WO2021232973A1 - 塑形模具和脑皮层电刺激器的制作方法、柔性电极的塑形设备、存储介质 - Google Patents
塑形模具和脑皮层电刺激器的制作方法、柔性电极的塑形设备、存储介质 Download PDFInfo
- Publication number
- WO2021232973A1 WO2021232973A1 PCT/CN2021/085602 CN2021085602W WO2021232973A1 WO 2021232973 A1 WO2021232973 A1 WO 2021232973A1 CN 2021085602 W CN2021085602 W CN 2021085602W WO 2021232973 A1 WO2021232973 A1 WO 2021232973A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mold
- image data
- brain
- flexible electrode
- shaping
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0526—Head electrodes
- A61N1/0529—Electrodes for brain stimulation
- A61N1/0531—Brain cortex electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
Definitions
- the present disclosure relates to the technical field of medical device manufacturing, and more specifically, to a method for manufacturing a shaping mold and a cerebral cortex electrical stimulator, a shaping device for a flexible electrode, and a storage medium.
- Visual reconstruction can be roughly divided into three levels: retina, optic nerve and visual cortex.
- visual reconstruction of the visual cortex is an important research direction.
- a stimulus current is applied to the visual cortex to induce phantom vision in a blind patient to form a visual experience.
- the electrode array is directly implanted into the patient's brain, and the stimulation current is applied to the most downstream of the visual path of the visual cortex through the electrode array, so that the patient can produce visual perception.
- the visual cortex has a complicated gully shape. How to achieve effective implantation of electrode arrays to ensure the stimulation effect of each stimulation electrode is a challenge faced by those skilled in the art.
- electrical stimulation of other areas of the cerebral cortex can also achieve other types of functional recovery and disease treatment (such as pain treatment, addictive disease treatment, vegetative awakening, etc.).
- functional recovery and disease treatment such as pain treatment, addictive disease treatment, vegetative awakening, etc.
- the purpose of the present disclosure is to provide a method for manufacturing a shaping mold and a cerebral cortical electrical stimulator, so as to realize the customization of the cerebral cortical electrical stimulator for different patients, and improve the effect of the cerebral cortical electrical stimulator on the patient's brain.
- the current stimulation effect of the cortex is to realize the customization of the cerebral cortical electrical stimulator for different patients, and improve the effect of the cerebral cortical electrical stimulator on the patient's brain.
- the method for manufacturing a plastic mold of a flexible electrode includes: collecting brain image data of a patient; performing 3D modeling on the brain image data to obtain three-dimensional data of the plastic mold Based on the three-dimensional data, control a 3D printer to perform 3D printing or control precision machining equipment for precision machining to obtain the shaping mold, which is used to shape the flexible electrodes of the cerebral cortex electrical stimulator .
- the brain image data is 3D modeled to obtain the three-dimensional data of the plastic mold, and the 3D printer is controlled based on the three-dimensional data Carry out 3D printing or use precision machining methods to obtain a shaping mold for shaping the flexible electrodes of the cerebral cortex electrical stimulator.
- the three-dimensional data of the shaping mold and the gully and fold curvature of the patient's cerebral cortex area or The shape of the uneven surface and other information are consistent. Therefore, the use of the shaping mold to shape the flexible electrodes of the cerebral cortex electrical stimulator realizes the customization of the cerebral cortex electrical stimulator of different patients, thereby improving the patient’s cerebral cortex.
- the electric current stimulation effect is especially suitable for visual cortex electric stimulators to improve the visual experience of blind patients.
- the method before performing 3D modeling on the brain image data and obtaining the three-dimensional data of the shaping mold, the method further includes: performing image segmentation on the brain image data to obtain the brain Visual cortex image data.
- the brain visual cortex image data includes: image data of the brain visual cortex V1, image data of the brain visual cortex V2, and image data of the brain visual cortex V3; or brain The image data of the V1 part of the visual cortex and the image data of the V2 part of the brain visual cortex; or the image data of the V1 part of the brain visual cortex and the image data of the V3 part of the brain visual cortex.
- the performing 3D modeling on the brain image data to obtain the three-dimensional data of the shaping mold includes: performing 3D modeling on the brain image data to obtain the shaping The three-dimensional data of the convex mold and/or the three-dimensional data of the concave mold of the mold.
- controlling a 3D printer to perform 3D printing or controlling precision machining equipment to perform precision machining to obtain the plastic mold includes: based on the three-dimensional data of the punch, controlling A convex plastic mold is obtained by 3D printing or precision machining; and/or a concave plastic mold is obtained by controlling 3D printing or precision machining based on the three-dimensional data of the concave mold.
- the method before performing image segmentation on the brain image data, the method further includes: preprocessing the brain image data, and the preprocessing includes denoising and formatting.
- the collecting brain image data of the patient includes: collecting the brain image data of the patient through magnetic resonance imaging and/or CT scan imaging.
- metal additive technology is used for 3D printing, or a multi-axis and multi-link precision machining center is used for precision machining.
- a shaping device for a flexible electrode includes a lead-in part, an electrode array, and a cable that connects the electrode array to the lead-in part, and the shaping device includes : A pressing mold, the pressing mold includes an upper pressing mold and a lower pressing mold, the upper pressing mold and the lower pressing mold are used to connect the lead-in part of the flexible electrode and the cable Flattening; a plastic mold, the plastic mold is made by the manufacturing method according to the embodiment of the first aspect of the present disclosure, the plastic mold includes a convex plastic mold and a concave plastic mold, the The convex shaping mold is detachably connected with the lower pressing mold, and the convex shaping mold and the concave shaping mold are used for clamping and fixing the electrode array of the flexible electrode.
- a method for manufacturing a cerebral cortex electrical stimulator includes: using the method for manufacturing a molding mold according to the above-mentioned embodiment of the first aspect of the present disclosure to obtain the molding mold;
- the shaping mold clamps the flexible electrode, and the shaping mold and the flexible electrode are heated in a vacuum environment to shape the flexible electrode to obtain the shaped flexible electrode;
- the introduction part, integrated circuit chip and discrete components are packaged into a package structure to obtain the cerebral cortex electrical stimulator.
