WO2021232715A1 - 背接触太阳能电池组件及制备方法 - Google Patents

背接触太阳能电池组件及制备方法 Download PDF

Info

Publication number
WO2021232715A1
WO2021232715A1 PCT/CN2020/129783 CN2020129783W WO2021232715A1 WO 2021232715 A1 WO2021232715 A1 WO 2021232715A1 CN 2020129783 W CN2020129783 W CN 2020129783W WO 2021232715 A1 WO2021232715 A1 WO 2021232715A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
contact solar
conductive
small
cell module
Prior art date
Application number
PCT/CN2020/129783
Other languages
English (en)
French (fr)
Inventor
蒋秀林
唐文帅
汤坤
吴兰峰
Original Assignee
晶澳太阳能有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010436135.8A external-priority patent/CN111477702A/zh
Priority claimed from CN202010522953.XA external-priority patent/CN111599885A/zh
Application filed by 晶澳太阳能有限公司 filed Critical 晶澳太阳能有限公司
Priority to EP20936081.7A priority Critical patent/EP3961726A4/en
Priority to JP2021570908A priority patent/JP2022537499A/ja
Priority to US17/612,526 priority patent/US20220310858A1/en
Publication of WO2021232715A1 publication Critical patent/WO2021232715A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells

Definitions

  • the invention relates to the technical field of solar cells, in particular to a back contact solar cell component and a preparation method.
  • the existing full-back contact solar cells all have a main grid design, and the main grid has the functions of collecting current and connecting the welding ribbon. Since the full-back contact solar cell has a higher short-circuit current, the full-back contact solar cell has to adopt more main grid designs to reduce the power loss caused by the line resistance of the main grid line and the thin grid line. Conventional solar cells consume more silver paste. At the same time, because the parallel-arranged long n+ doped regions, p+ doped regions and the thin grid lines connected to the two are arranged at intervals, it is necessary to consider how to avoid the battery positive and negative when designing the battery main grid. Battery failure caused by extremely short circuit.
  • one method is to introduce additional insulating materials and process steps to realize that the positive and negative main grids are only connected to the thin grid lines with the same polarity.
  • this method has complicated processes, high battery manufacturing costs, and stable battery efficiency and module power. The performance is low, and in the next few decades, the power of the components will decline and even electrical safety problems will occur.
  • Another solution is to design the positive and negative electrodes in a font shape, the fine grid lines of the negative electrode avoid the main grid lines of the positive electrode, and the fine grid lines of the positive electrode avoid the main grid lines of the negative electrode. In this way, there is no interlacing place on the two-dimensional pattern of the positive and negative electrodes, so as to solve the problem of reverse leakage.
  • this design is difficult to be collected by the fine grid lines of positive and negative polarity. Therefore, the series resistance of the battery will rise sharply, and the battery fill factor and photoelectric conversion efficiency will be greatly affected.
  • the cell module still has the problem of uneven warpage of the silicon wafer due to the large use of solder ribbons, or cracks or fragments.
  • the use of one-piece backplane design increases the difficulty of precision control and the production cost. Therefore, how to simplify the manufacturing process of the full-back contact solar cell module and mass-produce full-back contact solar cell modules with stable performance and market acceptance is an urgent problem to be solved.
  • the present invention provides a back-contact solar cell module and a preparation method thereof.
  • the preparation method can greatly simplify the manufacturing process of the back-contact solar cell module, reduce the manufacturing cost of the battery, and avoid cracks or fragments in the cell.
  • the back-contact solar cell module prepared by this method has higher efficiency stability, and the resistance loss on the silver grid line is low, and the fill factor of the module is high.
  • a back contact solar cell module including:
  • the back of the small battery slice has p+ doped regions and n+ doped regions staggered, and the p+ doped regions of the small battery slices are provided with a positive electrode fine grid line, the small battery slices
  • the n+ doped region is provided with a negative fine gate line, and each of the small cells is not provided with a main gate line that collects currents in the n+ doped region and the p+ doped region;
  • each of the conductive strips includes a substrate and a conductive pattern provided on the substrate, each of the substrates is respectively provided between two adjacent small cells, the conductive pattern It is used to electrically connect the thin grid lines with opposite polarities on two adjacent small battery slices in sequence and spaced apart so as to connect the small battery slices in series.
  • the n+ doped regions and p+ doped regions on two adjacent small battery sheets are arranged in a one-to-one correspondence, and the conductive pattern is formed by a plurality of conductive fold lines arranged in a row, and the conductive fold lines are in a stepped shape.
  • the n+ doped regions and p+ doped regions on two adjacent small cells are arranged alternately and correspondingly, and the conductive patterns of the conductive strips are formed by several straight lines arranged in rows.
  • the conductive pattern includes multiple sections of conductive glue or multiple sections of solder.
  • each section of the conductive glue or each section of the solder is connected to one of the positive electrode contact grids of one of the small battery pieces and one of the negative electrode contacts of another adjacent small battery piece. Fine grid.
  • the small cell sheet is cut from a back-contact solar cell sheet.
  • the (N-1) conductive strips are located on the same backplane, and each of the substrates is a partial area of the backplane.
  • the structures of adjacent two sides of the adjacent p+ doped region and the n+ doped region are complementary.
  • the structure of the p+ doped region and the n+ doped region is any one of a rectangular structure, a trapezoid, a sawtooth shape, and a square waveform.
  • the n+ doped region is strip-shaped, including wide rectangular strips and narrow rectangular strips arranged alternately; the p+ doped region is filled between two adjacent n+ doped regions.
  • the relationship between the N small battery slices includes: two adjacent small battery slices, the same type of doped regions are arranged oppositely, and in two adjacent small battery slices, the opposite type of doped regions are arranged oppositely The relationship combination.
  • the expansion coefficient of the substrate is close to that of silicon.
  • the substrate is a conductive silicon wafer.
  • an embodiment of the present invention provides a back-contact solar cell module, including: a plurality of back-contact solar cells, and a back sheet provided with at least one section of conductive glue, wherein:
  • the back contact solar cell includes: a silicon substrate, p+ doped regions and n+ doped regions alternately arranged on the back surface of the silicon substrate, a positive electrode contacting fine gate arranged in the p+ doped region, and The negative electrode of the n+ doped region is in contact with the fine gate;
  • the plurality of small back-contact solar cells are arranged side by side, wherein the sides of every two adjacent small back-contact solar cells are opposite;
  • the positive electrode contacting the fine grid end on one of the two opposite sides is electrically isolated from the side, and is located in the opposite two sides.
  • the negative electrode on the other side contacts the fine grid terminal and is electrically isolated from the other side;
  • Each section of the conductive adhesive is distributed between two adjacent small back-contact solar cells
  • Each section of the conductive adhesive is connected to the negative electrode contact grid of one back contact solar cell and the positive electrode contact grid of another adjacent back contact solar cell.
  • the end of the positive electrode contacting the fine gate located on one of the two opposite sides is covered with an insulating layer, and the end of the negative electrode contacting the fine gate located on the other of the opposite two sides is covered with an insulating layer.
  • the end of the positive electrode contacting the fine gate located on one of the two opposite sides is a shortened end with respect to this side
  • the end of the negative electrode contacting the fine grid on the other side of the two opposite sides is a shortened end with respect to the other side.
  • the conductive adhesive has a long strip structure
  • the positive electrode on one side of the two opposite sides is in contact with the fine gate terminal and is connected to one long side of the elongated structure;
  • the negative electrode located on the other side of the two opposite sides contacts the fine gate end to connect to the other long side of the elongated structure.
  • the conductive adhesive includes: a long strip main body and a plurality of branch sections connected to the long strip main body at both sides of the long strip structure main body, wherein each branch section on one side of the long strip structure main body A positive electrode of an adjacent back-contact solar cell is in contact with the thin grid, and each branch section on the other side of the elongated structure body is in contact with a negative electrode of another adjacent back-contact solar cell. Gate.
  • the back contact solar cell module further includes: a first encapsulation layer;
  • the first encapsulation layer is used to fill the gap between the small battery sheet and the back plate.
  • the back contact solar cell module further includes: a glass plate and a second encapsulation layer, wherein:
  • the glass plate is opposite to the plurality of small back-contact solar cells
  • the second encapsulation layer is arranged between the glass plate and the plurality of back contact solar cells;
  • the first encapsulation layer and the second encapsulation layer are used to encapsulate the plurality of small back-contact solar cells between the glass plate and the back plate.
  • an embodiment of the present invention provides a method for preparing a back-contact solar cell module, which includes the following steps:
  • a conductive pattern is arranged on the substrate to form a conductive strip, and each of the small cells is connected in series through the conductive strip to form a battery string;
  • the battery string is encapsulated by confluence, lamination and lamination in sequence, so that the back-contact solar cell module is obtained.
  • the conductive pattern is dried and cured on the substrate by printing by soldering or conductive glue, and the drying and curing temperature is 100-500° C., and the time is 30-600 s.
  • the solder is tin, tin-lead alloy, tin-bismuth alloy or tin-lead-silver alloy;
  • the conductive adhesive is an adhesive wrapped with conductive particles, and the adhesive is epoxy resin, phenolic resin, polyurethane, One or more of thermoplastic resin or polyimide, and the conductive particles are silver, gold, copper, or alloy particles composed of two or more of silver, gold, and copper.
  • an embodiment of the present invention provides a method for back contacting a solar cell module, including:
  • a plurality of small back-contact solar cells are arranged on the back plate, and a plurality of small back-contact solar cells are connected in series through the conductive glue, and dried and cured.
  • the back-contact solar cell module provided by the present invention completely abandons the design of the conventional busbar line, thus greatly simplifies the battery manufacturing process and improves the efficiency of the battery. Stability and reduced battery manufacturing costs;
  • the present invention uses a conductive strip to connect each small battery in series, where the conductive strip is composed of a substrate and a conductive pattern, the substrate is a carrier plate, and the conductive pattern is used to electrically connect the thin grids of opposite polarities on two adjacent small batteries. Therefore, when connecting small cells in series, it is only necessary to electrically connect the conductive pattern and the thin grid lines with opposite polarities on the two small cells in sequence, so that the current on the cell string passes through the conductive pattern.
  • the electrically connected doped regions are derived, so that when producing small cells, it is no longer limited by the design of the main grid line collecting current region (for example, although the positive electrode fine grid and the negative electrode fine grid are parallel to each other and alternately arranged, However, the two ends of the positive electrode fine grid need not be aligned with the two ends of the negative electrode fine grid, that is, one end of the positive electrode fine grid has a protruding end relative to one end of the negative electrode fine grid, and the other end of the positive electrode fine grid is opposite to the negative electrode fine grid. The other end of the fine grid of the electrode has a shortened end, etc.).
  • the elongated n+ doped region and p+ doped region in this application can directly penetrate the entire cell during production, and then the cell directly follows the n+ doped region or The short sides of the p+ doped area are cut to form a plurality of small cells, which are then connected to each other to form a cell string through conductive sheets printed with specific conductive patterns.
  • the cell manufacturing process is simplified and the production capacity is increased. And reduces the manufacturing cost of the battery.
  • the present invention is composed of a number of small cells connected in series. Compared with the entire back-contact solar cell, the current of each cell string is reduced, and the influence of the resistance loss on the silver grid line is reduced. Thereby improving the fill factor of the component;
  • the entire back-contact solar cell module has no solder ribbon design except for the confluence area of the battery string, which greatly reduces the cost of the module; moreover, the inventors have repeatedly tested and verified that the current of the module is in the adjacent area.
  • the transmission path resistance shown in the present invention is the smallest, which reduces the influence of the resistance loss on the silver grid line, thereby improving the fill factor of the component.
  • the expansion coefficient of the substrate of the conductive strip of the present invention is close to that of silicon, or it can still be a silicon wafer consistent with the cell substrate. Therefore, the occurrence of cracks or fragments caused by the inconsistency of the thermal expansion coefficients of the two is avoided.
  • the conductive glue can shorten the distance between multiple back-contact solar cells in series, and the conductive glue contacts the positive electrode with the fine grid and the negative electrode with the fine grid, it can eliminate the lateral transmission loss and electrode caused by the main grid.
  • the shielding effect in addition, because multiple sections of conductive adhesive are distributed between every two adjacent back-contact solar cells, and at the same time, a section of conductive adhesive connects a positive electrode contact grid of a back-contact solar cell and adjacent other solar cells.
  • a negative electrode of a small back-contact solar cell contacts the fine grid, then the series circuit formed by a plurality of small back-contact solar cells and multiple sections of conductive adhesive is relatively independent, that is, the positive electrode contacts the fine grid and the negative electrode contacts the fine grid.
  • Fig. 1 is a cross-sectional view of a full-back contact solar cell according to an embodiment 1-2 of the present invention
  • Figure 2 is a bottom view according to Figure 1;
  • Fig. 3 shows the small cells arranged after the full-back contact solar cells are cut according to the first embodiment
  • FIG. 4 is a schematic diagram of the structure of a conductive strip provided in an embodiment of the present invention.
  • Fig. 5 is a full-back contact solar cell string according to Embodiment 1 of the present invention.
  • Fig. 6 shows the small cells arranged after the full-back contact solar cells are cut according to the second embodiment
  • FIG. 7 is a schematic diagram of the structure of a conductive strip provided in another embodiment of the present invention.
  • Fig. 8 is a full-back contact solar cell string according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic diagram of the structure of a full-back contact solar cell sheet according to an embodiment 3-4 of the present invention.
  • Fig. 10 shows the small cells arranged after the full-back contact solar cells are cut according to the third embodiment
  • Fig. 11 is a full-back contact solar cell string according to Embodiment 3 of the present invention.
  • Fig. 12 shows the small solar cells arranged after being cut according to the full-back contact solar cells in the fourth embodiment
  • Fig. 13 is a full-back contact solar cell string according to Embodiment 4 of the present invention.
  • FIG. 14 is a schematic diagram of the structure of the conductive strips located on the same backplane according to an embodiment of the present invention.
  • 15 is a schematic structural diagram of a conductive strip located on the same backplane according to another embodiment of the present invention.
  • 16 is a schematic structural diagram of a full-back contact solar cell string connected in series by conductive strips located on the same backplane according to an embodiment of the present invention
  • FIG. 17 is a schematic structural diagram of a full-back contact solar cell string connected in series by conductive strips located on the same backplane according to another embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of a full-back contact solar cell string connected in series by conductive strips located on the same backplane according to another embodiment of the present invention.
  • FIG. 19 is a schematic structural diagram of a full-back contact solar cell string connected in series by conductive strips located on the same backplane according to another embodiment of the present invention.
  • 20 is a schematic structural diagram of a full-back contact solar cell string connected in series by conductive strips located on the same backplane according to another embodiment of the present invention.
  • 21 is a schematic structural diagram of a full-back contact solar cell string connected in series by conductive strips located on the same backplane according to another embodiment of the present invention.
  • Fig. 22 is a schematic structural diagram of a conductive adhesive provided according to an embodiment of the present invention.
  • FIG. 23 is a schematic structural diagram of a conductive adhesive provided according to another embodiment of the present invention.
  • FIG. 24 is a schematic structural diagram of a full-back contact solar cell string connected in series by conductive strips located on the same backplane according to another embodiment of the present invention.
  • 25 is a schematic structural diagram of a full-back contact solar cell string connected in series by conductive strips located on the same backplane according to another embodiment of the present invention.
  • FIG. 26 is a schematic structural diagram of a full-back contact solar cell string connected in series by conductive strips located on the same backplane according to another embodiment of the present invention.
  • FIG. 27 is a schematic structural diagram of a full-back contact solar cell string connected in series by conductive strips located on the same backplane according to another embodiment of the present invention.
  • FIG. 28 is a structural diagram of a full-back contact solar cell string connected in series by conductive strips located on the same backplane according to another embodiment of the present invention.
  • Fig. 29 is a schematic diagram of the relative relationship between two adjacent back-contact small solar cells according to an embodiment of the present invention.
  • FIG. 30 is a schematic diagram of the relative relationship between two adjacent back-contact small solar cells according to another embodiment of the present invention.
  • FIG. 31 is a schematic diagram of the relative relationship between two adjacent back-contact small solar cells according to another embodiment of the present invention.
  • Fig. 32 is a schematic diagram of the relative relationship between two adjacent back-contact small solar cells according to another embodiment of the present invention.
  • FIG. 33 is a schematic structural diagram of a full-back contact solar cell string connected in series by conductive strips located on the same backplane according to another embodiment of the present invention.
  • FIG. 34 is a schematic structural diagram of a conductive adhesive provided on a back plate according to another embodiment of the present invention.
  • 35 is a schematic structural diagram of a full-back contact solar cell string connected in series by conductive strips located on the same backplane according to another embodiment of the present invention.
  • Fig. 36 is a schematic structural diagram of a back-contact solar cell module according to another embodiment of the present invention.
  • FIG. 37 is a schematic diagram of the main flow of a method for manufacturing a solar cell module according to an embodiment of the present invention.
  • Fig. 38 is a schematic diagram of a back contact solar cell according to another embodiment of the present invention.
  • Negative electrode 31' The negative electrode contacts the shortened end of the fine grid
  • Encapsulation layer (first encapsulation layer or second encapsulation layer).
  • Fig. 3 shows the small cells arranged after the full-back contact solar cells are cut.
  • the present invention provides a back-contact solar cell module, which includes a number of small cells and conductive strips 7, wherein the back of each small cell is tiled with staggered p+ doped regions 2 and n+ doped areas along its length.
  • the p+ doped region 2 is printed with a positive electrode fine grid line (positive electrode 21) in contact with it, and the n+ doped region 3 is printed with a negative electrode fine grid line (negative electrode 31) and a positive electrode fine grid line in contact with it
  • the length of the (positive electrode 21) and the negative electrode fine grid line (negative electrode 31) is infinitely close to the width of the small cell; please refer to Figure 4, the conductive strip 7 includes a substrate 71 and a conductive pattern 72 provided on the substrate 71, refer to 5, the substrate 71 is set between two adjacent small cells, and the conductive pattern 72 is used to electrically connect the thin grid lines with opposite polarities on the two adjacent small cells at intervals to connect each of the small cells in series.
  • the battery piece specifically, can be to electrically connect all the positive electrode fine grid lines (positive electrode 21) located on the small battery piece on the left with all the negative electrode fine grid lines (negative electrode 31) provided on the adjacent small battery piece, or It is used to electrically connect all the negative fine grid lines (negative electrode 31) of the small cell on the right side with all the positive fine grid lines (positive electrode 21) of the adjacent small cell, and each small cell passes through The conductive strips 7 are connected in series.
  • the back contact solar cell module provided by the present invention completely abandons the design of the conventional busbar line, thus greatly simplifies the battery manufacturing process, improves the efficiency and stability of the battery, and reduces Battery manufacturing cost; secondly, since it is no longer limited by the design of the main grid line collecting current area, the elongated n+ doped region 3 and p+ doped region 2 can run through the entire battery, which also simplifies the battery manufacturing process. Increase production capacity and reduce battery manufacturing costs.
  • the back-contact solar cell module provided by the present invention is composed of a number of small cells cut from a single back-contact solar cell in series, which reduces the number of cells in each string.
  • the string current reduces the influence of the resistance loss on the silver grid line, thereby increasing the fill factor of the module; finally, the entire back-contact solar cell module is designed without soldering strips except for the confluence area of the battery string. , The cost of the module is greatly reduced; moreover, the inventor has verified through many experiments that the module current is transmitted between adjacent back-contact solar cells, and the transmission path resistance shown in the present invention is the smallest, which reduces The influence of the resistance loss on the silver grid line, thereby increasing the fill factor of the component.
  • the expansion coefficient of the substrate 71 of the conductive strip 7 is set close to that of silicon.
  • it can also be a conductive silicon chip consistent with the silicon substrate 1 of the cell.
  • the conductive silicon chip is preferably coated, or a conductive silicon chip with high resistivity is used, which can effectively reduce the gap between the conductive silicon chip and the cell. Electrical contact.
  • the conductive pattern 72 is formed of solder or conductive glue.
  • the solder can be tin, tin-lead alloy, tin-bismuth alloy or tin-lead-silver alloy;
  • the conductive glue is specifically coated with conductive particle binder, and the binder can be epoxy resin.
  • the binder can be epoxy resin.
  • One or more of phenolic resin, polyurethane, thermoplastic resin or polyimide, the conductive particles can be silver, gold, copper or alloy particles composed of more than two of silver, gold and copper.
  • the n+ doped region 3 and the p+ doped region 2 of the back contact solar cell module are rectangular strips of equal width, and the n+ doped region 3 and the p+ doped region 2 on two adjacent small cells
  • the conductive patterns 72 of the conductive strips 7 are arranged in one-to-one correspondence.
  • the conductive patterns 72 of the conductive strips 7 are composed of a plurality of conductive fold lines arranged in a row along the length of the rectangular strip, and the conductive fold lines are in a stepped shape.
  • the arrangement of n+ doped regions 3 and p+ doped regions 2 on two adjacent small cells in a one-to-one correspondence specifically refers to, as shown in Figure 3, the n+ doping of one of the two adjacent small cells
  • the miscellaneous area 3 corresponds to the n+ doped area 3 of the other small cell one-to-one, and the p+ doped area 2 of one small cell and the p+ doped area 2 of the other small cell among the two adjacent small cells One-to-one correspondence.
  • the n-type single crystal silicon substrate 1 is selected, the resistivity is 1-30 ⁇ cm, the thickness is 50-300 ⁇ m, and the length is 156.75mm.
