射光的偏振方向改变。显然,现有的3D显示技术还存在许多缺陷。
因此,有必要提供一种3D显示装置及其制造方法,以解决现有技术所存在的问题。
技术问题
本发明的目的在于提供一种3D显示装置及其制造方法,以解决现有技术中显示装置厚度太厚及光的波长受到限制的技术问题。
技术解决方案
为解决上述技术问题,本发明提供一种3D显示装置,包括一薄膜晶体管玻璃基板、一彩膜玻璃基板、一液晶层及一λ/4相位延迟板。
所述薄膜晶体管玻璃基板的背侧具有多个第一区域与多个第二区域,所述多个第一区域与所述多个第二区域彼此交错且平行配置。所述第一区域中设置有多个沿第一方向延伸且间隔相等的金属纳米线,所述第二区域中设置有多个沿第二方向延伸且间隔相等的金属纳米线,所述第一方向与所述第二方向垂直。所述薄膜晶体管玻璃基板的前侧上设置有一第一配向层,所述第一配向层的顶表面具有与所述薄膜晶体管玻璃基板的背侧上的金属纳米线的延伸方向一致的沟槽图案。
所述彩膜玻璃基板的背侧具有多个第三区域与多个第四区域,所述多个第三区域与所述多个第四区域彼此交错且平行配置。所述第三区域中设置有多个沿第二方向延伸且间隔相等的金属纳米线,所述第四区域中设置有多个沿第一方向延伸且间隔相等的金属纳米线。所述彩膜玻璃基板的前侧上设置有一第二配向层,所述第二配向层的顶表面具有与所述彩膜玻璃基板的背侧上的金属纳米线的延伸方向一致的沟槽图案。所述彩膜玻璃基板的前侧设置成与所述薄膜晶体管玻璃基板的前侧相对,以致所述第一区域与所述第三区域相应,所述第二区域与所述第四区域相应。
所述液晶层设置在所述薄膜晶体管玻璃基板与所述彩膜玻璃基板之间;及
所述λ/4相位延迟板贴附到所述彩膜玻璃基板的背侧上的金属纳米线,其中λ为通过所述3D显示装置的光的波长。
在本发明的3D显示装置中,所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线的材质为铝、银或铜。
在本发明的3D显示装置中,所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线具有100纳米至300纳米之间的宽度。
在本发明的3D显示装置中,所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线具有100纳米至300纳米之间的间距。
在本发明的3D显示装置中,所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线具有20纳米至500纳米之间的厚度。
本发明还提供一种制造3D显示装置的方法,包括:
提供一薄膜晶体管玻璃基板,所述薄膜晶体管玻璃基板的背侧具有多个第一区域与多个第二区域,所述多个第一区域与所述多个第二区域彼此交错且平行配置;
形成多个沿第一方向延伸且间隔相等的金属纳米线在所述多个第一区域中,及形成多个沿第二方向延伸且间隔相等的金属纳米线在所述第二区域中,所述第一方向与所述第二方向垂直;
形成一第一配向层在所述薄膜晶体管玻璃基板的前侧上,所述第一配向层的顶表面具有与所述薄膜晶体管玻璃基板的背侧上的金属纳米线的延伸方向一致的沟槽图案;
提供一彩膜玻璃基板,所述彩膜玻璃基板的背侧具有多个第三区域与多个第四区域,所述多个第三区域与所述多个第四区域彼此交错且平行配置;
形成多个沿第二方向延伸且间隔相等的金属纳米线在所述第三区域中,及形成多个沿第一方向延伸且间隔相等的金属纳米线在所述第四区域中;
形成一第二配向层在所述彩膜玻璃基板的前侧上,所述第二配向层的顶表面具有与所述彩膜玻璃基板的背侧上的金属纳米线的延伸方向一致的沟槽图案;
贴合所述彩膜玻璃基板与所述薄膜晶体管玻璃基板,使得所述彩膜玻璃基板的前侧与所述薄膜晶体管玻璃基板的前侧相对,并且所述第一区域与所述第三区域相应,所述第二区域与所述第四区域相应;
设置一液晶层在所述薄膜晶体管玻璃基板与所述彩膜玻璃基板之间;及
贴附一λ/4相位延迟板到所述彩膜玻璃基板的背侧上的金属纳米线,其中λ为通过所述3D显示装置的光的波长。
在本发明的制造3D显示装置的方法中,所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线的材质为铝、银或铜。
在本发明的制造3D显示装置的方法中,所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线具有100纳米至300纳米之间的宽度。
在本发明的制造3D显示装置的方法中,所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线具有100纳米至300纳米之间的间距。