- the heating temperature for heating the shaping mold and the flexible electrode in a vacuum environment ranges from 150°C to 250°C.
- the computer-readable storage medium stores computer instructions that, when executed, realize the operation of the flexible electrode according to the embodiment of the first aspect of the present disclosure. Manufacturing method of shaping mold.
- Fig. 1 shows a flowchart of a method for manufacturing a plastic mold according to an embodiment of the present disclosure
- Fig. 2 shows an implantation state diagram of a cerebral cortex electrical stimulator according to an embodiment of the present disclosure
- Fig. 3 shows a schematic structural diagram of a flexible electrode according to an embodiment of the present disclosure
- Fig. 4 shows a flowchart of a method for manufacturing a plastic mold according to another embodiment of the present disclosure
- Fig. 5 shows a flowchart of a method for manufacturing a cerebral cortex electrical stimulator according to an embodiment of the present disclosure
- Fig. 6 shows a schematic diagram of the structure of a shaping mold and a pressing mold according to an embodiment of the present disclosure
- Fig. 7 shows a structural diagram of a manufacturing control device for a plastic mold according to an embodiment of the present disclosure.
- 210 electrode array 220 cable; 230 package structure; 231 lead-in part; 300 flexible electrode; 610 convex mould; 620 concave mould; 630 lower compression mould; 640 upper compression mould; 700 production control device; 710 Processor; 720 memory; 730 image data acquisition equipment; 740 mold processing equipment.
- Fig. 1 is a flowchart of a method for manufacturing a plastic mold according to an embodiment of the present disclosure. The manufacturing method specifically includes the following steps:
- Step S110 collecting brain image data of the patient.
- the brain area of the patient can be scanned by magnetic resonance imaging and/or CT (computer tomography) scanning imaging, and the brain image data of the patient can be collected based on the scan result.
- the brain image data in the present disclosure may be the image data of the entire brain structure area of the patient, or may be the image data of a part of the brain structure area of the patient.
- the brain image data includes at least image data of the visual cortex area of the blind patient. Since the anatomical structure of the visual cortex area of each blind patient is different, based on the image data of the visual cortex area, information such as the gully and fold curvature of the visual cortex area or the shape of the uneven surface of the visually blind patient can be obtained.
- step S120 3D (three-dimensional) modeling is performed on the brain image data to obtain three-dimensional data of the shaping mold.
- the brain image data can be imported into the modeling software for 3D modeling, and the three-dimensional data of the plastic mold can be obtained.
- the three-dimensional data of the shaping mold is consistent with the information such as the gully and fold curvature of the patient's cerebral cortex or the shape of the uneven surface.
- Step S130 based on the three-dimensional data, control the 3D printer to perform 3D printing or control the precision machining equipment to perform precision machining to obtain the aforementioned shaping mold for shaping the flexible electrode of the cerebral cortex electrical stimulator.
- Fig. 2 shows an implantation state diagram of the cerebral cortex electrical stimulator according to an embodiment of the present disclosure.
- the cerebral cortex electrical stimulator includes an implanted device implanted in the cerebral cortex of a patient and an external device (not shown in the figure) communicating with the implanted device.
- the implanted device includes a flexible electrode 300.
- the flexible electrode 300 includes a stimulation part, a cable 220 and an introduction part 231.
- the introduction part 231 is connected to the integrated circuit chip and discrete components (not shown in the figure), and is packaged with the integrated circuit chip and the discrete components to form a package structure 230.
- the implanted device is used to receive electrical stimulation signals sent by external devices, such as video information of the surrounding environment of the blind patient, and use the stimulation part in the flexible electrode 300 to directly act on the cerebral cortex through electrical stimulation, thereby realizing visual perception and pain treatment , Treatment of addictive diseases or vegetative awakening, etc.
- the stimulation part may be an electrode array 210 arranged in rows and columns.
- the present disclosure is not limited to this, and the stimulation part can also be configured in other possible configurations according to specific needs.
- the "shaping" described in the present disclosure is mainly aimed at the part of the stimulation that directly contacts the cerebral cortex.
- FIG. 3 shows a schematic structural diagram of a flexible electrode according to an embodiment of the present disclosure.
- the flexible electrode 300 of the cerebral cortex electrical stimulator of this embodiment includes an electrode array 210, a cable 220 and an introduction part 231.
- the number of electrodes in the electrode array 210 is generally tens or hundreds or even thousands.
- a plurality of wires respectively connected to the electrode array 210 are formed inside the cable 220 for electrically connecting the electrode array 210 to the lead-in part 231.
- the lead-in part 231 is used to connect to integrated circuit chips and discrete components.
- the electrode array 210 of the flexible electrode 300 is clamped by a shaping mold, and the electrode array 210 can be shaped.
- the 3D printer Based on the three-dimensional data, control the 3D printer to perform 3D printing, or adopt the method of precision machining, and the obtained shaping mold is consistent with the information such as the gully and fold curvature of the patient's cerebral cortex or the shape of the uneven surface. Therefore, use this shaping
- the mold shapes the flexible electrode 300 of the cerebral cortex electric stimulator, which can improve the fit of the flexible electrode 300 with the patient's cerebral cortex area, thereby improving the current stimulation effect on the patient's cerebral cortex, especially suitable for visual cortex electric stimulation
- the device is used to improve the visual experience of blind patients.
- Fig. 4 is a flowchart of a method for manufacturing a plastic mold according to another embodiment of the present disclosure.
- the manufacturing method specifically includes the following steps:
- Step S110 collecting brain image data of the patient.
- Step S121 Perform image segmentation on the brain image data to obtain brain visual cortex image data.
- the brain image data can also be preprocessed, for example, denoising and formatting the brain image data.
- the brain visual cortex image data includes: image data of the brain visual cortex V1, image data of the brain visual cortex V2, and image data of the brain visual cortex V3; or image data of the brain visual cortex V1 Data and the image data of the V2 part of the brain visual cortex; or the image data of the V1 part of the brain visual cortex and the image data of the V3 part of the brain visual cortex.