  • the n-type single crystal silicon substrate 1 is subjected to surface texturing treatment before use, and then is fabricated on the back surface of the n-type single crystal silicon substrate 1 by combining techniques such as diffusion, laser drilling, ion implantation and annealing, masking, and etching.
  • the p+ doped regions 2 and the n+ doped regions 3 alternately arranged to form an n+ front surface field (FSF) 4 with a low surface doping concentration on the front surface of the n-type single crystal silicon substrate 1.
  • FSF front surface field
  • an anti-reflective laminated passivation film 5 is deposited on the front surface to passivate the n+ front surface field (FSF) 4 with low surface doping concentration, such as Al 2 O 3 /SiNx, SiO 2 /SiN x , SiO 2 /Al 2 O 3 /SiN x, etc.
  • FSF front surface field
  • SiO 2 /SiN x is selected as the front passivation film
  • the film thickness is 60 ⁇ 200 nm
  • the reflection-increasing laminated passivation film 6 is deposited on the back surface to the n+ doped region 3,
  • the p+ doped region 2 is partitioned or simultaneously passivated.
  • the reflection-increasing laminated passivation film 6 can be selected from Al 2 O 3 /SiN x , SiO 2 /SiN x , SiO 2 /SiCN, SiO 2 /SiON, etc., here SiO 2 /Al 2 O 3 /SiN x is selected as the back passivation film, and the film thickness is 100 nm.
  • a positive electrode 21 composed of a positive electrode fine grid line is fabricated, and a negative electrode 31 composed of a negative electrode fine grid line is fabricated on the n+ doped region 3.
  • the positive electrode 21 And the negative electrode 31 can be printed with silver paste directly burned through the back reflection enhancing laminated passivation film 6, or can be opened by laser and then printed or electroplated metal to form the electrode and the n-type monocrystalline silicon substrate 1. Ohmic contact and lead out the current.
  • the positive electrode 21 and the negative electrode 31 are the same length as the p+ doped region 2, the n+ doped region 3 and the n-type single crystal silicon substrate 1, and are 156.75mm.
  • the width W3 of the positive electrode 13 is 100 ⁇ m
  • the width W4 of the electrode 43 is 100 ⁇ m, and the fine grid lines of the positive electrode and the fine grid lines of the negative electrode are arranged in an interdigital type.
  • the n+ doped regions 3 and p+ doped regions 2 on the four small back-contact solar cells are arranged in a one-to-one correspondence. At this time, the directions of all the small back-contact solar cells are the same as the original back-contact solar cells.
  • the back side of the back-contact solar cell is only provided with a negative electrode fine grid line that forms ohmic contact with the elongated n+ doped region 3, and a positive electrode fine grid line that forms ohmic contact with the p+ doped region 2.
  • a conductive pattern 72 is provided on the substrate 71.
  • the conductive pattern 72 is composed of a plurality of conductive fold lines arranged in parallel along the length of the rectangular strip.
  • the conductive fold lines are stepped, and the conductive pattern 72 is printed by solder or conductive glue.
  • the method is dried and solidified on the substrate 71.
  • solder is used for printing.
  • the material of the solder is a tin-lead alloy.
  • the solder is printed on the substrate 71 according to the above pattern and dried at 200°C for 2 minutes to solidify .
  • the length L36 of the substrate 71 is 156.75 mm, and the width L31 is 19.6 mm.
  • Embodiment 1 Please refer to FIG. 8.
  • the difference from Embodiment 1 is that in this embodiment, four small back-contact solar cells are arranged as shown in FIG. 6, that is, n+ doped regions 3 and p+ on two adjacent small cells
  • the doped regions 2 are staggered, and the small cell width shown in FIG. 6 is L21.
  • the direction of half of the back-contacted solar cells is opposite to that of the original back-contacted solar cells.
  • the back side of the small back-contact solar cell has only the silver grid lines that form ohmic contact with the elongated n+ doped regions 3 and p+ doped regions 2, and there is no collection of the elongated n+ doped regions 3 and p+ doped regions 2 respectively.
  • the main grid line of the current is not limited to form ohmic contact with the elongated n+ doped regions 3 and p+ doped regions 2, and there is no collection of the elongated n+ doped regions 3 and p+ doped regions
  • the conductive strip 7 in this embodiment is printed on the substrate 71 by conductive glue to form a conductive pattern 72.
  • the conductive glue is silver metal particles wrapped with epoxy resin as an adhesive.
  • the shape of the conductive pattern is composed of several straight lines arranged in rows along the length direction of the rectangular strip.
  • the conductive adhesive is printed on the substrate 71 according to the described shape, and dried at 200° C. for 2 minutes to cure.
  • n+ doped region 3 is strip-shaped, including wide rectangular strips and narrow rectangular strips arranged alternately; p+ doped region 2 is filled between two adjacent n+ doped regions 3, wherein the length of n+ doped region 3 is 156.75mm, n+
  • W5 and W9 The length varies with different cuttings, but it is better to set W5 and W9 at the same length.
  • the length of the p+ doped region 2 filled between two adjacent n+ doped regions 3 is 156.75 mm. It can be understood that it is also formed by staggered connection of rectangular strips with different widths.
  • the above-mentioned back-contact solar cells are cut, and four small back-contact solar cells are formed after cutting.
  • the direction of the sheet is the same as the original back contact solar cell sheet.
  • the back side of the small back-contact solar cell has only the silver grid lines that form ohmic contact with the elongated n+ doped regions 3 and p+ doped regions 2, and there is no collection of the elongated n+ doped regions 3 and p+ doped regions 2 respectively.
  • the main grid line of the current is only the silver grid lines that form ohmic contact with the elongated n+ doped regions 3 and p+ doped regions 2, and there is no collection of the elongated n+ doped regions 3 and p+ doped regions 2 respectively.
  • the main grid line of the current is only the silver grid lines that form ohmic contact with the elongated n+ doped regions 3 and p+ doped regions 2, and there is no collection of the elongated n+ doped regions 3 and p+ doped regions 2 respectively.
  • the main grid line of the current is only the silver grid lines that form ohmic contact with the elongated n+ doped regions 3 and p+
  • the structure of the conductive strip is the same as that of the embodiment 1.
  • the conductive strip 7 is used to connect the small solar cells with full back contact in this embodiment in series to form a full back contact solar cell string, and the adjacent small back contact solar cells
  • the thin grid lines with opposite polarities are connected to each other through the conductive printed pattern 72 made of solder on the substrate 71 to ensure that the current on the cell is led out along the long sides of the elongated n+ doped region 3 and the p+ doped region 2.
  • the subsequent assembly process of confluence, lamination, and lamination is the same as that of conventional module production.
  • the finally obtained back-contact solar cell module structure is shown in FIG. 11.
  • the back side of the small back-contact solar cell has only the silver grid lines that form ohmic contact with the elongated n+ doped regions 3 and p+ doped regions 2, and there is no collection of the elongated n+ doped regions 3 and p+ doped regions 2 respectively.
  • the main grid line of the current is only the silver grid lines that form ohmic contact with the elongated n+ doped regions 3 and p+ doped regions 2, and there is no collection of the elongated n+ doped regions 3 and p+ doped regions 2 respectively.
  • the main grid line of the current is only the silver grid lines that form ohmic contact with the elongated n+ doped regions 3 and p+ doped regions 2, and there is no collection of the elongated n+ doped regions 3 and p+ doped regions 2 respectively.
  • the main grid line of the current is only the silver grid lines that form ohmic contact with the elongated n+ doped regions 3 and p+
  • the preparation process of the conductive strip 7 is also different.
  • the conductive pattern 72 on the substrate 71 is printed by conductive glue.
  • the conductive pattern 72 of the conductive strip 7 is composed of several straight lines arranged in parallel along the length of the rectangular strip, and the conductive glue is silver metal particles wrapped with epoxy resin as an adhesive.
  • the conductive adhesive is printed on the substrate 71 according to the above-mentioned pattern, and dried at 200° C. for 2 minutes to cure.
  • the n+ doped regions 3 and p+ doped regions 2 on two adjacent small cells mentioned in the foregoing embodiments are arranged alternately and correspondingly, which specifically refers to the side surface of one small cell among the two adjacent small cells. It corresponds to the side of another small cell, and the n+ doped region 3 of one small cell is staggered with the n+ doped region 3 of the other small cell.
  • the p+ doped region 2 of one small cell and the other The p+ doped regions 2 of a small cell are staggered.
  • the n+ doped area 3 of one small cell is set corresponding to the p+ doped area 2 of another small cell, and the p+ doped area 2 of one small cell and the n+ doped area 3 of the other small cell are arranged. Corresponding settings.
  • the silicon substrate can be an n-type single crystal silicon substrate, and the silicon substrate can also be a p-type single crystal silicon substrate.
  • the resistivity of the silicon substrate may be 0-30 ⁇ cm.
  • the thickness of the silicon substrate may be 50 to 300 ⁇ m.
  • the side length of the silicon substrate 1 can be determined according to actual requirements.
  • the main surface of the existing commonly used silicon substrate 1 is square, and its side length is 158.75mm.
  • the existing silicon substrate can be used to make back-contact solar cells, and then the substrate can be obtained by cutting.
  • the back contact cell used in the embodiment of the invention (the back contact cell is also a small back contact solar cell or a small cell).
  • the back contact cell used in the embodiment of the present invention obtained by cutting will be described in detail later. Sheet/back contact solar cell/small cell. In this way, the difficulty in manufacturing small back-contact solar cells can be effectively reduced.
  • the multiple small back-contact solar cells included in one back-contact solar cell module can be derived from the same back-contact solar cell or from different back-contact solar cells.
  • the back-contact solar cell sheet can be obtained by using an existing back-contact solar cell sheet manufacturing process.
  • the back-contact solar cells can be cut into 2 to 200 small back-contact solar cells, and the 2 to 200 refers to any integer between 2 and 200. For example, 4, 8, 20, 50, 80, 100, 150, etc.
  • the number of small back-contact solar cells that are specifically cut can be determined by actual conditions such as the size of the back-contact solar cells, the size of the required back-contact solar cells, and the cutting process. In a preferred embodiment, the number of small back-contact solar cells cut out from one back-contact solar cell sheet is not less than four.
  • the electrode contact grids with the same polarity on the same side of the small back-contact solar cell are connected with conductive glue or solder.
  • a positive electrode contacting the thin grid on the same side of the back contact of the solar cell or the negative electrode contacting the grid is connected to a conductive pattern (such as a conductive pattern made of conductive glue, etc.).
  • a plurality of small back contact solar cells are arranged side by side, wherein the sides of every two adjacent back contact cells are opposite; it is worth noting that the back contact
  • the side surface of the small solar cell includes the side surface of the p+ doped region 2 and the side surface of the n+ doped region 3 alternately arranged, and the side surface of the back contacting small solar cell is consistent with the structure shown in FIG. 1.
  • the side-by-side arrangement can ensure the largest light-receiving surface area to ensure the electrical efficiency of the solar cell module.
  • (N-1) conductive strips (7) can be located on the same back plate 70, and each substrate 71 is a partial area of the back plate 70. Understandably, the conductive pattern is provided on the back plate 70.
  • the back contact solar cell module obtained by combining FIGS. 3 and 14 is shown in FIG. 16, and the back contact solar cell module obtained by combining FIGS. 6 and 15 is shown in FIG. 17.
  • the conductive pattern 72 shown in Figure 4, Figure 7, Figure 14, Figure 15 is a multi-section conductive glue or solder, correspondingly, one electrode contacting the fine grid (positive electrode 21 or negative electrode 31) only A section of conductive glue is connected, and only one end of an electrode contacting the thin grid is connected with conductive glue or solder.
  • the electrode contact grids of the adjacent back-contact solar cells with opposite polarities are connected by conductive glue or solder provided on the back plate 70 to ensure the lead-out of current.
  • the diameter of the positive electrode contacting fine grid and the negative electrode contacting fine grid may be 20-300 ⁇ m.
  • the positive electrode contacting the fine gate and the p+ doped region, and the negative electrode contacting the fine gate and the n+ doped region may be ohmic contacts.
  • the material of the positive electrode contacting fine grid and the negative electrode contacting fine grid is generally metallic silver.
  • the method of printing silver paste to directly burn through the back passivation film, the method of laser opening and then printing, or the method of electroplating metal can be used to make the positive electrode contact fine grid and the negative electrode contact fine grid to form a positive electrode.
  • the structures of two adjacent sides of the adjacent p+ doped region 2 and n+ doped region 3 are complementary. For example, if one of the two adjacent side surfaces of the p+ doped region 2 and the n+ doped region 3 has a protrusion structure, the other side of the two adjacent side surfaces of the p+ doped region 2 and the n+ doped region 3 It has a recessed structure complementary to or engaged with the protruding structure.
  • the adjacent two side surfaces of the p+ doped region 2 and the n+ doped region 3 have a zigzag structure that meshes with each other; the adjacent two side surfaces of the p+ doped region 2 and the n+ doped region 3 have a complementary square wave structure ;
  • the adjacent two sides of the p+ doped region 2 and the n+ doped region 3 are complementary trapezoidal structures and so on.
  • the p+ doped region 2 and the n+ doped region 3 of complementary square waveforms are exemplarily given.
  • FIG. 3, FIG. 5, FIG. 6, FIG. 8, FIG. 16, and FIG. The rectangular structure can be replaced by other structures such as trapezoid, sawtooth, and square waveform to achieve the same effect.
  • the silicon substrate has two opposite main surfaces. One of the main surfaces is used to arrange alternately arranged p+ doped regions and n+ doped regions after texturing, as the back surface of the silicon substrate, and the other The main surface is provided with a front surface electric field as the front surface of the silicon substrate.
  • the silicon substrate can be an n-type single crystal silicon substrate or a p-type single crystal silicon substrate.
  • the front surface field is n+FSF.
  • a p-type single crystal silicon substrate The front surface field is p+FSF.
  • the silicon substrate is an n-type single crystal silicon substrate, and correspondingly, n+FSF is an n+FSF with a low surface doping concentration.
  • the relative relationship between two adjacent small back-contact solar cells in the back-contact solar cell module may include the following.
  • the first type two adjacent small back-contact solar cells, and doped regions of the same type are arranged opposite to each other.
  • FIG. 3, FIG. 5, and FIG. 16 only exemplarily show the case where the two ends of the back contact solar cell are respectively the n+ doped region 3 and the p+ doped region 2. Both ends of the small back-contact solar cell may also be n+ doped regions 3, and both ends of the small back-contact solar cell may also be p+ doped regions 2. The n+ doped region 3 and the p+ doped region 2 on the back contact solar cell sheet need to be alternately arranged.
  • the second type in two adjacent small back-contact solar cells, the doped regions of the opposite type are arranged opposite to each other.
  • the p+ doped region 2 of one back-contact solar cell and the n+-doped region of the other back-contact solar cell Area 3 is relatively set. Understandably, the number of p+ doped regions and the number of n+ doped regions included in two adjacent back-contact solar cells are equal.
  • a more preferred embodiment, for the above two kinds of relative relationship between two adjacent back contact solar cells, as shown in Figure 3, Figure 5, Figure 6, Figure 8, Figure 16, and Figure 17 adjacent two The p+ doped region 2 and the n+ doped region 3 included between the back contact solar cells have a one-to-one correspondence.
  • the width of the p+ doped region 2 included in one back-contact solar cell is smaller than that of the other adjacent back-contact solar cell.
  • the width of the p+ doped region 2 included in the cell is the same; the width of the n+ doped region 3 included in one back-contact solar cell and the width of the n+ doped region 3 included in the adjacent other back-contact solar cell Same too. That is, for two adjacent back-contact solar cells, the two opposing p+ doped regions 2 have the same width, and the two opposing n+ doped regions 3 have the same width.
  • the widths of the multiple p+ doped regions 2 belonging to the same back-contact solar cell can be the same or different; the widths of the multiple n+-doped regions 3 belonging to the same back-contact solar cell can be the same, or Can be different.
  • the multiple p+ doped regions 2 belonging to the same back-contact solar cell have the same width, and the multiple n+ doped regions 3 have the same width.
  • the widths of the plurality of p+ doped regions 2 and the plurality of n+ doped regions 3 belonging to the same back-contact solar cell are all the same. To facilitate the production of p+ doped regions and n+ doped regions.
  • the width of the opposing p+ doped region 2 and the width of the n+ doped region 3 are the same.
  • all p+ doped regions 2 and all n+ doped regions 3 in the back-contact solar cell are the same to facilitate the production of p+ doped regions and n+ doped regions.
  • the width of the p+ doped region 2 refers to the distance between the two boundary lines of the p+ doped region 2 and the n+ doped region.
  • the p+ doped region 2 is rectangular, the p+ doped region The width of 2 may be the length of one side in the direction of the alternately arranged p+ doped regions and n+ doped regions.
  • the alternate arrangement of p+ doped regions and n+ doped regions in each embodiment is the staggered arrangement of the aforementioned p+ doped regions and n+ doped regions.
  • the width of the n+ doped region 3 refers to the distance between the two boundary lines of the n+ doped region 3 and the p+ doped region.
  • the width of the n+ doped region 3 can be , The length of one side in the direction of alternately arranged p+ doped regions and n+ doped regions.
  • the width of the p+ doped area and the n+ doped area will affect the performance of the back contact solar cell module, and the narrower the width of the p+ doped area and the n+ doped area, the p+ that a small back contact solar cell includes The more the number of doped regions and n+ doped regions, the better the performance of the solar cell module.
  • the width of the p+ doped region is 0.1-20 mm; the width of the n+ doped region is 0.1-10 mm.
  • the arrangement and relationship of the back-contact solar cells that have been cut from the back-contact solar cells can be directly used for subsequent processes.
  • the back-contact solar cells that need to be spaced at odd or even positions are rotated horizontally by 180 degrees (° ) To realize the relationship between two adjacent back-contact solar cells shown in FIG. 6.
  • each section of conductive glue or conductive solder in the conductive pattern 72 has a Z-shaped structure or a Z-shaped structure. Variant structure or step structure.
  • one end of the conductive glue or conductive solder of the Z-shaped structure or the Z-shaped variant structure or the stepped structure is connected to a positive electrode contact grid (positive electrode 21), and the other end is connected
  • One negative electrode of the adjacent back contact solar cell contacts the fine grid (negative electrode 31); the positive electrode connected by conductive glue or conductive solder contacts the fine grid (positive electrode 21) and the negative electrode contacts the fine grid (negative electrode 31) )
  • a plurality of conductive patterns can be connected in series with a plurality of back contact solar cells.
  • each segment of conductive glue or conductive solder in the conductive pattern 72 has a linear structure.
  • a plurality of conductive patterns are connected in series with a plurality of back contact solar cells.
  • the back contact solar cell modules are distributed in the conductive pattern between two adjacent back contact solar cells.
  • the doped regions and the n+ doped regions are arranged in parallel in the direction in which they are alternately arranged; among the two opposite sides of the two adjacent back-contact solar cells, the positive electrode on one of the opposite sides is in contact with the fine grid and the conductive glue or One end of the conductive solder is connected one-to-one; the negative electrode on the other side of the two opposite sides is connected to the other end of the conductive glue or the conductive solder, and every two sections of the conductive glue or the conductive solder do not intersect.
  • the relationship between the plurality of back-contact solar cells in the back-contact solar cell module may include two adjacent back-contact solar cells, the same type of doped regions are arranged oppositely and two adjacent solar cells. In a small back-contact solar cell, the doped regions of opposite types are arranged relative to each other.
  • the structure of the multi-segment conductive glue or conductive solder may be any combination of a line segment structure, a Z-shaped variant structure, and a stepped structure.
  • the structures of multiple sections of conductive glue or conductive solder located between two adjacent small back-contact solar cells in the same group are the same.
  • one end of the conductive glue or conductive solder is connected to a positive electrode contacting the fine grid.
  • the conductive glue or one end of the conductive solder is in ohmic contact with the positive electrode contacting the fine grid, and the other end of the conductive glue or conductive solder is connected to the adjacent back.
  • the negative electrode contacting the fine grid in the small solar cell can be conductive glue or conductive solder, and the other end of the negative electrode contacting the fine grid can be in ohmic contact.
  • the conductive adhesive includes: a binder and metal particles dispersed in the binder. This kind of conductive glue can effectively ensure the current transmission and the adhesion between the positive electrode contacting the fine grid and the negative electrode contacting the fine grid and the conductive glue.
  • the back-contact solar cell module may include: a plurality of back-contact solar cells, And a backplane provided with at least one section of conductive adhesive, wherein,
  • the back-contact solar cell includes: a silicon substrate 1, p+ doped regions 2 and n+ doped regions 3 alternately arranged on the back surface of the silicon substrate 1, and a positive electrode contact pin located in the p+ doped region
  • the gate (positive electrode 21) and the negative electrode provided in the n+ doped region 3 contact the fine gate (negative electrode 31);
  • a plurality of small back-contact solar cells are arranged side by side, wherein the sides of every two adjacent small back-contact solar cells are opposite;
  • the positive electrode on one of the two opposite sides is electrically isolated from the fine grid end, and the negative electrode on the other side of the opposite two sides is electrically isolated from that side.
  • the electrode contacting the fine grid end is electrically isolated from the other side;
  • Each section of conductive adhesive is distributed between two adjacent small back-contact solar cells
  • Each section of conductive glue connects the negative electrode contact grid of one back contact solar cell and the adjacent positive electrode contact grid of another back contact solar cell.
  • the sizes of the multiple small back-contact solar cells in the back-contact solar cell module may be the same, or may not be completely the same, or may be completely different.
  • the types of the multiple back-contact solar cells in the back-contact solar cell module must be the same. For example, they are all back-contacted, and all have alternately arranged p+ doped regions and n+ doped regions.
  • the relative relationship between two adjacent back-contact solar cells can be any one of the relative relationships shown in FIGS. 18 to 21, 25 and 28.
  • electrical isolation can be achieved through the insulating encapsulation layer and insulating layer disposed between the backplane and the multiple back-contact solar cells, and it can also be directly through the reflection-increasing laminated passivation film deposited on the back-contact solar cells And so on to achieve electrical isolation.
  • the electrical isolation is achieved through the insulating layer:
  • the positive electrode contacting the fine grid end on one side is covered with an insulating layer
  • the negative electrode contacting the fine grid end on the other side is covered with an insulating layer.
  • the probability of series errors can be effectively reduced, and the occurrence of leakage can also be reduced.
  • the two adjacent back-contact small solar cells are on opposite sides
  • the end of the positive electrode contacting the fine gate on one side is covered with an insulating layer 8
  • the end of the negative electrode contacting the fine gate on the other side is covered with an insulating layer 8.
  • the positive electrode on one side is in contact with each other.
  • the gate end is covered with an insulating layer 8
  • the negative electrode on the other side contacting the fine gate end is covered with an insulating layer 8. Understandably, one side and the other side are only used to distinguish the two opposite sides of two adjacent back-contact solar cells.
