WO2021232935A1 - 阵列基板、显示面板及显示装置 - Google Patents

阵列基板、显示面板及显示装置 Download PDF

Info

Publication number
WO2021232935A1
WO2021232935A1 PCT/CN2021/082966 CN2021082966W WO2021232935A1 WO 2021232935 A1 WO2021232935 A1 WO 2021232935A1 CN 2021082966 W CN2021082966 W CN 2021082966W WO 2021232935 A1 WO2021232935 A1 WO 2021232935A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
adjustment
transparent film
light adjustment
Prior art date
Application number
PCT/CN2021/082966
Other languages
English (en)
French (fr)
Inventor
方旭阳
彭兆基
刘明星
王子豪
王盼盼
张志远
甘帅燕
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Publication of WO2021232935A1 publication Critical patent/WO2021232935A1/zh
Priority to US17/733,298 priority Critical patent/US20220255046A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors

Definitions

  • This application relates to the field of flexible display technology, and in particular to an array substrate, a display panel and a display device.
  • OLED Organic Light-Emitting Diode, organic light-emitting diode
  • OLED Organic Light-Emitting Diode, organic light-emitting diode
  • the display panel includes a plurality of transparent film layers stacked, and at least some of the plurality of transparent film layers are provided with blind holes, and photosensitive elements such as cameras are embedded under the display panel corresponding to the blind holes, and external light can pass through The blind hole enters the photosensitive element located under the display panel to obtain an image.
  • the transparent film layer covering the blind hole is prone to collapse into the blind hole, resulting in a Newton ring phenomenon in the display panel, which affects the display effect of the display panel.
  • embodiments of the present application provide an array substrate, a display panel, and a display device, which are used to eliminate the Newton ring phenomenon and improve the display effect of the display panel.
  • the first aspect of the embodiments of the present application provides an array substrate, which includes: at least two transparent film layers stacked in sequence, among the at least two transparent film layers, at least one adjacent two transparent film layers A light adjustment layer is arranged therebetween, and the product of the refractive index of the light adjustment layer and the thickness of the light adjustment layer is greater than half of the preset wave train length.
  • a third aspect of the embodiments of the present application provides a display device, which includes the array substrate provided in the foregoing first aspect, or the display panel provided in the foregoing second aspect.
  • the array substrate, display panel, and display device provided by the embodiments of the present application have the following advantages:
  • a light adjustment layer is provided between at least one adjacent two transparent film layers, and the product of the refractive index of the light adjustment layer and the thickness of the light adjustment layer is greater than one-half of the predetermined thickness. Setting the length of the wave train increases the optical path difference between the two adjacent transparent film layers of the predetermined wavelength and destroys the formation conditions of the Newton ring, thereby eliminating the Newton ring phenomenon and improving the display effect of the display panel.
  • Figure 1 is a light interference model with Newton's ring phenomenon in the array substrate
  • FIG. 3 is a schematic diagram of the structure of an array substrate provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a light adjustment layer provided between a substrate and a buffer layer in an array substrate according to an embodiment of the application;
  • FIG. 5 is a schematic diagram of a structure in which a light adjustment layer in an array substrate provided by an embodiment of the application is disposed between the first buffer layer and the second buffer layer;
  • FIG. 6 is a schematic diagram of a structure in which a light adjustment layer is provided between the substrate and the first buffer layer, and between the first buffer layer and the second buffer layer in the array substrate provided by an embodiment of the application;
  • FIG. 7 is a schematic diagram of a structure in which a light adjustment layer is provided between the substrate and the buffer layer, and between the buffer layer and the array circuit layer in the array substrate provided by an embodiment of the application;
  • FIG. 8 is a schematic structural diagram of an array substrate provided with a light adjustment layer between the substrate and the array circuit layer according to an embodiment of the application;
  • FIG. 9 is a schematic structural diagram of a transparent film layer of an array substrate provided by another embodiment of the application with grooves provided on the side facing the adjacent transparent film layer;
  • FIG. 10 is a schematic structural diagram of an array substrate provided with bumps between two adjacent transparent film layers according to another embodiment of the application;
  • FIG. 11 is a schematic diagram of a structure in which both sides of a light adjustment layer in a display panel provided by another embodiment of the application are respectively attached to the light-emitting layer and the encapsulation layer;
  • FIG. 12 is a schematic diagram of a structure in which one side of a light adjustment layer and an encapsulation layer are attached to a display panel provided by another embodiment of the application;
  • FIG. 13 is a schematic diagram of a structure in which one side of a light adjustment layer is attached to a light-emitting layer in a display panel provided by another embodiment of the application;
  • FIG. 14 is a schematic structural diagram of a display panel provided by another embodiment of the application in which there are two light adjustment layers between the light-emitting layer and the encapsulation layer, and there is a vacuum space between the two light adjustment layers;
  • 15 is a schematic diagram of a structure in which one side of the light adjustment layer is attached to the light emitting layer in a display panel provided by another embodiment of the application, and a support pad is provided between the other side of the light adjustment layer and the encapsulation layer;
  • 16 is a schematic structural diagram of a display panel provided by another embodiment of the present application where one side of the light adjustment layer is attached to the encapsulation layer, and a support pad is provided between the other side of the light adjustment layer and the light-emitting layer;
  • FIG. 17 is a schematic diagram of a structure in which two light adjustment layers are provided between the encapsulation layer and the light-emitting layer in a display panel provided by another embodiment of the application, and a support pad is provided between the two light adjustment layers;
  • FIG. 18 is a schematic structural diagram of a display panel provided with mounting holes according to another embodiment of the application.
  • FIG. 19 is a schematic structural diagram of a light adjustment layer provided between an encapsulation layer and a touch layer in a display panel provided by another embodiment of the application.
  • the main reason for the display panel to produce Newton’s ring is: the pressure of the atmospheric pressure inside and outside the blind hole is not equal, which causes the transparent film layer above the blind hole to collapse toward the blind hole, which in turn causes the gap between the transparent film layers on both sides of the blind hole. The distance is not equal.
  • the optical path difference of the incident light with wavelength ⁇ between the transparent film layers on both sides of the blind hole is not equal, as shown in Figure 1. It shows that when the optical path difference of the incident light with wavelength ⁇ between the transparent film layers on both sides of the blind hole is less than the wavelength, the incident light with wavelength ⁇ will be reflected almost simultaneously on the transparent film layers on both sides of the blind hole.
  • the reflected light ⁇ 1 and the reflected light ⁇ 2 are formed, and light interference phenomenon occurs between the reflected light ⁇ 1 and the reflected light ⁇ 2, and the phenomenon of Newton's ring appears, which affects the display effect of the display panel.
  • a light adjustment layer is arranged between at least one adjacent two transparent film layers, and the refractive index of the light adjustment layer and the light adjustment layer
  • the product of the thickness is greater than one-half of the preset wave train length. For example, as shown in FIG.
  • the light adjustment layer increases the wavelength by The optical path difference of the incident light of ⁇ between two adjacent transparent film layers, and the optical path difference is greater than the wavelength of the incident light of wavelength ⁇ , therefore, when the incident light of wavelength ⁇ is from the upper transparent film layer 10
  • the reflected light ⁇ 1 formed on the transparent film layer above the light adjustment layer is reflected out first, and the reflected light ⁇ 2 formed on the transparent film layer below the light adjustment layer is reflected out, thus avoiding the reflected light ⁇ 1 Interference occurs with the reflected light ⁇ 2, which destroys the formation conditions of Newton's rings, thereby eliminating the phenomenon of Newton's rings and improving the display effect of the display panel.
  • the array substrate 100 provided by an embodiment of the present application includes: at least two transparent film layers 10 stacked in sequence. Among the at least two transparent film layers 10, at least one adjacent two transparent film layers 10 A light adjustment layer 20 is arranged therebetween, and the product of the refractive index of the light adjustment layer 20 and the thickness of the light adjustment layer 20 is greater than half of the preset wave train length.
  • n in the above formula is the refractive index of the dielectric layer between two adjacent transparent film layers 10
  • d is the thickness of the dielectric layer between two adjacent transparent film layers 10
  • L ⁇ is the preset wave train length .
  • the light adjustment layer 20 is arranged between at least one adjacent two transparent film layers 10, and the product of the refractive index of the light adjustment layer 20 and the thickness of the light adjustment layer 20 is greater than one half of the preset
  • the length of the wave train increases the optical path difference between the two adjacent transparent film layers 10 of the predetermined wavelength light, and destroys the conditions for the mutual interference of light between the two adjacent transparent film layers 10, that is, The conditions for the formation of Newton's rings are destroyed, thereby eliminating the phenomenon of Newton's rings.
  • the material of the light adjustment layer 20 can be selected from high refractive index materials such as titanium dioxide and zinc oxide.
  • the thickness of the light adjustment layer 20 can be adjusted according to the refractive index of the light adjustment layer 20.
  • the thickness of the light adjustment layer 20 needs to meet the requirements of the array substrate 100.
  • the overall thickness is required; or the refractive index of the light adjustment layer 20 is selected according to the allowable thickness of the light adjustment layer 20, so that the product of the refractive index of the light adjustment layer 20 and the thickness of the light adjustment layer 20 is greater than one-half of the preset wave train The length is sufficient.
  • the light adjustment layer 20 includes a first light modulation layer 201, an optical length adjustment film layer 202, and a second light modulation layer 203 that are stacked in sequence;
  • the modulation layer 201 and the second light modulation layer 203 are bonded;
  • the refractive index of the first light modulation layer 201 is the refractive index of the transparent film layer 10 adjacent to the first light modulation layer 201 and the refractive index of the optical path adjustment film 202
  • the refractive index of the second light modulation layer 203 lies between the refractive index of the transparent film layer 10 adjacent to the second light modulation layer 203 and the refractive index of the optical path adjustment film layer 202.
  • the transmittance of the light of the preset wavelength in the optical path adjustment film 202 can be increased, and the transmittance of the light of the preset wavelength in the optical path adjustment film 202 can be reduced.
  • the reflection intensity reduces the reflectivity of the optical path adjustment film 202, and prevents the optical path adjustment film 202 from increasing the Newton ring phenomenon due to the high reflectivity.
  • the product of the refractive index of the optical path adjustment film 202 and the thickness of the optical path adjustment film 202 is greater than one-half of the preset wave train length, the formation conditions of Newton's rings are destroyed, thereby eliminating the phenomenon of Newton's rings.
