WO2021233075A1 - 透镜光栅的制作方法 - Google Patents

透镜光栅的制作方法 Download PDF

Info

Publication number
WO2021233075A1
WO2021233075A1 PCT/CN2021/089623 CN2021089623W WO2021233075A1 WO 2021233075 A1 WO2021233075 A1 WO 2021233075A1 CN 2021089623 W CN2021089623 W CN 2021089623W WO 2021233075 A1 WO2021233075 A1 WO 2021233075A1
Authority
WO
WIPO (PCT)
Prior art keywords
lenses
lens
manufacturing
layer
forming
Prior art date
Application number
PCT/CN2021/089623
Other languages
English (en)
French (fr)
Inventor
刁鸿浩
黄玲溪
Original Assignee
北京芯海视界三维科技有限公司
视觉技术创投私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京芯海视界三维科技有限公司, 视觉技术创投私人有限公司 filed Critical 北京芯海视界三维科技有限公司
Publication of WO2021233075A1 publication Critical patent/WO2021233075A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses

Definitions

  • This application relates to the field of optical technology, for example, to a method for manufacturing a lens grating.
  • lens gratings are widely used in 3D displays, and 3D displays based on lens gratings can obtain 3D viewing effects without using glasses.
  • the basic structure of a lens grating includes a grating body and a planarization layer, wherein at least two lenses are formed on one side of the grating body, the planarization layer is disposed on the at least two lenses, and the refractive index of the grating body is higher than that of the planarization layer
  • the lens surface will not be absolutely smooth, especially at the junction of the two lenses, it is easy to form a distortion groove.
  • the transmitted light cannot be controlled and it will become a mess.
  • Astigmatism reduces the quality of the image projected in this area.
  • the embodiment of the present disclosure provides a method for manufacturing a lens grating to solve the technical problem that stray light reduces the quality of a 3D image.
  • a method for manufacturing a lens grating including:
  • At least two lenses are formed on one side of the base layer
  • An anti-reflection layer is formed on the surfaces of at least two lenses.
  • forming an anti-reflection layer on at least two lens surfaces may include:
  • an anti-reflection material is deposited to form an anti-reflection layer.
  • the height of the formed light-shielding part may be to eliminate stray light at the junction of adjacent ones of the at least two lenses.
  • the anti-reflection layer after forming the anti-reflection layer on at least two lens surfaces, it may further include:
  • a covering layer is formed on the surface of the anti-reflection layer.
  • Making the base layer may include: making the base layer using a material with a first refractive index
  • Forming the covering layer may include: forming the covering layer by using a material having a second refractive index;
  • the first refractive index is greater than the second refractive index.
  • forming a covering layer on the surface of the anti-reflection layer may include:
  • a material with a second refractive index is coated to form a cover layer.
  • the formed at least two lenses may include at least one of a concave lens and a convex lens.
  • the formed at least two lenses may include at least one of a cylindrical lens and a spherical lens.
  • a manufacturing method of lens grating includes:
  • At least two lenses are formed on one side of the base layer
  • a light-shielding part is formed between adjacent ones of at least two lenses.
  • forming an anti-reflection layer on at least two lens surfaces may include:
  • an anti-reflection material is deposited to form an anti-reflection layer.
  • the height of the light shielding portion is formed to eliminate stray light at the junction of adjacent lenses of the at least two lenses.
  • the method may further include:
  • a coating layer is formed on the surface of the anti-reflection layer and the light-shielding part.
  • Making the base layer may include: making the base layer using a material with a first refractive index,
  • Forming the covering layer may include: forming the covering layer by using a material having a second refractive index;
  • the first refractive index is greater than the second refractive index.
  • forming a covering layer on the surface of the anti-reflection layer and the light shielding portion may include:
  • a material with a second refractive index is coated to form a covering layer.
  • the formed at least two lenses may include at least one of a concave lens and a convex lens.
  • the formed at least two lenses include at least one of a cylindrical lens and a spherical lens.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a cross-sectional structure of a base layer in an embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a cross-sectional structure of a lens formed in an embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 4 is a schematic cross-sectional structure diagram of an embodiment of forming a concave lens in a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a cross-sectional structure of an embodiment of forming a concave lens and a convex lens in a method for manufacturing a lens grating provided by an embodiment of the present disclosure
  • FIG. 6 is a schematic view of a process of forming a light shielding part in an embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a cross-sectional structure of forming a light shielding layer in an embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a cross-sectional structure of forming a light shielding portion in an embodiment of a method for manufacturing a lens grating provided by an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a cross-sectional structure of forming an anti-reflection layer in an embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 10 is a schematic view of a process of forming a cover layer in an embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of a cross-sectional structure of a covering layer formed in an embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 12 is a schematic flowchart of a second embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of a cross-sectional structure of the base layer in the second embodiment of the method for manufacturing a lens grating provided by an embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of a cross-sectional structure of a lens formed in a second embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 15 is a schematic cross-sectional structure diagram of a second embodiment of forming a concave lens in a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • 16 is a schematic cross-sectional structure diagram of a second embodiment of forming a concave lens and a convex lens in a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 17 is a schematic diagram of a cross-sectional structure of forming an anti-reflection layer in a second embodiment of a method for manufacturing a lens grating provided by an embodiment of the present disclosure
  • FIG. 18 is a schematic view of the process of forming the shading part in the second embodiment of the manufacturing method of the lens grating provided by the embodiment of the present disclosure
  • 19 is a schematic diagram of a cross-sectional structure of forming a light-shielding layer in two embodiments of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 20 is a schematic diagram of the cross-sectional structure of the shading portion formed in the second embodiment of the manufacturing method of the lens grating provided by the embodiment of the present disclosure
  • FIG. 21 is a schematic view of a process of forming a cover layer in an embodiment of a method for manufacturing a lens grating provided by an embodiment of the present disclosure