  • the width of the insulating layer shown in FIG. 29 and FIG. 30 is generally not less than the width of the electrode contacting the fine grid covered by it. In a preferred embodiment, the width of the insulating layer is generally not less than the width of the doped region where it is located, but an insulating layer does not cover the contact gates of opposite polarity at the same time.
  • the insulating layers on both sides are located on the opposite electrode contact grids.
  • the above arrangement can effectively shorten the length of the circuit between the positive electrode contacting the fine grid and the negative electrode contacting the fine grid, thereby reducing the resistance loss caused during the transmission process, so as to simplify the manufacturing process of the back contact solar cell module and reduce the power loss. , Thereby effectively improving the photoelectric conversion efficiency.
  • the above-mentioned insulating layer can avoid leakage caused by the electrode contacting the fine gate to burn through the p+ doped region and the n+ doped region with the reflection-increasing laminated passivation film deposited on the surface. Thereby, the stability of the back contact solar cell module is further improved.
  • the electrical isolation is achieved by the reflection-increasing laminated passivation film deposited on the back-contact solar cell.
  • the positive electrode on one side is in contact with the fine grid end as the shortened end, and the negative electrode on the other side is in contact with the fine grid end as the shortened end. Covered with an insulating layer.
  • the probability of series error can be effectively reduced, and the occurrence of leakage can also be reduced.
  • one side of the positive electrode contacting the fine grid end is the shortened end relative to this side.
  • the negative electrode contact end of the other side 117 is the shortened end 31 ′ relative to the other side, and the reflection-increasing laminated passivation film 6 is deposited on the surface of the p+ doped region 2 and the n+ doped region 3.
  • the above arrangement can effectively shorten the length of the circuit between the positive electrode contacting the fine grid and the negative electrode contacting the fine grid, thereby reducing the resistance loss caused during the transmission process, so as to simplify the manufacturing process of the solar cell module and reduce the power loss, thereby Effectively improve the photoelectric conversion efficiency.
  • the end of the positive electrode contacting the fine gate on one side is the shortened end 21' relative to this side, and the negative electrode on the other side is in contact with the fine gate.
  • the end is a shortened end 31' relative to the other side, and the p+ doped region between the shortened end 21' and the opposite side is covered with an insulating layer; the shortened end 31' is opposite to the other side
  • the n+ doped region between is covered with an insulating layer.
  • the shortened end means that the end of an electrode contacting the fine grid (positive electrode contacting the fine grid end or negative electrode contacting the fine grid end) is shortened relative to the side of the same back contact solar cell with the electrode contacting the fine grid.
  • this side is one of the two opposite sides of two adjacent back-contact small solar cells.
  • the size of the above-mentioned insulating layer can be set according to actual conditions (such as the size of the back contact solar cell, the length of the positive electrode contacting the fine grid, and the length of the negative electrode contacting the fine grid).
  • the distance between the shortened end and the side of the small back contact solar cell that is close to it can generally be set according to the actual situation.
  • the spacing between adjacent back contact small solar cells can be as close as possible. While reducing the amount of conductive glue, it can effectively shorten the positive electrode contact grid and the negative grid. The electrode contacts the length of the current transmission circuit between the fine grids, thereby reducing the resistance loss during the transmission process.
  • a back-contact solar cell module shown in FIG. 21 is obtained.
  • the back-contact solar cell module shown in FIGS. 18 to 21 on the two opposite sides of two adjacent back-contact solar cells, all the positive electrodes on one side contact the thin grid and connect to one long side of the elongated structure 721, and all the negative electrodes on the side contacting the thin grid are not connected to the long side 721; all the negative electrodes on the other side contacting the thin grid are connected to the other long side 722 of the elongated structure, and all the positive electrodes on the side None of the contact grids is connected to the other long side 722. That is, two adjacent small back-contact solar cells can be connected in series through a piece of conductive adhesive disposed on the back plate 70, which effectively simplifies the series process of back-contact small solar cells and the manufacturing process of solar cell modules.
  • the insulating layer is to prevent the positive electrode covered by it from contacting the fine grid or the negative electrode contacting the fine grid and the conductive glue, the two long sides of the conductive glue are located on the insulating layer and will not exceed the insulating layer. Limitation of the edge.
  • the structure of the conductive adhesive between the small cells can also be shown in Figure 22 and Figure 23.
  • the conductive adhesive between two adjacent back-contact solar cells includes: a long strip main body 723 and a long strip.
  • each branch segment 724 on the other side of the elongated structure main body 723 contacts the thin grid with a negative electrode of another adjacent back-contact solar cell.
  • the conductive adhesive structure shown in FIG. 22 is adopted, and the multi-segment branch segments 724 arranged on both sides of the elongated structure main body 723 are alternately arranged.
  • a back contact solar cell module as shown in FIG. 24 is obtained.
  • a back contact solar cell module as shown in FIG. 25 is obtained.
  • the conductive adhesive shown in FIG. 22 is applied to FIG. 31 to obtain a back contact solar cell module as shown in FIG. 26.
  • the relationship between two adjacent back-contact small solar cells shown in FIG. 6, FIG. 30, and FIG. 32 adopts the conductive adhesive structure shown in FIG. 23. Every two branch segments 724 arranged on both sides of the elongated structure main body 723 are opposed to each other.
  • a back contact solar cell module as shown in FIG. 27 is obtained.
  • a back contact solar cell module as shown in FIG. 28 is obtained.
  • a back contact solar cell module as shown in FIG. 33 is obtained.
  • the back contact solar cell module may include: Figure 5, Figure 8, Figure 18 to Figure 21, Figure 24 to Figure 28 and Figure 33 shows the relationship between a plurality of back contact solar cells And a variety of combinations of the structure of the multi-segment conductive glue arranged on the backplane.
  • the back contact solar cell module may include: at least two groups of adjacent two back contact small solar cells, wherein at least one group of adjacent two back contact small solar cells, the same type of doped regions are arranged opposite to each other , Between the remaining two adjacent back-contact solar cells, the p+ doped area of one back-contact solar cell is opposite to the n+-doped area of the other back-contact solar cell; at least one group is adjacent On the two opposite sides of the two back-contact solar cells, the positive electrode on one of the two opposite sides is in contact with the fine grid terminal electrically isolated from the side, and the negative electrode on the other side of the opposite two sides is in contact The fine grid end is electrically isolated from the other side, wherein two adjacent small back-contact solar cells that are electrically isolated are passed through a strip of conductive glue arranged on the back plate as shown in FIG.
  • FIG. 34 shows that the branch segments of the conductive adhesive distributed on both sides of the conductive adhesive main structure arranged on the backplane are connected; there is no electrical isolation between the adjacent two small back-contact solar cells through the multi-sections arranged on the backplane.
  • the multi-segment conductive glue structure can be the line segment structure shown in FIG. 15, the Z-shaped variant structure shown in FIG. 14, the step structure, and the conductive glue connected to the conductive glue main structure shown in FIG. 22 and FIG. 23 Any of the branch segments.
  • FIG. 35 exemplarily shows a back-contact solar cell module, which includes a combination of various structures. Other deformed structures based on the back contact solar cell modules shown in FIGS. 16 to 21 and FIGS. 24 to 28 are also within the protection scope of the embodiment of the present invention.
  • the solar cell module may further include: a first encapsulation layer (encapsulation layer 10) filled between the plurality of back contact solar cells and the back sheet 70.
  • the first encapsulation layer (encapsulation layer 10) can fill the gap between the contact cell and the back plate 70 to further improve the performance of the solar cell module.
  • the first encapsulation layer can better fix the small back-contact solar cells on the back plate, so as to facilitate the transportation and placement or storage of the solar cell components.
  • the back contact solar cell module may further include: a glass plate 9 and a second encapsulation layer (encapsulation layer 10), wherein,
  • the glass plate 9 is opposed to a plurality of small back-contact solar cells
  • the second encapsulation layer (encapsulation layer 10) is arranged between the glass plate 9 and the plurality of small back-contact solar cells;
  • the first encapsulation layer and the second encapsulation layer are used to encapsulate a plurality of small back-contact solar cells between the glass plate 9 and the back plate 70.
  • the above-mentioned solar cell module also includes a bus bar for collecting and deriving the module current (not shown in the figure), which is consistent with the location and connection mode of the existing back-contact solar cell module, and will not be repeated here.
  • the back contact solar cell modules provided by the above embodiments on the one hand, because the main grid is completely discarded, there is no need to consider the main grid in the process of setting the positive electrode contact fine grid and the negative electrode contact fine grid; on the other hand, the conductive adhesive is set On the backplane, the fixing of the conductive glue is realized, and it is convenient to use the fixed conductive glue to connect a plurality of small back-contact solar cells in series. Therefore, the solution provided by the embodiment of the present invention simplifies the manufacturing process of the full-back contact solar cell module.
  • the conductive glue or solder can shorten the distance between multiple back-contact solar cells in series, and the conductive glue or solder contacts the fine grid with the positive electrode and the negative electrode with the fine grid, it can eliminate the lateral caused by the main grid. Transmission loss and electrode shielding effect, thereby improving the fill factor, photoelectric conversion efficiency and stability of the photoelectric conversion efficiency of the full-back contact solar cell module.
  • each segment of conductive glue or solder is connected to a positive electrode of a back-contact solar cell to contact the fine grid and a negative electrode of another adjacent back-contact solar cell to contact the fine grid, then the width of the conductive adhesive Can be reduced as much as possible, not only can save the material of conductive glue, but also can reduce the resistance loss caused by conductive glue or solder.
  • the entire back-contact solar cell module can use solder ribbon in its confluence area, and other places (such as the positive electrode contact grid and the negative electrode contact grid in series) are all designed without solder ribbon, which greatly reduces the cost of the module.
  • the solution provided by the embodiment of the present invention has a smaller transmission path resistance, which reduces the electrode contact fine grid (the positive electrode contacts the fine grid). And the negative electrode in contact with the fine grid) on the resistance loss, thereby increasing the fill factor of the component.
  • the p+ doped region and the n+ doped region do not include an insulating band gap or an insulating layer.
  • This arrangement can further simplify the back contact solar cell or The manufacturing process of the back-contact solar cell module can also reduce the hot spot of the back-contact solar cell module, thereby effectively improving the life of the solar cell module and the stability of electrical efficiency.
  • the thin grids are connected in one-to-one series, so that the current transmission paths are fixed and independent of each other, which can effectively reduce the interference of adjacent series circuits, avoid current dispersion and diffusion, and can effectively reduce current loss, thereby further improving overall
  • the fill factor, photoelectric conversion efficiency, and stability of the photoelectric conversion efficiency of the back contact solar cell module are fixed and independent of each other, which can effectively reduce the interference of adjacent series circuits, avoid current dispersion and diffusion, and can effectively reduce current loss, thereby further improving overall.
  • the embodiment of the present invention provides a method for preparing a back contact solar cell module. As shown in FIG. 37, the method for preparing a back-contact solar cell module may include the following steps:
  • S3701 a step of preparing small back-contact solar cells
  • S3703 Arrange multiple small back-contact solar cells on the backplane, connect multiple small back-contact solar cells in series through conductive glue, and dry and cure them.
  • the above-mentioned preparation method can be used to prepare the solar cell modules provided in each of the above-mentioned embodiments.
  • the step of preparing small back-contact solar cells may be: using an existing manufacturing process to produce back-contact solar cells, and the back-contact solar cells are alternately arranged along p+ doped regions and n+ doped regions Cut in the direction of the direction to obtain multiple small back-contact solar cells.
  • the cutting process can use laser and other methods to cut.
  • printing the conductive adhesive on one surface of the back plate can be printing the conductive adhesive on the back plate or applying the conductive adhesive to the back plate.
  • the distribution of the conductive glue obtained in step S3702 on the backplane may be as shown in FIG. 14, FIG. 15, FIG. 22, FIG. 23, and FIG. 34, and a backplane may include conductive glue of the same structure. This facilitates the process operation.
  • the structure shown in FIG. 14 is combined with the structure shown in FIG. 3 to obtain the back contact solar cell module shown in FIG. 16;
  • the structure shown in FIG. 15 is combined with the structure shown in FIG. 6 to obtain the back contact shown in FIG. Solar cell module;
  • the structure shown in FIG. 22 is combined with the structure shown in FIG. 3 to obtain the back contact solar cell module shown in FIG. 24;
  • the structure shown in FIG. 23 is combined with the structure shown in FIG. 6 to obtain the structure shown in FIG. 27 Back contact solar cell modules, etc.
  • printing multiple sections of conductive adhesive on one surface of the backplane may include: printing multiple sections of elongated conductive adhesive arranged side by side, wherein the distance between two adjacent long sides of two adjacent sections of elongated conductive adhesive It is not greater than the length of the negative electrode contacting the fine grid or the positive electrode contacting the fine grid included in the back-contact solar cell, and the backplane and the multi-section conductive glue as shown in FIG. 34 are obtained.
  • the printed multi-segment conductive adhesive obtained through the above step S3702 can be arranged in multiple rows and multiple columns, and each segment of the conductive adhesive has a linear structure or a Z-shaped variant structure as shown in FIG. 4 and FIG. 14.
  • the drying and curing temperature is 100-500 degrees (°C).
  • the curing temperature of the drying can make the positive electrode contact the fine grid and the negative electrode contact the fine grid to form a better ohmic contact with the conductive adhesive, so that the stability and electrical efficiency of the solar cell module can achieve better results. .
  • the drying and curing time is 5 to 1800 s.
  • the steps of preparing the back-contact solar cell are the same as the above-mentioned embodiments 1 to 4, but the subsequent preparation process of the conductive strips is different. The following will be explained directly from the preparation of conductive strips (printing conductive adhesive on one surface of the backplane).
  • A1 Prepare a backplane printed with conductive adhesive.
  • the conductive glue is printed on the backplane according to the structure shown in FIG. 14 (this process can be done by giving a specific pattern corresponding to the structure shown in FIG. 14 and adjusting the parameters of the specific pattern through the process, so as to be shown in FIG. 14
  • the specific pattern corresponding to the structure is printed on the back plate with conductive adhesive).
  • the back plate in the figure is only used to show its purpose, and does not represent the real size and position information.
  • the length and width of the conductive adhesive, the spacing between the conductive adhesives, etc., can be determined according to the actual situation.
  • the width of the thin grid contacting the positive electrode and the thin grid contacting section of the thin electrode in the conductive adhesive is 1.5mm.
  • the length of the conductive adhesive is 9.9mm (the length of the conductive adhesive is the distance between the center lines of the two horizontal lines of the Z-shaped structure or the Z-shaped variant structure), located between the same group of adjacent two back-contact solar cells.
  • the spacing between two adjacent sections of conductive adhesive is 19.8mm (the spacing between two adjacent sections of conductive adhesive is between two adjacent solar cells that are located in the same group of adjacent back-contact solar cells).
  • A2 According to the arrangement of the conductive adhesive on the backplane, the positive electrode contact grid and the negative electrode contact grid in the back contact solar cell are attached to the conductive adhesive to form a solar cell module connected in series, and the temperature is 200 °C Dry for 2 minutes to cure. The solar cell module shown in Fig. 16 was obtained.
  • the process is mainly that the electrode contact grids of adjacent back-contact solar cells with opposite polarities are connected to each other through the conductive glue printed on the back plate to ensure that the current on the cells is along the long strip n+ and p+ doped regions The direction of the long side is derived.
  • the conductive adhesive is printed on the backplane according to the structure shown in FIG. 15 (this process can be performed by giving a specific pattern corresponding to the structure shown in FIG. 15 and adjusting the parameters of the specific pattern through the process, etc., according to the structure shown in FIG. 15
  • the specific pattern corresponding to the structure is printed on the back plate with conductive adhesive).
  • the back plate in the figure is only used to show its purpose, and does not represent the real size and position information.
  • the length and width of the conductive adhesive, the spacing between the conductive adhesives, etc., can be determined according to the actual situation. For example, as shown in Figure 15, the width of the conductive adhesive is 1.5mm, and the length of the conductive adhesive is 5mm.
  • the spacing is 19.8mm (the spacing between the two adjacent sections of conductive adhesive is the spacing between the center lines of the two sections of conductive adhesive), and the spacing between two adjacent rows of conductive adhesive is 45mm (the adjacent two rows of conductive adhesive).
  • the distance between the glues is the distance between the positions on the same side of the conductive glue in the two rows of conductive glue).
  • the positive electrode contact grid and the negative electrode contact grid in the back contact solar cell are attached to the conductive adhesive to form a solar cell module connected in series and kept at 300°C Dry for 1 minute to cure.
  • the solar cell module shown in Fig. 17 was obtained.
  • the process is mainly that the electrode contact grids of adjacent back-contact solar cells with opposite polarities are connected to each other through the conductive glue printed on the back plate to ensure that the current on the cells is along the long strip n+ and p+ doped regions The direction of the long side is derived.
  • the specific position may be a corresponding position having an insulating layer as shown in FIG. 29 or FIG. 30.
  • step C2 Cut the back-contact solar cell sheet obtained in step C1 above, and form 5 small back-contact solar cell sheets after cutting.
  • the width of the back-contact solar cells can be set according to actual needs. For example, the widths of the cut back-contact solar cells are different. A more preferred embodiment is that the cut-out back-contact solar cells have different widths.
  • the width of the cells is the same, which facilitates the process operation and process realization.
  • the width of each small back-contact solar cell is 26.4583mm. Arrange these 5 small back-contact solar cells as shown in Figure 18. At this time, the direction of part of the back-contacting solar cells is the same as the original back-contacting solar cells.
  • the positive electrode contacts the thin grid and the negative electrode contacts the thin grid, and there is no main grid line that collects currents in the long n+ and p+ doped regions respectively.
  • C3 Prepare a backplane printed with conductive adhesive.
  • the conductive adhesive is printed on the backplane according to the structure shown in FIG. 34 (this process can be performed by giving a specific pattern corresponding to the structure shown in FIG. 34, and adjusting the parameters of the specific pattern through the process, etc., according to the structure shown in FIG. 34
  • the specific pattern corresponding to the structure is printed on the back plate with conductive adhesive).
  • the back plate in the figure is only used to show its purpose, and does not represent the real size and position information.
  • the length and width of the conductive adhesive, the spacing between the conductive adhesives, etc., can be determined according to the actual situation.
  • the process is mainly that the electrode contact grids of adjacent back-contact solar cells with opposite polarities are connected to each other through the conductive glue printed on the back plate to ensure that the current on the cells is along the long strip n+ doped area and p+ The long side direction of the doped region is derived.
  • the positive electrode contact fine grid and the negative electrode contact fine grid can be produced by printing silver paste directly to burn through the back passivation film, or by using laser opening and then printing, or by electroplating metal, so as to form the positive electrode contact
  • the fine grid and the negative electrode contact the ohmic contact between the fine grid and the silicon substrate and draw the current, wherein the width of the positive electrode contacting the fine grid and the negative electrode contacting the fine grid may both be 100 ⁇ m.
  • the length of the positive electrode contacting fine grid and the negative electrode contacting fine grid can be adjusted accordingly according to the structure of the solar cell module.
  • step D2 Cut the back-contact solar cell sheet obtained in step D1 above, and form 4 small back-contact solar cell sheets after cutting.
  • the width of the back-contact solar cells can be set according to actual needs. For example, the widths of the cut back-contact solar cells are different. A more preferred embodiment is that the cut-out back-contact solar cells have different widths.
  • the width of the cells is the same, which facilitates the process operation and process realization.
  • the width of each small back-contact solar cell is 39.6875mm.
  • the positive electrode contacts the thin grid and the negative electrode contacts the thin grid, and there is no main grid line that collects currents in the long n+ and p+ doped regions respectively.
  • step D3 Prepare the backplane printed with conductive adhesive. This step is consistent with step C3 shown in Embodiment 7, and will not be repeated here.
  • the positive electrode contact grid and the negative electrode contact grid in the back contact solar cell are attached to the conductive adhesive to form a solar cell module connected in series, and the temperature is 250°C Dry for 3 minutes to cure.
  • the back contact solar cell module as shown in Fig. 20 was obtained.
  • the process is mainly that the electrode contact grids of adjacent back-contact solar cells with opposite polarities are connected to each other through the conductive glue printed on the back plate to ensure that the current on the cells is along the long strip n+ and p+ doped regions The direction of the long side is derived.
  • the width of each back-contact solar cell, the width of the p+ doped region and the n+ doped region, the distance between two adjacent back-contact solar cells, and the size parameters of the conductive adhesive are all adjustable.
  • the length of the conductive adhesive can be adjusted to 1 mm, 500 ⁇ m, 200 ⁇ m or even smaller, and the width of the conductive adhesive can also be adjusted to 1 mm, 500 ⁇ m, 200 ⁇ m, 100 ⁇ m, 50 ⁇ m or even smaller.
  • Various other parameters can be adjusted within the range of process realization, so I won't repeat them here.
  • the relationship between two adjacent back-contact solar cells and the distribution of conductive adhesive on the backplane or the structure of the conductive adhesive can be For exchange or combination, the position between the p+ doped area and the n+ doped area can also be exchanged, and the positive electrode contact fine grid and the negative electrode contact fine grid can be adjusted at the same time; the back contact solar cell can also be cut into More small back-contact solar cells, for example, the width of the conductive adhesive can be infinitely small, such as 200 ⁇ m, and the distance between two adjacent back-contact small solar cells can also be infinitely small, such as less than 200 ⁇ m. Any changes and modifications made without departing from the concept and scope of this application shall fall within the scope of protection of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了背接触太阳能电池组件和制备方法,涉及太阳能电池技术领域。该方法可包括:N个小电池片,小电池片的背面具有交错设置的p+掺杂区域和n+掺杂区域,小电池片的p+掺杂区域上设有正极细栅线,小电池片的n+掺杂区域上设有负极细栅线,各个小电池片上均不设置汇集所述n+掺杂区域和p+掺杂区域电流的主栅线;(N-1)根导电条均包括基板以及设于基板上的导电图案,各个基板分别设于相邻两个小电池片之间,导电图案用以将相邻两个小电池片上极性相反的细栅线依次间隔地电性连接,以串联各个小电池片。该实施方式提供的背接触太阳能电池组件具有较高的效率稳定性,且银栅线上的电阻损耗低,组件的填充因子高。