  • the material of the first light modulation layer 201 and the second light modulation layer 203 can be lithium fluoride layer, magnesium fluoride, silicon oxide, doped quartz film or silicon oxide/silicon composite film layer, etc. It is formed by evaporation, sputtering, electron beam evaporation, coating, chemical vapor deposition (Chemical Vapor Deposition, CVD) and other methods.
  • the material of the optical path adjusting film 202 can be made of high refractive index materials such as titanium dioxide, zinc oxide, etc., which are formed by attaching, sputtering, electron beam evaporation, CVD, vapor deposition, or the like.
  • the transparent film layer 10 in the array substrate 100 may be two layers or multiple layers.
  • the light adjustment layer 20 is disposed between the two transparent film layers 10; and when the transparent film layer 10 in the array substrate 100 is a multilayer, it may be adjacent to each other.
  • a light adjustment layer 20 is provided between the two transparent film layers 10 of, and a light adjustment layer 20 can also be provided between any two adjacent transparent film layers 10, as long as the Newton ring phenomenon can be eliminated.
  • one of the transparent film layers 10 can be the substrate 11, and the other transparent film layer 10 adjacent to the substrate 11 can be the buffer layer 12, as shown in FIG.
  • a light adjustment layer 20 is provided between the substrate 11 and the buffer layer 12 to destroy the formation conditions of Newton’s rings and eliminate the phenomenon of Newton’s rings.
  • the The light adjustment layer 20 is replaced with the first light adjustment layer 21.
  • the substrate 11 Since there may be gaps between the substrate 11 and the buffer layer 12 due to manufacturing and installation errors, or installation holes for cameras and other equipment are required, the substrate 11 is likely to collapse toward the buffer layer 12 under atmospheric pressure. , Resulting in an inconsistent spacing between the substrate 11 and the buffer layer 12.
  • the predetermined wavelength of light When the predetermined wavelength of light is incident on the substrate 11 and the buffer layer 12, the light of the predetermined wavelength between the substrate 11 and the buffer layer 12 The path difference is not equal, and the local optical path difference is too small, which causes the reflection time difference of the preset wavelength light between the substrate 11 and the buffer layer 12 to be too small on the substrate 11 and the buffer layer 12, resulting in the preset wavelength
  • the light rays interfere with each other between the reflected light rays on the substrate 11 and the buffer layer 12, resulting in a Newton ring phenomenon.
  • a first light adjustment layer 21 is provided between the substrate 11 and the buffer layer 12, and the two sides of the first light adjustment layer 21 located between the substrate 11 and the buffer layer 12 are respectively connected to the substrate 11 It is attached to the buffer layer 12, wherein the product of the refractive index of the first light adjustment layer 21 and the thickness of the first light adjustment layer 21 is greater than one-half of the preset wave train length, thus increasing the light of the preset wavelength
  • the optical path difference between the substrate 11 and the buffer layer 12 delays the reflection time of the light of the preset wavelength on the substrate 11, and avoids the reflected light of the light of the preset wavelength on the buffer layer 12 and the light on the substrate 11.
  • the mutual interference between the reflected light rays destroys the conditions for interference between the substrate 11 and the buffer layer 12 and the formation conditions of the Newton ring by the light of the preset wavelength, thereby avoiding the occurrence of the Newton ring phenomenon.
  • the first light adjustment layer 21 also includes the first light modulation layer 201 and the optical path which are stacked in sequence.
  • the adjusting film layer 202 and the second light modulation layer 203, the two sides of the optical path adjusting film layer 202 are attached to the first light modulation layer 201 and the second light modulation layer 203 respectively, wherein the first light modulation layer 201 and the substrate 11 bonding, the second light modulation layer 203 is bonded to the buffer layer 12, and the refractive index of the first light modulation layer 201 is between the refractive index of the substrate 11 and the refractive index of the optical path adjustment film 202;
  • the refractive index of the layer 203 is between the refractive index of the buffer layer 12 and the refractive index of the optical path adjustment film 202; Set the length of the wave train.
  • the first light modulation layer 201 and the second light modulation layer 203 are used to reduce the reflectivity of the optical path adjustment film 202, and then the optical path adjustment film 202 is used to destroy the formation conditions of the Newton ring, thereby eliminating the substrate 11 And the buffer layer 12.
  • the substrate 11 may be a transparent substrate 11 made of materials such as polyimide (PI for short), polyethylene terephthalate (PET for short), glass or the like.
  • PI polyimide
  • PET polyethylene terephthalate
  • the buffer layer 12 includes a first buffer layer 121 close to the substrate 11, and a second buffer layer 122 parallel to and opposite to the first buffer layer 121;
  • a light adjustment layer 20 is provided between a buffer layer 121 and a second buffer layer 122, and the light adjustment layer 20 located between the first buffer layer 121 and the second buffer layer 122 is located on both sides of the first buffer layer 121 and the second buffer layer 122, respectively.
  • the second buffer layer 122 is attached.
  • the light adjustment layer 20 provided between the first buffer layer 121 and the second buffer layer 122 is replaced by the second light adjustment layer 22.
  • the conditions for the formation of Newton's rings between the first buffer layer 121 and the second buffer layer 122 can be destroyed, thereby eliminating the first buffer layer. 121 and the second buffer layer 122 between Newton's ring phenomenon.
  • the second light adjustment layer 22 includes a first light modulation layer 201, an optical length adjustment film layer 202, and a second light modulation layer 203 which are sequentially stacked.
  • the layer 201 and the second light modulation layer 203 are bonded together.
  • the first light modulation layer 201 is bonded to the first buffer layer 121
  • the second light modulation layer 203 is bonded to the second buffer layer 122
  • the refractive index of the first light modulation layer 201 is lower than that of the first buffer layer.
  • the refractive index of the layer 121 and the refractive index of the optical path adjustment film 202; the refractive index of the second optical modulation layer 203 is between the refractive index of the second buffer layer 122 and the optical path adjustment film 202; the optical path adjustment
  • the product of the refractive index of the film layer 202 and the thickness of the optical path adjusting film layer 202 is greater than one-half of the preset wave train length. Therefore, in this embodiment, the first light modulation layer 201 and the second light modulation layer 203 are used to reduce the reflectivity of the optical path adjustment film 202, and then the optical path adjustment film 202 is used to destroy the formation conditions of Newton's rings, thereby eliminating the first light modulation layer 201 and the second light modulation layer 203.
  • a Newton ring phenomenon occurs between a buffer layer 121 and a second buffer layer 122.
  • first light modulation layer 21 and the second light modulation layer 22 may exist simultaneously or independently.
  • the at least two transparent film layers 10 further include an array circuit layer 13 arranged on the buffer layer 12; a light adjustment layer is arranged between the buffer layer 12 and the array circuit layer 13 The two sides of the light adjustment layer 20 located between the buffer layer 12 and the array circuit layer 13 are attached to the buffer layer 12 and the array circuit layer 13 respectively.
  • the light adjustment layer 20 provided between the buffer layer 12 and the array circuit layer 13 is replaced by the third light adjustment layer 23.
  • the third light adjustment layer 23 includes a first light modulation layer 201, an optical length adjustment film layer 202, and a second light modulation layer 203 that are sequentially stacked.
  • the layer 201 and the second light modulation layer 203 are bonded together.
  • the first light modulation layer 201 is bonded to the buffer layer 12
  • the second light modulation layer 203 is bonded to the array circuit layer 13
  • the refractive index of the first light modulation layer 201 is the same as the refractive index of the buffer layer 12.
  • the refractive index of the optical path adjustment film 202; the refractive index of the second optical modulation layer 203 is between the refractive index of the array circuit layer 13 and the optical path adjustment film 202; the refractive index of the optical path adjustment film 202
  • the product of and the thickness of the optical path adjusting film 202 is greater than one-half of the preset wave train length. Therefore, in this embodiment, the first light modulation layer 201 and the second light modulation layer 203 are used to reduce the reflectivity of the optical path adjustment film 202, and then the optical path adjustment film 202 is used to destroy the formation conditions of Newton’s rings, thereby eliminating buffering. A Newton ring phenomenon occurs between layer 12 and array circuit layer 13.
  • one of the transparent film layers 10 is the substrate 11, and the other transparent film layer 10 adjacent to the substrate 11 is the array circuit layer 13.
  • a light adjustment layer 20 is provided between the substrate 11 and the array circuit layer 13, and both sides of the light adjustment layer 20 located between the substrate 11 and the array circuit layer 13 are attached to the substrate 11 and the array circuit layer 13 respectively .
  • the light adjustment layer 20 provided between the substrate 11 and the array circuit layer 13 is replaced by the fourth light adjustment layer 24.
  • the fourth light adjustment layer 24 between the substrate 11 and the array circuit layer 13
  • the conditions for forming a Newton ring between the substrate 11 and the array circuit layer 13 can be destroyed, thereby eliminating the substrate 11 and the array circuit layer 13.
  • the fourth light adjustment layer 24 includes a first light modulation layer 201, an optical length adjustment film layer 202, and a second light modulation layer 203 that are sequentially stacked.
  • the layer 201 and the second light modulation layer 203 are bonded together.
  • the first light modulation layer 201 is bonded to the substrate 11
  • the second light modulation layer 203 is bonded to the array circuit layer 13
  • the refractive index of the first light modulation layer 201 is the same as the refractive index of the substrate 11.
  • the refractive index of the optical path adjustment film 202; the refractive index of the second optical modulation layer 203 is between the refractive index of the array circuit layer 13 and the optical path adjustment film 202; the refractive index of the optical path adjustment film 202
  • the product of and the thickness of the optical path adjusting film 202 is greater than one-half of the preset wave train length. Therefore, in this embodiment, the first light modulation layer 201 and the second light modulation layer 203 are used to reduce the reflectivity of the optical path adjustment film 202, and then the optical path adjustment film 202 is used to destroy the formation conditions of Newton's rings, thereby eliminating the contrast. A Newton ring phenomenon occurs between the bottom 11 and the array circuit layer 13.
  • the array circuit layer 13 includes several insulating layers and several conductive layers alternately stacked, and a light adjustment layer 20 can also be arranged between adjacent conductive layers and insulating layers to eliminate the gap between adjacent conductive layers and insulating layers. Newton’s ring phenomenon.
  • conductive layers include a gate layer, a metal layer, and an anode layer
  • several insulating layers include a gate insulating layer between the gate layer and the substrate 11, and between the gate layer and the metal layer, and the phase An interlayer insulating layer between adjacent metal layers or between the metal layer and the anode layer.
  • the conductive layer close to the substrate 11 is a gate layer
  • the insulating layer between the gate layer and the substrate 11 is a gate insulating layer.
  • the material of the optical path adjusting film layer 202 in the light adjusting layer 20 may be a high refractive index material such as a titanium dioxide layer or a zinc oxide layer.
