WO2023138130A1 - 一种神经接口系统 - Google Patents

一种神经接口系统 Download PDF

Info

Publication number
WO2023138130A1
WO2023138130A1 PCT/CN2022/126567 CN2022126567W WO2023138130A1 WO 2023138130 A1 WO2023138130 A1 WO 2023138130A1 CN 2022126567 W CN2022126567 W CN 2022126567W WO 2023138130 A1 WO2023138130 A1 WO 2023138130A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface system
neural interface
microneedle
microneedles
present
Prior art date
Application number
PCT/CN2022/126567
Other languages
English (en)
French (fr)
Inventor
黄立
黄晟
姬君旺
高健飞
马占锋
Original Assignee
武汉衷华脑机融合科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉衷华脑机融合科技发展有限公司 filed Critical 武汉衷华脑机融合科技发展有限公司
Publication of WO2023138130A1 publication Critical patent/WO2023138130A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36046Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of the eye
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0543Retinal electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36135Control systems using physiological parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/001Bonding of two components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/038Bonding techniques not provided for in B81C2203/031 - B81C2203/037

Definitions

  • the invention belongs to the field of medical equipment, and in particular relates to a neural interface system.
  • the neural interface is a communication system that does not rely on the normal output pathways composed of peripheral nerves and muscles. It bypasses peripheral nerves and muscle tissues and provides a new channel for exchanging information with external devices. It can stimulate nerve cells to generate action potentials through external devices, and can also record the action potentials generated by nerve cells, so as to realize two-way communication between nerve cells and external devices. Therefore, neural interfaces are widely used to study and treat various neurological diseases, including the optic nerve system of the human body.
  • the object of the present invention is to provide a neural interface system for directly stimulating nerve cells with signals from the outside of the eye when the retina of the human body is damaged, so as to restore the human visual perception function.
  • a neural interface system comprising: at least one microneedle body, the microneedle body includes a backing plate and at least one body electrode, the backing plate has an arc-shaped structure, and the body electrode is located outside the backing plate.
  • an extracorporeal device is further included, and the extracorporeal device includes a collection unit and a processing unit.
  • the acquisition unit is used to acquire images; the processing unit is used to convert the images into stimulus signals for visual reproduction.
  • the extracorporeal device further includes a first wireless coil, and a second wireless coil is provided on the side of the microneedle;
  • the first wireless coil is used for sending stimulation signals
  • the second wireless coil is used for receiving stimulation signals.
  • the body electrode is implanted into the optic nerve.
  • the neural interface system further includes a fixing member, and the microneedle body is fixed in the orbit through the fixing member.
  • At least two of the body electrodes have different lengths.
  • the length of the body electrodes located in the middle region is greater than the lengths of the body electrodes located in both edge regions.
  • the length of the body electrodes located in the middle region is shorter than the lengths of the body electrodes located in the two edge regions.
  • microneedles there are multiple microneedles, and the microneedles formed by the plurality of microneedles are arc-shaped.
  • the present invention has the following beneficial effects:
  • the present invention provides a neural interface system, which is used to place microneedles in the eye sockets when the human retina is damaged, and directly stimulate optic nerve cells with signals capable of reconstructing vision, so as to restore visual perception function.
  • the present invention can customize a matched three-dimensional area array of multi-contact microneedles to realize multi-contact reading of a single nerve action potential and weak current stimulation of the optic nerve.
  • the present invention can realize reading and writing of nerve cell potential signals at the same position, thereby realizing synchronous compensation and correction of visual information, and providing better visual experience for visually impaired people.
  • FIG. 1 is a schematic structural diagram of a neural interface system proposed by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a body electrode proposed in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the circuit structure of an integrated circuit chip connected by indium pillars proposed by an embodiment of the present invention.
  • 1-microneedle body 2-integrated circuit chip, 3-body electrode, 4-wire, 5-body electrode point, 6-connecting line, 7-indium column, 8-contact electrode, 9-polycrystalline gate, 10-silicon substrate.
  • the present embodiment provides a neural interface system, comprising: at least one microneedle body, the microneedle body includes a backing plate and at least one body electrode, the backing plate has an arc-shaped structure, and the body electrode is located outside the backing plate. Wherein, there are multiple microneedles, and the microneedles formed by the plurality of microneedles are arc-shaped.