  • FIG. 22 is a schematic diagram of a cross-sectional structure of forming a cover layer in an embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 23 is a schematic diagram of an arrangement of lenticular lenses in a method for manufacturing a lens grating provided by an embodiment of the present disclosure
  • FIG. 24 is a schematic diagram of another arrangement of lenticular lenses formed in the method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 25 is a schematic diagram of an arrangement of spherical lenses in the method for manufacturing a lens grating provided by an embodiment of the present disclosure
  • FIG. 26 is a schematic diagram of another arrangement of spherical lenses formed in the method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 27 is a schematic diagram of an arrangement of cylindrical lenses and spherical lenses in the method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • 101 base layer; 102: lens; 103: light-shielding layer; 104: light-shielding part; 105: anti-reflection layer; 106: flat layer;
  • 201 base layer
  • 202 lens
  • 203 anti-reflection layer
  • 204 light-shielding layer
  • 205 light-shielding part
  • 206 flat layer.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • a method for manufacturing a lens grating is provided, including:
  • FIG. 2 is a schematic diagram of a cross-sectional structure of a base layer in an embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure.
  • S101 is performed to manufacture the base layer 101.
  • FIG. 3 is a schematic diagram of a cross-sectional structure of a lens formed in an embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure.
  • S102 is performed to form at least two lenses 102 on one side of the base layer 101.
  • the lens 102 may be a convex lens, as shown in FIG. 3.
  • FIG. 4 is a schematic cross-sectional structure diagram of an embodiment of forming a concave lens in a method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • the lens 102 may be a concave lens.
  • FIG. 5 is a schematic cross-sectional structure diagram of an embodiment of forming a concave lens and a convex lens in a method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • the lens 102 may be a combination of a concave lens and a convex lens.
  • the lens 102 is a convex lens as an example.
  • the at least two lenses 102 may be fabricated using nanoimprint technology: the base layer 101 is coated with a material for making the lens 102, and the at least two lenses 102 are formed by nanoimprinting.
  • the at least two lenses 102 can also be made by a hot-melt method: laying the material used to make the lens 102 on the base layer 101, lithography is performed on the material used to make the lens 102, and the remaining The part is heated to form the shape of the lens under the action of surface tension, and the at least two lenses 102 are formed after cooling.
  • the at least two lenses 102 can also be made by etching: laying a material layer for making the lens on the base layer 101, depositing photoresist on the material layer for making the lens, and performing photolithography.
  • the shape of at least two lenses 102 is formed by etching, and the material layer of the lens 102 is etched using photoresist as a mask to form at least two lenses, and then the remaining photoresist is removed.
  • the light-shielding portion may be formed by etching, imprinting, inkjet, etc. The following takes etching as an example to specifically describe the formation of the light-shielding portion.
  • FIG. 6 is a schematic view of the process of forming a light shielding portion in an embodiment of a method for manufacturing a lens grating provided by an embodiment of the present disclosure
  • FIG. 7 is an implementation of a method for manufacturing a lens grating provided by an embodiment of the present disclosure
  • 8 is a schematic diagram of a cross-sectional structure of forming a light-shielding portion in an embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure; in some embodiments, in S103, the light-shielding portion is formed, Can include:
  • the light shielding layer 103 is etched, and the part between the adjacent lenses of the at least two lenses is retained to form the light shielding portion 104.
  • the light-shielding material may be BM ink.
  • each light-shielding portion 104 may be the same or different.
  • FIG. 9 is a schematic diagram of a cross-sectional structure of forming an anti-reflection layer in an embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure.
  • an anti-reflection layer is formed on at least two lens surfaces. Layers can include:
  • an anti-reflection material is deposited to form an anti-reflection layer 105.
  • PVD Physical Vapor Deposition
  • the height of the light shielding portion is formed to eliminate stray light at the junction of adjacent lenses among the at least two lenses.
  • FIG. 10 is a schematic diagram of a process of forming a cover layer in an embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure.
  • S104 after forming an anti-reflection layer on at least two lens surfaces, It can also include:
  • fabricating the base layer may include: fabricating the base layer using a material having a first refractive index
  • Forming the covering layer includes: forming the covering layer with a material having a second refractive index
  • the first refractive index is greater than the second refractive index.
  • FIG. 11 is a schematic diagram of a cross-sectional structure of a covering layer formed in an embodiment of a method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • a covering layer is formed on the surface of the anti-reflection layer.
  • a material having a second refractive index is coated to form a cover layer 106.
  • FIG. 12 is a schematic flowchart of a second embodiment of a method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • a method for manufacturing a lens grating including:
  • a light-shielding part is formed between adjacent ones of the at least two lenses.
  • FIG. 13 is a schematic diagram of a cross-sectional structure of the base layer produced in the second embodiment of the method for producing a lens grating provided by an embodiment of the present disclosure.
  • S201 is executed to produce the base layer 201.
  • FIG. 14 is a schematic diagram of a cross-sectional structure of a lens formed in a second embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure.
  • S202 is performed to form at least two lenses 202 on one side of the base layer 201.
  • the lens 202 may be a convex lens, as shown in FIG. 14.
  • FIG. 15 is a schematic cross-sectional structure diagram of a second embodiment of forming a concave lens in a method for manufacturing a lens grating according to an embodiment of the present disclosure.
  • the lens 202 may be a concave lens.
  • FIG. 16 is a schematic cross-sectional structure diagram of a second embodiment of forming a concave lens and a convex lens in a method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • the lens 102 may be a combination of a concave lens and a convex lens.
  • the lens 202 is a convex lens as an example.
  • the at least two lenses 202 can be fabricated using nanoimprint technology: the base layer 201 is coated with a material for making the lens 202, and the at least two lenses 202 are formed by nanoimprinting.
  • the at least two lenses 202 can also be made by a hot melt method: laying the material used to make the lens 202 on the base layer 201, lithography the material used to make the lens 202, and lithography the remaining material The part is heated to form the shape of the lens under the action of surface tension, and the at least two lenses 202 are formed after cooling.