在本发明的制造3D显示装置的方法中,所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线具有20纳米至500纳米之间的厚度。
有益效果
相较于现有技术,本发明提供一种3D显示装置及其制造方法。本发明在薄膜晶体管玻璃基板侧与彩膜玻璃基板侧设置彼此垂直的金属纳米线。金属纳米线可以实现原有薄膜晶体管玻璃基板侧与彩膜玻璃基板侧的偏光片的功能,又能使出射光变成条纹状的互相垂直的偏振光。因此,本发明省略了原有的偏光式3D显示器中薄膜晶体管玻璃基板侧与彩膜玻璃基板侧的偏光片、条纹状的λ/2相位延迟板、条纹状的偏振方向互相垂直的偏光片,使得3D显示装置的厚度更薄。再者,根据本发明的结构设计,偏振效果不会受到光的波长范围限制。因此,本发明大幅提升3D立体显示效果。
附图说明
图1是根据本发明实施例的3D显示装置的结构示意图。
图2A为根据本发明实施例的薄膜晶体管玻璃基板的背侧的俯视示意图。
图2B为根据本发明实施例的薄膜晶体管玻璃基板的前侧的俯视示意图。
图3A为根据本发明实施例的彩膜玻璃基板的背侧的俯视示意图。
图3B为根据本发明实施例的彩膜玻璃基板的前侧的俯视示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是以相同标号表示。
本发明提供了一种3D显示装置,以下对其进行详细说明。
请参照图1,图1是根据本发明实施例的3D显示装置的结构示意图。所述3D显示装置1000包括一薄膜晶体管玻璃基板100、一彩膜玻璃基板200、一液晶层300及一λ/4相位延迟板400。
请参照图2A,图2A为根据本发明实施例的薄膜晶体管玻璃基板的背侧的俯视示意图。所述薄膜晶体管玻璃基板100的背侧102具有多个第一区域110与多个第二区域120,所述多个第一区域110与所述多个第二区域120彼此交错且平行配置。所述第一区域110中设置有多个沿第一方向D1延伸且间隔相等的金属纳米线111,所述第二区域120中设置有多个沿第二方向延伸D2且间隔相等的金属纳米线121,所述第一方向D1与所述第二方向D2垂直。例如,若所述第一方向D1为水平方向,则所述第二方向D2为垂直方向;或者,若所述第一方向D1为垂直方向,则所述第二方向D2为水平方向。
请参照图2B,图2B为根据本发明实施例的薄膜晶体管玻璃基板的前侧的俯视示意图。所述薄膜晶体管玻璃基板100的前侧101上设置有一第一配向层150,所述第一配向层150的顶表面具有与所述薄膜晶体管玻璃基板100的背侧102上的金属纳米线的延伸方向一致的沟槽图案。也就是,所述第一配向层150的顶表面具有多个区域151与多个区域152。所述区域151中具有多个其延伸方向与所述第一区域110中的金属纳米线111的延伸方向一致的沟槽,所述区域152中具有多个其延伸方向与所述第二区域120中的金属纳米线121的延伸方向一致的沟槽。所述第一配向层150的顶表面上的沟槽可以控制液晶分子的排列方向。
请参照图3A,图3A为根据本发明实施例的彩膜玻璃基板的背侧的俯视示意图。所述彩膜玻璃基板200的背侧202具有多个第三区域210与多个第四区域220,所述多个第三区域210与所述多个第四区域220彼此交错且平行配置。所述第三区域210中设置有多个沿第二方向D2延伸且间隔相等的金属纳米线211,所述第四区域220中设置有多个沿第一方向D1延伸且间隔相等的金属纳米线221。换句话说,所述彩膜玻璃基板200上的金属纳米线与相应位置的所述薄膜晶体管玻璃基板100上的金属纳米线是彼此垂直的。
请参照图3B,图3B为根据本发明实施例的彩膜玻璃基板的前侧的俯视示意图。所述彩膜玻璃基板200的前侧上设置有一第二配向层250,所述第二配向层250的顶表面具有与所述彩膜玻璃基板200的背侧202上的金属纳米线的延伸方向一致的沟槽图案。也就是,所述第二配向层250的顶表面具有多个区域251与多个区域252。所述区域251中具有多个其延伸方向与所述第三区域210中的金属纳米线211的延伸方向一致的沟槽,所述区域252中具有多个其延伸方向与所述第四区域220中的金属纳米线221的延伸方向一致的沟槽。所述第二配向层250的顶表面上的沟槽可以控制液晶分子的排列方向。
所述彩膜玻璃基板200的前侧101设置成与所述薄膜晶体管玻璃基板100的前侧201相对,如图1所示。这样可以使得所述第一区域110与所述第三区域210相应,所述第二区域120与所述第四区域220相应。
所述液晶层300设置在所述薄膜晶体管玻璃基板100与所述彩膜玻璃基板200之间。
所述λ/4相位延迟板400贴附到所述彩膜玻璃基板200的背侧202上的金属纳米线,其中λ为通过所述3D显示装置的光的波长。