  • the body electrode is implanted into the optic nerve, and is used to send stimulation signals to the optic nerve, or to collect optic nerve signals.
  • an extracorporeal device is further included, and the extracorporeal device includes a collection unit and a processing unit.
  • the acquisition unit is used to acquire images; the processing unit is used to convert the images into stimulus signals for visual reproduction.
  • the acquisition unit can be arranged near the eye socket, and the processing unit can be arranged near the ear.
  • the acquisition unit can act as a human eye for collecting images of the outside world.
  • the processing unit converts the image into a stimulation signal that can reproduce vision, and sends the stimulation signal to the optic nerve through the body electrode, so as to send the stimulation signal to the brain nerve center through the optic nerve to reconstruct vision.
  • the extracorporeal device further includes a first wireless coil, and a second wireless coil is provided on the side of the microneedle; the first wireless coil is used to send stimulation signals, and the second wireless coil is used to receive stimulation signals.
  • the neural interface system further includes a fixing member, and the microneedle body is fixed in the orbit through the fixing member.
  • the fixing member is a nail or an adhesive or the like.
  • At least two of the body electrodes have different lengths.
  • the length of the body electrodes located in the middle region is longer than the lengths of the body electrodes located in the two edge regions.
  • the length of the body electrodes located in the middle region is shorter than the lengths of the body electrodes located in the two edge regions.
  • the neural interface system includes a plurality of microneedles, and at least two microneedle liners have different curvature radii, so that the plurality of microneedles are spliced into a spherical microneedle.
  • the curvature radius of the liner located in the middle area is greater than the curvature radius of the liner located in the edge area.
  • the neural interface system is used to place microneedles in the eye sockets when the human retina is damaged, and directly stimulate optic nerve cells with signals that can reconstruct vision, thereby restoring visual perception function.
  • an embodiment of the present invention discloses a neural interface system
  • the neural interface system includes a plurality of microneedles 1, an integrated circuit chip 2 (CMOS), a plurality of microneedles 1 assembled together by a binding device to form an array structure.
  • CMOS integrated circuit chip 2
  • the microneedle body includes at least one body electrode 3, and at least one body electrode point 5 is arranged on the body electrode 3.
  • a plurality of microneedle bodies can form a multi-contact area array, and can read optic nerve signals through the body electrode points or perform weak current stimulation to the optic nerve, thereby improving the spatial resolution and signal accuracy of the optic nerve; at the same time, the microneedle body 1 is bonded to the integrated circuit chip 2, which can realize signal input and output functions, and effectively solves the problem that the existing silicon/non-silicon technology implantable artificial retina body electrode 3 has fewer contacts.
  • the tethering device is in the shape of a hollow hemisphere, on which the microneedle body 1 is fixed to form a spike-shaped microneedle array.
  • the tethering device can closely fit the eyeball. Therefore, the tethering device is not a regular hollow hemisphere, but is based on the bionic shape of the human eyeball and is made of flexible materials. When implanted in the fundus, there will be no frictional sensation due to frequent rotation of the eyeball.
  • the microneedle body 1 includes a plurality of body electrodes 3, the body electrodes 3 are independent of each other, and a plurality of body electrode points 5 are arranged on the body electrodes 3, and the body electrode points 5 on the body electrodes 3 are mutually independent.
  • Each body electrode point 5 can collect different and non-interfering electrical signals according to the degree of insertion into the nerve tissue, or use the integrated circuit chip 2 to stimulate weak currents of different potentials at different cortical depths at the same position to form a higher-resolution visual sense.
  • Multiple body electrodes 3 are arranged on one microneedle body 1, and the signal reading operation and stimulation operation can also be performed simultaneously.
  • the retina of the human eyeball is a symmetrical structure, but the location of the retinal damage caused by disease or trauma is different.
  • the corresponding microneedles 1 on both sides can realize mutual compensation by reading and writing potential signals, and restore visual function.
  • the integrated circuit chip 2 can control the body electrode point 5 on the microneedle body 1 on the uninjured side of the retina to read the potential signal of the optic nerve, and then the integrated circuit chip 2 performs imaging angle conversion according to the specific position where the microneedle body 1 is inserted into the retina, and then controls the body electrode point 5 on the microneedle body 1 on the symmetrical side to output a corrected potential signal to compensate and correct the visual sense of the human eyeball.