  • FIG. 17 is a schematic diagram of a cross-sectional structure of forming an anti-reflection layer in the second embodiment of a method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • an anti-reflection layer is formed on at least two lens surfaces.
  • the reflective layer may include:
  • an anti-reflection material is deposited to form an anti-reflection layer 203.
  • PVD Physical Vapor Deposition
  • the light-shielding portion may be formed by etching, imprinting, inkjet, screen printing, etc.
  • the formation of the light-shielding portion is described in detail below by taking etching as an example.
  • FIG. 18 is a schematic view of the process of forming the shading portion in the second embodiment of the manufacturing method of the lens grating provided by the embodiment of the present disclosure
  • FIG. 19 is the two methods of manufacturing the lens grating provided by the embodiment of the present disclosure
  • FIG. 20 is the cross-sectional structure diagram of the light shielding portion formed in the second embodiment of the lens grating fabricator provided by the embodiment of the present disclosure.
  • the The shading part includes:
  • the light shielding layer 204 is etched, and the portion between the adjacent lenses of the at least two lenses is retained to form the light shielding portion 205.
  • the light-shielding material may be BM ink.
  • each light-shielding portion 205 may be the same or different.
  • the height of the light shielding portion is formed to eliminate stray light at the junction of adjacent lenses of the at least two lenses.
  • FIG. 21 is a schematic diagram of a process of forming a cover layer in an embodiment of a method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • S204 is on the surface of the anti-reflection layer. After the shading part is formed between adjacent lenses, it may further include:
  • Making the base layer may include: making the base layer using a material with a first refractive index,
  • Forming the flat layer may include: forming the flat layer with a material having a second refractive index;
  • the first refractive index is greater than the second refractive index.
  • FIG. 22 is a schematic diagram of a cross-sectional structure of forming a cover layer in an embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure.
  • the surface of the anti-reflection layer 203 and the light shielding portion 205 Forming a covering layer 206, including:
  • the surface of the anti-reflection layer 203 and the light shielding portion 205 is coated with a material having a second refractive index to form a covering layer 206.
  • the formed at least two lenses include at least one of a cylindrical lens and a spherical lens.
  • FIG. 23 is a schematic diagram of an arrangement of lenticular lenses in a method for manufacturing a lens grating provided by an embodiment of the present disclosure
  • FIG. 24 is a schematic diagram of a lens grating provided by an embodiment of the present disclosure.
  • a schematic diagram of another arrangement of lenticular lenses formed in the manufacturing method, the lens 202 includes a lenticular lens 2021;
  • Forming at least two lenses on the substrate 201 includes:
  • Part or all of the cylindrical lenses 2021 are distributed in parallel on the substrate.
  • FIG. 25 is a schematic diagram of an arrangement of spherical lenses in a method for manufacturing a lens grating provided by an embodiment of the present disclosure
  • FIG. 26 is a schematic diagram of a lens grating provided by an embodiment of the present disclosure.
  • Forming at least two lenses on the substrate 201 includes:
  • Part or all of the spherical lenses 2022 are arranged in an array on the substrate.
  • FIG. 27 is a schematic diagram of an arrangement of a cylindrical lens and a spherical lens in the method for manufacturing a lens grating provided by an embodiment of the present disclosure. At least two lenses including a cylindrical lens 2021 and a spherical lens 2022 are formed on the substrate 401.
  • the plurality of cylindrical lenses 2021 may be cylindrical concave lenses, cylindrical convex lenses, or a combination of cylindrical convex lenses and cylindrical concave lenses.
  • the plurality of spherical lenses 2022 may be spherical concave lenses, spherical convex lenses, or a combination of spherical concave lenses and spherical convex lenses.
  • the plurality of lenses may also be a combination of a cylindrical convex lens and a spherical convex lens, a combination of a cylindrical convex lens and a spherical concave lens, a combination of a cylindrical concave lens and a spherical concave lens, and a combination of a cylindrical concave lens and a spherical convex lens.
  • the number and type of lenses 202 are set according to actual requirements.
  • At least one curve on the surface of the lens may be circular or non-circular in a macroscopic view, for example: elliptical, hyperbolic, parabolic, Wait.
  • at least one curve on the surface of the lens may be in a non-circular shape such as a polygon in a microscopic view.
  • the shape of the lens may be determined according to actual conditions such as process requirements, for example: the shape of the surface of the lens.
  • the light emitted by the sub-pixel reaches the lens through the base layer, and then exits through the lens interface.
  • the stray light generated by the distortion area between adjacent lenses is blocked by the shading part.
  • the anti-reflection layer can effectively reduce the stray light caused by the reflection of the lens interface. Thereby improving the quality of 3D images.
  • the first element can be called the second element, and similarly, the second element can be called the first element, as long as all occurrences of the "first element” are renamed consistently and all occurrences "Second component” can be renamed consistently.
  • the first element and the second element are both elements, but they may not be the same element.
  • the terms used in this application are only used to describe the embodiments and are not used to limit the claims. As used in the description of the embodiments and claims, unless the context clearly indicates, the singular forms "a” (a), “an” (an) and “the” (the) are intended to also include plural forms .
  • the term “and/or” as used in this application refers to any and all possible combinations that include one or more of the associated lists.
  • the term “comprise” and its variants “comprises” and/or including (comprising) and the like refer to the stated features, wholes, steps, operations, elements, and/or The existence of components does not exclude the existence or addition of one or more other features, wholes, steps, operations, elements, components, and/or groups of these. If there are no more restrictions, the element defined by the sentence “including a" does not exclude the existence of other identical elements in the process, method, or device that includes the element.
  • each embodiment focuses on the differences from other embodiments, and the same or similar parts between the various embodiments can be referred to each other.
  • the relevant parts can be referred to the description of the method parts.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of units may only be a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to implement this embodiment.
  • the functional units in the embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种透镜光栅的制作方法,涉及光学技术领域,包括:制作基底层(S101);在基底层的一面形成至少两个透镜(S102);在至少两个透镜中的相邻透镜之间,形成遮光部(S103);在至少两个透镜表面形成抗反射层(S104);透镜光栅的制作方法能够有效解决杂散光降低3D图像质量的技术问题。