Description

背接触太阳能电池组件及制备方法
本申请要求于2020年5月21日提交的题为“背接触太阳能电池组件及其制备方法”的中国专利申请No.202010436135.8以及于2020年6月10日提交的题为“太阳能电池组件及制备方法”的中国专利申请No.202010522953.X的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本发明涉及太阳能电池技术领域,尤其涉及一种背接触太阳能电池组件及制备方法。
背景技术
在太阳能电池技术领域中追求更低的生产成本和更高的光电转化效率是太阳能电池工业的核心目标。全背接触太阳能电池不同于常规的太阳能电池,其将正负电极都放置在电池的背面,从而避免了类似于常规太阳能电池正面的光学损失,提高了电池的光电转化效率,因此是高效电池技术领域中一直被广泛关注和研究的电池种类之一。
现有的全背接触太阳能电池均带有主栅设计,主栅兼具汇集电流和连接焊带的作用。由于全背接触太阳能电池具有较高的短路电流,因此全背接触太阳能电池不得不采用更多的主栅设计,以减少主栅线和细栅线上的线电阻造成的功率损耗,这将比常规太阳能电池消耗更多的银浆。与此同时,因为平行排布的长条状n+掺杂区域、p+掺杂区域及分别与二者连接的细栅线间隔设置,所以在设计电池主栅时还需要考虑如何避免因电池正负极短路引起的电池失效问题。
目前一种办法是引入额外的绝缘材料和工艺步骤来实现正负极主栅只与其极性一致的细栅线连接,但该种方法工艺复杂,电池制造成本高,电池效率和组件功率的稳定性低,且在未来几十年发电过程中 的存在组件功率进下降乃至出现电气安全的问题。另一种办法解决为将正负电极设计为丰字型,负电极的细栅线避开正电极的主栅线,正电极的细栅线避开负电极的主栅线。这样正负电极的二维图形上不存在交错的地方,以此来解决反向漏电的问题。但是此种设计由于载流子横向传输距离过长,难以被正负极性的细栅线收集,电池的串阻因此会急剧上升,电池填充因子以及光电转化效率会受到较大影响。
另外,在正面设计有主栅的传统全背接触太阳能电池组件的制作过程中,电池组件还存在或因大量使用焊带而导致硅片翘曲不平整进而引起隐裂或碎片的问题,或因使用一体成型的背板设计而增加精度控制难度和制作成本的问题。因此如何简化全背接触太阳能电池组件的制作工艺,量产出性能稳定且为市场所接受的全背接触太阳能电池组件是一个亟需解决的问题。
发明内容
有鉴于此,本发明提供一种背接触太阳能电池组件及其制备方法,该制备方法可以极大地简化背接触太阳能电池组件的制造工艺,降低电池的制造成本,避免电池片中隐裂或碎片情况的发生;由该方法制备而成背接触太阳能电池组件具有较高的效率稳定性,且银栅线上的电阻损耗低,组件的填充因子高。
为实现上述目的,根据本发明实施例的一个方面,提供了一种背接触太阳能电池组件,包括:
N个小电池片,所述小电池片的背面具有交错设置的p+掺杂区域和n+掺杂区域,所述小电池片的p+掺杂区域上设有正极细栅线,所述小电池片的n+掺杂区域上设有负极细栅线,各个所述小电池片上均不设置汇集所述n+掺杂区域和所述p+掺杂区域电流的主栅线;
(N-1)根导电条,每根所述导电条均包括基板以及设于所述基板上的导电图案,各个所述基板分别设于相邻两个小电池片之间,所述导电图案用以将相邻两个小电池片上极性相反的细栅线依次间隔地电性 连接,以串联各个所述小电池片。
优选地,相邻两个所述小电池片上的n+掺杂区域和p+掺杂区域一一对应设置,所述导电图案由若干条导电折线成行排列而成,所述导电折线呈阶梯状。
优选地,相邻两个所述小电池片上的n+掺杂区域和p+掺杂区域交错对应设置,所述导电条的导电图案由若干条直线成行排列而成。
优选地,所述导电图案包括多段导电胶或者多段焊锡。
优选地,每一段所述导电胶或者每一段所述焊锡,连接一个所述小电池片的一个所述正电极接触细栅以及相邻的另一个所述小电池片的一个所述负电极接触细栅。
优选地,所述小电池片由背接触太阳能电池片切割而成。
优选地,所述(N-1)根导电条位于同一背板,各个所述基板为所述背板的部分区域。
优选地,相邻的所述p+掺杂区域和所述n+掺杂区域的相邻两个侧面的结构互补。
优选地,所述p+掺杂区域和所述n+掺杂区域的结构为长方形结构、梯形、锯齿形、方波形中的任意一种。
优选地,所述n+掺杂区域呈条状,包括交错设置的宽矩形条和窄矩形条;所述p+掺杂区域填充于相邻两条n+掺杂区域之间。
优选地,所述N个小电池片之间的关系包括:相邻两个小电池片, 相同类型的掺杂区域相对设置以及相邻两个小电池片中,相反类型的掺杂区域相对设置的关系组合。
优选地,所述基板的膨胀系数与硅接近。
优选地,所述基板为传导硅片。
第二方面,本发明实施例提供一种背接触太阳能电池组件,包括:多个背接触太阳能小电池片、和设置有至少一段导电胶的背板,其中,
所述背接触太阳能小电池片包括:硅基体、所述硅基体的背表面交替排列的p+掺杂区域和n+掺杂区域、设置于所述p+掺杂区域的正电极接触细栅以及设置于所述n+掺杂区域的负电极接触细栅;
所述多个背接触太阳能小电池片并排排列,其中,每相邻两个所述背接触太阳能小电池片的侧面相对;
相邻两个所述背接触太阳能小电池片相对的两侧中,位于所述相对的两侧中的一侧的正电极接触细栅端与该侧电隔离,位于所述相对的两侧中的另一侧的负电极接触细栅端与该另一侧电隔离;
每一段所述导电胶分布于相邻两个所述背接触太阳能小电池片之间;
每一段所述导电胶,连接一个所述背接触太阳能小电池片的所述负电极接触细栅以及相邻的另一个所述背接触太阳能小电池片的所述正电极接触细栅。
优选地,位于所述相对的两侧中的一侧的正电极接触细栅端覆盖有绝缘层,位于所述相对的两侧中的另一侧的负电极接触细栅端覆盖有绝缘层。
优选地,位于所述相对的两侧中的一侧的正电极接触细栅端相对于该侧为缩短端,
位于所述相对的两侧中的另一侧的负电极接触细栅端相对于该另 一侧为缩短端。
优选地,所述导电胶为长条形结构;
位于所述相对的两侧中的一侧的正电极接触细栅端连接所述长条形结构的一条长边;
位于所述相对的两侧中的另一侧的负电极接触细栅端连接所述长条形结构的另一条长边。
优选地,所述导电胶包括:长条形主体以及分设于长条形结构主体两侧与该长条形主体连接的多个分支段,其中,长条形结构主体一侧的每一个分支段与相邻的一个背接触太阳能小电池片的一个正电极接触细栅,长条形结构主体另一侧的每一个分支段与相邻的另一个背接触太阳能小电池片的一个负电极接触细栅。
优选地,背接触太阳能电池组件,进一步包括:第一封装层;
所述第一封装层用于填充所述小电池片与所述背板之间的缝隙。
优选地,背接触太阳能电池组件,进一步包括:玻璃板以及第二封装层,其中,
所述玻璃板与所述多个背接触太阳能小电池片相对;
所述第二封装层,设置于所述玻璃板与所述多个背接触太阳能小电池片之间;
所述第一封装层和所述第二封装层,用于将所述多个背接触太阳能小电池片封装于所述玻璃板与所述背板之间。
第三方面,本发明实施例提供一种制备背接触太阳能电池组件的方法,包括以下步骤:
S1、将背接触太阳能小电池片沿所述n+掺杂区域或所述p+掺杂区域的短边方向等间距切割,得若干个小电池片;
S2、在基板上设置导电图案形成导电条,将各个所述小电池片通 过所述导电条依次串联,形成电池串;
S3、将所述电池串依次经汇流、叠层和层压以进行封装,得背接触太阳能电池组件。
优选地,S1中2≦N≦20。
优选地,S2中所述导电图案由焊锡或导电胶通过印刷的方式烘干固化在所述基板,所述烘干固化的温度为100-500℃,时间为30-600s。
优选地,所述焊锡为锡、锡铅合金、锡铋合金或锡铅银合金;所述导电胶为包裹有导电颗粒粘结剂,所述粘结剂为环氧树脂、酚醛树脂、聚氨酯、热塑性树脂或聚酰亚胺中的一种或几种,所述导电颗粒为银、金、铜或由银、金、铜中两种以上组成的合金颗粒。
第四方面,本发明实施例提供一种背接触太阳能电池组件的方法,包括:
制备背接触太阳能电池片的步骤;
在背板的一个表面印制导电胶;
将多个所述背接触太阳能小电池片排列在所述背板上,通过所述导电胶串联多个所述背接触太阳能小电池片,并烘干固化。
上述发明中的一个实施例具有如下优点或有益效果:首先,本发明提供的背接触太阳能电池组件完全摒弃了常规主栅线的设计,因此极大的简化了电池制造工艺,提高了电池的效率稳定性并降低了电池制造成本;
其次,本发明采用导电条将各个小电池片进行串联,其中导电条由基板和导电图案组成,基板为承载板,导电图案用于电性连接相邻两个小电池片上极性相反的细栅线,由此在串联小电池片时,只需要将导电图案与两个小电池片上的极性相反的细栅线依次间隔地电性连接即可,从而使电池串上的电流通过导电图案沿着电性连接的掺杂区 域导出,如此在生产小电池片时,不再受限于主栅线汇集电流区域设计的限制(例如虽然正电极细栅和负电极细栅相互平行且交替设置,但正电极细栅的两端与负电极细栅的两端需不对齐设置,即正电极细栅的一端相对于负电极细栅的一端具有突出端,正电极细栅的另一端相对于负电极细栅的另一端具有缩短端等),本申请中的长条状n+掺杂区域和p+掺杂区域在生产时可以直接贯穿整个电池片,然后将该电池片直接沿n+掺杂区域或p+掺杂区域的短边切割形成多个小电池片,然后通过印有特定导电图案的导电片相互连接成电池串即可,相对于现有技术来说,简化了电池制造工艺,提高了产能并降低了电池的制造成本。
另外,本发明由若干个小电池片串联而成,相对于整块背接触太阳能电池片来说,降低了每一串电池片组串的电流,减小了银栅线上电阻损耗的影响,从而提高了组件的填充因子;
另外,整个背接触太阳能电池组件除电池串的汇流区域使用焊带外,其他地方均无焊带设计,极大的降低了组件成本;而且,经发明人多次试验验证,组件电流在相邻背接触太阳能小电池片之间传输过程中,以本发明所示的传输路径电阻最小,减小了银栅线上电阻损耗的影响,从而提高了组件的填充因子。
除此之外,本发明导电条的基板膨胀系数与硅接近,或者可以仍然是与电池片基体一致的硅片,因此,避免了因为两者热膨胀系数不一致导致的隐裂或碎片的情况发生。
另外,由于导电胶能够缩短串联的多个背接触太阳能小电池片之间的间距,而且导电胶与正电极接触细栅和负电极接触细栅,能消除主栅带来的横向传输损耗和电极遮蔽效应,另外,由于多段导电胶分布于每相邻两个背接触太阳能小电池片之间,同时,一段导电胶连接一个背接触太阳能小电池片的一个正电极接触细栅以及相邻的另一个背接触太阳能小电池片的一个负电极接触细栅,则多个背接触太阳能 小电池片与多段导电胶形成的串联电路之间相对独立,即正电极接触细栅与负电极接触细栅之间是一对一串联的,使电流传输路径是固定且相互独立的,能够有效地减少相邻串联电路的干扰,避免电流分散及扩散,能够有效地降低电流损耗,从而进一步提高全背接触太阳能电池组件的填充因子、光电转化效率以及光电转化效率的稳定性。
上述的非惯用的可选方式所具有的进一步效果将在下文中结合具体实施方式加以说明。
附图说明
附图用于更好地理解本发明,不构成对本发明的不当限定。其中:
图1是根据本发明实施例1-2所提供的全背接触太阳能电池片的剖视图;
图2是根据图1的仰视图;
图3是根据实施例1中全背接触太阳能电池片被切割后排布的小电池片;
图4是根据本发明一个实施例中所提供的导电条的结构示意图;
图5是根据本发明实施例1所提供的全背接触太阳能电池串;
图6是根据实施例2中全背接触太阳能电池片被切割后排布的小电池片;
图7是根据本发明另一个实施例中所提供的导电条的结构示意图;
图8是根据本发明实施例2所提供的全背接触太阳能电池串;
图9是根据本发明实施例3-4所提供的全背接触太阳能电池片的结构示意图;
图10是根据实施例3中全背接触太阳能电池片被切割后排布的小电池片;
图11是根据本发明实施例3所提供的全背接触太阳能电池串;
图12是根据实施例4中全背接触太阳能电池片被切割后排布的小电池片;
图13是根据本发明实施例4所提供的全背接触太阳能电池串;
图14是根据本发明实施例提供的导电条位于同一背板的结构示意图;
图15是根据本发明另一实施例提供的导电条位于同一背板的结构示意图;
图16是根据本发明实施例提供的由位于同一背板的导电条串联的全背接触太阳能电池串的结构示意图;
图17是根据本发明另一实施例提供的由位于同一背板的导电条串联的全背接触太阳能电池串的结构示意图;
图18是根据本发明又一实施例提供的由位于同一背板的导电条串联的全背接触太阳能电池串的结构示意图;
图19是根据本发明另一实施例提供的由位于同一背板的导电条串联的全背接触太阳能电池串的结构示意图;
图20是根据本发明又一实施例提供的由位于同一背板的导电条串联的全背接触太阳能电池串的结构示意图;
图21是根据本发明另一实施例提供的由位于同一背板的导电条串联的全背接触太阳能电池串的结构示意图;
图22是根据本发明实施例提供的导电胶的结构示意图;
图23是根据本发明另一实施例提供的导电胶的结构示意图;
图24是根据本发明又一实施例提供的由位于同一背板的导电条串联的全背接触太阳能电池串的结构示意图;
图25是根据本发明另一实施例提供的由位于同一背板的导电条串联的全背接触太阳能电池串的结构示意图;
图26是根据本发明又一实施例提供的由位于同一背板的导电条串联的全背接触太阳能电池串的结构示意图;
图27是根据本发明另一实施例提供的由位于同一背板的导电条串联的全背接触太阳能电池串的结构示意图;
图28是根据本发明又一实施例提供的由位于同一背板的导电条串联的全背接触太阳能电池串的结构示意图;
图29是根据本发明一实施例的相邻两个背接触太阳能小电池片之间相对关系示意图;
图30是根据本发明又一实施例的相邻两个背接触太阳能小电池片之间相对关系示意图;
图31是根据本发明另一实施例的相邻两个背接触太阳能小电池片之间相对关系示意图;
图32是根据本发明又一实施例的相邻两个背接触太阳能小电池片之间相对关系示意图;
图33是根据本发明又一实施例提供的由位于同一背板的导电条串联的全背接触太阳能电池串的结构示意图;
图34是根据本发明另一实施例的背板上设置的导电胶的结构示意图;
图35为根据本发明又一实施例提供的由位于同一背板的导电条串联的全背接触太阳能电池串的结构示意图;
图36是根据本发明又一实施例的背接触太阳能电池组件的结构示意图;
图37是根据本发明实施例的太阳能电池组件的制备方法的主要流程的示意图;
图38是根据本发明另一实施例的背接触太阳能电池片的示意图。
附图标记说明:
1    硅基体;
2    p+掺杂区域;
21   正电极;       21′    正电极接触细栅的缩短端
3    n+掺杂区域;
31   负电极;       31′    负电极接触细栅的缩短端
4    低表面掺杂浓度的n+前表面场(FSF);
5    减反射叠层钝化膜;
6    增反射叠层钝化膜;
7    导电条;       70    背板;
71   基板;         72    导电图案;
721  长条形结构的导电胶的一条长边;
722 长条形结构的导电胶的另一条长边;
723 长条形结构主体;
724 分支段
8   绝缘层
9   玻璃板;
10  封装层(第一封装层或第二封装层)。
具体实施方式
下面将结合附图对本发明的技术方案进行描述。
请参阅图3,图3为全背接触太阳能电池片被切割后排布的小电池片。本发明提供了一种背接触太阳能电池组件,包括若干个小电池片和导电条7,其中,每个小电池片的背面沿其长度方向平铺有交错设置的p+掺杂区域2和n+掺杂区域3,p+掺杂区域2上印刷有与其接触的正极细栅线(正电极21),n+掺杂区域3上印刷有与其接触的负极细栅线(负电极31),正极细栅线(正电极21)和负极细栅线(负电极31)的长度无限接近于小电池片的宽度;请参阅图4,导电条7包括基板71以及设于基板71上的导电图案72,请参阅图5,基板71设于相邻两个小电池片之间,导电图案72用以将相邻两个小电池片上极性相反的细栅线依次间隔地电性连接,以串联各个所述小电池片,具体可以是将相对位于左侧小电池片上的所有正极细栅线(正电极21)与设于其相邻小电池片上的所有负极细栅线(负电极31)电性连接,或者用以将相对位于右侧小电池片的所有负极细栅线(负电极31)与设于其相邻小电池片的所有正极细栅线(正电极21)电性连接,各个小电池片通过导电条7串联。