  • the function of reading and stimulation can be achieved with different body electrodes 3 on the same position microcotenic body 1, that is, the power signals obtained by the original retina obtained by the human body of the human body through the integrated circuit chip 2 are compared and corrected, and then the electrical signal of the image information captured by the outside device is converted, and then another part of the electrical electricity on the same position of the micro -needle 1 is Extreme 3 Performs weak current stimulation. Due to the development of 5G technology today, the above signals can be synchronized to compensate and corrected in real time to provide a better visual experience for people with vision damage.
  • the binding device material of the microneedle body 1 is selected from flexible and transparent materials. Because the damage degree of the human retina suitable for the artificial retina is different, when all or most of the retina is peeled off due to trauma or disease, the original retina can no longer perform normal imaging functions. At this time, the artificial retina can completely replace the human retina.
  • the external image information obtained is converted into electrical signals through the integrated circuit chip, and then the optic nerve and cell axons are stimulated with a weak current through the body electrode point 5 on the microneedle body 1 to form the visual sense of the human body. At this time, the external light and images of the eyeball can no longer be imaged on the original retina of the human body.
  • Non-transparent materials can be used, and the integrated circuit chip 2 can also be placed on the front end of the retina or the tethering device.
  • the material of the binding device of the microneedle body 1 is selected from transparent materials, that is, while the body electrode points 5 can be read or stimulated.
  • the integrated circuit chip 2 is also in the shape of a hollow hemisphere, and fits well with the binding device of the neural interface system, and the neural interface system is bonded to the integrated circuit chip through the binding device.
  • the components formed by the neural interface system and the restraint device are electrically connected to the integrated circuit chip, and the integrated circuit chip is placed outside the eyeball to reduce the influence of the heat generated by the integrated circuit chip on the imaging function of the human retina.
  • the lengths of the microneedles 1 in the neural interface system are equal, and the tip points of the plurality of microneedles form a hemispherical arc; according to another embodiment of the present invention, the lengths of the microneedles 1 are unequal, and differentiated settings are made according to the degree of retinal damage to form an uneven multi-contact array.
  • the microneedles 1 in the neural interface system are evenly distributed on the restraint device; according to another embodiment of the present invention, the microneedles 1 are unevenly distributed on the restraint device, and the distribution density of the microneedles is set according to the degree of retinal damage and sensory requirements. For people with retinal damage, a denser microneedle array can be set in the damaged part of the retina, while a sparser microneedle array can be set in the undamaged part or not.
  • corresponding three-dimensional microneedles can be set according to the inspection results of human retinal damage to form a multi-contact area array corresponding to the corresponding degree of human retinal damage.
  • the body electrode 3 on the microneedle body 1 can be cut, and a protective film is provided at the fracture of the cut body electrode 3 .
  • the integrated circuit chip 2 is a readout circuit and includes a silicon substrate 10 on which contact electrodes 8 and polysilicon gates 9 are implanted.
  • the silicon substrate is a P-type silicon substrate, and the indium column implanted on the integrated circuit chip 2 is electrically connected to the silicon substrate 7 through the connecting wire 6 .
  • the embodiment of the present invention also discloses a method for preparing microneedles, comprising the steps of:
  • the plurality of body electrode points 5 on the microneedle 1 are connected to the indium column 7 on the microneedle 1 through connecting wires 6, wherein the connecting wires are metal wires made of metal materials, for example, the connecting wires are made of gold.
  • the body electrode point 5 is connected to the first welding point on the microneedle through the connecting wire 6, and the indium column 7 is arranged on the first welding point, thereby connecting the body electrode point 5 and the integrated circuit chip 2 together.
  • the body electrode points 5 on the body electrode 3 can be distributed in the same column or in different columns, which can be determined according to the width of the body electrode 3 and the actual situation. When the body electrode points 5 are distributed in different columns, the body electrode points 2 in adjacent columns may be misplaced.
  • the body electrode points 5 are used to collect optic nerve signals, and transmit the collected optic nerve signals to the integrated circuit chip 2.
  • the integrated circuit chip 2 is used to receive part of the optic nerve signals collected by the body electrode points 5, and on the other hand, can send electrical signals to part of the body electrode points 5, so that people can restore the visual perception function.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Neurology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Neurosurgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Cardiology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Prostheses (AREA)