Description

透镜光栅的制作方法
本申请要求在2020年05月22日提交中国知识产权局、申请号为202010440094.X、发明名称为“透镜光栅的制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学技术领域,例如涉及一种透镜光栅的制作方法。
背景技术
目前,透镜光栅广泛应用于3D显示器中,基于透镜光栅的3D显示器不需要借助眼镜即可获得3D观看效果。
透镜光栅的基本结构包括光栅本体以及平坦化层,其中光栅本体的一面形成有至少两个透镜,平坦化层设置于该至少两个透镜上,光栅本体的折射率高于平坦化层的折射率,在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
由于制作工艺的精度限制,透镜表面不会绝对光滑,尤其是在两个透镜的交界处,极易形成畸变的沟槽,当子像素的光线经过畸变区域时,透射光线无法控制,会成为杂散光,降低了该区域投射的图像质量。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。该概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种透镜光栅的制作方法,以解决杂散光降低3D图像质量的技术问题。
在一些实施例中,提供一种透镜光栅的制作方法,包括:
制作基底层;
在基底层的一面形成至少两个透镜;
在至少两个透镜中的相邻透镜之间,形成遮光部;
在至少两个透镜表面形成抗反射层。
在一些实施例中,在至少两个透镜表面形成抗反射层,可以包括:
在至少两个透镜表面,沉积抗反射材料,形成抗反射层。
在一些实施例中,形成的遮光部的高度可以为消除至少两个透镜中的相邻透镜的交界处的杂散光。
在一些实施例中,在至少两个透镜表面形成抗反射层之后,还可以包括:
在抗反射层表面形成覆盖层。
在一些实施例中,
制作基底层,可以包括:采用具有第一折射率的材料制作基底层;
形成覆盖层,可以包括:采用具有第二折射率的材料形成覆盖层;
第一折射率大于第二折射率。
在一些实施例中,在抗反射层表面形成覆盖层,可以包括:
在抗反射层表面,涂覆具有第二折射率的材料,形成覆盖层。
在一些实施例中,形成的至少两个透镜可以包括凹透镜和凸透镜中的至少一种。
在一些实施例中,形成的至少两个透镜可以包括柱状透镜和球面透镜中的至少一种。
一种透镜光栅的制作方法,包括:
制作基底层;
在基底层的一面形成至少两个透镜;
在至少两个透镜表面形成抗反射层;
在抗反射层表面,至少两个透镜中的相邻透镜之间,形成遮光部。
在一些实施例中,在至少两个透镜表面形成抗反射层,可以包括:
在至少两个透镜表面,沉积抗反射材料,形成抗反射层。
在一些实施例中,形成的遮光部的高度为消除至少两个透镜中的相邻透镜交界处的杂散光。
在一些实施例中,在抗反射层表面,至少两个透镜中的相邻透镜之间,形成遮光部之后,还可以包括:
在抗反射层以及遮光部表面,形成覆盖层。
在一些实施例中,
制作基底层,可以包括:采用具有第一折射率的材料制作基底层,
形成覆盖层,可以包括:采用具有第二折射率的材料形成覆盖层;
其中,第一折射率大于第二折射率。
在一些实施例中,在抗反射层以及遮光部表面,形成覆盖层,可以包括:
在抗反射层以及遮光部表面,涂覆具有第二折射率的材料,形成覆盖层。
在一些实施例中,形成的至少两个透镜可以包括凹透镜和凸透镜中的至少一种。
在一些实施例中,形成的所述至少两个透镜包括柱状透镜和球面透镜中的至少一种。
本公开实施例提供的透镜光栅的制作方法,可以实现以下技术效果:
有效解决杂散光降低3D图像质量的技术问题。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的透镜光栅的制作方法一种实施例的流程示意图;
图2是本公开实施例提供的透镜光栅的制作方法一种实施例中制作基底层的剖面结构示意图;
图3是本公开实施例提供的透镜光栅的制作方法一种实施例中形成透镜的剖面结构示意图;
图4是本公开实施例提供的透镜光栅的制作方法中形成凹透镜一种实施例的剖面结构示意图;
图5是本公开实施例提供的透镜光栅的制作方法中形成凹透镜和凸透镜一种实施例的剖面结构示意图;
图6是本公开实施例提供的透镜光栅的制作方法一种实施例中形成遮光部的流程示意图;
图7是本公开实施例提供的透镜光栅的制作方法一种实施例中形成遮光层的剖面结构示意图;
图8是本公开实施例提供的透镜光栅的制作方法一种实施例中形成遮光部的剖面结构示意图;
图9是本公开实施例提供的透镜光栅的制作方法一种实施例中形成抗反射层的剖面结构示意图;
图10是本公开实施例提供的透镜光栅的制作方法一种实施例中形成覆盖层的流程示意图;
图11是本公开实施例提供的透镜光栅的制作方法一种实施例中形成覆盖层的剖面结构示意图;
图12是本公开实施例提供的透镜光栅的制作方法第二种实施例得流程示意图;
图13是本公开实施例提供的透镜光栅的制作方法第二种实施例中制作基底层的剖面结构示意图;
图14是本公开实施例提供的透镜光栅的制作方法第二种实施例中形成透镜的剖面结构示意图;
图15是本公开实施例提供的透镜光栅的制作方法中形成凹透镜第二种实施例的剖面结构示意图;
图16是本公开实施例提供的透镜光栅的制作方法中形成凹透镜和凸透镜第二种实施例的剖面结构示意图;
图17是本公开实施例提供的透镜光栅的制作方法第二种实施例中形成抗反射层的剖面结构示意图;
图18是本公开实施例提供的透镜光栅的制作方法第二种实施例中形成遮光部的流程示意图;
图19是本公开实施例提供的透镜光栅的制作方法二种实施例中形成遮光层的剖面结构示意图;
图20是本公开实施例提供的透镜光栅的制作方第二种实施例中形成遮光部的剖面结构示意图;
图21是本公开实施例提供的透镜光栅的制作方法一种实施例中形成覆盖层的流程示意图;