本发明所提供的背接触太阳能电池组件相对于现有技术来说,首先,完全摒弃了常规主栅线的设计,因此极大的简化了电池制造工艺,提高了电池的效率稳定性并降低了电池制造成本;其次,由于不再受限于主栅线汇集电流区域设计的限制,长条状n+掺杂区域3和p+掺杂 区域2可以贯穿整个电池片,这样也简化了电池制造工艺,提高产能并降低电池制造成本;再者,本发明提供的背接触太阳能电池组件由若干个经整块背接触太阳能电池片切割而成的小电池片串联而成,降低了每一串电池片组串的电流,减小了银栅线上电阻损耗的影响,从而提高了组件的填充因子;最后,整个背接触太阳能电池组件除电池串的汇流区域使用焊带外,其他地方均无焊带设计,极大的降低了组件成本;而且,经发明人多次试验验证,组件电流在相邻背接触太阳能小电池片之间传输过程中,以本发明所示的传输路径电阻最小,减小了银栅线上电阻损耗的影响,从而提高了组件的填充因子。
为了避免导电条7中基板71与电池片的硅基体1因两者热膨胀系数不一致所导致的隐裂或碎片的情况,在本实施例中,导电条7的基板71膨胀系数设置为与硅接近,当然也可以与电池片的硅基体1一致的传导硅片,传导硅片最好具有镀膜,或者选用具有高电阻率的传导硅片,这样可以有效的降低传导硅片和电池片之间的电性接触。而导电图案72则由焊锡或导电胶形成,焊锡可以为锡、锡铅合金、锡铋合金或锡铅银合金;导电胶具体为包裹有导电颗粒粘结剂,粘结剂可以为环氧树脂、酚醛树脂、聚氨酯、热塑性树脂或聚酰亚胺中的一种或几种,导电颗粒可以为银、金、铜或由银、金、铜中两种以上组成的合金颗粒。
在本实施例中,背接触太阳能电池组件的n+掺杂区域3和p+掺杂区域2均为宽度相等的矩形条,相邻两个小电池片上的n+掺杂区域3和p+掺杂区域2一一对应设置,导电条7的导电图案72由若干条沿矩形条的长度方向成行排列的导电折线组成,导电折线呈阶梯状。
其中,相邻两个小电池片上的n+掺杂区域3和p+掺杂区域2一一对应设置具体是指,如图3所示,相邻两个小电池片中一个小电池片的n+掺杂区域3与另一个小电池片的n+掺杂区域3一一对应,且相邻两个小电池片中一个小电池片的p+掺杂区域2与另一个小电池片的p+ 掺杂区域2一一对应。
实施例1
本实施例中背接触太阳能电池组件的制备方法包括以下步骤:
(1)制备背接触太阳能电池片:
请参阅图1,选用n型单晶硅基体1,其电阻率为1~30Ω·cm,厚度为50~300μm,长度为156.75mm。该n型单晶硅基体1在使用前先经表面制绒处理,然后利用扩散、激光打孔、离子注入和退火、掩膜、刻蚀等技术组合在n型单晶硅基体1背表面制作相互交替排列的p+掺杂区域2和n+掺杂区域3,在n型单晶硅基体1前表面制作低表面掺杂浓度的n+前表面场(FSF)4。请参阅图2,p+掺杂区域2与n型单晶硅基体1等长,为156.75mm,其宽度W1=9.8mm,n+掺杂区域3也与n型单晶硅基体1等长,为156.75mm,其宽度W2=9.8mm。
请继续参阅图1,在前表面沉积减反射叠层钝化膜5以钝化低表面掺杂浓度的n+前表面场(FSF)4,例如Al 2O 3/SiNx、SiO 2/SiN x、SiO 2/Al 2O 3/SiN x等,这里选SiO 2/SiN x作为正面钝化膜,膜厚为60~200nm,后表面沉积增反射叠层钝化膜6对n+掺杂区域3、p+掺杂区域2实行分区钝化或者同时钝化,增反射叠层钝化膜6可以选择Al 2O 3/SiN x、SiO 2/SiN x、SiO 2/SiCN、SiO 2/SiON等,这里选SiO 2/Al 2O 3/SiN x作为背面钝化膜,膜厚为100nm。
请继续参阅图1和图2,在p+掺杂区域2上制作由正极细栅线构成的正电极21,在n+掺杂区域3上制作由负极细栅线构成的负电极31,正电极21和负电极31可以采用印刷银浆直接烧穿背面增反射叠层钝化膜6的方式,也可以采用先激光开口再印刷或者电镀金属的方式,从而形成电极和n型单晶硅基体1的欧姆接触并将电流导出。请参阅图2,正电极21和负电极31均与p+掺杂区域2、n+掺杂区域3和n型单晶硅基体1等长,为156.75mm,正电极13的宽度W3为100μm,负电极43的宽度W4为100μm,正极细栅线和负极细栅线为交指型排 列。
(2)制备小电池片
请参阅图3,将上述背接触太阳能电池片进行切割,切割后形成四块背接触太阳能小电池片,背接触太阳能小电池片的宽度L11=39.1875mm。将这四块背接触太阳能小电池片上的n+掺杂区域3和p+掺杂区域2一一对应设置,此时所有背接触太阳能小电池片的方向和原背接触太阳能电池片一致。背接触太阳能小电池片的背面只设有与长条状n+掺杂区域3形成欧姆接触的负极细栅线,以及与p+掺杂区域2形成欧姆接触的正极细栅线,不存在用于分别汇集长条状n+掺杂区域3和p+掺杂区域2电流的主栅线。
(3)制备导电条7
请参阅图4,在基板71上设置导电图案72,导电图案72由若干条沿矩形条的长度方向平行排布的导电折线组成,导电折线呈阶梯状,导电图案72由焊锡或导电胶通过印刷的方式烘干固化在基板71上,在本实施例中,采用焊锡进行印刷,焊锡的材料为锡铅合金,焊锡按照上述图案被印刷到基板71上,并在200℃下烘干2分钟固化。
请继续参阅图4,在本实施例中,基板71的长L36=156.75mm,宽L31=19.6mm。导电图案72的折线呈阶梯状,每条折线的宽L32=1.5mm,相邻两条折线间的间距L33=19.6mm,台阶状折线的高L34=9.8mm,台阶状折线的每层台阶的宽度L35=9.8mm。
(4)制备电池串
请参阅图5,使用导电条4将全背接触太阳能小电池片相互串联连接成全背接触太阳能电池串,相邻背接触太阳能小电池片极性相反的细栅线通过基板71上由焊锡组成的导电图案72相互连接,以保证电池片上的电流沿着长条状n+掺杂区域3和p+掺杂区域2的长边方向导出。
(5)封装出厂
全背接触太阳能电池串制作完成后,后续的汇流、叠层、层压等组件封装工艺和常规组件制作方式无异。
实施例2
请参阅图8,与实施例1不同的是,在本实施例中,四块背接触太阳能小电池片如图6所示排列,即相邻两个小电池片上的n+掺杂区域3和p+掺杂区域2交错设置,该图6示出的小电池片宽度为L21。此时一半的背接触太阳能小电池片的方向和原背接触太阳能电池片相反。背接触太阳能小电池片的背面只有与长条状n+掺杂区域3和p+掺杂区域2形成欧姆接触的银栅线,不存在分别汇集长条状n+掺杂区域3和p+掺杂区域2电流的主栅线。
请参阅图7,本实施例中的导电条7由导电胶印刷到基板71形成导电图案72,导电胶为以环氧树脂为粘接剂包裹的银金属颗粒。导电图案的形状为由若干条沿矩形条的长度方向成行排列的直线组成。导电胶按照所述的形状被印刷到基板71上,并在200℃下烘干2分钟固化。基板71选择传导硅片,传导硅片的长L44=156.75mm,宽L41=19.6mm。导电图案中平行排布的直线宽L42=1.5mm,相邻两条直线见的间距L43=19.6mm。
实施例3
与实施例1不同的是,请参阅图9,n型单晶硅基体1上的p+掺杂区域2和n+掺杂区域3呈现局部宽窄不一样的形状,具体可以理解为:n+掺杂区域3呈条状,包括交错设置的宽矩形条和窄矩形条;p+掺杂区域2填充于相邻两条n+掺杂区域3之间,其中,n+掺杂区域3的长度为156.75mm,n+掺杂区域3中窄矩形条的宽度W1=9.8mm,宽矩形条的宽度W11=12.7mm,宽矩形条的长度W6=W7=W8=13.8mm,当然由于切割的位置不同,W5与W9的长度随切割的不同而改变,但 最好将W5与W9等长设置,在本实施例中W5=W19=6.9mm。而填充于相邻两条n+掺杂区域3之间的p+掺杂区域2的长度为156.75mm,可以理解的是,其也由宽窄不同的矩形条交错连接而成,在本实施例中,p+掺杂区域3中较宽矩形条的宽度W2=9.8mm,较窄矩形条的宽度W22=6.9mm。
在本实施例中,将上述背接触太阳能电池片进行切割,切割后形成四块背接触太阳能小电池片,背接触太阳能小电池片的宽度L31=39.1875mm。将这四块背接触太阳能小电池片如图10所示排列,即相邻两个小电池片上的n+掺杂区域3和p+掺杂区域2一一对应设置;此时所有背接触太阳能小电池片的方向和原背接触太阳能电池片一致。背接触太阳能小电池片的背面只有与长条状n+掺杂区域3和p+掺杂区域2形成欧姆接触的银栅线,不存在分别汇集长条状n+掺杂区域3和p+掺杂区域2电流的主栅线。
请参阅图4,导电条的结构则与实施例1相同,使用导电条7将本实施例中全背接触太阳能小电池片相互串联连接成全背接触太阳能电池串,相邻背接触太阳能小电池片极性相反的细栅线通过基板71上由焊锡组成的导电印刷图案72相互连接,以保证电池片上的电流沿着长条状n+掺杂区域3和p+掺杂区域2的长边方向导出。全背接触太阳能电池串制作完成后,后续的汇流、叠层、层压等组件封装工艺和常规组件制作方式无异。最终得到的背接触太阳能电池组件结构如图11所示。
实施例4
与实施例3不同的是,将实施例3中所提供的背接触太阳能电池片进行切割,请参阅图12,切割后形成四块背接触太阳能小电池片,背接触太阳能小电池片的宽度L51=39.1875mm。将这4块背接触太阳能小电池片如图12所示排列,即相邻两个小电池片上的n+掺杂区域3和p+掺杂区域2交错对应设置,此时一半的背接触太阳能小电池片的 方向和原背接触太阳能电池片相反。背接触太阳能小电池片的背面只有与长条状n+掺杂区域3和p+掺杂区域2形成欧姆接触的银栅线,不存在分别汇集长条状n+掺杂区域3和p+掺杂区域2电流的主栅线。
在导电条7的制备过程也具有不同,在本实施例中基板71上的导电图案72由导电胶印刷而成。导电条7的导电图案72由若干条沿矩形条的长度方向平行排布的直线组成,导电胶为以环氧树脂为粘接剂包裹的银金属颗粒。导电胶按照上述的图案被印刷到基板71上,并在200℃下烘干2分钟固化。请继续参阅图7,基板71选用传导硅片,传导硅片的长L44=156.75mm,宽L41=19.6mm。导电图案72的形状如图7所示,其中L42=1.5mm,L43=19.6mm。
使用上述导电条7将本实施例中全背接触太阳能小电池片相互串联连接成全背接触太阳能电池串,相邻背接触太阳能小电池片极性相反的细栅线通过基板71上由焊锡组成的导电印刷图案71相互连接,以保证电池片上的电流沿着长条状n+掺杂区域3和p+掺杂区域2的长边方向导出。全背接触太阳能电池串制作完成后,后续的汇流、叠层、层压等组件封装工艺和常规组件制作方式无异。最终得到的背接触太阳能电池组件结构如图13所示。
其中,上述各个实施例提及的相邻两个小电池片上的n+掺杂区域3和p+掺杂区域2交错对应设置具体是指,相邻两个小电池片中,一个小电池片的侧面与另一个小电池片的侧面相对应,且一个小电池片的n+掺杂区域3与另一个小电池片的n+掺杂区域3交错设置,同时一个小电池片的p+掺杂区域2与另一个小电池片的p+掺杂区域2交错设置。即实现一个小电池片的n+掺杂区域3与另一个小电池片的p+掺杂区域2对应设置,且一个小电池片的p+掺杂区域2与另一个小电池片的n+掺杂区域3对应设置。
另外,硅基体除了可为n型单晶硅基体,硅基体还可为p型单晶 硅基体等。
另外,硅基体的电阻率可为0~30Ω·cm。
另外,硅基体的厚度可为50~300μm。
值得说明的是,硅基体1的边长可根据实际需求而定。比如,现有的常用硅基体1的主表面为正方形,其边长为158.75mm等,那么,在实际生产中可通过使用现有的硅基体制作背接触太阳能电池片,然后通过切割方式得到本发明实施例所使用的背接触电池片(该背接触电池片也即背接触太阳能小电池片或小电池片),在后续中将详细说明通过切割方式得到本发明实施例所使用的背接触电池片/背接触太阳能小电池片/小电池片。通过该种方式能够有效地降低背接触太阳能小电池片制作难度。
值得说明的是,一个背接触太阳能电池组件包括的多个背接触太阳能小电池片可以来源于同一个背接触太阳能电池片,也可以来源于不同的背接触太阳能电池片。该背接触太阳能电池片可采用现有的背接触太阳能电池片制作工艺得到。一般来说,背接触太阳能电池片可切割成2~200个背接触太阳能小电池片,该2~200个是指2到200之间的任意整数。比如,4、8、20、50、80、100、150等。具体切割出的背接触太阳能小电池片的个数可由实际情况如背接触太阳能电池片的大小、所需背接触太阳能小电池片的大小、工艺能够切割的情况等进行确定出。一个优选地实施例中,一个背接触太阳能电池片切割出的背接触太阳能小电池片的个数不小于4个。
另外,通过上述各个实施例可知,针对每一个背接触太阳能小电池片,该背接触太阳能小电池片同一侧的极性相同的电极接触细栅与导电胶或焊锡连接。一个背接触太阳能小电池片的同一侧的正电极接触细栅或者负电极接触细栅与导电图案(比如由导电胶构成的导电图 案等)连接。
另外,如图5、图8、图16以及图17所示,多个背接触太阳能小电池片并排排列,其中,每相邻两个背接触电池片的侧面相对;值得说明的是,背接触太阳能小电池片的侧面包括交替排列的p+掺杂区域2的侧面和n+掺杂区域3的侧面,该背接触太阳能小电池片的侧面与图1示出的结构一致。通过并排排列能够保证受光面面积最大,以保证太阳能电池组件的电效率。
在本发明实施例中,如图14和图15所示,(N-1)根导电条(7)可位于同一背板70,各个基板71为背板70的部分区域。可以理解地,导电图案设置于背板70上。结合图3和图14得到的背接触太阳能电池组件如图16所示,结合图6和图15得到的背接触太阳能电池组件如图17所示。
在本发明实施例中,如图4、图7、图14、图15所示的导电图案72为多段导电胶或焊锡,相应地,一个电极接触细栅(正电极21或者负电极31)只连接一段导电胶,且一个电极接触细栅只有一端连接导电胶或焊锡。相邻背接触太阳能小电池片极性相反的电极接触细栅通过设置于背板70上的导电胶或焊锡连接,以保证电流的导出。
其中,正电极接触细栅和负电极接触细栅的直径可以为20~300μm。正电极接触细栅与p+掺杂区域、负电极接触细栅与n+掺杂区域可为欧姆接触。
其中,正电极接触细栅和负电极接触细栅的材质一般为金属银。可采用印刷银浆直接烧穿背面钝化膜的方式、也可以采用先激光开口再印刷的方式、还可以采用电镀金属的方式等制作正电极接触细栅和负电极接触细栅,从而形成正电极接触细栅和负电极接触细栅和硅基体的欧姆接触并将电流导出。
在本发明实施例中,相邻的p+掺杂区域2和n+掺杂区域3的相邻两个侧面的结构互补。比如,p+掺杂区域2和n+掺杂区域3的相邻两个侧面中的一个侧面具有突起结构,则p+掺杂区域2和n+掺杂区域3的相邻两个侧面中的另一个侧面具有与突起结构互补或啮合的凹陷结构。比如,p+掺杂区域2和n+掺杂区域3的相邻两个侧面为相互啮合的锯齿形结构;p+掺杂区域2和n+掺杂区域3的相邻两个侧面为互补的方波形结构;p+掺杂区域2和n+掺杂区域3的相邻两个侧面为互补的梯形结构等等。如图9所示,示例性给出了互补的方波形的p+掺杂区域2和n+掺杂区域3。
为了方便对太阳能电池组件的展示,图3、图5、图6、图8、图16以及图17仅示例性地给出了p+掺杂区域2和n+掺杂区域3的长方形结构。而梯形、锯齿形、方波形等其他结构可替换该长方形结构,以达到相同的效果。