在本发明一实施例中,所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线的材质为铝、银或铜。所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线具有100纳米至300纳米之间的宽度。所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线具有100纳米至300纳米之间的间距。所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线具有20纳米至500纳米之间的厚度。
本发明在薄膜晶体管玻璃基板侧与彩膜玻璃基板侧设置彼此垂直的金属纳米线。金属纳米线可以实现原有薄膜晶体管玻璃基板侧与彩膜玻璃基板侧的偏光片的功能,又能使出射光变成条纹状的互相垂直的偏振光。因此,本发明省略了原有的偏光式3D显示器中薄膜晶体管玻璃基板侧与彩膜玻璃基板侧的偏光片、条纹状的λ/2相位延迟板、条纹状的偏振方向互相垂直的偏光片,使得3D显示装置的厚度更薄。再者,根据本发明的结构设计,偏振效果不会受到光的波长范围限制。因此,本发明大幅提升3D立体显示效果。
本发明还提供一种制造3D显示装置的方法,所述方法包括以下步骤。
在步骤S100中,提供一薄膜晶体管玻璃基板100。所述薄膜晶体管玻璃基板100的背侧102具有多个第一区域110与多个第二区域120,所述多个第一区域110与所述多个第二区域120彼此交错且平行配置。
在步骤S200中,形成多个沿第一方向D1延伸且间隔相等的金属纳米线111在所述多个第一区域110中,及形成多个沿第二方向D2延伸且间隔相等的金属纳米线121在所述第二区域120中,所述第一方向D1与所述第二方向D2垂直。
具体的,先沉积一金属层在所述薄膜晶体管玻璃基板100的背侧102上。所述金属层的材质可以为铝、银或铜。然后,通过光刻与蚀刻工艺对所述金属层进行图案化,以形成延伸方向彼此垂直的所述金属纳米线111与所述金属纳米线121。
所述第一区域、所述第二区域中的金属纳米线具有100纳米至300纳米之间的宽度。所述第一区域、所述第二区域中的金属纳米线具有100纳米至300纳米之间的间距。所述第一区域、所述第二区域中的金属纳米线具有20纳米至500纳米之间的厚度。
在步骤S300中,形成一第一配向层150在所述薄膜晶体管玻璃基板100的前侧101上,所述第一配向层150的顶表面具有与所述薄膜晶体管玻璃基板100的背侧102上的金属纳米线111、121的延伸方向一致的沟槽图案。
具体的,涂布聚亚酰胺(polyimide,PI)溶液到所述薄膜晶体管玻璃基板100的前侧101,随后通过利用掩模板在紫外光下对聚亚酰胺溶液固化,以形成与所述薄膜晶体管玻璃基板100的背侧102上的金属纳米线111、121的延伸方向一致的沟槽图案。
也就是,所形成的第一配向层150的顶表面具有多个区域151与多个区域152。所述区域151中具有多个其延伸方向与所述第一区域110中的金属纳米线111的延伸方向一致的沟槽,所述区域152中具有多个其延伸方向与所述第二区域120中的金属纳米线121的延伸方向一致的沟槽。所述第一配向层150的顶表面上的沟槽可以控制液晶分子的排列方向。
在步骤S400中,提供一彩膜玻璃基板200,所述彩膜玻璃基板200的背侧202具有多个第三区域210与多个第四区域220,所述多个第三区域210与所述多个第四区域220彼此交错且平行配置。
在步骤S500中,形成多个沿第二方向D2延伸且间隔相等的金属纳米线211在所述第三区域210中,及形成多个沿第一方向延伸且间隔相等的金属纳米线221在所述第四区域220中。
具体的,先沉积一金属层在所述彩膜玻璃基板200的背侧202上。所述金属层的材质可以为铝、银或铜。然后,通过光刻与蚀刻工艺对所述金属层进行图案化,以形成延伸方向彼此垂直的所述金属纳米线211与所述金属纳米线221。
所述第三区域、所述第四区域中的金属纳米线具有100纳米至300纳米之间的宽度。所述第三区域、所述第四区域中的金属纳米线具有100纳米至300纳米之间的间距。所述第三区域、所述第四区域中的金属纳米线具有20纳米至500纳米之间的厚度。
在步骤S600中,形成一第二配向层250在所述彩膜玻璃基板200的前侧201上,所述第二配向层250的顶表面具有与所述彩膜玻璃基板200的背侧202上的金属纳米线211、221的延伸方向一致的沟槽图案。
具体的,涂布聚亚酰胺(polyimide,PI)溶液到彩膜玻璃基板200的前侧201,随后通过利用掩模板在紫外光下对聚亚酰胺溶液固化,以形成与所述彩膜玻璃基板200的背侧202上的金属纳米线211、221的延伸方向一致的沟槽图案。