- step S122 3D modeling is performed on the brain image data to obtain the three-dimensional data of the convex mold and/or the three-dimensional data of the concave mold of the shaping mold.
- Step S131 based on the three-dimensional data of the convex mold, control 3D printing or precision machining to obtain a convex plastic mold; and/or based on the three-dimensional data of the concave mold, control 3D printing or precision machining to obtain a concave plastic mold.
- control 3D printing or precision machining to obtain a convex plastic mold
- control 3D printing or precision machining to obtain a concave plastic mold.
- the convex shaping mold and the concave shaping mold can be matched together to form the same shape as the ravine and fold curvature or the uneven surface of the patient's cerebral cortex. It is also possible to use a convex plastic mold or a concave plastic mold alone, and combine with another plastic component to shape the stimulation part of the flexible electrode 300.
- Fig. 5 shows a flow chart of a manufacturing method of a cerebral cortex electrical stimulator according to an embodiment of the present disclosure, and the manufacturing method includes:
- step S510 a plastic mold is made using the method for manufacturing the plastic mold described above.
- a plastic mold is made using the method of manufacturing a plastic mold as shown in FIG. 1 or FIG. 4.
- step S520 the flexible electrode 300 is clamped by the shaping mold, and the shaping mold and the flexible electrode 300 are heated in a vacuum environment. After a certain shaping time, the shaped flexible electrode 300 is obtained.
- the electrode array 210 in the flexible electrode 300 includes a first thin-film insulating layer, a metal layer, and a second thin-film insulating layer.
- the metal layer is located between the first thin-film insulating layer and the second thin-film insulating layer to form a thin-film-metal- The sandwich structure of the film.
- MEMS Micro-electromechanical Systems
- the electrode array 210 is formed by chemical vapor deposition, sputtering, electroplating, evaporation, plasma etching, patterning, or a combination thereof.
- Both the material of the first thin-film insulating layer and the material of the second thin-film insulating layer may include: polymethylmethacrylate, Teflon, silicone, polyimide, polyterephthalic acid, polypara-xylene ( Parelin).
- parylene can be deposited by chemical vapor deposition, so as to make the thickness of the electrode array 210 as thin as several hundred microns, or several tens of microns, or even several microns, so that the electrode array 210 can be more easily formed into a shape.
- Fig. 6 shows a schematic diagram of the structure of a shaping mold and a pressing mold according to an embodiment of the present disclosure.
- the shaping mold includes a convex shaping mold 610 and a concave shaping mold 620
- the pressing mold includes a lower pressing mold 630 and an upper pressing mold 640.
- the lower pressing mold 630 and the upper pressing mold 640 are used for pressing the lead-in part 231 of the flexible electrode 300 and the cable 220 flat.
- the convex molding mold 610 and the lower pressing mold 630 are detachably connected. In this embodiment, it is only necessary to perform customized printing or customized precision machining of the convex molding mold 610 and the concave molding mold 620 for different patients, while the lower pressing mold 630 and the upper pressing mold 640 can be used in common.
- the concave plastic mold 620 is fixed on the convex plastic mold 610 by screws.
- the flexible electrode 300 is placed at a specific position of the lower pressing mold 630 and the convex molding mold 610, so that the electrode array 210 of the flexible electrode 300 matches the position of the convex molding mold 610;
- the pressing mold 640 and the concave shaping mold 620 are respectively installed at the corresponding positions of the lower pressing mold 630 and the convex shaping mold 610, so that the lower pressing mold 630 and the upper pressing mold 640 clamp the introduction part 231 of the flexible electrode 300
- the cable 220, the convex molding mold 610 and the concave molding mold 620 clamp and fix the electrode array 210 of the flexible electrode 300; then, put the fixed assembly into a vacuum oven to make it at a high temperature of 150°C-250°C
- a shaped flexible electrode 300 is obtained.
- step S530 the lead-in part 231 of the shaped flexible electrode 300, the integrated circuit chip and the discrete components are packaged into a package structure to obtain the above-mentioned cerebral cortex electrical stimulator.
- the cerebral cortex electrical stimulator can be used to achieve visual perception, pain treatment, treatment of addictive diseases or vegetative awakening, etc., especially suitable for visual cortex electrical stimulator, for the treatment of glaucoma, diabetic retinopathy, high myopia, fundus disease, Blindness caused by eye trauma.
- the cerebral cortex electrical stimulator can also be used as an alternative treatment for retinitis pigmentosa (RP) and age-related macular degeneration (AMD).
- RP retinitis pigmentosa
- AMD age-related macular degeneration
- the visual cortex electrical stimulator can continue to retain all the residual vision of blind patients.
- the implantation device of the cerebral cortex electrical stimulator is surgically implanted in the patient's brain.
- the doctor first removes a part of the patient's skull to form a hollow part.
- the hollow portion is sufficient to provide a space for the electrode array 210 to pass through.
- the doctor uses a tool to implant the implantation device of the cerebral cortex electrical stimulator into the hollow part of the patient's skull or on the skull or under the scalp, and implant the electrode array 210 of the flexible electrode 300 of the cerebral cortex electrical stimulator into the surface of the cerebral cortex.
- the electrode array 210 can be implanted in the V1 area of the brain visual cortex, and can also partially cover the V2 area of the brain visual cortex or the V3 area of the brain visual cortex. After the operation is completed, the skull around the flexible electrode 300 can heal.
- the external device of the visual cortex electrical stimulator includes a camera unit, a video processing unit and a wireless transmission unit.
- the camera unit collects video information of the surrounding environment of the visually blind patient
- the video processing unit performs data conversion on the video information
- the wireless transmission unit transmits the video information after the data conversion to the implantation device.
- the electrode array 210 of the flexible electrode 300 of the visual cortex electrical stimulator directly acts on the visual cortex through electrical stimulation, so that the patient can obtain visual perception.
- the present disclosure realizes the customization of cerebral cortex electrical stimulators for different visually blind patients, and can improve the visual experience of visually blind patients.