值得说明的是,硅基体具有相对的两个主表面,其中一个主表面经过制绒处理后,用于设置交替排列的p+掺杂区域和n+掺杂区域,作为硅基体的背表面,另一个主表面设置前表面电场,作为硅基体的前表面。该硅基体可为n型单晶硅基体或者p型单晶硅基体,其中,对于n型单晶硅基体来说,其前表面场为n+FSF,对于p型单晶硅基体来说,其前表面场为p+FSF。一个优选地实施例中,硅基体选择n型单晶硅基体,相应地,n+FSF为低表面掺杂浓度的n+FSF。
具体地,背接触太阳能电池组件中的相邻两个背接触太阳能小电池片之间相对关系可包括如下几种。
第一种:相邻两个背接触太阳能小电池片,相同类型的掺杂区域相对设置。
如图3、图5以及图16所示,相邻两个背接触太阳能小电池片中,一个背接触太阳能小电池片的p+掺杂区域2与另一个背接触太阳能小电池片的p+掺杂区域2相对设置,一个背接触太阳能小电池片的n+掺杂区域3与另一个背接触太阳能小电池片的n+掺杂区域3相对。
值得说明的是,图3、图5以及图16仅示例性地给出了背接触太阳能小电池片两端分别为n+掺杂区域3和p+掺杂区域2的情况。背接触太阳能小电池片两端还可均为n+掺杂区域3,背接触太阳能小电池片两端还可均为p+掺杂区域2。背接触太阳能小电池片上n+掺杂区域3和p+掺杂区域2满足交替排列即可。
第二种:相邻两个背接触太阳能小电池片中,相反类型的掺杂区域相对设置。
如图6、图8以及图17所示,相邻两个背接触太阳能小电池片中,一个背接触太阳能小电池片的p+掺杂区域2与另一个背接触太阳能小电池片的n+掺杂区域3相对设置。可以理解地,相邻两个背接触太阳能小电池片所包括的p+掺杂区域的个数和n+掺杂区域的个数相等。一个比较优选地实施例,对于上述两种相邻两个背接触太阳能小电池片之间相对关系,如图3、图5、图6、图8、图16以及图17所示相邻两个背接触太阳能小电池片之间包括的p+掺杂区域2和n+掺杂区域3一一对应。
基于此,对于第一种相邻两个背接触太阳能小电池片之间相对关系来说,一个背接触太阳能小电池片包括的p+掺杂区域2的宽度与其相邻的另一个背接触太阳能小电池片包括的p+掺杂区域2的宽度相同;一个背接触太阳能小电池片包括的n+掺杂区域3的宽度与其相邻的另一个背接触太阳能小电池片包括的n+掺杂区域3的宽度也相同。即针对相邻两个背接触太阳能小电池片,相对的两个p+掺杂区域2宽度相同,相对的两个n+掺杂区域3宽度相同。而属于同一个背接触太阳能 小电池片的多个p+掺杂区域2的宽度可以相同,也可以不同;属于同一个背接触太阳能小电池片的多个n+掺杂区域3的宽度可以相同,也可以不同。一个优选地实施例中,属于同一个背接触太阳能小电池片的多个p+掺杂区域2的宽度相同,多个n+掺杂区域3的宽度相同。一个更优选地实施例中,属于同一个背接触太阳能小电池片的多个p+掺杂区域2和多个n+掺杂区域3的宽度均相同。以方便p+掺杂区域和n+掺杂区域的制作。
另外,对于第二种相邻两个背接触太阳能小电池片之间相对关系来说,相对的p+掺杂区域2的宽度和n+掺杂区域3的宽度相同。一个优选的实施例中,背接触太阳能小电池片中所有p+掺杂区域2和所有n+掺杂区域3的均相同,以方便p+掺杂区域和n+掺杂区域的制作。
值得说明的是,p+掺杂区域2的宽度是指,p+掺杂区域2的两条与n+掺杂区域的交界线之间的间距,当p+掺杂区域2为长方形时,p+掺杂区域2的宽度可为,交替排列的p+掺杂区域和n+掺杂区域方向上的一条边的边长。
值得说明的是,各个实施例所述的p+掺杂区域和n+掺杂区域交替排列即为前述的p+掺杂区域和n+掺杂区域交错设置。
n+掺杂区域3的宽度是指,n+掺杂区域3的两条与p+掺杂区域的交界线之间的间距,当n+掺杂区域3为长方形时,n+掺杂区域3的宽度可为,交替排列的p+掺杂区域和n+掺杂区域方向上的一条边的边长。
一般来说,p+掺杂区域和n+掺杂区域的宽度将影响背接触太阳能电池组件的性能,而p+掺杂区域和n+掺杂区域的宽度越窄,一个背接触太阳能小电池片包括的p+掺杂区域和n+掺杂区域的个数越多,太阳能电池组件性能也越好。本发明实施例中,p+掺杂区域的宽度为0.1~20mm;n+掺杂区域的宽度为0.1~10mm。
另外,针对图3示出的相邻两个背接触太阳能小电池片之间的关系,可以直接采用背接触太阳能电池片切割好的背接触太阳能小电池片的排列和关系进行后续的工艺。针对图6示出的关系,在背接触太阳能电池片切割成背接触太阳能小电池片后,需间隔的将排列在奇数位或者排列在偶数位的背接触太阳能小电池片水平旋转180度(°),以实现图6示出的相邻两个背接触太阳能小电池片之间的关系。
在本发明实施例中,针对图3以及图5示出的相邻两个背接触太阳能小电池片之间的关系,导电图案72中的每一段导电胶或导电焊锡为Z型结构或Z型变体结构或台阶结构。如图5示出的背接触太阳能电池组件中,该Z型结构或Z型变体结构或台阶结构的导电胶或导电焊锡的一端连接一个正电极接触细栅(正电极21),另一端连接相邻的背接触太阳能小电池片中的一个负电极接触细栅(负电极31);导电胶或导电焊锡连接的正电极接触细栅(正电极21)和负电极接触细栅(负电极31)一一对应;任意两段导电胶或导电焊锡之间不交叉。如图5示出的背接触太阳能电池组件中,多个导电图案可串联多个背接触太阳能小电池片。
针对图6示出的相邻两个背接触太阳能小电池片之间的关系,导电图案72中的每一段导电胶或导电焊锡为线段形结构。如图6示出的背接触太阳能电池组件中,多个导电图案串联多个背接触太阳能小电池片。
即:如图5、图8、图16以及图17示出的背接触太阳能电池组件分布于相邻两个背接触太阳能小电池片之间的导电图案中的多段导电胶或导电焊锡,沿p+掺杂区域和n+掺杂区域交替排列的方向平行排列;相邻两个背接触太阳能小电池片相对的两侧中,位于相对的两侧中的一侧的正电极接触细栅与导电胶或导电焊锡的一端一对一连接;位于相对的两侧中的另一侧的负电极接触细栅与导电胶或导电焊锡的另一 端一对一连接;每两段导电胶或导电焊锡不相交。
在本发明实施例中,背接触太阳能电池组件中多个背接触太阳能小电池片之间的关系可包括相邻两个背接触太阳能小电池片,相同类型的掺杂区域相对设置以及相邻两个背接触太阳能小电池片中,相反类型的掺杂区域相对设置的关系组合。
在本发明实施例中,多段导电胶或导电焊锡的结构可为线段型结构、Z型变体结构以及台阶结构的任意组合。一般来说,位于同一组相邻两个背接触太阳能小电池片之间的多段导电胶或导电焊锡的结构相同。
值得说明的是,上述图5、图8、图16以及图17只是示出了几种相邻两个背接触太阳能小电池片之间的关系和导电胶或导电焊锡的结构组合形式,即在同一个背接触太阳能电池组件中仅包括一种相邻两个背接触太阳能小电池片之间的关系和一种导电胶或导电焊锡的结构,这种能够有效地简化太阳能电池组件的制作工艺以及制作成本。而背接触太阳能电池组件中多个背接触太阳能小电池片之间的关系还可为图5和图8的关系组合,而设置于背板上的多段导电胶或导电焊锡的结构也可以为上述多种导电胶或导电焊锡的结构的组合。其他基于图5至图8示出的背接触太阳能电池组件的变形结构也均在本发明实施例的保护范围内。
值得说明的是,导电胶或导电焊锡的一端连接一个正电极接触细栅可以为导电胶或导电焊锡的一端与正电极接触细栅欧姆接触,导电胶或导电焊锡的另一端连接相邻的背接触太阳能小电池片中的一个负电极接触细栅可以为导电胶或导电焊锡的另一端与负电极接触细栅欧姆接触。
在本发明实施例中,导电胶包括:粘结剂以及分散于粘结剂的金 属颗粒。通过该种导电胶能够有效地保证电流传输以及保证正电极接触细栅和负电极接触细栅与导电胶之间的粘结性。
在本发明实施例中,如图18至图21、图25以及图28所示,提供另一种背接触太阳能电池组件,该背接触太阳能电池组件可包括:多个背接触太阳能小电池片、和设置有至少一段导电胶的背板,其中,
如图1所示,背接触太阳能小电池片包括:硅基体1、硅基体1的背表面交替排列的p+掺杂区域2和n+掺杂区域3、设置于p+掺杂区域的正电极接触细栅(正电极21)以及设置于n+掺杂区域3的负电极接触细栅(负电极31);
图18至图21、图25以及图28所示,多个背接触太阳能小电池片并排排列,其中,每相邻两个背接触太阳能小电池片的侧面相对;
相邻两个背接触太阳能小电池片相对的两侧中,位于相对的两侧中的一侧的正电极接触细栅端与该侧电隔离,位于相对的两侧中的另一侧的负电极接触细栅端与该另一侧电隔离;
每一段导电胶分布于相邻两个背接触太阳能小电池片之间;
每一段导电胶,连接一个背接触太阳能小电池片的负电极接触细栅以及相邻的另一个背接触太阳能小电池片的正电极接触细栅。
另外,背接触太阳能电池组件中的多个背接触太阳能小电池片的大小可以相同,也可以不完全相同,也可以完全不同。但是,背接触太阳能电池组件中的多个背接触太阳能小电池片的类型必须要一致,比如,均为背接触式,均具有交替排列的p+掺杂区域和n+掺杂区域等。
其中,相邻两个背接触太阳能小电池片之间相对关系可如图18至图21、图25以及图28示出的相对关系中的任意一种。
其中,实现电隔离的方式可以有多种。比如,通过设置于背板与多个背接触太阳能小电池片之间的绝缘封装层、绝缘层等实现电隔离、还可以直接通过沉积于背接触太阳能小电池片上的增反射叠层钝化膜 等实现电隔离。
在一个实施例中,通过绝缘层实现电隔离方式:
相邻两个背接触太阳能小电池片相对的两侧中,一侧的正电极接触细栅端覆盖有绝缘层,另一侧的负电极接触细栅端覆盖有绝缘层。通过设置该绝缘层可以有效地降低串联出错的概率,也可以降低漏电情况的发生。在一个优选的实施例中,如图29示出的,基于上述第一种相邻两个背接触太阳能小电池片之间相对关系,相邻两个背接触太阳能小电池片相对的两侧中,一侧的正电极接触细栅端覆盖有绝缘层8,另一侧的负电极接触细栅端覆盖有绝缘层8。如图30示出的,基于上述第二种相邻两个背接触太阳能小电池片之间相对关系,相邻两个背接触太阳能小电池片相对的两侧中,一侧的正电极接触细栅端覆盖有绝缘层8,另一侧的负电极接触细栅端覆盖有绝缘层8。可以理解地,一侧和另一侧只是为了区别相邻两个背接触太阳能小电池片相对的两侧。
值得说明的是,图29和图30示出的绝缘层的宽度一般不小于其所覆盖的电极接触细栅的宽度。一个优选地实施例中,绝缘层的宽度一般不小于其所在的掺杂区域的宽度,但一块绝缘层不会同时覆盖相反极性接触细栅。
可以理解地,当同一个背接触太阳能小电池片的两侧均具有绝缘层时,该两侧具有的绝缘层位于相反电极接触细栅上。通过上述设置能够有效地缩短正电极接触细栅与负电极接触细栅之间电路的长度,从而降低传输过程中带来的电阻损耗,以简化背接触太阳能电池组件的制作工艺的同时降低电能损耗,从而有效地提高光电转化效率。另外,上述绝缘层可避免由于电极接触细栅烧穿p+掺杂区域和n+掺杂区域表面沉积有增反射叠层钝化膜导致的漏电。从而进一步提高背接触太阳能电池组件的稳定性。
在另一个实施例中,通过沉积于背接触太阳能小电池片上的增反射叠层钝化膜实现电隔离的方式。
相邻两个背接触太阳能小电池片相对的两侧中,一侧的正电极接触细栅端为缩短端,另一侧的负电极接触细栅端为缩短端,缩短端与其相邻侧之间覆盖有绝缘层。通过设置该缩短端可以有效地降低串联出错的概率,也可以降低漏电情况的发生。在一个优选的实施例中,如图31和图32示出的,相邻两个背接触太阳能小电池片相对的两侧中,一侧的正电极接触细栅端相对于该侧为缩短端21′,另一侧117的负电极接触细栅端相对于该另一侧为缩短端31′,p+掺杂区域2和n+掺杂区域3表面沉积有增反射叠层钝化膜6。通过上述设置能够有效地缩短正电极接触细栅与负电极接触细栅之间电路的长度,从而降低传输过程中带来的电阻损耗,以简化太阳能电池组件的制作工艺的同时降低电能损耗,从而有效地提高光电转化效率。
在本发明实施例中,在图31和图32基础上,为了进一步增强电隔离,一侧的正电极接触细栅端相对于该侧为缩短端21′,另一侧的负电极接触细栅端相对于该另一侧为缩短端31′,缩短端21′与相其相对的该侧之间的p+掺杂区域上覆盖有绝缘层;缩短端31′与相其相对的该另一侧之间的n+掺杂区域上覆盖有绝缘层。通过上述过程可进一步提高绝缘性。
其中,缩短端是指,一个电极接触细栅的一端(正电极接触细栅端或者负电极接触细栅端)相对于与该电极接触细栅属于同一背接触太阳能小电池片的一侧存在缩短,且该一侧为相邻两个背接触太阳能小电池片相对的两侧中的一侧。
值得说明的是,上述绝缘层的大小可根据实际情况(如背接触太阳能小电池片的大小、正电极接触细栅长度、负电极接触细栅长度)等进行设定。缩短端距离其靠近的背接触太阳能小电池片的侧面的距 离一般也可根据实际情况进行设定。
本发明实施例提供的背接触太阳能电池组件中,相邻背接触太阳能小电池片之间的间距可尽可能地接近,在减少导电胶用量的同时,能够有效地缩短正电极接触细栅与负电极接触细栅之间电流传输电路的长度,从而降低传输过程中带来的电阻损耗。
在本发明实施例中,结合图29示出的相邻两个背接触太阳能小电池片之间的关系以及设置于背板70上的导电胶为长条形结构,得到图18示出的一种背接触太阳能电池组件。结合图30示出的相邻两个背接触太阳能小电池片之间的关系以及设置于背板70上的导电胶为长条形结构,得到图19示出的一种背接触太阳能电池组件10。结合图31示出的相邻两个背接触太阳能小电池片之间的关系以及设置于背板70上的导电胶为长条形结构,得到图20示出的一种背接触太阳能电池组件10,结合图32示出的相邻两个背接触太阳能小电池片之间的关系以及设置于背板70上的导电胶为长条形结构,得到图21示出的一种背接触太阳能电池组件。图18至图21示出的该背接触太阳能电池组件中,相邻两个背接触太阳能小电池片相对的两侧中,一侧的所有正电极接触细栅连接长条形结构的一条长边721,而该侧的所有负电极接触细栅均不连接该条长边721;另一侧的所有负电极接触细栅连接长条形结构的另一条长边722,而该侧的所有正电极接触细栅均不连接该另一条长边722。即通过一条设置于背板70上的导电胶可实现串联相邻两个背接触太阳能小电池片,有效地简化了背接触太阳能小电池片的串联工艺以及太阳能电池组件的制作工艺。
值得说明的是,由于绝缘层是为了防止其所覆盖的正电极接触细栅或负电极接触细栅与导电胶接触,因此,导电胶的两条长边位于绝缘层上,不会超过绝缘层边缘的限定。
在本发明实施例中,基于图3、图6、图29至图32示出的相邻两 个背接触太阳能小电池片之间的关系中的任意一种,位于相邻两个背接触太阳能小电池片之间的导电胶的结构还可如图22和图23所示,位于相邻两个背接触太阳能小电池片之间的导电胶包括:长条形主体723以及分设于长条形结构主体723两侧与该长条形主体连接的多个分支段724,其中,长条形结构主体723一侧的每一个分支段724与相邻的一个背接触太阳能小电池片的一个正电极接触细栅,长条形结构主体723另一侧的每一个分支段724与相邻的另一个背接触太阳能小电池片的一个负电极接触细栅。
通过上述图22和图23示出的导电胶的结构,能够保证位于相邻两个背接触太阳能小电池片之间的导电胶的一致性,有效地降低了导电胶设置在背板上出现歪斜的情况,从而保证工艺制作的产品(比如,设置有导电胶的背板、太阳能电池组件)的合格率。
其中,采用图22所示的导电胶的结构,分设于长条形结构主体723两侧的多段分支段724交替排列。以将图22所示的导电胶应用于图3所示的结构为例,得到如图24所示的一种背接触太阳能电池组件。以将图22所示的导电胶应用于图29所示的结构为例,得到如图25所示的一种背接触太阳能电池组件。以将图22所示的导电胶应用于图31得到如图26所示的一种背接触太阳能电池组件。
其中,图6、图30以及图32示出的相邻两个背接触太阳能小电池片之间的关系,采用图23所示的导电胶的结构。分设于长条形结构主体723两侧的每两个分支段724相对。以将图23所示的导电胶应用于图6所示的结构为例,得到如图27所示的一种背接触太阳能电池组件。以将图23所示的导电胶应用于图30所示的结构为例,得到如图28所示的一种背接触太阳能电池组件。以将图23所示的导电胶应用于图32所示的结构为例,得到如图33所示的一种背接触太阳能电池组件。