  • At least one transparent film layer 10 is provided with a groove 101 on the side close to the other transparent film layer 10, so that the An air layer is formed between two adjacent transparent film layers 10, and the air layer is the light adjustment layer 20.
  • a groove 101 is provided in the transparent film layer 10 located in the lower layer. The side walls of the groove 101 extend along the circumferential edge of the transparent film layer 10, and the top of the groove 101 and the transparent film layer located on the upper layer 10 contact, the sidewall of the groove 101 and the two adjacent transparent film layers 10 form an air layer, which is the light adjustment layer 20.
  • At least one transparent film layer 10 is provided with a bump 102 on the side close to the other transparent film layer 10.
  • An air layer formed between two adjacent transparent film layers 10 is the light adjustment layer 20.
  • a groove 101 is provided on the surface of one transparent film layer 10 between two adjacent transparent film layers 10 facing the other transparent film layer 10, or on the surface of two adjacent transparent film layers 10 Grooves 101 are provided on the opposite surfaces, or bumps 102 can also be provided before two adjacent transparent film layers 10 to increase the distance between two adjacent transparent film layers 10.
  • adjacent An air layer or vacuum layer is formed between two transparent film layers 10, and the air layer or vacuum layer before two adjacent transparent film layers 10 forms a special light-regulating layer 20, that is, two adjacent transparent film layers
  • the distance between 10 is the thickness of the light modulation layer 20.
  • the distance between the two adjacent transparent film layers 10 can increase the optical path difference of the predetermined wavelength light.
  • the refractive index of the air layer or the vacuum layer is between the two adjacent transparent film layers 10
  • the formation condition of the Newton's ring between two adjacent transparent film layers 10 can be destroyed, thereby eliminating the Newton's ring phenomenon.
  • the present application also provides a display panel, including the array substrate 100 provided in the above embodiment.
  • the display panel includes the array substrate 100.
  • the light-emitting layer 200 is disposed on the array substrate 100, and the encapsulation layer 300 is disposed on the luminous layer 200; the light-regulating layer 20 is disposed between the luminous layer 200 and the encapsulation layer 300, and is located between the luminous layer 200 and the encapsulation layer 300.
  • At least one side of the light adjustment layer 20 is attached to the encapsulation layer 300 and the light emitting layer 200.
  • the light adjustment layer 20 provided between the light emitting layer 200 and the encapsulation layer 300 is replaced by the fifth light adjustment layer 25.
  • the conditions for forming a Newton ring between the light emitting layer 200 and the encapsulation layer 300 can be destroyed, thereby eliminating the difference between the luminescence layer 200 and the encapsulation layer 300. Newton’s ring phenomenon between.
  • one side of the light adjustment layer 20 located between the light-emitting layer 200 and the encapsulation layer 300 is attached to the encapsulation layer 300, and the other side is formed between the light-emitting layer 200 Vacuum compartment 400.
  • the light adjustment layer 20 between the encapsulation layer 300 and the vacuum space 400 is replaced with a sixth light adjustment layer 251.
  • the sixth light adjustment layer 251 includes a first light modulation layer 201, an optical length adjustment film layer 202, and a second light modulation layer 203 which are sequentially stacked.
  • the layer 201 and the second light modulation layer 203 are bonded together.
  • the second light modulation layer 203 is attached to the encapsulation layer 300, and a vacuum space 400 is formed between the first light modulation layer 201 and the light emitting layer 200.
  • the refractive index of the first light modulation layer 201 is between the refractive index of the vacuum space 400 and the refractive index of the optical path adjustment film 202; the refractive index of the second light modulation layer 203 is between the refractive index of the encapsulation layer 300 and the optical path adjustment film
  • the refractive index of the layer 202; the product of the refractive index of the optical path adjustment film 202 and the thickness of the optical path adjustment film 202 is greater than one half of the preset wave train length.
  • the first light modulation layer 201 and the second light modulation layer 203 are used to reduce the reflectivity of the optical path adjustment film 202, and then the optical path adjustment film 202 is used to destroy the formation conditions of Newton’s rings, thereby eliminating the light emitting layer 200. And the encapsulation layer 300 between the Newton’s ring phenomenon.
  • one side of the light adjustment layer 20 located between the light emitting layer 200 and the encapsulation layer 300 is attached to the light emitting layer 200, and the other side is formed between the encapsulation layer 300 There is a vacuum compartment 400.
  • the light adjustment layer 20 between the light-emitting layer 200 and the vacuum space 400 is replaced by the seventh light adjustment layer 252.
  • the seventh light adjustment layer 252 includes a first light modulation layer 201, an optical length adjustment film layer 202, and a second light modulation layer 203 that are sequentially stacked.
  • the layer 201 and the second light modulation layer 203 are bonded together.
  • the first light modulation layer 201 is bonded to the light emitting layer 200, and a vacuum space 400 is formed between the second light modulation layer 203 and the encapsulation layer 300.
  • the refractive index of the first light modulation layer 201 is between the refractive index of the light-emitting layer 200 and the refractive index of the optical path adjustment film 202;
  • the refractive index of the layer 202; the product of the refractive index of the optical path adjustment film 202 and the thickness of the optical path adjustment film 202 is greater than one half of the preset wave train length. Therefore, in this embodiment, the first light modulation layer 201 and the second light modulation layer 203 are used to reduce the reflectivity of the optical path adjustment film 202, and then the optical path adjustment film 202 is used to destroy the formation conditions of Newton's rings, thereby eliminating light emission. Newton's ring phenomenon between layer 200 and encapsulation layer 300.
  • two light adjustment layers 25 are provided between the light-emitting layer 200 and the encapsulation layer 300, and one side of the light adjustment layer 251 is attached to the encapsulation layer 300.
  • One side of the other light-adjusting layer 252 is attached to the light-emitting layer 200; a vacuum space 400 is formed between the two light-adjusting layers 20.
  • the sixth light-adjusting layer 251 and the seventh light-adjusting layer 252 provided in the above-mentioned embodiment, and the sixth light-adjusting layer 251 and the seventh light-adjusting layer 252 destroys the formation conditions of Newton's rings between the light-emitting layer 200 and the encapsulation layer 300, thereby eliminating the phenomenon of Newton's rings.
  • a plurality of support pads 500 are arranged in the vacuum interval 400.
  • one end of the support pad 500 is against the light adjustment layer 251 attached to the encapsulation layer 300, and the other end is against the light emitting layer 200; or, as shown in FIG. 15, one end of the support pad 500 is against the light-emitting layer 200
  • the encapsulation layer 300 abuts against the light adjustment layer 252 attached to the light-emitting layer 200 at the other end; or, as shown in FIG.
  • the support pad 500 abuts against the light adjustment layer 251 attached to the encapsulation layer 300, The other end conflicts with the light adjustment layer 252 attached to the light-emitting layer 200.
  • the support pad 500 and the light adjustment layer 25 are provided to destroy the formation conditions of the Newton's ring between the light-emitting layer 200 and the encapsulation layer 300, thereby eliminating the Newton's ring phenomenon generated between the light-emitting layer 200 and the encapsulation layer 300.
  • the edge of the display panel is provided with a mounting hole 700, and a camera is mounted at the corresponding position of the mounting hole 700; the packaging layer 300 covers the mounting hole 700, and the mounting hole 700 is also provided with a camera and a package.
  • the light adjustment layer 20 between the layers 300 and the light adjustment layer 20 located in the mounting hole 700 are attached to the encapsulation layer 300.
  • the light adjustment layer 20 located between the camera and the packaging layer 300 is replaced by the eighth light adjustment layer 26.
  • the optical path difference between the collapsed area of the packaging layer 300 and the camera becomes smaller, resulting in the Newton ring phenomenon.
  • the eighth light adjustment layer 26 is arranged between the camera and the encapsulation layer 300, and the product of the refractive index of the eighth light adjustment layer 26 and the thickness of the eighth light adjustment layer 26 is greater than one half of the preset The length of the wave train, in this way, the eighth light adjustment layer 26 destroys the conditions for forming a Newton ring between the camera and the packaging layer 300, so that the Newton ring phenomenon between the camera and the packaging layer 300 can be eliminated.
  • the structure of the eighth light adjustment layer 26 is the same as the structure of the light adjustment layer 20 provided in the foregoing embodiment.
  • the optical path difference between the camera and the encapsulation layer 300 of the preset wavelength light is 2d
  • the optical path difference between the camera and the encapsulation layer 300 of the preset wavelength light is determined by 2d becomes 2d+(n s -1)*T s , which increases the optical path difference.
  • the reflection time of the preset wavelength light at the camera can be delayed, thereby avoiding the reflection light of the preset wavelength light on the encapsulation layer 300 Interference occurs between the reflected light at the camera and the light of the preset wavelength, thereby eliminating the phenomenon of Newton's ring.
  • the display panel further includes a touch layer 600 disposed on the encapsulation layer 300.
  • a light adjustment layer 20 is disposed between the touch layer 600 and the encapsulation layer 300, and is located between the touch layer 600 and the encapsulation layer. The two sides of the light adjustment layer 20 between the layers 300 are attached to the touch layer 600 and the encapsulation layer 300 respectively.
  • the light adjustment layer 20 located between the camera and the encapsulation layer 300 is replaced with the ninth light adjustment layer 27.
  • the touch layer 600 is also configured as a transparent film layer 10, and a ninth light adjustment layer 27 is provided between the touch layer 600 and the encapsulation layer 300, and the ninth light adjustment layer 27 includes first light modulation layers stacked in sequence.
  • Layer 201, optical path adjustment film layer 202 and second light modulation layer 203, both sides of the optical path adjustment film layer 202 are attached to the first light modulation layer 201 and the second light modulation layer 203 respectively, the first light modulation layer 201 It is bonded to the encapsulation layer 300, the second light modulation layer 203 is bonded to the touch layer 600, and the refractive index of the first light modulation layer 201 is between the refractive index of the encapsulation layer 300 and the refractive index of the optical path adjustment film 202,
  • the refractive index of the second light modulation layer 203 is between the refractive index of the touch layer 600 and the refractive index of the optical path adjusting film 202, and the product of the refractive index of the optical path adjusting film
  • the display device provided in this embodiment includes the array substrate provided in the foregoing embodiment or the display panel provided in the foregoing embodiment.
  • the display device provided by the embodiment of the present application includes an array substrate or a display panel.
  • a light adjustment layer is provided between at least one adjacent two transparent film layers, and the product of the refractive index of the light adjustment layer and the thickness of the light adjustment layer is greater than One half of the preset wave train length, in this way, increases the optical path difference between the two adjacent transparent film layers of the preset wavelength light, destroys the formation conditions of Newton’s rings, thus eliminates the phenomenon of Newton’s rings and improves The display effect of the display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供一种阵列基板、显示面板及显示装置,涉及柔性显示技术领域,用于解决各透明膜层之间的间距不相等而出现的牛顿环现象,影响显示面板的显示效果的技术问题,该阵列基板包括依次层叠设置的至少两层透明膜层,以及设置在至少一相邻的两层透明膜层之间的光调节层,且光调节层的折射率和光调节层的厚度的乘积大于二分之一的预设波列长度。