- the external devices are configured accordingly, but they all have the function of sending electrical stimulation signals to the implanted devices.
- the external devices are configured accordingly, but they all have the function of sending electrical stimulation signals to the implanted devices.
- the external devices are configured accordingly, but they all have the function of sending electrical stimulation signals to the implanted devices.
- FIG. 7 shows a structural diagram of a manufacturing control device 700 of a plastic mold according to an embodiment of the present disclosure.
- the production control device 700 shown in FIG. 7 is only an example, and should not constitute any limitation on the function and scope of use of the embodiments of the present disclosure.
- the production control device 700 includes a processor 710, a memory 720, an image data acquisition device 730, and a mold processing device 740.
- the processor 710, the memory 720, the image data acquisition device 730, and the mold processing device 740 are connected by a bus.
- the memory 720 includes read-only memory (ROM) and random access memory (RAM).
- the memory 720 stores various computer instructions and data required to perform system functions.
- the processor 710 reads various computer instructions from the memory 720 to execute various computer instructions. kind of appropriate actions and processing.
- the image data acquisition device 730 may be a magnetic resonance imaging device or a CT scan imaging device.
- the image data collection device 730 collects brain image data of the patient.
- the mold processing equipment 740 is, for example, a 3D printer or precision machining equipment.
- the mold processing equipment 740 performs 3D printing based on the three-dimensional data of the plastic mold or uses precision machining technology to obtain a plastic mold for shaping the flexible electrode 300 of the cerebral cortex electrical stimulator.
- the memory 720 also stores computer instructions useful to execute the method of manufacturing the plastic mold of the embodiment of the present disclosure.
- embodiments of the present disclosure provide a computer-readable storage medium that stores computer instructions, which when executed, realize the above-mentioned method for manufacturing a plastic mold.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Cardiology (AREA)
- Psychology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Electrotherapy Devices (AREA)
Abstract
一种柔性电极的塑形模具的制作方法、柔性电极的塑形设备、脑皮层电刺激器的制作方法、计算机可读存储介质。所述柔性电极的塑形模具的制作方法包括:采集患者的脑部影像数据(S110);对所述脑部影像数据进行3D建模,获得塑形模具的三维数据(S120);基于三维数据,控制3D打印机进行3D打印或控制精密机械加工设备进行精密机械加工,得到用于对脑皮层电刺激器的柔性电极进行塑形的所述塑形模具(S130)。
Description
本公开涉及医疗设备制造技术领域,更具体地,涉及塑形模具和脑皮层电刺激器的制作方法、柔性电极的塑形设备、存储介质。
视觉重建大致可分为视网膜、视神经和视皮层三个层次。对于视网膜及视神经已经发生损害的患者,视皮层的视觉重建是一个重要研究方向。相关技术中,通过对视觉皮层施加刺激电流来诱发视盲患者光幻视以形成视觉感受。换言之,将电极阵列直接植入患者脑部,通过电极阵列将刺激电流施加给视觉皮层这一视路的最下游,使患者产生视觉感知。然而,与视网膜部分的规则弧面结构不同,视觉皮层具有复杂的沟壑形状。如何实现电极阵列的有效植入,以保证各刺激电极的刺激效果,是本领域技术人员面临的挑战。
此外,对脑皮层其他区域进行电刺激,也可以实现其他类型的功能恢复及疾病治疗(如疼痛治疗、成瘾性疾病治疗、植物人唤醒等)。然而,同样存在需要解决电极阵列有效植入的问题。
发明内容