也就是,所形成的第二配向层250的顶表面具有多个区域251与多个区域252。所述区域251中具有多个其延伸方向与所述第三区域210中的金属纳米线211的延伸方向一致的沟槽,所述区域152中具有多个其延伸方向与所述第四区域220中的金属纳米线221的延伸方向一致的沟槽。所述第二配向层250的顶表面上的沟槽可以控制液晶分子的排列方向。
在步骤S700中,贴合所述彩膜玻璃基板200与所述薄膜晶体管玻璃基板100,使得所述彩膜玻璃基板200的前侧201与所述薄膜晶体管玻璃基板100的前侧101相对,并且所述第一区域110与所述第三区域210相应,所述第二区域120与所述第四区域220相应。换句话说,所述彩膜玻璃基板200上的金属纳米线与相应位置的所述薄膜晶体管玻璃基板100上的金属纳米线是彼此垂直的。
在步骤S800中,设置一液晶层300在所述薄膜晶体管玻璃基板100与所述彩膜玻璃基板200之间。
具体的,可以先贴合所述彩膜玻璃基板200与所述薄膜晶体管玻璃基板100,再将液晶分子注入到所述彩膜玻璃基板200与所述薄膜晶体管玻璃基板100限定的空间内。或者,可以利用滴下式注入法(one drop filling,ODF)来形成所述液晶层300;即,先将液晶材料滴入到其中一玻璃基板上,再将另一玻璃基板贴合到被滴入有液晶材料的此玻璃基板。
在步骤S900中,最后,贴附一λ/4相位延迟板400到所述彩膜玻璃基板200的背侧202上的金属纳米线211、221,其中λ为通过所述3D显示装置1000的光的波长。
在本发明一实施例中,所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线的材质为铝、银或铜。所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线具有100纳米至300纳米之间的宽度。所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线具有100纳米至300纳米之间的间距。所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线具有20纳米至500纳米之间的厚度。
相较于现有技术,本发明提供一种3D显示装置及其制造方法。本发明在薄膜晶体管玻璃基板侧与彩膜玻璃基板侧设置彼此垂直的金属纳米线。金属纳米线可以实现原有薄膜晶体管玻璃基板侧与彩膜玻璃基板侧的偏光片的功能,又能使出射光变成条纹状的互相垂直的偏振光。因此,本发明省略了原有的偏光式3D显示器中薄膜晶体管玻璃基板侧与彩膜玻璃基板侧的偏光片、条纹状的λ/2相位延迟板、条纹状的偏振方向互相垂直的偏光片,使得3D显示装置的厚度更薄。再者,根据本发明的结构设计,偏振效果不会受到光的波长范围限制。因此,本发明大幅提升3D立体显示效果。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (13)

  1. 一种3D显示装置,包括:
    一薄膜晶体管玻璃基板,所述薄膜晶体管玻璃基板的背侧具有多个第一区域与多个第二区域,所述多个第一区域与所述多个第二区域彼此交错且平行配置,所述第一区域中设置有多个沿第一方向延伸且间隔相等的金属纳米线,所述第二区域中设置有多个沿第二方向延伸且间隔相等的金属纳米线,所述第一方向与所述第二方向垂直;所述薄膜晶体管玻璃基板的前侧上设置有一第一配向层,所述第一配向层的顶表面具有与所述薄膜晶体管玻璃基板的背侧上的金属纳米线的延伸方向一致的沟槽图案;
    一彩膜玻璃基板,所述彩膜玻璃基板的背侧具有多个第三区域与多个第四区域,所述多个第三区域与所述多个第四区域彼此交错且平行配置,所述第三区域中设置有多个沿第二方向延伸且间隔相等的金属纳米线,所述第四区域中设置有多个沿第一方向延伸且间隔相等的金属纳米线;所述彩膜玻璃基板的前侧上设置有一第二配向层,所述第二配向层的顶表面具有与所述彩膜玻璃基板的背侧上的金属纳米线的延伸方向一致的沟槽图案;其中,所述彩膜玻璃基板的前侧设置成与所述薄膜晶体管玻璃基板的前侧相对,以致所述第一区域与所述第三区域相应,所述第二区域与所述第四区域相应;
    一液晶层,设置在所述薄膜晶体管玻璃基板与所述彩膜玻璃基板之间;及
    一λ/4相位延迟板,贴附到所述彩膜玻璃基板的背侧上的金属纳米线,其中λ为通过所述3D显示装置的光的波长;
    其中,所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线的材质为铝、银或铜。