Description

阵列基板、显示面板及显示装置
本申请要求于2020年05月22日提交中国专利局、申请号为202010443122.3、申请名称为“阵列基板、显示面板及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及柔性显示技术领域,尤其涉及一种阵列基板、显示面板及显示装置。
背景技术
OLED(Organic Light-Emitting Diode,有机发光二极管)显示面板具有自发光、对比度高、厚度薄、响应速度快、宽视角、低功耗、可实现柔性显示等特性,因此,被广泛应用于显示领域。
显示面板包括层叠设置的多个透明膜层,在多个透明膜层中的至少部分膜层中设置有盲孔,摄像头等感光元件埋设在盲孔所对应的显示面板的下方,外界光线可通过盲孔进入位于显示面板下方的感光元件,从而获得图像。
然而,覆盖在盲孔上的透明膜层易出现向盲孔内塌陷的现象,导致显示面板出现牛顿环现象,影响显示面板的显示效果。
发明内容
鉴于上述问题,本申请实施例提供一种阵列基板、显示面板及显示装置,用于消除牛顿环现象,提高显示面板的显示效果。
为了实现上述目的,本申请实施例提供如下技术方案:
本申请实施例的第一方面提供一种阵列基板,其包括:依次层叠设置的至少两层透明膜层,至少两层所述透明膜层中,至少一相邻的两层所述透明膜层之间设置有光调节层,所述光调节层的折射率和所述光调节层的 厚度的乘积大于二分之一的预设波列长度。
本申请实施例的第三方面提供一种显示装置,包括上述第一方面提供的阵列基板,或,上述第二方面提供的显示面板。
与现有技术相比,本申请实施例提供的阵列基板、显示面板及显示装置具有以下优点:
本申请实施例提供的阵列基板中,通过在至少一相邻的两层透明膜层之间设置光调节层,且光调节层的折射率和光调节层的厚度的乘积大于二分之一的预设波列长度,这样,增大了预设波长光线在相邻两层透明膜层之间的光程差,破坏了牛顿环的形成条件,从而消除牛顿环现象,提高显示面板的显示效果。
除了上面所描述的本申请实施例解决的技术问题、构成技术方案的技术特征以及由这些技术方案的技术特征所带来的有益效果外,本申请实施例提供的阵列基板、显示面板及显示装置所能解决的其他技术问题、技术方案中包含的其他技术特征以及这些技术特征带来的有益效果,将在具体实施方式中作出进一步详细的说明。
附图说明
图1为阵列基板中有牛顿环现象的光线干涉模型;
图2为本申请实施例提供的阵列基板中没有牛顿环现象的光线非干涉模型;
图3为本申请一实施例提供的阵列基板的结构示意图;
图4为本申请一实施例提供的阵列基板中衬底和缓冲层之间设有光调节层的结构示意图;
图5为本申请一实施例提供的阵列基板中光调节层设置在第一缓冲层和第二缓冲层之间的结构示意图;
图6为本申请一实施例提供的阵列基板中衬底和第一缓冲层之间、第一缓冲层和第二缓冲层之间均设有光调节层的结构示意图;
图7为本申请一实施例提供的阵列基板中衬底和缓冲层之间、缓冲层和阵列电路层之间均设有光调节层的结构示意图;
图8为本申请一实施例提供的阵列基板中衬底和阵列电路层之间设有 光调节层的结构示意图;
图9为本申请另一实施例提供的阵列基板中一层透明膜层朝向相邻透明膜层的一侧上设有凹槽的结构示意图;
图10为本申请另一实施例提供的阵列基板中相邻两个透明膜层之间设有凸垫的结构示意图;
图11为本申请又一实施例提供的显示面板中光调节层的两侧分别与发光层和封装层贴合的结构示意图;
图12为本申请又一实施例提供的显示面板中光调节层的一侧与封装层贴合的结构示意图;
图13为本申请又一实施例提供的显示面板中光调节层的一侧与发光层贴合的结构示意图;
图14为本申请又一实施例提供的显示面板中发光层和封装层之间有两层光调节层,且两个光调节层之间有真空间隔空间的结构示意图;
图15为本申请又一实施例提供的显示面板中光调节层的一侧与发光层贴合,光调节层的另一侧与封装层之间设有支撑垫的结构示意图;
图16为本申请又一实施例提供的显示面板中光调节层的一侧与封装层贴合,光调节层的另一侧与发光层之间设有支撑垫的结构示意图;
图17为本申请又一实施例提供的显示面板中封装层和发光层之间设有两层光调节层,且两层光调节层之间设有支撑垫的结构示意图;
图18为本申请又一实施例提供的显示面板中设有安装孔的结构示意图;
图19为本申请又一实施例提供的显示面板中封装层和触控层之间设有光调节层的结构示意图。
具体实施方式
显示面板产生牛顿环的主要原因是:盲孔内、外大气压的压力不等,导致位于盲孔上方的透明膜层会朝向盲孔内塌陷,进而导致盲孔两侧的透明膜层之间的距离不相等,当波长为λ的入射光线从位于上层的透明膜层射入时,波长为λ的入射光线在盲孔两侧的透明膜层之间的光程差不相等,如图1所示,当波长为λ的入射光线在盲孔两侧的透明膜层之间的光程差小于波长时,波长为λ的入射光线在盲孔两侧的透明膜层上几乎会同时进 行反射,形成反射光线λ1和反射光线λ2,反射光线λ1和反射光线λ2之间会出现光的干涉现象,从而出现牛顿环的现象,影响显示面板的显示效果。
为了解决上述问题,本申请实施例提供的阵列基板、显示面板和显示装置中,通过在至少一相邻的两层透明膜层之间设置光调节层,光调节层的折射率和光调节层的厚度的乘积大于二分之一的预设波列长度,例如,如图2所示,当波长为λ的入射光线从位于上层的透明膜层10射入时,光调节层增大了波长为λ的入射光线在相邻两层透明膜层之间的光程差,且该光程差大于波长为λ的入射光线的波长,因此,当波长为λ的入射光线从位于上层的透明膜层10射入时,在光调节层上方的透明膜层上形成的反射光线λ1先反射出去,在光调节层下方的透明膜层上形成的反射光线λ2后反射出去,这样,避免了反射光线λ1和反射光线λ2之间发生干涉,破坏了牛顿环的形成条件,从而消除了牛顿环现象,提高显示面板的显示效果。
为了使本申请实施例的上述目的、特征和优点能够更加明显易懂,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,均属于本申请保护的范围。
参见图3所示,本申请一实施例提供的阵列基板100包括:依次层叠设置的至少两层透明膜层10,至少两层透明膜层10中,至少一相邻的两层透明膜层10之间设置有光调节层20,光调节层20的折射率和光调节层20的厚度的乘积大于二分之一的预设波列长度。
当预设波长光线射入上述阵列基板100时,预设波长光线在相邻两层透明膜层之间的相互干涉的条件为:
2nd<<L λ
其中,上述公式中的n为相邻两层透明膜层10之间的介质层的折射率,d为相邻两层透明膜层10之间介质层的厚度,L λ为预设波列长度。
当相邻两层透明膜层10之间的预设波长光线满足上述光的相互干涉 条件时,则会出现牛顿环现象。在本实施例中,通过在至少一相邻两层透明膜层10之间设置光调节层20,且光调节层20的折射率和光调节层20的厚度的乘积大于二分之一的预设波列长度,这样,增大了预设波长光线在相邻两层透明膜层10之间的光程差,破坏了相邻两层透明膜层10之间的光的相互干涉的条件,即破坏了牛顿环的形成条件,从而消除牛顿环现象。
光调节层20的材质可以选择二氧化钛、氧化锌等高折射率的材质,同时可以根据光调节层20的折射率,调整光调节层20的厚度,该光调节层20的厚度需满足阵列基板100整体厚度的需求;或者根据光调节层20的允许的厚度选择光调节层20的折射率,使得光调节层20的折射率和光调节层20的厚度的乘积大于二分之一的预设波列长度即可。
在本实施例中,光调节层20包括依次层叠设置的第一光调制层201、光程调节膜层202和第二光调制层203;光程调节膜层202的两侧分别与第一光调制层201和第二光调制层203贴合;第一光调制层201的折射率在与该第一光调制层201相邻的透明膜层10的折射率和光程调节膜层202的折射率之间;第二光调制层203的折射率在于该第二光调制层203相邻的透明膜层10的折射率和光程调节膜层202的折射率之间。这样,通过第一光调制层201和第二光调制层203,可以提升预设波长光线在光程调节膜层202的透过率,减小了预设波长光线在光程调节膜层202的反射强度,从而减小了光程调节膜层202的反射率,避免光程调节膜层202因反射率大而增加牛顿环现象。另外,由于光程调节膜层202的折射率和光程调节膜层202的厚度的乘积大于二分之一的预设波列长度,因此,破坏了牛顿环的形成条件,从而消除牛顿环现象。
其中,第一光调制层201和第二光调制层203的材料可以为氟化锂层、氟化镁、氧化硅、可掺杂型石英膜或氧化硅/硅的复合膜层等材质,通过蒸镀、溅射、电子束蒸发、涂布、化学气相沉积(Chemical Vapor Deposition,CVD)等方式形成。而光程调节膜层202的材质可以选用二氧化钛、氧化锌等高折射率的材质,通过贴附、溅射、电子束蒸发、CVD、蒸镀等方式形成。