鉴于上述问题,本公开的目的在于提供一种塑形模具和脑皮层电刺激器的制作方法,从而实现了不同患者的脑皮层电刺激器的定制化,提高了脑皮层电刺激器对患者脑皮层的电流刺激效果。
根据本公开第一方面实施例的柔性电极的塑形模具的制作方法,包括:采集患者的脑部影像数据;对所述脑部影像数据进行3D建模,获得所述塑形模具的三维数据;基于所述三维数据,控制3D打印机进行3D打印或控制精密机械加工设备进行精密机械加工,得到所述塑形模具,所述塑形模具用于对脑皮层电刺激器的柔性电极进行塑形。
根据本公开实施例的柔性电极的塑形模具的制作方法,通过采集患者的脑部影像数据,对脑部影像数据进行3D建模,获得塑形模具的三维数据,基于三维数据,控制3D打印机进行3D打印,或使用精密机械加工的方式,得到用于对脑皮层电刺激器的柔性电极进行塑形的塑形模具,塑形模具的三维数据与患者的脑皮层区域的沟壑及褶皱曲率或凹凸表面的形状等信息一致,因此,使用该塑形模具对脑皮层电刺激器的柔性电极塑形,实现了不同患者的脑皮层电刺激器的定制化,进而提高了对患者的脑皮层的电流刺激效果,尤其适用于视觉皮层电刺激器,用以改善视盲患者的视觉感受。
根据本公开的一些实施例,所述对所述脑部影像数据进行3D建模,获得所述塑形模具的 三维数据之前,还包括:对所述脑部影像数据进行图像分割,得到脑部视觉皮层影像数据。
根据本公开的一些实施例,所述脑部视觉皮层影像数据包括:脑部视觉皮层V1部分的影像数据、脑部视觉皮层V2部分的影像数据和脑部视觉皮层V3部分的影像数据;或者脑部视觉皮层V1部分的影像数据和脑部视觉皮层V2部分的影像数据;或者脑部视觉皮层V1部分的影像数据和脑部视觉皮层V3部分的影像数据。
根据本公开的一些实施例,所述对所述脑部影像数据进行3D建模,获得所述塑形模具的三维数据包括:对所述脑部影像数据进行3D建模,获得所述塑形模具的凸模三维数据和/或凹模三维数据。
根据本公开的一些实施例,所述基于所述三维数据,控制3D打印机进行3D打印或控制精密机械加工设备进行精密机械加工,得到所述塑形模具包括:基于所述凸模三维数据,控制3D打印或精密机械加工得到凸型塑形模具;和/或基于所述凹模三维数据,控制3D打印或精密机械加工得到凹型塑形模具。
根据本公开的一些实施例,在对所述脑部影像数据进行图像分割之前,还包括:对所述脑部影像数据进行预处理,所述预处理包括去噪和格式化。
根据本公开的一些实施例,所述采集患者的脑部影像数据,包括:通过磁共振成像和/或CT扫描成像采集所述患者的所述脑部影像数据。
根据本公开的一些实施例,采用金属增材技术进行3D打印,或采用多轴多联动精密加工中心进行精密机械加工。
根据本公开第二方面实施例的柔性电极的塑形设备,所述柔性电极包括引入部分、电极阵列以及电缆,所述电缆将所述电极阵列连接至所述引入部分,所述塑形设备包括:压紧模具,所述压紧模具包括上压紧模具和下压紧模具,所述上压紧模具和所述下压紧模具用于将所述柔性电极的所述引入部分和所述电缆压平;塑形模具,所述塑形模具由根据本公开上述第一方面实施例所述的制作方法制作而成,所述塑形模具包括凸型塑形模具和凹型塑形模具,所述凸型塑形模具与所述下压紧模具可拆卸地相连,所述凸型塑形模具和所述凹型塑形模具用于夹持并固定所述柔性电极的所述电极阵列。
根据本公开第三方面实施例的脑皮层电刺激器的制作方法,包括:采用根据本公开上述第一方面实施例所述的塑形模具的制作方法制作得到所述塑形模具;利用所述塑形模具夹持柔性电极,并在真空环境下加热所述塑形模具和所述柔性电极以对所述柔性电极进行塑形,得到塑形后的所述柔性电极;将所述柔性电极的引入部分和集成电路芯片以及分立元器件封装成封装结构,以得到所述脑皮层电刺激器。
根据本公开的一些实施例,所述在真空环境下加热所述塑形模具和所述柔性电极的加热温度的范围为150℃-250℃。
根据本公开第四方面实施例的计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令被执行时实现根据本公开上述第一方面实施例所述的柔性电极的塑形模具的制 作方法。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本公开的一个实施例的塑形模具的制作方法的流程图;
图2示出了根据本公开的一个实施例的脑皮层电刺激器的植入状态图;
图3示出了根据本公开的一个实施例的柔性电极的结构示意图;
图4示出了根据本公开的另一个实施例的塑形模具的制作方法的流程图;
图5示出了根据本公开的一个实施例的脑皮层电刺激器的制作方法的流程图;
图6示出了根据本公开的一个实施例的塑形模具和压紧模具的结构示意图;
图7示出了根据本公开的一个实施例的塑形模具的制作控制装置的结构图。
附图标记列表
210电极阵列;220电缆;230封装结构;231引入部分;300柔性电极;610凸型塑形模具;620凹型塑形模具;630下压紧模具;640上压紧模具;700制作控制装置;710处理器;720存储器;730影像数据采集设备;740模具加工设备。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
以下将参照附图更详细地描述本公开的各种实施例。在各个附图中,相同的元件采用相同或类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。
下面结合附图和实施例,对本公开的具体实施方式作进一步详细描述。
图1是根据本公开的一个实施例的塑形模具的制作方法的流程图。该制作方法具体包括以下步骤:
步骤S110,采集患者的脑部影像数据。
在本步骤中,可以通过磁共振成像和/或CT(computer tomography,电脑断层扫瞄术)扫描成像来扫描患者的脑部区域,并基于扫描结果采集患者的脑部影像数据。本公开中的脑部影像数据可以是患者整个脑部结构区域的影像数据,也可以是患者部分脑部结构区域的影像数据。作为一个示例,对于视盲患者而言,该脑部影像数据至少包括视盲患者的视觉皮层区域的影像数据。由于每个视盲患者的视觉皮层区域的解剖结构存在差异,因此,基于视觉皮 层区域的影像数据,可以得到视盲患者的视觉皮层区域的沟壑及褶皱曲率或凹凸表面的形状等信息。
步骤S120,对该脑部影像数据进行3D(three-dimensional,三维)建模,获得该塑形模具的三维数据。
在该步骤中,可以将脑部影像数据导入建模软件以进行3D建模,获得塑形模具的三维数据。塑形模具的三维数据与患者的脑皮层区域的沟壑及褶皱曲率或凹凸表面的形状等信息一致。
步骤S130,基于该三维数据,控制3D打印机进行3D打印或控制精密机械加工设备进行精密机械加工,得到用于对脑皮层电刺激器的柔性电极进行塑形的上述塑形模具。
图2示出根据本公开的一个实施例的脑皮层电刺激器的植入状态图。参照图2并结合图3,脑皮层电刺激器包括植入患者脑皮层的植入装置和与该植入装置通信的外部装置(图未示出),该植入装置包括柔性电极300。如图2-图3所示,柔性电极300包括刺激部分、电缆220和引入部分231。引入部分231连接至集成电路芯片和分立元器件(图未示出),并与该集成电路芯片和该分立元器件封装在一起以形成封装结构230。植入装置用于接收外部装置发送的电刺激信号,如视盲患者周围环境的视频信息,利用柔性电极300中的刺激部分通过电刺激的方式直接作用于脑皮层,从而实现视觉感知、疼痛治疗、成瘾性疾病治疗或植物人唤醒等目的。可选地,刺激部分可以为成排成列布置的电极阵列210。本公开不限于此,刺激部分也可以根据具体需要而配置为其他可能的构造。本公开所描述的“塑形”主要针对于直接与脑皮层接触的刺激部分。