  2. 根据权利要求1所述的3D显示装置,其中,所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线具有100纳米至300纳米之间的宽度。
  3. 根据权利要求1所述的3D显示装置,其中,所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线具有100纳米至300纳米之间的间距。
  4. 根据权利要求1所述的3D显示装置,其中,所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线具有20纳米至500纳米之间的厚度。
  5. 一种3D显示装置,包括:
    一薄膜晶体管玻璃基板,所述薄膜晶体管玻璃基板的背侧具有多个第一区域与多个第二区域,所述多个第一区域与所述多个第二区域彼此交错且平行配置,所述第一区域中设置有多个沿第一方向延伸且间隔相等的金属纳米线,所述第二区域中设置有多个沿第二方向延伸且间隔相等的金属纳米线,所述第一方向与所述第二方向垂直;所述薄膜晶体管玻璃基板的前侧上设置有一第一配向层,所述第一配向层的顶表面具有与所述薄膜晶体管玻璃基板的背侧上的金属纳米线的延伸方向一致的沟槽图案;
    一彩膜玻璃基板,所述彩膜玻璃基板的背侧具有多个第三区域与多个第四区域,所述多个第三区域与所述多个第四区域彼此交错且平行配置,所述第三区域中设置有多个沿第二方向延伸且间隔相等的金属纳米线,所述第四区域中设置有多个沿第一方向延伸且间隔相等的金属纳米线;所述彩膜玻璃基板的前侧上设置有一第二配向层,所述第二配向层的顶表面具有与所述彩膜玻璃基板的背侧上的金属纳米线的延伸方向一致的沟槽图案;其中,所述彩膜玻璃基板的前侧设置成与所述薄膜晶体管玻璃基板的前侧相对,以致所述第一区域与所述第三区域相应,所述第二区域与所述第四区域相应;
    一液晶层,设置在所述薄膜晶体管玻璃基板与所述彩膜玻璃基板之间;及
    一λ/4相位延迟板,贴附到所述彩膜玻璃基板的背侧上的金属纳米线,其中λ为通过所述3D显示装置的光的波长;
    其中,所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线的材质为铝、银或铜。
  6. 根据权利要求5所述的3D显示装置,其中,所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线具有100纳米至300纳米之间的宽度。
  7. 根据权利要求5所述的3D显示装置,其中,所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线具有100纳米至300纳米之间的间距。
  8. 根据权利要求5所述的3D显示装置,其中,所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线具有20纳米至500纳米之间的厚度。
  9. 一种制造3D显示装置的方法,包括:
    提供一薄膜晶体管玻璃基板,所述薄膜晶体管玻璃基板的背侧具有多个第一区域与多个第二区域,所述多个第一区域与所述多个第二区域彼此交错且平行配置;
    形成多个沿第一方向延伸且间隔相等的金属纳米线在所述多个第一区域中,及形成多个沿第二方向延伸且间隔相等的金属纳米线在所述第二区域中,所述第一方向与所述第二方向垂直;
    形成一第一配向层在所述薄膜晶体管玻璃基板的前侧上,所述第一配向层的顶表面具有与所述薄膜晶体管玻璃基板的背侧上的金属纳米线的延伸方向一致的沟槽图案;
    提供一彩膜玻璃基板,所述彩膜玻璃基板的背侧具有多个第三区域与多个第四区域,所述多个第三区域与所述多个第四区域彼此交错且平行配置;
    形成多个沿第二方向延伸且间隔相等的金属纳米线在所述第三区域中,及形成多个沿第一方向延伸且间隔相等的金属纳米线在所述第四区域中;
    形成一第二配向层在所述彩膜玻璃基板的前侧上,所述第二配向层的顶表面具有与所述彩膜玻璃基板的背侧上的金属纳米线的延伸方向一致的沟槽图案;
    贴合所述彩膜玻璃基板与所述薄膜晶体管玻璃基板,使得所述彩膜玻璃基板的前侧与所述薄膜晶体管玻璃基板的前侧相对,并且所述第一区域与所述第三区域相应,所述第二区域与所述第四区域相应;
    设置一液晶层在所述薄膜晶体管玻璃基板与所述彩膜玻璃基板之间;及
    贴附一λ/4相位延迟板到所述彩膜玻璃基板的背侧上的金属纳米线,其中λ为通过所述3D显示装置的光的波长。
  10. 根据权利要求9所述的制造3D显示装置的方法,其中,所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线的材质为铝、银或铜。