图22是本公开实施例提供的透镜光栅的制作方法一种实施例中形成覆盖层的剖面结构示意图;
图23是本公开实施例提供的透镜光栅的制作方法中形成柱状透镜一种排列方式的示意图;
图24是本公开实施例提供的透镜光栅的制作方法中形成柱状透镜另一种排列方式的示意图;
图25是本公开实施例提供的透镜光栅的制作方法中形成球面透镜一种排列方式的示意图;
图26是本公开实施例提供的透镜光栅的制作方法中形成球面透镜另一种排列方式的示意图;
图27是本公开实施例提供的透镜光栅的制作方法中形成柱状透镜和球面透镜一种排列方式的示意图。
附图标记:
101:基底层;102:透镜;103:遮光层;104:遮光部;105:抗反射层;106:平坦层;
201:基底层;202:透镜;203:抗反射层;204:遮光层;205:遮光部;206:平坦层。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
在一些实施例中,参考图1,图1是本公开实施例提供的透镜光栅的制作方法一种实施例的流程示意图,提供一种透镜光栅的制作方法,包括:
S101,制作基底层;
S102,在基底层的一面形成至少两个透镜;
S103,在至少两个透镜中的相邻透镜之间,形成遮光部;
S104,在至少两个透镜表面形成抗反射层。
具体地,参考图2,图2是本公开实施例提供的透镜光栅的制作方法一种实施例中制作基底层的剖面结构示意图,执行S101,制作基底层101。
参考图3,图3是本公开实施例提供的透镜光栅的制作方法一种实施例中形成透镜的剖面结构示意图,执行S102,在基底层101的一面形成至少两个透镜102。
在一些实施例中,透镜102可以是凸透镜,如图3所示。
在一些实施例中,参考图4,图4是本公开实施例提供的透镜光栅的制作方法中形成凹透镜一种实施例的剖面结构示意图,透镜102可以是凹透镜。
在一些实施例中,参考图5,图5是本公开实施例提供的透镜光栅的制作方法中形成凹透镜和凸透镜一种实施例的剖面结构示意图,透镜102可以是凹透镜和凸透镜的组合。
以下以透镜102为凸透镜为例进行说明。
在一些实施例中,至少两个透镜102可采用纳米压印技术制作:在基底层101上涂覆用于制作透镜102的材料,采用纳米压印的方式形成至少两个透镜102。
在一些实施例中,至少两个透镜102还可采用热熔法制作:在基底层101上铺设用于制作透镜102的材料,对用于制作透镜102的材料进行光刻,将光刻后剩余的部分进行加热,在表面张力的作用下形成透镜的形状,冷却后形成该至少两个透镜102。
在一些实施例中,至少两个透镜102还可采用刻蚀的方法制作:在基底层101上铺设用于制作透镜的材料层,在用于制作透镜的材料层上沉积光刻胶,进行光刻形成至少两个透镜102的形状,并以光刻胶作掩膜刻蚀透镜102的材料层,形成至少两个透镜,之后去除剩余的光刻胶。
在一些实施例中,遮光部可以通过刻蚀,压印、喷墨等方式形成,以下以刻蚀为例,对遮光部的形成做具体说明。
参考图6至图8,图6是本公开实施例提供的透镜光栅的制作方法一种实施例中形成遮光部的流程示意图,图7是本公开实施例提供的透镜光栅的制作方法一种实施例中形成遮光层的剖面结构示意图,图8是本公开实施例提供的透镜光栅的制作方法一种实施例中形成遮光部的剖面结构示意图;在一些实施例中,S103中,形成遮光部,可以包括:
S1031,在至少两个透镜102表面涂覆遮光材料,形成遮光层103;
S1032,对遮光层103进行刻蚀,保留至少两个透镜中的相邻透镜之间的部分,形成遮光部104。
其中,遮光材料可以为BM油墨。
在一些实施例中,各个遮光部104的遮光材料可以相同也可以不同。
在一些实施例中,参考图9,图9是本公开实施例提供的透镜光栅的制作方法一种实施例中形成抗反射层的剖面结构示意图,S104中,在至少两个透镜表面形成抗反射层,可以包括:
在至少两个透镜102表面,沉积抗反射材料,形成抗反射层105。
具体地,可采用物理气相沉积(Physical Vapor Deposition,PVD)技术沉积该抗反射材料。
在一些实施例中,形成的遮光部的高度为消除至少两个透镜中的相邻透镜的交界处的杂散光。
参考图10,图10是本公开实施例提供的透镜光栅的制作方法一种实施例中形成覆盖层的流程示意图,在一些实施例中,S104,在至少两个透镜表面形成抗反射层之后,还可以包括:
S105,在抗反射层105表面形成覆盖层。
在一些实施例中,制作基底层,可以包括:采用具有第一折射率的材料制作基底层;
形成覆盖层,包括:采用具有第二折射率的材料形成覆盖层;
第一折射率大于第二折射率。
在一些实施例中,参考图11,图11是本公开实施例提供的透镜光栅的制作方法一种实施例中形成覆盖层的剖面结构示意图,S105中,在抗反射层表面形成覆盖层,可以包括:
在抗反射层105表面,涂覆具有第二折射率的材料,形成覆盖层106。
参考图12,图12是本公开实施例提供的透镜光栅的制作方法第二种实施例得流程示意图,在一些实施例中,提供一种透镜光栅的制作方法,包括:
S201,制作基底层;
S202,在基底层的一面形成至少两个透镜;
S203,在至少两个透镜表面形成抗反射层;
S204,在抗反射层表面,至少两个透镜中的相邻透镜之间,形成遮光部。
参考图13,图13是本公开实施例提供的透镜光栅的制作方法第二种实施例中制作基底层的剖面结构示意图,执行S201,制作基底层201。
参考图14,图14是本公开实施例提供的透镜光栅的制作方法第二种实施例中形成透镜的剖面结构示意图,执行S202,在基底层201的一面形成至少两个透镜202。
在一些实施例中,透镜202可以是凸透镜,如图14所示。
在一些实施例中,参考图15,图15是本公开实施例提供的透镜光栅的制作方法中形成凹透镜第二种实施例的剖面结构示意图,透镜202可以是凹透镜。