可选地,图3示出了根据本公开的一个实施例的柔性电极的结构示意图。如图3所示,该实施例的脑皮层电刺激器的柔性电极300包括电极阵列210、电缆220及引入部分231。电极阵列210中的电极的数量一般为数十个或数百个、甚至数千个。电缆220的内部形成多根分别连接至电极阵列210的导线,用于将电极阵列210电连接至引入部分231。引入部分231用于连接至集成电路芯片和分立元器件。利用塑形模具夹持柔性电极300的电极阵列210,可以对电极阵列210进行塑形。
基于三维数据,控制3D打印机进行3D打印,或采用精密机械加工的方式,得到的塑形模具与患者的脑皮层区域的沟壑及褶皱曲率或凹凸表面的形状等信息一致,因此,使用该塑形模具对脑皮层电刺激器的柔性电极300塑形,可以提高柔性电极300与患者的脑皮层区域的贴合程度,进而可以提高对患者的脑皮层的电流刺激效果,尤其适用于视觉皮层电刺激器,用以改善视盲患者的视觉感受。
图4是根据本公开的另一个实施例的塑形模具的制作方法的流程图,该制作方法具体包括以下步骤:
步骤S110,采集患者的脑部影像数据。
步骤S121,对该脑部影像数据进行图像分割,得到脑部视觉皮层影像数据。
对脑部影像数据进行图像分割之前,还可以对脑部影像数据进行预处理,例如,对脑部影像数据进行去噪和格式化。具体地,脑部视觉皮层影像数据包括:脑部视觉皮层V1部分的影像数据、脑部视觉皮层V2部分的影像数据和脑部视觉皮层V3部分的影像数据;或者脑部视觉皮层V1部分的影像数据和脑部视觉皮层V2部分的影像数据;或者脑部视觉皮层V1部分的影像数据和脑部视觉皮层V3部分的影像数据。
步骤S122,对该脑部影像数据进行3D建模,获得该塑形模具的凸模三维数据和/或凹模三维数据。
步骤S131,基于该凸模三维数据,控制3D打印或精密机械加工以得到凸型塑形模具;和/或基于该凹模三维数据,控制3D打印或精密机械加工以得到凹型塑形模具。例如,采用金属增材技术进行3D打印,或采用多轴多联动精密加工中心进行精密机械加工。
凸型塑形模具和凹型塑形模具匹配在一起可以形成与患者脑皮层的沟壑及褶皱曲率或者凹凸表面相同的形状。也可以单独使用凸型塑形模具或凹型塑形模具,并结合另一可塑部件一起对柔性电极300的刺激部分进行塑形。
图5示出了根据本公开的一个实施例的脑皮层电刺激器的制作方法的流程图,该制作方法包括:
步骤S510,利用上述塑形模具的制作方法制作塑形模具。
在本步骤中,利用如图1或者图4所示的塑形模具的制作方法制作塑形模具。
步骤S520,利用该塑形模具夹持柔性电极300,并在真空环境下加热该塑形模具和该柔性电极300,经过一定的塑形时间后,得到塑形后的柔性电极300。
可选地,柔性电极300中的电极阵列210包括第一薄膜绝缘层、金属层及第二薄膜绝缘层,金属层位于第一薄膜绝缘层和第二薄膜绝缘层之间,形成薄膜-金属-薄膜的夹层结构。采用MEMS(Micro-electromechanical Systems,微电子机械系统)工艺,通过化学气相沉积、溅射、电镀、蒸镀、等离子刻蚀、图案化或其组合制成电极阵列210。第一薄膜绝缘层的材料和第二薄膜绝缘层的材料均可以包括:聚甲基丙烯酸甲酯、特氟隆、硅树脂、聚酰亚胺、聚对苯二甲酸、聚对二甲笨(派瑞林)。其中,派瑞林可以通过化学气相沉积的方式沉积,以便于使电极阵列210的厚度薄至几百微米、或几十微米、甚至几微米,以使电极阵列210更易于塑形成型。
图6示出根据本公开的一个实施例的塑形模具和压紧模具的结构示意图。塑形模具包括凸型塑形模具610和凹型塑形模具620,压紧模具包括下压紧模具630和上压紧模具640。下压紧模具630和上压紧模具640用于将柔性电极300的引入部分231和电缆220压平。凸型塑形模具610与下压紧模具630可拆卸地连接。该实施例只需针对不同患者进行凸型塑形模具610和凹型塑形模具620的定制打印或定制精密机械加工,而下压紧模具630和上压紧模具640则可以通用。此外,为便于装配,在夹持柔性电极300后,凹型塑形模具620通过螺钉固定于凸型塑形模具610上。
具体地,首先,将柔性电极300放置于下压紧模具630和凸型塑形模具610的特定位置,使得柔性电极300的电极阵列210与凸型塑形模具610的位置匹配;然后,将上压紧模具640和凹型塑形模具620分别安装于下压紧模具630和凸型塑形模具610的相应位置,使得下压紧模具630和上压紧模具640夹持柔性电极300的引入部分231和电缆220,凸型塑形模具610和凹型塑形模具620夹持并固定柔性电极300的电极阵列210;接着,将固定后的组件放入真空烤箱以使其在高温150℃-250℃下进行处理,经过设定时间段后,得到塑形后的柔性电极300。
步骤S530,将塑形后的柔性电极300的引入部分231和集成电路芯片以及分立元器件封装成封装结构,以得到上述脑皮层电刺激器。
该脑皮层电刺激器可以用于实现视觉感知、疼痛治疗、成瘾性疾病治疗或植物人唤醒等目的,尤其适用于视觉皮层电刺激器,用于治疗青光眼、糖尿病视网膜病变、高度近视眼底病变、眼外伤等致盲眼病。另外,该脑皮层电刺激器也可以作为视网膜色素变性(RP)及老年性视网膜黄斑退行性病变(AMD)的替代治疗方案。与视网膜电刺激器相比,该视觉皮层电刺激器可继续保留视盲患者的所有残留视力。
通常,脑皮层电刺激器的植入装置通过手术植入在患者脑部。在植入手术过程中,医生先去除患者的一部分颅骨,使其形成镂空部分。该镂空部分足以提供供电极阵列210通过的空间。医生通过工具将脑皮层电刺激器的植入装置植入患者颅骨的镂空部分或者颅骨上或者头皮下方,并将脑皮层电刺激器的柔性电极300的电极阵列210植入脑皮层表面。一般来说,对于视盲患者而言,电极阵列210可以植入脑部视觉皮层的V1区域,也可以部分覆盖脑部视觉皮层的V2区域或脑部视觉皮层的V3区域。手术完成后,柔性电极300周围的颅骨可以愈合。
视觉皮层电刺激器的外部装置包括摄像单元、视频处理单元和无线传输单元。摄像单元采集视盲患者周围环境的视频信息,视频处理单元将视频信息进行数据转换,无线传输单元将数据转换后的视频信息传输给植入装置。视觉皮层电刺激器的柔性电极300的电极阵列210通过电刺激的方式直接作用于视觉皮层,从而使患者能够获得视觉感知。本公开实现了不同视盲患者的脑皮层电刺激器的定制化,并能提高视盲患者的视觉感受。
对于其他类型的脑皮层电刺激器而言,外部装置相应配置,但均具有向植入装置发送电刺激信号的功能,具体可参考现有及改进的技术。
图7示出了根据本公开的一个实施例的塑形模具的制作控制装置700的结构图。图7示出的制作控制装置700仅仅是一个示例,不应对本公开实施例的功能和使用范围构成任何限制。
参考图7,制作控制装置700包括处理器710、存储器720、影像数据采集设备730和模具加工设备740,处理器710、存储器720、影像数据采集设备730和模具加工设备740通过总线连接。存储器720包括只读存储器(ROM)和随机访问存储器(RAM),存储器720内存储有执行系统功能所需的各种计算机指令和数据,处理器710从存储器720读取各种计算 机指令以执行各种适当的动作和处理。影像数据采集设备730可以为磁共振成像设备,也可以为CT扫描成像设备。影像数据采集设备730采集患者的脑部影像数据。模具加工设备740例如为3D打印机或者精密机械加工设备。模具加工设备740基于塑形模具的三维数据进行3D打印或使用精密机械加工技术,得到用于对脑皮层电刺激器的柔性电极300进行塑形的塑形模具。存储器720还存储有用以执行本公开实施例的塑形模具的制作方法的计算机指令。