  11. 根据权利要求9所述的制造3D显示装置的方法,所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线具有100纳米至300纳米之间的宽度。
  12. 根据权利要求9所述的制造3D显示装置的方法,其中,所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线具有100纳米至300纳米之间的间距。
  13. 根据权利要求9所述的制造3D显示装置的方法,其中,所述第一区域、所述第二区域、所述第三区域及所述第四区域中的金属纳米线具有20纳米至500纳米之间的厚度。
PCT/CN2019/116138 2019-05-27 2019-11-07 3d 显示装置及其制造方法 WO2020238031A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/630,474 US11405604B2 (en) 2019-05-27 2019-11-07 3D display device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910443379.6A CN110058457A (zh) 2019-05-27 2019-05-27 3d显示装置及其制造方法
CN201910443379.6 2019-05-27

Publications (1)

Publication Number Publication Date
WO2020238031A1 true WO2020238031A1 (zh) 2020-12-03

Family

ID=67324471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116138 WO2020238031A1 (zh) 2019-05-27 2019-11-07 3d 显示装置及其制造方法

Country Status (3)

Country Link
US (1) US11405604B2 (zh)
CN (1) CN110058457A (zh)
WO (1) WO2020238031A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110058457A (zh) * 2019-05-27 2019-07-26 武汉华星光电技术有限公司 3d显示装置及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10153771A (ja) * 1996-11-22 1998-06-09 Sharp Corp 液晶表示装置
CN1727957A (zh) * 2004-07-27 2006-02-01 株式会社帕沃那 具有薄偏振膜和薄相位延迟膜的液晶显示器件
CN107991783A (zh) * 2018-01-30 2018-05-04 京东方科技集团股份有限公司 3d显示器件
CN109917581A (zh) * 2019-03-05 2019-06-21 天马微电子股份有限公司 一种液晶显示面板及显示装置
CN110058457A (zh) * 2019-05-27 2019-07-26 武汉华星光电技术有限公司 3d显示装置及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016004143A (ja) * 2014-06-17 2016-01-12 林テレンプ株式会社 光学フィルム積層体およびその製造方法
CN104950497B (zh) * 2015-07-30 2018-05-01 京东方科技集团股份有限公司 一种显示面板及其制作方法、驱动方法、显示装置
JP6674359B2 (ja) * 2016-09-21 2020-04-01 富士フイルム株式会社 液晶表示装置
CN108198841A (zh) * 2017-12-29 2018-06-22 深圳市华星光电技术有限公司 显示面板及显示装置
CN109445012A (zh) * 2018-12-20 2019-03-08 深圳市华星光电半导体显示技术有限公司 线栅型偏光片制作方法及透明显示装置