Abstract

一种神经接口系统,包括:至少一个微针体(1),微针体(1)包括衬板和至少一个体电极(3),衬板为弧形结构,体电极(3)位于衬板的外侧。在人体视网膜受损时,将微针体(1)放置在眼眶内,用可以重建视觉的信号直接刺激视神经细胞,从而使人恢复视觉感知功能。

Description

一种神经接口系统 技术领域
本发明属于医疗器械领域,具体涉及一种神经接口系统。
背景技术
神经接口是一种不依赖于正常的由外周神经和肌肉组成的输出通路的通讯系统,绕开了外周神经和肌肉组织,提供一种新的与外界设备交流信息的通路,可以通过外部设备刺激神经细胞产生动作电位,也可以记录神经细胞产生的动作电位,以此实现神经细胞与外部设备的双向通信。因此,神经接口被广泛用于研究和治疗各种神经性疾病,包括人体的视经系统。
由于外伤、工作环境的影响或年龄的增长,人体眼球中的视网膜会产生损伤或脱落,造成人体失明或视力损伤。近年来随着科技的不断进步,产生了人工视网膜修复技术,即直接将光信号转变为电信号,再利用电信号刺激视网膜内层细胞,可以在一定程度上恢复患者的视力,目前该技术现已经成为视觉修复领域的研究热点,植入式人工视网膜电极常采用刚性的硅电极或柔性的非硅电极,患者感知图像的清晰程度取决于植入电极的数量,其作用就相当于数码相机的像素,电极数量越多,所感知的图像也越清晰,而传统硅/非硅技术的体电极点较少,无法差异化的读取视神经信号或差异化对视神经进行的弱电流刺激,因此无法满足人体对视觉效果的要求。
发明内容
针对现有技术的缺点和不足,本发明的目的在于提供一种神经接口系统,用以在人体视网膜受损时,用眼外传来的信号直接刺激神经细胞,从而使人恢复视觉感知功能。
为实现上述目的,本发明采用具体技术方案如下:提供一种神经接口系统,包括:至少一个微针体,所述微针体包括衬板和至少一个体电极,所述衬板为弧形结构,所述体电极位于所述衬板的外侧。
在其中一个可选的实施例中,还包括体外装置,所述体外装置包括采集单元和处理单元。
在其中一个可选的实施例中,所述采集单元用于获取图像;所述处理单元用于将图像转换为用于再现视觉的刺激信号。
在其中一个可选的实施例中,所述体外装置还包括第一无线线圈,所述微针体侧设置有第二无线线圈;
所述第一无线线圈用于发送刺激信号,所述第二无线线圈用于接收刺激信号。
在其中一个可选的实施例中,所述体电极被植入到视神经中。
在其中一个可选的实施例中,所述神经接口系统还包括固定件,通过固定件将微针体固定在眼眶内。
在其中一个可选的实施例中,至少两个所述体电极的长度不同。
在其中一个可选的实施例中,位于中间区域的所述体电极的长度大于位于两边缘区域的所述体电极的长度。
在其中一个可选的实施例中,位于中间区域的所述体电极的长度小于位于两边缘区域的所述体电极的长度。
在其中一个可选的实施例中,所述微针体的数目为多个,多个所 述微针体形成的微针呈弧面状。
与现有技术相比,本发明具有以下有益效果:
本发明的提供了一种神经接口系统,用以在人体视网膜受损时,将微针体放置在眼眶内,用可以重建视觉的信号直接刺激视神经细胞,从而使人恢复视觉感知功能。
本发明可以根据人体眼球视网膜的损伤程度订制匹配的多触点微针的三维面阵,实现多触点读取单个神经动作电位和弱电流刺激视神经。
本发明通过在单个微针体上设计独立的体电极以及体电极点,可以实现对同一位置神经细胞电位信号的读取与写入,进而实现视觉信息的同步补偿与修正,为视力损伤人群提供更好的视觉体验。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对本发明保护范围的限定。在各个附图中,类似的构成部分采用类似的编号。
图1为本发明实施例提出的一种神经接口系统的结构示意图;
图2为本发明实施例提出的体电极的结构示意图;