具体的,阵列基板100中的透明膜层10可以是两层,也可以是多层。 当阵列基板中的透明膜层10为两层时,光调节层20设置在两个透明膜层10之间;而当阵列基板100中的透明膜层10为多层时,可以在其中相邻的两层透明膜层10之间设置一个光调节层20,也可以在任意相邻的两个透明膜层10之间均设置有光调节层20,只要能够消除牛顿环现象即可。
至少两层透明膜层10中,其中一层透明膜层10可以为衬底11,与衬底11相邻的另一层透明膜层10可以为缓冲层12,如图4所示,通过在衬底11和缓冲层12之间设置光调节层20来破坏牛顿环的形成条件,消除牛顿环现象,为了方便描述和理解,在本实施例中,衬底11与缓冲层12之间设置的光调节层20用第一光调节层21来代替。
由于衬底11和缓冲层12之间会因制造、安装等误差存在间隙,或者在需要设置摄像头等装备的安装孔,因此,在大气压的压力下,衬底11容易朝向缓冲层12一侧塌陷,导致衬底11和缓冲层12之间的间距大小不一致,当预设波长光程射入衬底11和缓冲层12上时,预设波长光线在衬底11和缓冲层12之间的光程差大小不相等,局部光程差过小,导致射入衬底11和缓冲层12之间的预设波长光线在衬底11和缓冲层12上的反射时间差太小,从而导致预设波长光线在衬底11和缓冲层12上的反射光线之间发生相互干涉,从而出现牛顿环现象。
为此,本实施例在衬底11和缓冲层12之间设置第一光调节层21,且位于衬底11和缓冲层12之间的第一光调节层21的两侧分别与衬底11和缓冲层12贴合,其中,第一光调节层21的折射率与第一光调节层21的厚度的乘积大于二分之一的预设波列长度,这样,增大了预设波长光线在衬底11和缓冲层12之间的光程差,延迟了预设波长光线在衬底11上的反射时间,避免了预设波长光线在缓冲层12上的反射光线和衬底11上的反射光线之间发生相互干涉,即破坏了预设波长光线在衬底11和缓冲层12之间发生干涉的条件,破坏牛顿环的形成条件,从而避免产生牛顿环现象。
进一步的,为了避免第一光调节层21因反射率大而增加牛顿环现象,因此,在本实施例中,第一光调节层21也包括依次层叠设置的第一光调制层201、光程调节膜层202和第二光调制层203,光程调节膜层202的两侧分别与第一光调制层201和第二光调制层203贴合,其中,第一光调 制层201与衬底11贴合,第二光调制层203与缓冲层12贴合,且第一光调制层201的折射率在衬底11的折射率和光程调节膜层202的折射率之间;第二光调制层203的折射率在缓冲层12的折射率和光程调节膜层202的折射率之间;光程调节膜层202的折射率和光程调节膜层202的厚度的乘积大于二分之一的预设波列长度。本实施例首先通过第一光调制层201和第二光调制层203减小光程调节膜层202的反射率,再通过光程调节膜层202破坏牛顿环的形成条件,从而消除衬底11和缓冲层12之间出现的牛顿环现象。
其中,衬底11可以是聚酰亚胺(Polyimide,简称为PI)、聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,简称为PET)、玻璃等材料制成的透明衬底11。
在上述实施例的基础上,参见图5和图6所示,缓冲层12包括靠近衬底11的第一缓冲层121,以及与第一缓冲层121平行且相对的第二缓冲层122;第一缓冲层121和第二缓冲层122之间设置有光调节层20,且位于第一缓冲层121和第二缓冲层122之间的光调节层20的两侧分别于第一缓冲层121和第二缓冲层122贴合。
为了方便描述和理解,在本实施例中,第一缓冲层121和第二缓冲层122之间设置的光调节层20用第二光调节层22来代替。
通过在第一缓冲层121和第二缓冲层122之间设置第二光调节层22,可以破坏第一缓冲层121和第二缓冲层122之间形成牛顿环的条件,从而消除第一缓冲层121和第二缓冲层122之间的牛顿环现象。
具体的,第二光调节层22包括依次层叠设置的第一光调制层201、光程调节膜层202和第二光调制层203,光程调节膜层202的两侧分别与第一光调制层201和第二光调制层203贴合。在本实施例中,第一光调制层201与第一缓冲层121贴合,第二光调制层203与第二缓冲层122贴合,且第一光调制层201的折射率在第一缓冲层121的折射率和光程调节膜层202的折射率之间;第二光调制层203的折射率在第二缓冲层122的折射率和光程调节膜层202的折射率之间;光程调节膜层202的折射率和光程调节膜层202的厚度的乘积大于二分之一的预设波列长度。因此,本实施例首先通过第一光调制层201和第二光调制层203减小光程调节膜层202 的反射率,再通过光程调节膜层202破坏牛顿环的形成条件,从而消除第一缓冲层121和第二缓冲层122之间出现的牛顿环现象。
需要说明的是,第一光调制层21和第二光调制层22可以同时存在,也可以独立存在。
在一个可选的实施例中,参见图7所示,至少两层透明膜层10还包括设置于缓冲层12上的阵列电路层13;缓冲层12和阵列电路层13之间设置有光调节层20,且位于缓冲层12和阵列电路层13之间的光调节层20的两侧分别与缓冲层12和阵列电路层13贴合。
为了方便描述和理解,在本实施例中,缓冲层12和阵列电路层13之间设置的光调节层20用第三光调节层23来代替。
在本实施例中,通过在缓冲层12和阵列电路层13之间设置第三光调节层23,破坏了缓冲层12和阵列电路层13之间形成牛顿环的条件,从而消除缓冲层12和阵列电路层13之间的牛顿环现象。
具体的,第三光调节层23包括依次层叠设置的第一光调制层201、光程调节膜层202和第二光调制层203,光程调节膜层202的两侧分别与第一光调制层201和第二光调制层203贴合。在本实施例中,第一光调制层201与缓冲层12贴合,第二光调制层203与阵列电路层13贴合,且第一光调制层201的折射率在缓冲层12的折射率和光程调节膜层202的折射率之间;第二光调制层203的折射率在阵列电路层13的折射率和光程调节膜层202的折射率之间;光程调节膜层202的折射率和光程调节膜层202的厚度的乘积大于二分之一的预设波列长度。因此,本实施例首先通过第一光调制层201和第二光调制层203减小光程调节膜层202的反射率,再通过光程调节膜层202破坏牛顿环的形成条件,从而消除缓冲层12和阵列电路层13之间出现的牛顿环现象。
可选的,参见图8所示,至少两层透明膜层10中,其中一层透明膜层10为衬底11,与衬底11相邻的另一层透明膜层10为阵列电路层13;衬底11和阵列电路层13之间设置有光调节层20,且位于衬底11和阵列电路层13之间的光调节层20的两侧分别与衬底11和阵列电路层13贴合。
为了方便描述和理解,在本实施例中,衬底11和阵列电路层13之间设置的光调节层20用第四光调节层24来代替。
在本实施例中,通过在衬底11和阵列电路层13之间设置第四光调节层24,可以破坏衬底11和阵列电路层13之间形成牛顿环的条件,从而消除衬底11和阵列电路层13之间的牛顿环现象。
具体的,第四光调节层24包括依次层叠设置的第一光调制层201、光程调节膜层202和第二光调制层203,光程调节膜层202的两侧分别与第一光调制层201和第二光调制层203贴合。在本实施例中,第一光调制层201与衬底11贴合,第二光调制层203与阵列电路层13贴合,且第一光调制层201的折射率在衬底11的折射率和光程调节膜层202的折射率之间;第二光调制层203的折射率在阵列电路层13的折射率和光程调节膜层202的折射率之间;光程调节膜层202的折射率和光程调节膜层202的厚度的乘积大于二分之一的预设波列长度。因此,本实施例首先通过第一光调制层201和第二光调制层203减小光程调节膜层202的反射率,再通过光程调节膜层202破坏牛顿环的形成条件,从而消除衬底11和阵列电路层13之间出现的牛顿环现象。
可选的,阵列电路层13包括交替层叠设置的若干绝缘层和若干导电层,相邻的导电层和绝缘层之间也可以设置光调节层20,以消除相邻导电层和绝缘层之间的牛顿环现象。
通常的,若干导电层包括栅极层、金属层和阳极层,若干绝缘层包括位于栅极层和衬底11之间的栅极绝缘层,以及位于栅极层和金属层之间、位于相邻的金属层之间或位于金属层和阳极层之间的层间绝缘层。例如,靠近衬底11的导电层为栅极层,位于栅极层和衬底11之间的绝缘层为栅极绝缘层。
可选的,上述实施例中,光调节层20中的光程调节膜层202的材料可以为二氧化钛层或氧化锌层等高折射率的材料。
参见图9所示,在本实施例中,在相邻的两个透明膜层10中,至少一个透明膜层10靠近另一个透明膜层10的一侧上设置有凹槽101,使得在相邻两个透明膜层10之间形成空气层,该空气层为光调节层20。本实施例中,在位于下层的透明膜层10中设置有凹槽101,凹槽101的侧壁沿该透明膜层10的周向边缘延伸,凹槽101的顶部与位于上层的透明膜层10接触,凹槽101的侧壁以及相邻的两个透明膜层10形成空气层,该空 气层即为光调节层20。
参见图10所示,至少一个透明膜层10靠近另一个透明膜层10的一侧上设置有凸垫102,通过在该相邻的两个透明膜层之间设置凸垫102,使得在相邻两个透明膜层10之间形成的空气层,该空气层为光调节层20。