在一些实施例中,参考图16,图16是本公开实施例提供的透镜光栅的制作方法中形成凹透镜和凸透镜第二种实施例的剖面结构示意图,透镜102可以是凹透镜和凸透镜的组合。
以下以透镜202为凸透镜为例进行说明。
在一些实施例中,至少两个透镜202可采用纳米压印技术制作:在基底层201上涂覆用于制作透镜202的材料,采用纳米压印的方式形成至少两个透镜202。
在一些实施例中,至少两个透镜202还可采用热熔法制作:在基底层201上铺设用于制作透镜202的材料,对用于制作透镜202的材料进行光刻,将光刻后剩余的部分进行加热,在表面张力的作用下形成透镜的形状,冷却后形成该至少两个透镜202。
参考图17,图17是本公开实施例提供的透镜光栅的制作方法第二种实施例中形成抗反射层的剖面结构示意图,在一些实施例中,S203中,在至少两个透镜表面形成抗反射层,可以包括:
在至少两个透镜表面,沉积抗反射材料,形成抗反射层203。
具体地,可采用PVD(物理气相沉积)技术沉积该抗反射材料。
在一些实施例中,遮光部可以通过刻蚀、压印、喷墨、丝网印刷等方式形成,以下以刻蚀为例,对遮光部的形成做具体说明。
参考图18至图20,图18是本公开实施例提供的透镜光栅的制作方法第二种实施例中形成遮光部的流程示意图,图19是本公开实施例提供的透镜光栅的制作方法二种实施例中形成遮光层的剖面结构示意图,图20是本公开实施例提供的透镜光栅的制作方第二种实施例中形成遮光部的剖面结构示意图,在一些实施例中,S204中,形成所述遮光部,包括:
S2041,在抗反射层203表面,涂覆遮光材料,形成遮光层204;
S2042,对遮光层204进行刻蚀,保留至少两个透镜中的相邻透镜之间的部分,形成遮光部205。
其中,遮光材料可以为BM油墨。
在一些实施例中,各个遮光部205的遮光材料可以相同也可以不同。
在一些实施例中,形成的遮光部的高度为消除至少两个透镜中的相邻透镜交界处的杂散光。
参考图21,图21是本公开实施例提供的透镜光栅的制作方法一种实施例中形成覆盖层的流程示意图,在一些实施例中,S204,在抗反射层表面,至少两个透镜中的相邻透镜之间,形成遮光部之后,还可以包括:
S205,在抗反射层203以及遮光部205表面,形成覆盖层206。
在一些实施例中,
制作基底层,可以包括:采用具有第一折射率的材料制作基底层,
形成平坦层,可以包括:采用具有第二折射率的材料形成平坦层;
其中,第一折射率大于第二折射率。
参考图22,图22是本公开实施例提供的透镜光栅的制作方法一种实施例中形成覆盖层的剖面结构示意图,在一些实施例中,S205中,在抗反射层203以及遮光部205表面,形成覆盖层206,包括:
在抗反射层203以及遮光部205表面,涂覆具有第二折射率的材料,形成覆盖层206。
在一些实施例中,形成的至少两个透镜包括柱状透镜和球面透镜中的至少一种。
在一些实施例中,参考图23和图24,图23是本公开实施例提供的透镜光栅的制作方法中形成柱状透镜一种排列方式的示意图,图24是本公开实施例提供的透镜光栅的制作方法中形成柱状透镜另一种排列方式的示意图,透镜202包括柱状透镜2021;
在基板201上形成至少两个透镜包括:
将柱状透镜2021中的部分或全部呈平行分布在基板上。
在一些实施例中,参考图25和图26,图25是本公开实施例提供的透镜光栅的制作方法中形成球面透镜一种排列方式的示意图,图26是本公开实施例提供的透镜光栅的制作方法中形成球面透镜另一种排列方式的示意图;透镜202包括球面透镜2022;
在基板201上形成至少两个透镜包括:
将球面透镜2022中的部分或全部呈阵列排布在基板上。
参考图27,图27是本公开实施例提供的透镜光栅的制作方法中形成柱状透镜和球面透镜一种排列方式的示意图,在基板401上形成至少两个透镜包括柱状透镜2021和球面透镜2022。
在一些实施例中,多个柱状透镜2021可以是柱状凹透镜,也可以是柱状凸透镜,也可以是柱状凸透镜和柱状凹透镜的组合。多个球面透镜2022可以是球面凹透镜,也可以是球面凸透镜,还可以是球面凹透镜和球面凸透镜的组合。此外,多个透镜还可以是柱状凸透镜和球面凸透镜的组合、柱状凸透镜和球面凹透镜的组合、柱状凹透镜和球面凹透镜的组合,柱状凹透镜和球面凸透镜的组合。透镜202的数量、类型根据实际需求设置。
在一些实施例中,无论透镜包括柱状透镜、球面透镜还是具有其他形状,透镜的表面的至少一条曲线在宏观上可以是圆形或非圆形,例如:椭圆形、双曲线形、抛物线形,等。可选地,透镜的表面的至少一条曲线在微观上可以呈多边形等非圆形的形状。可选地,可以根据工艺需求等实际情况确定透镜的形状,例如:透镜的表面的形状。
子像素发出的光线经过基底层到达透镜,再经透镜界面出射,相邻透镜之间畸变区域产生的杂散光通过遮光部遮挡,抗反射层的设置,能够有效减少透镜界面反射引起的杂散光,从而提高3D图像的质量。
以上描述和附图充分地示出了本公开的实施例,以使本领域技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开实施例的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各元件,但这些元件不应受到这些术语的限制。这些术语仅用于将一个元件与另一个元件区别开。比如,在不改变描述的含义的情况下,第一元件可以叫做第二元件,并且同样地,第二元件可以叫做第一元件,只要所有出现的“第一元件”一致重命名并且所有出现的“第二元件”一致重命名即可。 第一元件和第二元件都是元件,但可以不是相同的元件。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括该要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。本领域技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。