图3为本发明实施例提出的铟柱连接集成电路芯片电路结构示意图。
其中,1-微针体,2-集成电路芯片,3-体电极,4-导线,5-体电 极点,6-连接线,7-铟柱,8-接触电极,9-多晶门,10-硅基底。
具体实施方式
下面将结合本发明实施例中附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
在下文中,可在本发明的各种实施例中使用的术语“包括”、“具有”及其同源词仅意在表示特定特征、数字、步骤、操作、元件、组件或前述项的组合,并且不应被理解为首先排除一个或更多个其它特征、数字、步骤、操作、元件、组件或前述项的组合的存在或增加一个或更多个特征、数字、步骤、操作、元件、组件或前述项的组合的可能性。
此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
除非另有限定,否则在这里使用的所有术语(包括技术术语和科学术语)具有与本发明的各种实施例所属领域普通技术人员通常理解的含义相同的含义。所述术语(诸如在一般使用的词典中限定 的术语)将被解释为具有与在相关技术领域中的语境含义相同的含义并且将不被解释为具有理想化的含义或过于正式的含义,除非在本发明的各种实施例中被清楚地限定。
实施例1:
本实施例提供一种神经接口系统,包括:至少一个微针体,所述微针体包括衬板和至少一个体电极,所述衬板为弧形结构,所述体电极位于所述衬板的外侧。其中,所述微针体的数目为多个,多个所述微针体形成的微针呈弧面状。所述体电极被植入到视神经中,用于向视神经发送刺激信号,或者用于采集视神经信号。
在其中一个可选的实施例中,还包括体外装置,所述体外装置包括采集单元和处理单元。所述采集单元用于获取图像;所述处理单元用于将图像转换为用于再现视觉的刺激信号。其中,所述采集单元可以设置在眼眶附近,所述处理单元设置在耳朵附近,所述采集单元可以充当人眼,用于采集外界的图像,所述处理单元将图像转换为可以再现视觉的刺激信号,将刺激信号通过体电极发送至视神经,以通过视神经将刺激信号发送至大脑神经中枢,以重建视觉。
在实际应用场景下,所述体外装置还包括第一无线线圈,所述微针体侧设置有第二无线线圈;所述第一无线线圈用于发送刺激信号,所述第二无线线圈用于接收刺激信号。
在其中一个可选的实施例中,所述神经接口系统还包括固定件,通过固定件将微针体固定在眼眶内。其中,所述固定件为钉子或粘合剂等。
在实际应用场景下,至少两个所述体电极的长度不同。在其中 一个可选的实施例中,位于中间区域的所述体电极的长度大于位于两边缘区域的所述体电极的长度。在另一个可选的实施例中,位于中间区域的所述体电极的长度小于位于两边缘区域的所述体电极的长度。
在可选的实施例中,所述神经接口系统包括多个微针体,至少两个微针体的衬板的曲率半径不同,从而将多个微针体拼接成球面状的微针。在可选的实施例中,位于中间区域的衬板的曲率半径大于位于边缘区域的衬板的曲率半径。
在本实施例中,该神经接口系统用以在人体视网膜受损时,将微针体放置在眼眶内,用可以重建视觉的信号直接刺激视神经细胞,从而使人恢复视觉感知功能。
实施例2
结合图1和图2,本发明的一个实施例公开了一种神经接口系统,该神经接口系统包括多个微针体1、集成电路芯片2(CMOS),多个微针体1通过束缚装置组装在一起,形成阵列结构。其中,所述微针体包括至少一个体电极3,所述体电极3上设置有至少一个体电极点5,多个微针体可以形成多触点的面阵,能够通过体电极点读取视神经信号或对视神经进行弱电流刺激,提高了视神经的空间分辨率和信号精确度;同时将微针体1与集成电路芯片2键合,可实现信号的输入和输出功能,有效解决了现有采用硅/非硅技术植入式人工视网膜体电极3触点较少的问题。