在本实施例中,通过在相邻两个透明膜层10之间的一个透明膜层10朝向另一个透明膜层10的表面上设置凹槽101,或者在相邻两个透明膜层10的相对的面上都设置凹槽101,或者还可以在相邻两个透明膜层10之前设置凸垫102等方式,增大相邻两个透明膜层10之间的距离,这时,相邻两个透明膜层10之间会形成一个空气层或者真空层,相邻两个透明膜层10之前的空气层或者真空层则形成一个特殊的光调节层20,即相邻两个透明膜层10之间距离则为光调制层20的厚度,根据上述实施例中提供的预设波长光线在相邻两层透明之间的相互干涉的条件可知,通过调整相邻两个透明膜层10之间的距离,便可以增大射入相邻两个透明膜层10之间的预设波长光线的光程差,当空气层或真空层的折射率与相邻两个透明膜层10之间的距离的乘积大于二分之一预设波列长度时,则可以破坏相邻两个透明膜层10之间的牛顿环的形成条件,从而消除牛顿环现象。
本申请还提供一种显示面板,包括上述实施例中提供的阵列基板100,下面以上述实施例中提供的阵列基板100为基础进行说明,参见图11所示,该显示面板包括阵列基板100,设置于阵列基板100上的发光层200,以及设置于发光层200上的封装层300;发光层200和封装层300之间设置有光调节层20,位于发光层200和封装层300之间的光调节层20的至少一侧与封装层300和发光层200贴合。
为了方便描述和理解,在本实施例中,发光层200和封装层300之间设置的光调节层20用第五光调节层25来代替。
在本实施例中,通过在发光层200和封装层300之间设置光调节层20,可以破坏发光层200和封装层300之间形成牛顿环的条件,从而消除发光层200和封装层300之间的牛顿环现象。
在一种可选的实施例中,参见图12,位于发光层200和封装层300之间的光调节层20的一侧与封装层300贴合,另一侧与发光层200之间形成有真空间隔空间400。
为了方便描述和理解,在本实施例中,封装层300和真空间隔空间400之间的光调节层20用第六光调节层251来代替。
具体的,第六光调节层251包括依次层叠设置的第一光调制层201、光程调节膜层202和第二光调制层203,光程调节膜层202的两侧分别与第一光调制层201和第二光调制层203贴合。在本实施例中,第二光调制层203与封装层300贴合,第一光调制层201与发光层200之间形成真空间隔空间400。且第一光调制层201的折射率在真空间隔空间400的折射率和光程调节膜层202的折射率之间;第二光调制层203的折射率在封装层300的折射率和光程调节膜层202的折射率之间;光程调节膜层202的折射率和光程调节膜层202的厚度的乘积大于二分之一的预设波列长度。本实施例首先通过第一光调制层201和第二光调制层203减小光程调节膜层202的反射率,再通过光程调节膜层202破坏牛顿环的形成条件,从而消除发光层200和封装层300之间的牛顿环现象。
在另一种可选的实施例中,参见图13,位于发光层200和封装层300之间的光调节层20的一侧与发光层200贴合,另一侧与封装层300之间形成有真空间隔空间400。
为了方便描述和理解,在本实施例中,发光层200和真空间隔空间400之间的光调节层20用第七光调节层252来代替。
具体的,第七光调节层252包括依次层叠设置的第一光调制层201、光程调节膜层202和第二光调制层203,光程调节膜层202的两侧分别与第一光调制层201和第二光调制层203贴合。在本实施例中,第一光调制层201与发光层200贴合,第二光调制层203与封装层300之间形成真空间隔空间400。且第一光调制层201的折射率在发光层200的折射率和光程调节膜层202的折射率之间;第二光调制层203的折射率在真空间隔空间400的折射率和光程调节膜层202的折射率之间;光程调节膜层202的折射率和光程调节膜层202的厚度的乘积大于二分之一的预设波列长度。因此,本实施例首先通过第一光调制层201和第二光调制层203减小光程调节膜层202的反射率,再通过光程调节膜层202破坏牛顿环的形成条件,从而消除发光层200和封装层300之间的牛顿环现象。
在又一种可选的实施例中,参见图14,位于发光层200和封装层300 之间设置有两层光调节层25,其中一层光调节层251的一侧与封装层300贴合,另一层光调节层252的一侧与发光层200贴合;两层光调节层20之间形成有真空间隔空间400。
可以理解的是,在发光层200和封装层300之间,设置有上述实施例提供的第六光调节层251和第七光调节层252,通过第六光调节层251和第七光调节层252破坏发光层200和封装层300之间牛顿环的形成条件,从而消除牛顿环现象。
在上述实施例的基础上,为了避免发光层200和封装层300在大气压力下朝向真空间隔空间400大面积发生坍塌,通常,在真空间隔空间400内设置有若干支撑垫500,在本实施例中,参见图16所示,支撑垫500的一端与贴合在封装层300上的光调节层251相抵,另一端与发光层200相抵;或者,参见图15所示,支撑垫500的一端与封装层300相抵,另一端与贴合在发光层200上的光调节层252相抵;或者,参见图17所示,支撑垫500的一端与贴合在封装层300上的光调节层251相抵,另一端与贴合在发光层200上的光调节层252相抵。在本实施例中,通过设置支撑垫500和光调节层25来破坏发光层200和封装层300之间牛顿环的形成条件,从而消除发光层200和封装层300之间产生的牛顿环现象。
可选的,参见图18所示,显示面板的边缘设置有安装孔700,安装孔700对应的位置安装有摄像头;封装层300封盖安装孔700,安装孔700内还设置有位于摄像头和封装层300之间的光调节层20,位于安装孔700内的光调节层20与封装层300贴合。
为了便于理解和描述,在本实施例中,位于摄像头和封装层300之间的光调节层20用第八光调节层26代替。
为了避免封装层300在大气压的压力下朝向安装孔700内塌陷,导致预设波长光线在封装层300的塌陷区与摄像头之间的光程差变小,从而出现牛顿环现象,因此,在本实施例中,通过在摄像头和封装层300之间设置第八光调节层26,且第八光调节层26的折射率和第八光调节层26的厚度的乘积大于二分之一的预设波列长度,这样,第八光调节层26破坏了摄像头和封装层300之间形成牛顿环的条件,从而可以消除摄像头和封装层300之间的牛顿环现象。
其中,第八光调节层26的结构与上述实施例中提供的光调节层20的结构相同。
示例性的,若摄像头和封装层300之间的距离用d表示,空气或真空的折射率为1,因此,预设波长光线在摄像头和封装层300之间的光程差为2d,当在安装孔700内设置第八光调节层26后,若第八光调节层26的厚度为T s,折射率为n s,则预设波长光线在摄像头和封装层300之间的光程差由2d变为2d+(n s-1)*T s,增大了光程差,因此,可以延迟预设波长光线在摄像头处的反射时间,从而避免预设波长光线在封装层300上的反射光线和预设波长光线在摄像头处的反射光线之间发生相互干涉,进而消除牛顿环现象。
可选的,参见图19所示,显示面板还包括设置于封装层300上的触控层600,触控层600和封装层300之间设置有光调节层20,位于触控层600和封装层300之间的光调节层20的两侧分别与触控层600和封装层300贴合。
为了便于理解和描述,在本实施例中,位于摄像头和封装层300之间的光调节层20用第九光调节层27代替。
具体的,触控层600也配置为透明膜层10,并在触控层600和封装层300之间设置第九光调节层27,第九光调节层27包括依次层叠设置的第一光调制层201、光程调节膜层202和第二光调制层203,光程调节膜层202的两侧分别与第一光调制层201和第二光调制层203贴合,第一光调制层201与封装层300贴合,第二光调制层203与触控层600贴合,且第一光调制层201的折射率在封装层300的折射率和光程调节膜层202的折射率之间,第二光调制层203的折射率在触控层600的折射率和光程调节膜层202的折射率之间,光程调节膜层202的折射率和光程调节膜层202的厚度的乘积大于二分之一的预设波列长度,通过光程调节膜层202破坏了触控层600和封装层300之间形成牛顿环的条件,从而消除了触控层600和封装层300之间的牛顿环现象。
本实施例提供的显示装置,包括上述实施例中提供的阵列基板,或上述实施例中提供的显示面板。
其中,阵列基板、显示面板的结构和工作原理在上述实施例中已进行 了详细的说明,在此,不再一一进行阐述。
本申请实施例提供的显示装置,包括阵列基板或显示面板,通过在至少一相邻的两层透明膜层之间设置光调节层,且光调节层的折射率和光调节层的厚度的乘积大于二分之一的预设波列长度,这样,增大了预设波长光线在相邻两层透明膜层之间的光程差,破坏了牛顿环的形成条件,从而消除牛顿环现象,提高显示面板的显示效果。
在本说明书的描述中,参考术“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (15)