CN109557713A (zh) * 2019-01-14 2019-04-02 合肥京东方光电科技有限公司 显示基板及其制备方法、显示面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10153771A (ja) * 1996-11-22 1998-06-09 Sharp Corp 液晶表示装置
CN1727957A (zh) * 2004-07-27 2006-02-01 株式会社帕沃那 具有薄偏振膜和薄相位延迟膜的液晶显示器件
CN107991783A (zh) * 2018-01-30 2018-05-04 京东方科技集团股份有限公司 3d显示器件
CN109917581A (zh) * 2019-03-05 2019-06-21 天马微电子股份有限公司 一种液晶显示面板及显示装置
CN110058457A (zh) * 2019-05-27 2019-07-26 武汉华星光电技术有限公司 3d显示装置及其制造方法

Also Published As

Publication number Publication date
US20220078399A1 (en) 2022-03-10
US11405604B2 (en) 2022-08-02
CN110058457A (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
TWI224207B (en) Substrate having parallax barrier layer, method for manufacturing the same and 3D display device
US8687273B2 (en) Image display device, electronic device, and parallax barrier element
TWI381191B (zh) 立體顯示器及其製作方法
JP3461680B2 (ja) 光学素子の製造方法および画像表示装置
CN102667593B (zh) 图案化的延迟膜及其制备方法
EP2530942B1 (en) 3D display panel and method of manufacturing a phase difference plate
US10234719B2 (en) Display panel and manufacturing method therefor, drive method and display device
CN102109631B (zh) 立体光学元件及其制作方法
WO2016004685A1 (zh) 液晶面板及双视液晶显示装置
WO2014134886A1 (zh) 彩膜基板及其制作方法、液晶显示屏
US20120105779A1 (en) Color filter substrate, method of manufacturing thereof and 3d liquid crystal display
WO2016033922A1 (zh) 液晶透镜分光器件及其制造方法、立体显示装置
WO2013033927A1 (zh) 液晶显示器可视角度的改善方法及液晶显示器
JP5881328B2 (ja) 光学板及びその製造方法と表示装置及びその製造方法
CN102654678B (zh) 彩膜基板及其制造方法和3d液晶显示器
KR101207861B1 (ko) 입체 엘씨디 패널 및 그 제조 방법
WO2020238031A1 (zh) 3d 显示装置及其制造方法
JP4936640B2 (ja) 液晶表示装置
KR20140017856A (ko) 하이브리드 액티브 리타더 패널 및 이를 구비하는 입체영상표시장치
KR100600037B1 (ko) 편광판의 제조방법
TWI364012B (en) Dual-view display panel structure and method for producing the same
US10012842B2 (en) Stereoscopic image display and method for manufacturing the same
KR20120077311A (ko) 영상 표시장치용 리타더 제조 방법
JP7448257B2 (ja) 画角及びコヒーレンス能動制御ランダム屈折素子及びその製造方法
KR20110112558A (ko) 이미징 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930200

Country of ref document: EP

Kind code of ref document: A1