根据本发明的一个实施例,所述束缚装置呈空心半球形,所述微针体1固定于其上形成刺突状微针阵列,当微针阵列插入视神经时,所述束缚装置可以与眼球紧密贴合,因此该束缚装置不是规则的空心 半球形,而是基于人体眼球的仿生形状,由柔性材料制成,在眼底植入不会因为眼球的频繁转动而有摩擦异感。
实施例3
根据本发明的一个具体实施例,微针体1包括多个体电极3,所述体电极3之间相互独立,所述体电极3上设置有多个体电极点5,所述体电极3上的各体电极点5之间相互独立。各体电极点5可以根据插入神经组织的程度采集不同且相互无干扰的电信号,或通过集成电路芯片2对同一位置的不同皮层深度进行不同电位的弱电流刺激,形成分辨率更高的视觉感官。一个微针体1上设置多个体电极3,还可以同时进行信号的读取操作与刺激操作。
根据本发明的一个实施例,人体眼球的视网膜是一个对称结构,但因疾病或外伤而导致的视网膜损伤的位置各异,当左右对称位置的视网膜只存在一侧损伤时,两侧所对应的微针体1可以通过读取与写入电位信号实现相互补偿,实现视觉功能恢复。具体地,可以通过集成电路芯片2控制视网膜未受损伤一侧的微针体1上的体电极点5读取视神经的电位信号,然后集成电路芯片2根据微针体1插入视网膜的具体位置进行成像角度的换算,然后控制对称一侧的微针体1上的体电点5输出经过修正后的电位信号,用以补偿校正人体眼球的视觉感官。
根据本发明的另一个实施例,在人体视网膜受部分损伤时,可以用同一位置微针体1上的不同体电极3来分别实现读取和刺激的功能,即通过集成电路芯片2将读取的人体原始视网膜获取的电信号与外界设备捕获的图像信息转换成的电位信号进行比对修正,再通过同一位置微针体1上的另一体电极3对视神经进行弱电流刺激,由于现今 5G技术的发展,上述信号可以实时同步补偿与修正,为视力损伤人群提供更好的视觉体验。
实施例4
根据本发明的一个实施例,所述微针体1的束缚装置材料选择柔性透明材料。因为人工视网膜适用的人体视网膜的损伤程度有所不同,当因外伤或疾病而导致视网膜全部或大部分剥落时,其原始视网膜已经无法进行正常成像功能,此时人工视网膜可以完全取代人体视网膜,通过集成电路芯片将获取到的外部图像信息转化成电信号,再通过微针体1上的体电极点5对视神经以及细胞轴突进行弱电流刺激,以形成人体的视觉感官。此时,眼球的外界光线和图像已无法在人体原始视网膜上成像,对于束缚装置以及集成电路芯2的材料和设置位置没有特别的要求,可以采用非透明材料,集成电路芯片2也可置于视网膜或束缚装置的前端。但当视网膜部分损伤时或部分脱落时,还拥有部分视觉成像功能,在眼球视网膜内表面设置半球形的人工视网膜会遮档原始光线的射入,此时,将所述微针体1的束缚装置的材料选择透明材料,即可以在实现体电极点5读取或刺激视神经或细胞轴突的同时,还不阻碍人体原始视网膜的部分感官功能。
根据本发明的一个实施例,所述集成电路芯片2也呈空心半球形,与神经接口系统的束缚装置良好嵌合,所述神经接口系统通过束缚装置与所述集成电路芯片键合在一起。
根据本发明的另一个实施例,所述神经接口系统与束缚装置形成的组件与集成电路芯片电连接,集成电路芯片置于眼球之外,减少集成电路芯片工作发热对人体视网膜成像功能的影响。
实施例5
根据本发明的一个实施例,所述神经接口系统中的微针体1长度相等,所述多个微针体尖端点形成半球形弧面;根据本发明的另一个实施例,所述微针体1的长度不相等,根据视网膜的损伤程度进行差异化设置,形成差参不齐的多触点面阵。
根据本发明的一个实施例,所述神经接口系统中的微针体1均匀分布在束缚装置上;根据本发明的另一个实施例,所述微针体1不均匀的分布在束缚装置上,根据视网膜的损伤程度和感官需求对微针的分布密度进行设置,对于视网膜部分的损伤的人群,可以在视网膜损伤的局部设置更为密集的微针阵列,而未受损伤的局部可以设置较为稀疏的微针阵列或不设置。