  1. 一种阵列基板,其中,包括:依次层叠设置的至少两层透明膜层,至少两层所述透明膜层中,至少一组相邻的两层所述透明膜层之间设置有光调节层,所述光调节层的折射率和所述光调节层的厚度的乘积大于二分之一的预设波列长度。
  2. 根据权利要求1所述的阵列基板,其中,所述光调节层包括依次层叠设置的第一光调制层、光程调节膜层和第二光调制层;所述光程调节膜层的两侧分别与所述第一光调制层和所述第二光调制层贴合;
    所述第一光调制层的折射率在与所述第一光调制层相邻的透明膜层的折射率和所述光程调节膜层的折射率之间;所述第二光调制层的折射率在与所述第二光调制层相邻的透明膜层的折射率和所述光程调节膜层的折射率之间;所述光程调节膜层的折射率和所述光程调节膜层的厚度的乘积大于二分之一的预设波列长度。
  3. 根据权利要求2所述的阵列基板,其中,所述阵列基板包括衬底和缓冲层,所述衬底和所述缓冲层分别为至少两层所述透明膜层中的一层;
    所述衬底和所述缓冲层之间设置有所述光调节层,且位于所述衬底和所述缓冲层之间的光调节层的两侧分别与所述衬底和所述缓冲层贴合。
  4. 根据权利要求3所述的阵列基板,其中,所述缓冲层包括靠近所述衬底的第一缓冲层,以及与所述第一缓冲层平行且相对的第二缓冲层;
    所述第一缓冲层和所述第二缓冲层之间设置有所述光调节层,且位于所述第一缓冲层和所述第二缓冲层之间的所述光调节层的两侧分别与所述第一缓冲层和所述第二缓冲层贴合。
  5. 根据权利要求3所述的阵列基板,其中,至少两层所述透明膜层还包括设置于所述缓冲层上的阵列电路层;
    所述缓冲层和所述阵列电路层之间设置有所述光调节层,且位于所述缓冲层和所述阵列电路层之间的所述光调节层的两侧分别与所述缓冲层和所述阵列电路层贴合。
  6. 根据权利要求2所述的阵列基板,其中,所述阵列基板包括衬底和阵列电路层,所述衬底和所述阵列电路层分别为至少两层所述透明膜层 中的一层;
    所述衬底和所述阵列电路层之间设置有所述光调节层,且位于所述衬底和所述阵列电路层之间的所述光调节层的两侧分别与所述衬底和所述阵列电路层贴合。
  7. 根据权利要求2-6中任一项所述的阵列基板,其中,所述光程调节膜层为二氧化钛层或氧化锌层。
  8. 根据权利要求1所述的阵列基板,其中,在相邻的两个所述透明膜层中,至少一个所述透明膜层靠近另一个所述透明膜层的一侧上设置有凹槽或凸垫,以在相邻的两个所述透明膜层之间形成空气层,所述空气层为所述光调节层。
  9. 一种显示面板,其中,包括:如权利要求1-8中任一项所述的阵列基板,设置于所述阵列基板上的发光层,以及设置于所述发光层上的封装层;
    所述发光层和所述封装层之间设置有所述光调节层,位于所述发光层和所述封装层之间的所述光调节层的至少一侧与所述封装层和所述发光层贴合。
  10. 根据权利要求9所述的显示面板,其中,位于所述发光层和所述封装层之间的所述光调节层的一侧与所述封装层贴合,另一侧与所述发光层之间形成有真空间隔空间。
  11. 根据权利要求9所述的显示面板,其中,位于所述发光层和所述封装层之间的所述光调节层的一侧与所述发光层贴合,另一侧与所述封装层之间形成有真空间隔空间。
  12. 根据权利要求9所述的显示面板,其中,位于所述发光层和所述封装层之间设置有两层所述光调节层,其中一层所述光调节层的一侧与所述封装层贴合,另一层所述光调节层的一侧与所述发光层贴合;
    两层所述光调节层之间形成有真空间隔空间。
  13. 根据权利要求10-12中任一项所述的显示面板,其中,所述真空间隔空间内设置有若干支撑垫,所述支撑垫的一端与贴合在所述封装层上的所述光调节层相抵、另一端与所述发光层相抵;或
    所述支撑垫的一端与所述封装层相抵、另一端与贴合在所述发光层上 的所述光调节层相抵;或
    所述支撑垫的一端与贴合在所述封装层上的所述光调节层相抵、另一端与贴合在所述发光层上的所述光调节层相抵。
  14. 根据权利要求9所述的显示面板,其中,还包括设置于所述封装层上的触控层,所述触控层和所述封装层之间设置有所述光调节层,位于所述触控层和所述封装层之间的所述光调节层的两侧分别与所述触控层和所述封装层贴合。
  15. 一种显示装置,其中,包括如权利要求1-8任一项所述的阵列基板,或,如权利要求9-14任一项所述的显示面板。
PCT/CN2021/082966 2020-05-22 2021-03-25 阵列基板、显示面板及显示装置 WO2021232935A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/733,298 US20220255046A1 (en) 2020-05-22 2022-04-29 Array substrate and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010443122.3A CN111477674B (zh) 2020-05-22 2020-05-22 阵列基板、显示面板及显示装置
CN202010443122.3 2020-05-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/733,298 Continuation US20220255046A1 (en) 2020-05-22 2022-04-29 Array substrate and display panel