相应地,本公开实施例提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机指令,该计算机指令被执行时实现上述塑形模具的制作方法。
依照本公开的实施例如上文所述,这些实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本公开的原理和实际应用,从而使所属技术领域技术人员能很好地利用本公开以及在本公开基础上的修改使用。本公开仅受权利要求书及其全部范围和等效物的限制。
Claims (12)
- 一种柔性电极的塑形模具的制作方法,其特征在于,包括:采集患者的脑部影像数据;对所述脑部影像数据进行3D建模,获得所述塑形模具的三维数据;基于所述三维数据,控制3D打印机进行3D打印或控制精密机械加工设备进行精密机械加工,得到所述塑形模具,所述塑形模具用于对脑皮层电刺激器的柔性电极进行塑形。
- 根据权利要求1所述的制作方法,其特征在于,所述对所述脑部影像数据进行3D建模,获得所述塑形模具的三维数据之前,还包括:对所述脑部影像数据进行图像分割,得到脑部视觉皮层影像数据。
- 根据权利要求2所述的制作方法,其特征在于,所述脑部视觉皮层影像数据包括:脑部视觉皮层V1部分的影像数据、脑部视觉皮层V2部分的影像数据和脑部视觉皮层V3部分的影像数据;或者脑部视觉皮层V1部分的影像数据和脑部视觉皮层V2部分的影像数据;或者脑部视觉皮层V1部分的影像数据和脑部视觉皮层V3部分的影像数据。
- 根据权利要求1所述的制作方法,其特征在于,所述对所述脑部影像数据进行3D建模,获得所述塑形模具的三维数据包括:对所述脑部影像数据进行3D建模,获得所述塑形模具的凸模三维数据和/或凹模三维数据。
- 根据权利要求4所述的制作方法,其特征在于,所述基于所述三维数据,控制3D打印机进行3D打印或控制精密机械加工设备进行精密机械加工,得到所述塑形模具包括:基于所述凸模三维数据,控制3D打印或精密机械加工得到凸型塑形模具;和/或基于所述凹模三维数据,控制3D打印或精密机械加工得到凹型塑形模具。
- 根据权利要求2所述的制作方法,其特征在于,在对所述脑部影像数据进行图像分割之前,还包括:对所述脑部影像数据进行预处理,所述预处理包括去噪和格式化。
- 根据权利要求1-6中任一项所述的制作方法,其特征在于,所述采集患者的脑部影像数据,包括:通过磁共振成像和/或CT扫描成像采集所述患者的所述脑部影像数据。
- 根据权利要求1-6中任一项所述的制作方法,其特征在于,采用金属增材技术进行3D打印,或采用多轴多联动精密加工中心进行精密机械加工。
- 一种柔性电极的塑形设备,所述柔性电极包括引入部分、电极阵列以及电缆,所述电缆将 所述电极阵列连接至所述引入部分,其特征在于,所述塑形设备包括:压紧模具,所述压紧模具包括上压紧模具和下压紧模具,所述上压紧模具和所述下压紧模具用于将所述柔性电极的所述引入部分和所述电缆压平;塑形模具,所述塑形模具由根据权利要求1-8中任一项所述的制作方法制作而成,所述塑形模具包括凸型塑形模具和凹型塑形模具,所述凸型塑形模具与所述下压紧模具可拆卸地相连,所述凸型塑形模具和所述凹型塑形模具用于夹持并固定所述柔性电极的所述电极阵列。
- 一种脑皮层电刺激器的制作方法,其特征在于,包括:采用如权利要求1-8中任一项所述的塑形模具的制作方法制作得到所述塑形模具;利用所述塑形模具夹持柔性电极,并在真空环境下加热所述塑形模具和所述柔性电极以对所述柔性电极进行塑形,得到塑形后的所述柔性电极;将所述柔性电极的引入部分和集成电路芯片以及分立元器件封装成封装结构,以得到所述脑皮层电刺激器。
- 根据权利要求10所述的制作方法,其特征在于,所述在真空环境下加热所述塑形模具和所述柔性电极的加热温度的范围为150℃-250℃。
- 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令被执行时实现如权利要求1至8中任一项所述的柔性电极的塑形模具的制作方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010425870.9 | 2020-05-19 | ||
CN202010425870.9A CN111632267A (zh) | 2020-05-19 | 2020-05-19 | 塑形模具和脑皮层电刺激器的制作方法、存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021232973A1 true WO2021232973A1 (zh) | 2021-11-25 |
Family
ID=72323486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/085602 WO2021232973A1 (zh) | 2020-05-19 | 2021-04-06 | 塑形模具和脑皮层电刺激器的制作方法、柔性电极的塑形设备、存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111632267A (zh) |
WO (1) | WO2021232973A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116726381A (zh) * | 2023-05-24 | 2023-09-12 | 浙江大学 | 具有三维数据图案的大脑视皮层刺激电极及其制作方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111632267A (zh) * | 2020-05-19 | 2020-09-08 | 微智医疗器械有限公司 | 塑形模具和脑皮层电刺激器的制作方法、存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140039577A1 (en) * | 2012-08-04 | 2014-02-06 | Boston Scientific Neuromodulation Corporation | Techniques and methods for storing and transferring registration, atlas, and lead information between medical devices |
CN106696293A (zh) * | 2015-08-05 | 2017-05-24 | 司勇锋 | 一种采用3d打印技术制作听小骨的方法 |
CN107033279A (zh) * | 2017-05-22 | 2017-08-11 | 深圳先进技术研究院 | 一种可变形的刺激响应材料及其制备方法和刺激响应柔性微电极阵列 |
CN108305549A (zh) * | 2018-02-12 | 2018-07-20 | 广州迈普再生医学科技有限公司 | 用于模拟深部脑刺激电极植入操作的模型装置及其制备方法 |