具体地,可以根据对人体视网膜损伤的检查结果设置相应的三维化的微针,形成与对应人体视网膜损伤程度对应的多触点的面阵。所述微针体1上的体电极3可裁剪,被裁剪的所述体电极3的断口处设置有保护膜。
实施例6
如图4所示,所述集成电路芯片2为读出电路,包括硅基底10,硅基底上植入有接触电极8和多晶门9。其中,所述硅基底为P型硅基底,所述集成电路芯片2上植入的铟柱通过连接线6与硅基底7电连接。
本发明实施例还公开了一种微针的制备方法,包括步骤:
S1、采用标准的MEMS加工工艺制作出微针体;
S2、在微针体上加工至少一个体电极点;
S3、在微针体和集成电路芯片上分别植入铟柱;
S4、将植入有铟柱的微针体和集成电路芯片键合形成微针组件, 通过束缚装置将多个微针组件组装在一起,形成微针。
所述微针体1上的多个体电极点5与微针体1上的铟柱7通过连接线6连接,其中,所述连接线为金属线,由金属材料制作而成,例如连接线由金制作而成。在实际应用场景下,体电极点5通过连接线6与微针上的第一焊点连接,铟柱7设置在所述第一焊点上,从而将体电极点5与集成电路芯片2连接在一起。
此外,体电极3上的体电极点5可以分布在同一列,也可以分布在不同的列,可以根据体电极3的宽度以及实际情况而定。当所述体电极点5分布在不同的列时,相邻列的体电极点2可以错位分布。
根据本申请的一个实施例,所述体电极点5用于采集视神经信号,并将采集到的视神经信号传输给所述集成电路芯片2,所述集成电路芯片2一方面用于接收部分体电极点5所采集到的视神经信号,另一方面可以向部分体电极点5发送电信号,使人恢复视觉感知功能,即,将微针体1与集成电路芯片2键合后,可实现信号的输入和输出功能,可读取单个神经细胞动作电位和实现弱电流的刺激。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种神经接口系统,其特征在于,包括:至少一个微针体,所述微针体包括衬板和至少一个体电极,所述衬板为弧形结构,所述体电极位于所述衬板的外侧。
  2. 如权利要求1所述的神经接口系统,其特征在于,还包括体外装置,所述体外装置包括采集单元和处理单元。
  3. 如权利要求2所述的神经接口系统,其特征在于,所述采集单元用于获取图像;所述处理单元用于将图像转换为用于再现视觉的刺激信号。
  4. 如权利要求2所述的神经接口系统,其特征在于,所述体外装置还包括第一无线线圈,所述微针体侧设置有第二无线线圈;
    所述第一无线线圈用于发送刺激信号,所述第二无线线圈用于接收刺激信号。
  5. 如权利要求1所述的神经接口系统,其特征在于,所述体电极被植入到视神经中。
  6. 如权利要求5所述的神经接口系统,其特征在于,所述神经接口系统还包括固定件,通过固定件将微针体固定在眼眶内。
  7. 如权利要求1所述的神经接口系统,其特征在于,至少两个所述体电极的长度不同。
  8. 如权利要求7所述的神经接口系统,其特征在于,位于中间区域的所述体电极的长度大于位于两边缘区域的所述体电极的长度。
  9. 如权利要求7所述的神经接口系统,其特征在于,位于中间区域的所述体电极的长度小于位于两边缘区域的所述体电极的长度。
  10. 如权利要求1~9任一项所述的神经接口系统,其特征在于,所述微针体的数目为多个,多个所述微针体形成的微针呈弧面状。
PCT/CN2022/126567 2022-01-21 2022-10-21 一种神经接口系统 WO2023138130A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210074456.7 2022-01-21
CN202210074456.7A CN114917471A (zh) 2022-01-21 2022-01-21 一种神经接口系统