Publications (1)

Publication Number Publication Date
WO2021232935A1 true WO2021232935A1 (zh) 2021-11-25

Family

ID=71760440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082966 WO2021232935A1 (zh) 2020-05-22 2021-03-25 阵列基板、显示面板及显示装置

Country Status (3)

Country Link
US (1) US20220255046A1 (zh)
CN (1) CN111477674B (zh)
WO (1) WO2021232935A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111477674B (zh) * 2020-05-22 2022-08-30 昆山国显光电有限公司 阵列基板、显示面板及显示装置
US20240049557A1 (en) * 2021-03-22 2024-02-08 Boe Technology Group Co., Ltd. Display substrate and manufacturing method thereof, display device, wearable device, and display method
US20230368706A1 (en) * 2022-05-16 2023-11-16 Samsung Display Co., Ltd. Display apparatus and method of manufacturing the display apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040095535A1 (en) * 2002-11-20 2004-05-20 Fuji Photo Film Co., Ltd. Retardation compensation system and liquid crystal projector
CN104156097A (zh) * 2013-05-14 2014-11-19 群创光电股份有限公司 触控面板及使用其的触控显示面板
CN104950510A (zh) * 2015-07-06 2015-09-30 张家港康得新光电材料有限公司 光学薄膜及背光单元
CN109891278A (zh) * 2019-01-23 2019-06-14 京东方科技集团股份有限公司 滤光结构、滤光层以及显示面板
CN111477674A (zh) * 2020-05-22 2020-07-31 昆山国显光电有限公司 阵列基板、显示面板及显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110323354B (zh) * 2019-04-25 2021-12-14 昆山工研院新型平板显示技术中心有限公司 显示面板及显示装置
CN110649176A (zh) * 2019-09-16 2020-01-03 合肥维信诺科技有限公司 阳极板、显示面板及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040095535A1 (en) * 2002-11-20 2004-05-20 Fuji Photo Film Co., Ltd. Retardation compensation system and liquid crystal projector
CN104156097A (zh) * 2013-05-14 2014-11-19 群创光电股份有限公司 触控面板及使用其的触控显示面板
CN104950510A (zh) * 2015-07-06 2015-09-30 张家港康得新光电材料有限公司 光学薄膜及背光单元
CN109891278A (zh) * 2019-01-23 2019-06-14 京东方科技集团股份有限公司 滤光结构、滤光层以及显示面板
CN111477674A (zh) * 2020-05-22 2020-07-31 昆山国显光电有限公司 阵列基板、显示面板及显示装置

Also Published As

Publication number Publication date
CN111477674B (zh) 2022-08-30
US20220255046A1 (en) 2022-08-11
CN111477674A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
WO2021232935A1 (zh) 阵列基板、显示面板及显示装置
WO2016062240A1 (zh) 一种顶发射oled器件及其制作方法、显示设备
US20180331325A1 (en) Oled display panel, manufacturing method thereof, and display device
EP3166149B1 (en) Preparation method for an amoled display panel
US7598671B2 (en) Flat panel display and method of manufacturing the same
WO2020037907A1 (zh) 有机发光显示面板及其制造方法
US20190206848A1 (en) Display apparatus
US20150008396A1 (en) Organic light emitting diode display and method of forming the same
JP2006173109A (ja) 電界発光ディスプレイ装置及びその製造方法
US20100283385A1 (en) Organic el device
JP2008515131A (ja) 表示装置
WO2019033830A1 (zh) 有机发光显示面板及制备方法、显示装置
KR101754787B1 (ko) 유기발광소자 및 이를 포함하는 입체영상표시장치
US20210184177A1 (en) Display panel, manufacturing method thereof, and display apparatus
JP7495401B2 (ja) 複数個の青色放射層を有するマルチモーダルマイクロキャビティoled
WO2019184346A1 (zh) 有机发光二极管及其制备方法、显示面板
WO2019223652A1 (zh) 一种显示面板及其制作方法、显示装置
CN112928225B (zh) 显示基板和显示装置
US9899455B2 (en) Organic light emitting diode display
US7545096B2 (en) Trans-reflective organic electroluminescent panel and method of fabricating the same
JP2012252984A (ja) 表示装置
JP2012248453A (ja) 表示装置
JP2007305508A (ja) 発光装置および光制御フィルム
US11018325B2 (en) Organic light emitting diode display
WO2019062229A1 (zh) 电致发光显示面板及其制作方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21808201

Country of ref document: EP

Kind code of ref document: A1