Claims (16)

  1. 一种透镜光栅的制作方法,包括:
    制作基底层;
    在所述基底层的一面形成至少两个透镜;
    在所述至少两个透镜中的相邻透镜之间,形成遮光部;
    在所述至少两个透镜表面形成抗反射层。
  2. 根据权利要求1所述的制作方法,其中,在所述至少两个透镜表面形成抗反射层,包括:
    在所述至少两个透镜表面,沉积抗反射材料,形成所述抗反射层。
  3. 根据权利要求1所述的制作方法,其中,形成的所述遮光部的高度为消除所述至少两个透镜中的相邻透镜的交界处的杂散光。
  4. 根据权利要求1所述的制作方法,其中,在所述至少两个透镜表面形成抗反射层之后,还包括:
    在所述抗反射层表面形成覆盖层。
  5. 根据权利要求4所述的制作方法,其中,
    制作基底层,包括:采用具有第一折射率的材料制作所述基底层;
    形成覆盖层,包括:采用具有第二折射率的材料形成所述覆盖层;
    所述第一折射率大于所述第二折射率。
  6. 根据权利要求5所述的制作方法,其中,在所述抗反射层表面形成覆盖层,包括:
    在所述抗反射层表面,涂覆具有所述第二折射率的材料,形成所述覆盖层。
  7. 根据权利要求1至6任意一项所述的透镜光栅的制作方法,其中,形成的所述至少两个透镜包括凹透镜和凸透镜中的至少一种。
  8. 根据权利要求1至6任意一项所述的透镜光栅的制作方法,其中,形成的所述至少两个透镜包括柱状透镜和球面透镜中的至少一种。
  9. 一种透镜光栅的制作方法,包括:
    制作基底层;
    在所述基底层的一面形成至少两个透镜;
    在所述至少两个透镜表面形成抗反射层;
    在所述抗反射层表面,至少两个透镜中的相邻透镜之间,形成遮光部。
  10. 根据权利要求9所述的制作方法,其中,在所述至少两个透镜表面形成抗反射层,包括:
    在所述至少两个透镜表面,沉积抗反射材料,形成所述抗反射层。
  11. 根据权利要求9或10所述的制作方法,其中,形成的所述遮光部的高度为消除所述至少两个透镜中的相邻透镜交界处的杂散光。
  12. 根据权利要求9所述的制作方法,其中,在所述抗反射层表面,至少两个透镜中的相邻透镜之间,形成遮光部之后,还包括:
    在所述抗反射层以及遮光部表面,形成覆盖层。
  13. 根据权利要求12所述的制作方法,其中,
    制作基底层,包括:采用具有第一折射率的材料制作所述基底层,
    形成覆盖层,包括:采用具有第二折射率的材料形成所述覆盖层;
    其中,所述第一折射率大于所述第二折射率。
  14. 根据权利要求13所述的制作方法,其中,在所述抗反射层以及遮光部表面,形成覆盖层,包括:
    在所述抗反射层以及遮光部表面,涂覆具有所述第二折射率的材料,形成所述覆盖层。
  15. 根据权利要求9至14任一项所述的透镜光栅的制作方法,其中,形成的所述至少两个透镜包括凹透镜和凸透镜中的至少一种。
  16. 根据权利要求9至14任一项所述的透镜光栅的制作方法,其中,形成的所述至少两个透镜包括柱状透镜和球面透镜中的至少一种。
PCT/CN2021/089623 2020-05-22 2021-04-25 透镜光栅的制作方法 WO2021233075A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010440094.X 2020-05-22
CN202010440094.XA CN113703182B (zh) 2020-05-22 2020-05-22 透镜光栅的制作方法