Publications (1)

Publication Number Publication Date
WO2023138130A1 true WO2023138130A1 (zh) 2023-07-27

Family

ID=82805368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126567 WO2023138130A1 (zh) 2022-01-21 2022-10-21 一种神经接口系统

Country Status (2)

Country Link
CN (1) CN114917471A (zh)
WO (1) WO2023138130A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114917471A (zh) * 2022-01-21 2022-08-19 武汉衷华脑机融合科技发展有限公司 一种神经接口系统
CN114191717A (zh) * 2022-01-21 2022-03-18 武汉衷华脑机融合科技发展有限公司 一种微针及神经接口系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090270958A1 (en) * 2008-04-25 2009-10-29 Greenberg Robert J Simply Supported Neural Stimulation Electrode Array for Applying Pressure on Neural Tissue
CN103690300A (zh) * 2013-12-19 2014-04-02 中国医学科学院生物医学工程研究所 一种具有球面弧形衬底的视网膜假体
CN105997342A (zh) * 2016-07-08 2016-10-12 清华大学 一种视网膜内膜的视觉假体
CN106236377A (zh) * 2016-09-12 2016-12-21 北京大学 利用皮下神经刺激形成人工视觉的设备
CN108983959A (zh) * 2018-05-24 2018-12-11 珠海市大悦科技有限公司 一种人工视觉的系统及方法
CN114917471A (zh) * 2022-01-21 2022-08-19 武汉衷华脑机融合科技发展有限公司 一种神经接口系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090270958A1 (en) * 2008-04-25 2009-10-29 Greenberg Robert J Simply Supported Neural Stimulation Electrode Array for Applying Pressure on Neural Tissue
CN103690300A (zh) * 2013-12-19 2014-04-02 中国医学科学院生物医学工程研究所 一种具有球面弧形衬底的视网膜假体
CN105997342A (zh) * 2016-07-08 2016-10-12 清华大学 一种视网膜内膜的视觉假体
CN106236377A (zh) * 2016-09-12 2016-12-21 北京大学 利用皮下神经刺激形成人工视觉的设备
CN108983959A (zh) * 2018-05-24 2018-12-11 珠海市大悦科技有限公司 一种人工视觉的系统及方法
CN114917471A (zh) * 2022-01-21 2022-08-19 武汉衷华脑机融合科技发展有限公司 一种神经接口系统

Also Published As

Publication number Publication date
CN114917471A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
WO2023138130A1 (zh) 一种神经接口系统
Maghami et al. Visual prostheses: The enabling technology to give sight to the blind
Weiland et al. Retinal prosthesis
US6393327B1 (en) Microelectronic stimulator array
US6970745B2 (en) Microelectronic stimulator array for stimulating nerve tissue
EP2523598B1 (en) Penetrating electrodes for retinal stimulation
US6647297B2 (en) Permanent retinal implant device
JP4130589B2 (ja) 網膜刺激用電極部材、およびその電極部材を用いた人工網膜装置等
Eisenberg et al. Electrical stimulation of the auditory brain stem structure in deafened adults
Wong et al. Retinal neurostimulator for a multifocal vision prosthesis
Picaud et al. Retinal prostheses: Clinical results and future challenges
US20070191910A1 (en) Visual prosthesis
Chai et al. C-sight visual prostheses for the blind
Suaning et al. The bionic eye (electronic visual prosthesis): A review
Dagnelie Visual prosthetics 2006: assessment and expectations
Lovell et al. Advances in retinal neuroprosthetics
US20080161915A1 (en) System for creating visual images
JP4310247B2 (ja) 視覚再生補助装置
WO2023138128A1 (zh) 一种微针及神经接口系统
CN217339793U (zh) 一种神经接口系统
CN218128556U (zh) 一种神经接口
CN217794113U (zh) 一种微针及神经接口系统
TWI373349B (en) Electrical stimulation system for generating virtual channels
Dobelle Current status of research on providing sight to the blind by electrical stimulation of the brain
CN107427362B (zh) 无创前庭刺激和测量电极

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921554

Country of ref document: EP

Kind code of ref document: A1