CN111632267A (zh) * | 2020-05-19 | 2020-09-08 | 微智医疗器械有限公司 | 塑形模具和脑皮层电刺激器的制作方法、存储介质 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5126710B2 (ja) * | 2007-08-22 | 2013-01-23 | 国立大学法人大阪大学 | 頭蓋内電極構造体およびその製造方法 |
CN106601338B (zh) * | 2016-11-18 | 2018-11-23 | 深圳先进技术研究院 | 一种具有功能化的柔性电极及其制备方法 |
CN109648399B (zh) * | 2019-02-25 | 2019-08-13 | 南京航空航天大学 | 五轴联动机床动态与静态误差综合检测方法 |
-
2020
- 2020-05-19 CN CN202010425870.9A patent/CN111632267A/zh active Pending
-
2021
- 2021-04-06 WO PCT/CN2021/085602 patent/WO2021232973A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140039577A1 (en) * | 2012-08-04 | 2014-02-06 | Boston Scientific Neuromodulation Corporation | Techniques and methods for storing and transferring registration, atlas, and lead information between medical devices |
CN106696293A (zh) * | 2015-08-05 | 2017-05-24 | 司勇锋 | 一种采用3d打印技术制作听小骨的方法 |
CN107033279A (zh) * | 2017-05-22 | 2017-08-11 | 深圳先进技术研究院 | 一种可变形的刺激响应材料及其制备方法和刺激响应柔性微电极阵列 |
CN108305549A (zh) * | 2018-02-12 | 2018-07-20 | 广州迈普再生医学科技有限公司 | 用于模拟深部脑刺激电极植入操作的模型装置及其制备方法 |
CN111632267A (zh) * | 2020-05-19 | 2020-09-08 | 微智医疗器械有限公司 | 塑形模具和脑皮层电刺激器的制作方法、存储介质 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116726381A (zh) * | 2023-05-24 | 2023-09-12 | 浙江大学 | 具有三维数据图案的大脑视皮层刺激电极及其制作方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111632267A (zh) | 2020-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021232973A1 (zh) | 塑形模具和脑皮层电刺激器的制作方法、柔性电极的塑形设备、存储介质 | |
Matteucci et al. | Current steering in retinal stimulation via a quasimonopolar stimulation paradigm | |
EP2091607B1 (en) | Visual prosthesis | |
US9254385B2 (en) | Visual prosthesis for phosphene shape control | |
CN106334258B (zh) | 人工视网膜的刺激电极结构及人工视网膜 | |
Brelén et al. | Measurement of evoked potentials after electrical stimulation of the human optic nerve | |
US9002462B2 (en) | Downloadable filters for a visual prosthesis | |
CN109821149B (zh) | 视网膜假体、植入装置及柔性电缆 | |
WO2005089470A2 (en) | Systems and methods for inducing intelligible hearing | |
CN106362279A (zh) | 刺激电极结构及人工视网膜的植入装置 | |
CN110226929B (zh) | 一种自动化听觉脑干植入体的电生理测试装置 | |
CN105407837A (zh) | 具有窄折叠区段的生物相容性带状电缆 | |
WO2023138130A1 (zh) | 一种神经接口系统 | |
US10058699B2 (en) | Implantable leads with flag extensions | |
WO2021232972A1 (zh) | 制作电极阵列成型模具方法及塑形方法、夹持工具和介质 | |
CN116726381A (zh) | 具有三维数据图案的大脑视皮层刺激电极及其制作方法 | |
CN112451856B (zh) | 柔性电极、植入装置和植入式视网膜电刺激器 | |
CN114917470B (zh) | 一种具有眼底图案信息的视网膜刺激电极及其制作方法 | |
US20230319491A1 (en) | Wearable device cover with communication coil | |
Shivdasani et al. | In vivo feasibility of epiretinal stimulation using ultrananocrystalline diamond electrodes | |
CN206198475U (zh) | 人工视网膜的刺激电极结构及人工视网膜 | |
WO2004011083A1 (en) | Reinforcement elements in a silicone electrode array | |
CN206261946U (zh) | 无绑带的人工视网膜的植入装置及人工视网膜 | |
US11110271B1 (en) | Method for implanting a stimulator with a foil-like electrode portion | |
CN112587094B (zh) | 电路板及其制造方法、电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21809330 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21809330 Country of ref document: EP Kind code of ref document: A1 |