值得说明的是,上述图3、图4、图29至图32只是示出了几种相 邻两个背接触太阳能小电池片之间的关系和导电胶的结构组合形式,即在同一个背接触太阳能电池组件中仅包括一种相邻两个背接触太阳能小电池片之间的关系和一种导电胶的结构,这种能够有效地简化太阳能电池组件的制作工艺以及制作成本。
在本发明实施例中,背接触太阳能电池组件可包括:图5、图8、图18至图21、图24至图28以及图33示出的多个背接触太阳能小电池片之间的关系以及设置于背板上的多段导电胶的结构的多种组合。
即:背接触太阳能电池组件可包括:至少两组相邻两个背接触太阳能小电池片,其中,至少一组相邻两个背接触太阳能小电池片之间,相同类型的掺杂区域相对设置,剩余的相邻两个背接触太阳能小电池片之间,一个背接触太阳能小电池片的p+掺杂区域与另一个背接触太阳能小电池片的n+掺杂区域相对设置;至少一组相邻两个背接触太阳能小电池片相对的两侧中,位于相对的两侧中的一侧的正电极接触细栅端与该侧电隔离,位于相对的两侧中的另一侧的负电极接触细栅端与该另一侧电隔离,其中,存在电隔离的相邻两个背接触太阳能小电池片通过如图34示出的设置于背板上的长条形导电胶或者如图22或图23示出的设置于背板上的分布于导电胶主体结构两侧的导电胶分支段连接;不存在电隔离的相邻两个背接触太阳能小电池片通过设置于背板上的多段导电胶连接,该多段导电胶结构可为图15示出的线段型结构、图14示出的Z型变体结构、台阶结构以及图22和图23示出的与导电胶主体结构连接的导电胶分支段中的任意一种。如图35示例性地给出了一种背接触太阳能电池组件,该背接触太阳能电池组件中包括多种结构的组合。其他基于图16至图21以及图24至图28示出的背接触太阳能电池组件的变形结构也均在本发明实施例的保护范围内。
在本发明实施例中,如图36所示,太阳能电池组件还可进一步包括:填充于多个背接触太阳能小电池片与背板70之间的第一封装层(封 装层10)。通过该第一封装层(封装层10)能够填充接触电池片与背板70之间的缝隙,以进一步提高太阳能电池组件的性能。另外,该第一封装层能更好地将背接触太阳能小电池片固定于背板上,以方便对太阳能电池组件搬运和放置或存放。
在本发明实施例中,如图36所示,背接触太阳能电池组件还可进一步包括:玻璃板9以及第二封装层(封装层10),其中,
玻璃板9与多个背接触太阳能小电池片相对;
第二封装层(封装层10),设置于玻璃板9与多个背接触太阳能小电池片之间;
第一封装层和第二封装层,用于将多个背接触太阳能小电池片封装于玻璃板9与背板70之间。
另外,上述太阳能电池组件还包括汇流条用于将组件电流汇集导出(图中未示出),其与现有的背接触式太阳能电池组件所在位置和连接方式一致,在此不再赘述。
上述各个实施例提供的背接触太阳能电池组件,一方面,因为完全摒弃了主栅,在正电极接触细栅和负电极接触细栅设置过程中无须再考虑主栅;另一方面,导电胶设置在背板上,实现了对导电胶的固定,方便利用该固定的导电胶串联多个背接触太阳能小电池片。因此,本发明实施例提供的方案简化了全背接触太阳能电池组件的制作工艺。
另外,由于导电胶或焊锡能够缩短串联的多个背接触太阳能小电池片之间的间距,而且导电胶或焊锡与正电极接触细栅和负电极接触细栅,能消除主栅带来的横向传输损耗和电极遮蔽效应,从而提高全背接触太阳能电池组件的填充因子、光电转化效率以及光电转化效率的稳定性。
另外,由于每一段导电胶或焊锡连接一个背接触太阳能小电池片的一个正电极接触细栅以及相邻的另一个背接触太阳能小电池片的一个负电极接触细栅,那么,导电胶的宽度可尽可能的缩小,不仅能够节省导电胶的用料,而且能够减小导电胶或焊锡带来的电阻损耗。
另外,整个背接触太阳能电池组件除其汇流区域可使用焊带外,其他地方(如正电极接触细栅和负电极接触细栅串联)均采用无焊带设计,极大的降低了组件成本。同时,背接触太阳能电池组件的电流在相邻背接触太阳能小电池片之间传输过程中,本发明实施例提供的方案传输路径电阻较小,减小了电极接触细栅(正电极接触细栅和负电极接触细栅)上电阻损耗的影响,从而提高了组件的填充因子。
另外,本发明实施例给出的背接触太阳能电池组件中,p+掺杂区域和n+掺杂区域之间并不包括绝缘带隙或者绝缘层,该种设置能够进一步简化背接触太阳能小电池片或背接触太阳能电池组件的制作工艺,还可以降低背接触太阳能电池组件的热斑性,从而有效地提高太阳能电池组件的寿命以及电效率的稳定性。
另外,由于多段导电胶或焊锡分布于每相邻两个背接触太阳能小电池片之间,同时,一段导电胶或焊锡连接一个背接触太阳能小电池片的一个正电极接触细栅以及相邻的另一个背接触太阳能小电池片的一个负电极接触细栅,则多个背接触太阳能小电池片与多段导电胶或焊锡形成的串联电路之间相对独立,即正电极接触细栅与负电极接触细栅之间是一对一串联的,使电流传输路径是固定且相互独立的,能够有效地减少相邻串联电路的干扰,避免电流分散及扩散,能够有效地降低电流损耗,从而进一步提高全背接触太阳能电池组件的填充因子、光电转化效率以及光电转化效率的稳定性。
本发明实施例提供一种制备背接触太阳能电池组件的方法。如图37所示,该制备背接触太阳能电池组件的制备方法可包括如下步骤:
S3701:制备背接触太阳能小电池片的步骤;
S3702:在背板的一个表面印制导电胶;
S3703:将多个背接触太阳能小电池片排列在背板上,通过导电胶串联多个背接触太阳能小电池片,并烘干固化。
通过上述制备方法可用来制备上述各个实施例提供的太阳能电池组件。
其中,制备背接触太阳能小电池片的步骤可以为,采用现有的制作工艺制作出背接触太阳能电池片,并对该背接触太阳能电池片沿着交替排列的p+掺杂区域和n+掺杂区域的方向切割,得到多个背接触太阳能小电池片。该切割的过程可以采用激光等方式进行切割。
其中,在背板的一个表面印制导电胶可以为将导电胶印刷到背板上,也可以为将导电胶涂抹到背板上。步骤S3702得到的导电胶在背板上的分布可如图14、图15、图22、图23以及图34所示,一个背板上可包括同一种结构的导电胶。这样方便工艺操作。其中,图14示出的结构和图3示出的结构结合得到图16所示的背接触太阳能电池组件;图15示出的结构和图6示出的结构结合得到图17所示的背接触太阳能电池组件;图22示出的结构和图3示出的结构结合得到图24所示的背接触太阳能电池组件;图23示出的结构和图6示出的结构结合得到图27所示的背接触太阳能电池组件等。
因此,在背板的一个表面印制多段导电胶可包括:印制多段并排排列的长条形导电胶,其中,相邻两段长条形导电胶的相邻两个长边之间的间距不大于背接触太阳能小电池片包括的负电极接触细栅或正电极接触细栅的长度,得到如图34所示的背板和多段导电胶。
另外,通过上述步骤S3702得到的印制的多段导电胶可按照多行多列排列,每一段导电胶为线段形结构或Z型变体结构如图4以及图 14所示。
值得说明的是,上述图14、图15、图22、图24以及图34仅示例性地给出了几个背板上印制的多段导电胶的分布和/或多段导电胶的结构,其他导电胶的结构如Z型结构或多种结构的导电胶组合等也可通过上述步骤S3702得到。
在本发明实施例中,烘干固化的温度为100~500度(℃)。通过该烘干固化的温度能够使正电极接触细栅和负电极接触细栅与导电胶之间形成比较好地欧姆接触,使太阳能电池组件的稳固性和电效率性能都能达到较优的效果。
在本发明实施例中,烘干固化的时间为5~1800s。
为了能够清楚地说明太阳能电池组件的制备方法,下面以几个具体实施例进行说明。
下述几个实施例中,制备背接触太阳能电池片的步骤与上述实施例1至实施例4相同,而后续制备导电条的过程有所差异。下面将直接从制备导电条(在背板的一个表面印制导电胶)阐述。
实施例5:
具体包括如下步骤:
A1:制备印有导电胶的背板。
比如,将导电胶按照图14示出的结构印刷到背板上(该过程可通过给出图14示出的结构对应的特定图案,并通过工艺调整特定图案的参数等,以根据图14示出的结构对应的特定图案,将导电胶印刷到背板上),值得说明的是,图中的背板仅用来展示其用途,并不表示真实的尺寸和位置信息。导电胶的长度、宽度、导电胶之间的间距等, 可根据实际情况进行确定。比如,如图14所示,导电胶中与正电极接触细栅和细电极接触细栅接触段的宽度(即Z型结构或Z型变体结构的两条横线的宽度)为1.5mm,导电胶的长度为9.9mm(导电胶的长度为Z型结构或Z型变体结构的两条横线的中线之间的间距),位于同一组相邻两个背接触太阳能小电池片之间的、相邻的两段导电胶之间的间距为19.8mm(相邻的两段导电胶之间的间距为位于同一组相邻两个背接触太阳能小电池片之间的、相邻的两个Z型结构或Z型变体结构的、在Z型结构或Z型变体结构上的位置一致的两条横线的中线之间的间距),相邻的两列导电胶之间的间距为45mm(该相邻的两列导电胶之间的间距为两列导电胶中,位于导电胶的同一侧的位置之间的间距)。
A2:根据背板上导电胶排列,将背接触太阳能小电池片中的正电极接触细栅和负电极接触细栅贴合在导电胶上,形成相互串联的太阳能电池组件,并在200℃下烘干2分钟固化。得到如图16所示的太阳能电池组件。
该过程主要是,相邻背接触太阳能小电池片极性相反的电极接触细栅通过印在背板上的导电胶相互连接,以保证电池片上的电流沿着长条状n+和p+掺杂区域的长边方向导出。
实施例6:
具体包括如下步骤:
B1:制备印有导电胶的背板。
比如,将导电胶按照图15示出的结构印刷到背板上(该过程可通过给出图15示出的结构对应的特定图案,并通过工艺调整特定图案的参数等,以根据图15示出的结构对应的特定图案,将导电胶印刷到背板上),值得说明的是,图中的背板仅用来展示其用途,并不表示真实的尺寸和位置信息。导电胶的长度、宽度、导电胶之间的间距等, 可根据实际情况进行确定。比如,如图15所示,导电胶的宽度为1.5mm,导电胶的长度为5mm,位于同一组相邻两个背接触太阳能小电池片之间的、相邻的两段导电胶之间的间距为19.8mm(该相邻的两段导电胶之间的间距为两段导电胶中线之间的间距),相邻的两列导电胶之间的间距为45mm(该相邻的两列导电胶之间的间距为两列导电胶中,位于导电胶的同一侧的位置之间的间距)。
B2:根据背板上导电胶排列,将背接触太阳能小电池片中的正电极接触细栅和负电极接触细栅贴合在导电胶上,形成相互串联的太阳能电池组件,并在300℃下烘干1分钟固化。得到如图17所示的太阳能电池组件。
该过程主要是,相邻背接触太阳能小电池片极性相反的电极接触细栅通过印在背板上的导电胶相互连接,以保证电池片上的电流沿着长条状n+和p+掺杂区域的长边方向导出。
实施例7:
具体包括如下步骤:
C1:在实施例1的步骤(A1)得到的背接触太阳能电池片上的特定位置分别为正电极接触细栅和负电极接触细栅覆盖绝缘层。
该特定位置可为如图29或图30示出的具有绝缘层的对应位置。
C2:将上述步骤C1得到的背接触太阳能电池片切割,切割后形成5块背接触太阳能小电池片。
背接触太阳能小电池片的宽度可根据实际需要进行设定,比如,切割出的各块背接触太阳能小电池片的宽度均不同,一个比较优选地实施例为切割出的各块背接触太阳能小电池片的宽度相同,这样方便工艺操作和工艺实现。比如,每块背接触太阳能小电池片的宽度均为 26.4583mm。将这5块背接触太阳能小电池片如图18所示排列。此时部分背接触太阳能小电池片的方向和原背接触太阳能电池片一致。正电极接触细栅和负电极接触细栅,不存在分别汇集长条状n+和p+掺杂区域电流的主栅线。
C3:制备印有导电胶的背板。
比如,将导电胶按照图34示出的结构印刷到背板上(该过程可通过给出图34示出的结构对应的特定图案,并通过工艺调整特定图案的参数等,以根据图34示出的结构对应的特定图案,将导电胶印刷到背板上),值得说明的是,图中的背板仅用来展示其用途,并不表示真实的尺寸和位置信息。导电胶的长度、宽度、导电胶之间的间距等,可根据实际情况进行确定。
C4:根据背板上导电胶排列,将背接触太阳能小电池片中的正电极接触细栅和负电极接触细栅贴合在导电胶上,形成相互串联的太阳能电池组件,并在150℃下烘干5分钟固化。得到如图18所示的背接触太阳能电池组件。
该过程主要是,相邻背接触太阳能小电池片极性相反的电极接触细栅通过印在背板上的导电胶相互连接,以保证电池片上的电流沿着长条状n+掺杂区域和p+掺杂区域的长边方向导出。
实施例8:
具体包括如下步骤:
D1:在实施例1示出的步骤(1)制备背接触太阳能电池片的过程中,在制作正电极接触细栅和负电极接触细栅时,需要在每一个p+掺杂区域制作多段正电极接触细栅,在每一个n+掺杂区域制作多段负电极接触细栅,以得到如图38示出的结构。每一段正电极接触细栅和负电极接触细栅的长度、相邻两段正电极接触细栅之间的间距以及相邻 两段负电极接触细栅之间的间距能够根据需要进行设定,通过调节工艺参数的形式实现在每一个p+掺杂区域制作多段正电极接触细栅和在每一个n+掺杂区域制作多段负电极接触细栅。
该制作正电极接触细栅和负电极接触细栅可采用印刷银浆直接烧穿背面钝化膜的方式,也可以采用先激光开口再印刷,还可以采用电镀金属的方式,从而形成正电极接触细栅和负电极接触细栅和硅基体的欧姆接触并将电流导出,其中,正电极接触细栅和负电极接触细栅的宽度可均为100μm。该正电极接触细栅和负电极接触细栅的长度可根据制作太阳能电池组件的结构进行相应地调整。
D2:将上述步骤D1得到的背接触太阳能电池片切割,切割后形成4块背接触太阳能小电池片。
背接触太阳能小电池片的宽度可根据实际需要进行设定,比如,切割出的各块背接触太阳能小电池片的宽度均不同,一个比较优选地实施例为切割出的各块背接触太阳能小电池片的宽度相同,这样方便工艺操作和工艺实现。比如,每块背接触太阳能小电池片的宽度均为39.6875mm。将这4块背接触太阳能小电池片如图31所示排列。此时部分背接触太阳能小电池片的方向和原背接触太阳能电池片一致。正电极接触细栅和负电极接触细栅,不存在分别汇集长条状n+和p+掺杂区域电流的主栅线。
D3:制备印有导电胶的背板。该步骤与实施例7示出的步骤C3一致,在此不再赘述。
D4:根据背板上导电胶排列,将背接触太阳能小电池片中的正电极接触细栅和负电极接触细栅贴合在导电胶上,形成相互串联的太阳能电池组件,并在250℃下烘干3分钟固化。得到如图20所示的背接触太阳能电池组件。
该过程主要是,相邻背接触太阳能小电池片极性相反的电极接触细栅通过印在背板上的导电胶相互连接,以保证电池片上的电流沿着长条状n+和p+掺杂区域的长边方向导出。
在上述实施例1至实施例8的太阳能电池组件制作完成后,后续的汇流、叠层、层压等组件封装工艺和常规组件制作方式无异,在此不再赘述。
值得说明的是,上述各个参数仅是示例性的给出。比如,每块背接触太阳能小电池片的宽度、p+掺杂区域和n+掺杂区域的宽度、相邻两个背接触太阳能小电池片之间的间距、导电胶的尺寸参数均可调变。比如,导电胶的长度还可调变为1mm、500μm、200μm甚至更小,导电胶的宽度也可调变为1mm、500μm、200μm、100μm、50μm甚至更小。其他的各种参数在工艺实现范围内均可调整,在此不再赘述。
虽然本发明实施例公开如上,但其并非用以限定本发明的保护范围,例如,相邻两个背接触太阳能小电池片之间的关系与背板上导电胶的分布或导电胶的结构可以进行调换或组合,也可以将p+掺杂区域和n+掺杂区域之间的位置进行调换,同时适应调整正电极接触细栅和负电极接触细栅等;还可以将背接触太阳能电池片切割成更多的背接触太阳能小电池片,又比如,导电胶的宽度可无限小如200μm,相邻两个背接触太阳能小电池片之间的间距也可无限小如小于200μm等。任何在不脱离本申请的构思和范围内所做的更改与润饰,均应属于本申请的保护范围。