Publications (1)

Publication Number Publication Date
WO2021233075A1 true WO2021233075A1 (zh) 2021-11-25

Family

ID=78646169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089623 WO2021233075A1 (zh) 2020-05-22 2021-04-25 透镜光栅的制作方法

Country Status (3)

Country Link
CN (1) CN113703182B (zh)
TW (1) TW202144816A (zh)
WO (1) WO2021233075A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1752775A (zh) * 2004-09-24 2006-03-29 Lg电子株式会社 微透镜阵列片及其制造方法
CN1918503A (zh) * 2004-01-08 2007-02-21 因·S·唐 微透镜阵列
KR20080082401A (ko) * 2007-03-08 2008-09-11 엘지전자 주식회사 마이크로 렌즈 어레이 시트, 그 제조 방법, 그를 구비하는백라이트 유닛 및 그를 구비하는 액정 표시장치
CN101364607A (zh) * 2007-08-06 2009-02-11 松下电器产业株式会社 固体摄像装置及其制造方法
CN101436605A (zh) * 2007-11-16 2009-05-20 东部高科股份有限公司 图像传感器及其制造方法
CN104898291A (zh) * 2015-06-29 2015-09-09 张家港康得新光电材料有限公司 一种视镜分离器件及其制作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007079325A (ja) * 2005-09-16 2007-03-29 Hitachi Ltd マイクロレンズアレイ
CN108169922A (zh) * 2018-01-30 2018-06-15 武汉华星光电技术有限公司 3d显示装置及其透镜组件
CN210015428U (zh) * 2019-03-01 2020-02-04 惠科股份有限公司 图像感测装置及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1918503A (zh) * 2004-01-08 2007-02-21 因·S·唐 微透镜阵列
CN1752775A (zh) * 2004-09-24 2006-03-29 Lg电子株式会社 微透镜阵列片及其制造方法
KR20080082401A (ko) * 2007-03-08 2008-09-11 엘지전자 주식회사 마이크로 렌즈 어레이 시트, 그 제조 방법, 그를 구비하는백라이트 유닛 및 그를 구비하는 액정 표시장치
CN101364607A (zh) * 2007-08-06 2009-02-11 松下电器产业株式会社 固体摄像装置及其制造方法
CN101436605A (zh) * 2007-11-16 2009-05-20 东部高科股份有限公司 图像传感器及其制造方法
CN104898291A (zh) * 2015-06-29 2015-09-09 张家港康得新光电材料有限公司 一种视镜分离器件及其制作方法

Also Published As

Publication number Publication date
TW202144816A (zh) 2021-12-01
CN113703182A (zh) 2021-11-26
CN113703182B (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
CN113167943B (zh) 各向异性地形成的衍射光栅设备
CN106461812B (zh) 用于光导和灯具的透明漫射器
CN100559265C (zh) 投影荧光屏和投影显示器
JP7376602B2 (ja) 導波路ディスプレイ基板における偏倚された全厚みばらつき
CN110832381A (zh) 具有结构化表面的虚拟和增强现实设备
WO2014134886A1 (zh) 彩膜基板及其制作方法、液晶显示屏
TWI801904B (zh) 光學元件的製造方法、光學元件、和用於製造光學元件的設備
WO2019230758A1 (ja) 微細パターンフィルム、及び、ヘッドアップディスプレイ装置
WO2021233075A1 (zh) 透镜光栅的制作方法
WO2021233097A1 (zh) 透镜光栅的制作方法
WO2021233074A1 (zh) 透镜光栅的制作方法
WO2021147760A1 (zh) 透镜光栅、显示模组、显示屏和显示器
WO2021233096A1 (zh) 透镜光栅的制作方法
WO2021233105A1 (zh) 透镜光栅及其制作方法
WO2021233073A1 (zh) 透镜光栅、显示模组、显示屏及显示器
WO2021233072A1 (zh) 制作光栅组件的方法
WO2022226725A1 (zh) 光学模组及其制作方法、显示装置
CN217181265U (zh) 匀光片和光学装置
TWI444658B (zh) 折射率調整面板及其製造方法與顯示裝置
CN114994812A (zh) 一种微透镜制造方法、显示装置及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21809061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21809061

Country of ref document: EP

Kind code of ref document: A1