Claims (23)

  1. 一种背接触太阳能电池组件,其特征在于,包括:
    N个小电池片,所述小电池片的背面具有交错设置的p+掺杂区域(2)和n+掺杂区域(3),所述小电池片的p+掺杂区域(2)上设有正极细栅线,所述小电池片的n+掺杂区域上设有负极细栅线,各个所述小电池片上均不设置汇集所述n+掺杂区域(3)和所述p+掺杂区域(2)电流的主栅线;
    (N-1)根导电条(7),每根所述导电条(7)均包括基板(71)以及设于所述基板(71)上的导电图案(72),各个所述基板(71)分别设于相邻两个小电池片之间,所述导电图案(72)用以将相邻两个小电池片上极性相反的细栅线依次间隔地电性连接,以串联各个所述小电池片。
  2. 根据权利要求1所述的背接触太阳能电池组件,其特征在于,
    相邻两个所述小电池片上的n+掺杂区域(3)和p+掺杂区域(2)一一对应设置,所述导电图案(72)由若干条导电折线成行排列而成,所述导电折线呈阶梯状。
  3. 根据权利要求1所述的背接触太阳能电池组件,其特征在于,
    相邻两个所述小电池片上的n+掺杂区域(3)和p+掺杂区域(2)交错对应设置,所述导电条(7)的导电图案(72)由若干条直线成行排列而成。
  4. 根据权利要求1至3任一所述的背接触太阳能电池组件,其特征在于,
    所述导电图案(72)包括多段导电胶或者多段焊锡。
  5. 根据权利要求4所述的背接触太阳能电池组件,其特征在于,
    每一段所述导电胶或者每一段所述焊锡,连接一个所述小电池片的一个所述正电极接触细栅以及相邻的另一个所述小电池片的一个所述负电极接触细栅。
  6. 根据权利要求1至3、5任一所述的背接触太阳能电池组件,其特征在于,
    所述小电池片由背接触太阳能电池片切割而成。
  7. 根据权利要求1所述的背接触太阳能电池组件,其特征在于,
    所述(N-1)根导电条(7)位于同一背板,各个所述基板(71)为所述背板的部分区域。
  8. 根据权利要求1至3、5、7任一所述的背接触太阳能电池组件,其特征在于,
    相邻的所述p+掺杂区域(2)和所述n+掺杂区域(3)的相邻两个侧面的结构互补。
  9. 根据权利要求8所述的太阳能电池组件,其特征在于,
    所述p+掺杂区域(2)和所述n+掺杂区域(3)的结构为长方形结构、梯形、锯齿形、方波形中的任意一种;
    或者,
    所述n+掺杂区域(3)呈条状,包括交错设置的宽矩形条和窄矩形条;所述p+掺杂区域(2)填充于相邻两条n+掺杂区域(3)之间。
  10. 根据权利要求1至3、5、7、9所述的太阳能电池组件,其特征在于,
    所述N个小电池片之间的关系包括:相邻两个小电池片,相同类型的掺杂区域相对设置以及相邻两个小电池片中,相反类型的掺杂区域相对设置的关系组合。
  11. 根据权利要求1至3、5、7、9所述的太阳能电池组件,其特征在于,
    所述基板(71)的膨胀系数与硅接近。
  12. 根据权利要求1至3、5、7、9所述的太阳能电池组件,其特征在于,
    所述基板(71)为传导硅片。
  13. 一种背接触太阳能电池组件,其特征在于,包括:多个背接触太阳能小电池片、和设置有至少一段导电胶的背板(70),其中,
    所述背接触太阳能小电池片包括:硅基体(1)、所述硅基体的背表面交替排列的p+掺杂区域(2)和n+掺杂区域(3)、设置于所述p+掺杂区域的正电极接触细栅以及设置于所述n+掺杂区域的负电极接触细栅;
    所述多个背接触太阳能小电池片并排排列,其中,每相邻两个所述背接触太阳能小电池片的侧面相对;
    相邻两个所述背接触太阳能小电池片相对的两侧中,位于所述相对的两侧中的一侧的正电极接触细栅端与该侧电隔离,位于所述相对的两侧中的另一侧的负电极接触细栅端与该另一侧电隔离;
    每一段所述导电胶分布于相邻两个所述背接触太阳能小电池片之间;
    每一段所述导电胶,连接一个所述背接触太阳能小电池片的所述负电极接触细栅以及相邻的另一个所述背接触太阳能小电池片的所述正电极接触细栅。
  14. 根据权利要求13所述的背接触太阳能电池组件,其特征在于,
    位于所述相对的两侧中的一侧的正电极接触细栅端覆盖有绝缘层,位于所述相对的两侧中的另一侧的负电极接触细栅端覆盖有绝缘层;
    或者,
    位于所述相对的两侧中的一侧的正电极接触细栅端相对于该侧为缩短端,
    位于所述相对的两侧中的另一侧的负电极接触细栅端相对于该另 一侧为缩短端。
  15. 根据权利要求13或14所述的背接触太阳能电池组件,其特征在于,
    所述导电胶为长条形结构;
    位于所述相对的两侧中的一侧的正电极接触细栅端连接所述长条形结构的一条长边;
    位于所述相对的两侧中的另一侧的负电极接触细栅端连接所述长条形结构的另一条长边。
  16. 根据权利要求13或14所述的背接触太阳能电池组件,其特征在于,
    所述导电胶包括:长条形主体以及分设于长条形结构主体两侧与该长条形主体连接的多个分支段,其中,长条形结构主体一侧的每一个分支段与相邻的一个背接触太阳能小电池片的一个正电极接触细栅,长条形结构主体另一侧的每一个分支段与相邻的另一个背接触太阳能小电池片的一个负电极接触细栅。
  17. 根据权利要求7、13以及14中任一所述的背接触太阳能电池组件,其特征在于,
    进一步包括:第一封装层;
    所述第一封装层用于填充所述小电池片与所述背板之间的缝隙。
  18. 根据权利要求17所述的背接触太阳能电池组件,其特征在于,进一步包括:玻璃板以及第二封装层,其中,
    所述玻璃板与所述多个背接触太阳能小电池片相对;
    所述第二封装层,设置于所述玻璃板与所述多个背接触太阳能小电池片之间;
    所述第一封装层和所述第二封装层,用于将所述多个背接触太阳能小电池片封装于所述玻璃板与所述背板之间。
  19. 一种制备如权利要求1-12中任一项所述背接触太阳能电池组件的方法,其特征在于,
    包括以下步骤:
    S1、将背接触太阳能小电池片沿所述n+掺杂区域(3)或所述p+掺杂区域(2)的短边方向等间距切割,得若干个小电池片;
    S2、在基板(71)上设置导电图案(72)形成导电条(7),将各个所述小电池片通过所述导电条(7)依次串联,形成电池串;
    S3、将所述电池串依次经汇流、叠层和层压以进行封装,得背接触太阳能电池组件。
  20. 根据权利要求19所述的背接触太阳能电池组件的方法,其特征在于,
    S1中2≦N≦20。
  21. 根据权利要求19所述的背接触太阳能电池组件的方法,其特征在于,
    S2中所述导电图案(72)由焊锡或导电胶通过印刷的方式烘干固化在所述基板(71),所述烘干固化的温度为100-500℃,时间为30-600s。
  22. 根据权利要求21所述的背接触太阳能电池组件的方法,其特征在于,
    所述焊锡为锡、锡铅合金、锡铋合金或锡铅银合金;所述导电胶为包裹有导电颗粒粘结剂,所述粘结剂为环氧树脂、酚醛树脂、聚氨酯、热塑性树脂或聚酰亚胺中的一种或几种,所述导电颗粒为银、金、铜或由银、金、铜中两种以上组成的合金颗粒。
  23. 一种制备如权利要求13-16中任一项所述背接触太阳能电池组件的方法,其特征在于,包括:
    制备背接触太阳能电池片的步骤;
    在背板的一个表面印制导电胶;
    将多个所述背接触太阳能小电池片排列在所述背板上,通过所述导电胶串联多个所述背接触太阳能小电池片,并烘干固化。
PCT/CN2020/129783 2020-05-21 2020-11-18 背接触太阳能电池组件及制备方法 WO2021232715A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20936081.7A EP3961726A4 (en) 2020-05-21 2020-11-18 SOLAR CELL MODULE WITH BACK CONTACT AND MANUFACTURING PROCESS
JP2021570908A JP2022537499A (ja) 2020-05-21 2020-11-18 バックコンタクト型太陽電池モジュール及び製造方法
US17/612,526 US20220310858A1 (en) 2020-05-21 2020-11-18 Back Contact Type Solar Cell Module and Preparation Method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010436135.8A CN111477702A (zh) 2020-05-21 2020-05-21 背接触太阳能电池组件及其制备方法
CN202010436135.8 2020-05-21
CN202010522953.XA CN111599885A (zh) 2020-06-10 2020-06-10 太阳能电池组件及制备方法
CN202010522953.X 2020-06-10

Publications (1)

Publication Number Publication Date
WO2021232715A1 true WO2021232715A1 (zh) 2021-11-25

Family

ID=78709119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129783 WO2021232715A1 (zh) 2020-05-21 2020-11-18 背接触太阳能电池组件及制备方法

Country Status (4)

Country Link
US (1) US20220310858A1 (zh)
EP (1) EP3961726A4 (zh)
JP (1) JP2022537499A (zh)
WO (1) WO2021232715A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284393A (zh) * 2022-01-04 2022-04-05 武汉美格科技股份有限公司 一种太阳能电池组件及其制备方法、太阳能装置
CN114597278A (zh) * 2022-01-12 2022-06-07 上海晶澳太阳能科技有限公司 一种光伏组件及其制作方法
CN114649443A (zh) * 2022-03-03 2022-06-21 浙江爱旭太阳能科技有限公司 背接触太阳能电池串及其制备方法、电池组件及光伏系统
CN117199152A (zh) * 2023-09-11 2023-12-08 淮安捷泰新能源科技有限公司 一种太阳能电池及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114530512B (zh) * 2022-02-18 2024-03-19 中国科学院苏州纳米技术与纳米仿生研究所 柔性太阳电池组件及其制备方法
CN115832093A (zh) * 2022-11-07 2023-03-21 泰州隆基乐叶光伏科技有限公司 一种光伏电池结构及其制造方法、光伏组件
CN116544287A (zh) * 2023-01-05 2023-08-04 广东爱旭科技有限公司 背接触太阳能电池的电极结构、电池及其组件和光伏系统
CN117153908B (zh) * 2023-09-12 2024-04-30 隆基绿能科技股份有限公司 一种背接触电池和光伏组件
CN117080313B (zh) * 2023-10-12 2024-01-09 金阳(泉州)新能源科技有限公司 一种减小背接触电池弯曲程度的串焊方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324590A (ja) * 2005-05-20 2006-11-30 Sharp Corp 裏面電極型太陽電池とその製造方法
US20140102508A1 (en) * 2011-07-04 2014-04-17 Sanyo Electric Co., Ltd. Solar module and solar cell
US20150243798A1 (en) * 2014-02-24 2015-08-27 Lg Electronics Inc. Solar cell module
CN106098831A (zh) * 2016-08-02 2016-11-09 泰州中来光电科技有限公司 一种背接触太阳能电池串及其制备方法和组件、系统
CN111477702A (zh) * 2020-05-21 2020-07-31 晶澳太阳能有限公司 背接触太阳能电池组件及其制备方法
CN111599885A (zh) * 2020-06-10 2020-08-28 晶澳(扬州)太阳能科技有限公司 太阳能电池组件及制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080216887A1 (en) * 2006-12-22 2008-09-11 Advent Solar, Inc. Interconnect Technologies for Back Contact Solar Cells and Modules
WO2009025147A1 (ja) * 2007-08-23 2009-02-26 Sharp Kabushiki Kaisha 裏面接合型太陽電池、配線基板付き裏面接合型太陽電池、太陽電池ストリングおよび太陽電池モジュール
JP5252472B2 (ja) * 2007-09-28 2013-07-31 シャープ株式会社 太陽電池、太陽電池の製造方法、太陽電池モジュールの製造方法および太陽電池モジュール
JP4948473B2 (ja) * 2008-04-21 2012-06-06 三洋電機株式会社 太陽電池モジュール
JP2011108969A (ja) * 2009-11-20 2011-06-02 Hitachi Cable Ltd 太陽電池モジュールの製造方法、及び太陽電池用配線基板
JP2011181619A (ja) * 2010-02-26 2011-09-15 Toppan Printing Co Ltd 太陽電池モジュール
WO2011151897A1 (ja) * 2010-06-02 2011-12-08 凸版印刷株式会社 太陽電池およびその製造方法
JP2012079838A (ja) * 2010-09-30 2012-04-19 Toppan Printing Co Ltd 太陽電池モジュールとその製造方法
JP6286736B2 (ja) * 2012-03-30 2018-03-07 ディーエスエム アイピー アセッツ ビー.ブイ. バックコンタクトタイプ太陽電池モジュール
JP2015063590A (ja) * 2013-09-25 2015-04-09 三井化学株式会社 導電ペースト組成物および焼成体
CN104282788B (zh) * 2014-09-28 2017-03-22 苏州中来光伏新材股份有限公司 无主栅、高效率背接触太阳能电池模块、组件及制备工艺
CN209843729U (zh) * 2019-03-05 2019-12-24 泰州隆基乐叶光伏科技有限公司 一种背接触太阳能电池互联结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324590A (ja) * 2005-05-20 2006-11-30 Sharp Corp 裏面電極型太陽電池とその製造方法
US20140102508A1 (en) * 2011-07-04 2014-04-17 Sanyo Electric Co., Ltd. Solar module and solar cell
US20150243798A1 (en) * 2014-02-24 2015-08-27 Lg Electronics Inc. Solar cell module
CN106098831A (zh) * 2016-08-02 2016-11-09 泰州中来光电科技有限公司 一种背接触太阳能电池串及其制备方法和组件、系统
CN111477702A (zh) * 2020-05-21 2020-07-31 晶澳太阳能有限公司 背接触太阳能电池组件及其制备方法
CN111599885A (zh) * 2020-06-10 2020-08-28 晶澳(扬州)太阳能科技有限公司 太阳能电池组件及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3961726A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284393A (zh) * 2022-01-04 2022-04-05 武汉美格科技股份有限公司 一种太阳能电池组件及其制备方法、太阳能装置
CN114284393B (zh) * 2022-01-04 2022-10-28 武汉美格科技股份有限公司 一种太阳能电池组件及其制备方法、太阳能装置
CN114597278A (zh) * 2022-01-12 2022-06-07 上海晶澳太阳能科技有限公司 一种光伏组件及其制作方法
CN114649443A (zh) * 2022-03-03 2022-06-21 浙江爱旭太阳能科技有限公司 背接触太阳能电池串及其制备方法、电池组件及光伏系统
CN114649443B (zh) * 2022-03-03 2024-04-16 浙江爱旭太阳能科技有限公司 背接触太阳能电池串及其制备方法、电池组件及光伏系统
CN117199152A (zh) * 2023-09-11 2023-12-08 淮安捷泰新能源科技有限公司 一种太阳能电池及其制备方法
CN117199152B (zh) * 2023-09-11 2024-06-04 淮安捷泰新能源科技有限公司 一种太阳能电池及其制备方法

Also Published As

Publication number Publication date
EP3961726A1 (en) 2022-03-02
JP2022537499A (ja) 2022-08-26
US20220310858A1 (en) 2022-09-29
EP3961726A4 (en) 2022-08-24

Similar Documents

Publication Publication Date Title
WO2021232715A1 (zh) 背接触太阳能电池组件及制备方法
CN106653912B (zh) 一种无栅线全背接触太阳能电池组件
US11715806B2 (en) Method for fabricating a solar module of rear contact solar cells using linear ribbon-type connector strips and respective solar module
CN106057923B (zh) 一种背接触太阳能电池及太阳能电池组件
CN111477702A (zh) 背接触太阳能电池组件及其制备方法
WO2018176527A1 (zh) 采用中心汇聚栅线电极的太阳能叠片组件
WO2022247057A1 (zh) 一种背接触太阳能电池串及制备方法、组件及系统
JPWO2008090718A1 (ja) 太陽電池セル、太陽電池アレイおよび太陽電池モジュール
CN111599885A (zh) 太阳能电池组件及制备方法
WO2018023940A1 (zh) 一种背接触太阳能电池串及其制备方法和组件、系统
CN113097325A (zh) 太阳能电池组件
WO2024012160A1 (zh) Ibc太阳能电池组件及其制作方法、ibc太阳能电池组串
CN110690308A (zh) 一种背接触异质结太阳能电池及其模组
EP3198655A1 (en) Solar cell array, solar cell module and manufacturing method thereof
CN211182220U (zh) 一种用于半片叠瓦光伏组件的电池片
WO2012128284A1 (ja) 裏面電極型太陽電池、裏面電極型太陽電池の製造方法及び太陽電池モジュール
CN215988784U (zh) 一种太阳能电池及光伏组件
CN215988783U (zh) 一种太阳能电池及光伏组件
CN212848441U (zh) 太阳能电池组件
CN212161825U (zh) 背接触太阳能电池组件
CN109449236A (zh) 一种异质结太阳电池间的互联模式
CN219917187U (zh) 一种背接触电池组件和光伏系统
WO2016009712A1 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
WO2016065933A1 (en) Solar cell, solar cell module and manufacturing method thereof
CN116230795A (zh) 光伏电池片组及其制备方法、光伏组件

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021570908

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020936081

Country of ref document: EP

Effective date: 20211125

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE