WO2021232703A1 - 四旋翼无人机 - Google Patents

四旋翼无人机 Download PDF

Info

Publication number
WO2021232703A1
WO2021232703A1 PCT/CN2020/127949 CN2020127949W WO2021232703A1 WO 2021232703 A1 WO2021232703 A1 WO 2021232703A1 CN 2020127949 W CN2020127949 W CN 2020127949W WO 2021232703 A1 WO2021232703 A1 WO 2021232703A1
Authority
WO
WIPO (PCT)
Prior art keywords
cantilever
rotor assembly
motor
quad
rotor
Prior art date
Application number
PCT/CN2020/127949
Other languages
English (en)
French (fr)
Inventor
谢信霖
罗伟彬
韩磊
陈远周
潘岐泽
陈善机
钟尉
罗炜
龚德煌
李浩权
卜成浪
黄嘉盛
张笑玲
冼鹏飞
陈学能
刘旺
郑伟哲
Original Assignee
广东电网有限责任公司清远供电局
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东电网有限责任公司清远供电局 filed Critical 广东电网有限责任公司清远供电局
Publication of WO2021232703A1 publication Critical patent/WO2021232703A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/36Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like adapted to receive antennas or radomes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • B64C27/14Direct drive between power plant and rotor hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/285Aircraft wire antennas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • This application relates to the technical field of drones, for example, to a four-rotor drone.
  • RTK Real Time Kinematic
  • carrier phase difference technology is based on the relative positioning concept of GPS and based on real-time processing of the carrier phases of two measuring stations.
  • the reference station uses the data link to compare the collected carriers in real time.
  • the observation and the coordinate information of the base station are sent to the mobile base station together.
  • RTK technology is applied to the field of UAV technology, which can provide high-precision positioning support for UAV flight operations by obtaining navigation satellite signals and RTK differential positioning information in real time.
  • the RTK receiver of the mobile base station is set on the top of the ground RTK measuring instrument bracket, and the differential positioning module and the RTK antenna are fixed on the UAV.
  • the traditional solution is to install the RTK antenna on the antenna bracket above the center plate.
  • the space of the center plate is limited. All electronic devices are concentrated on the center plate.
  • the electromagnetic environment is very complicated. It is easy to cause interference to the RTK antenna and affect the positioning accuracy.
  • the short distance of the RTK antenna is also not conducive to the high positioning accuracy of the UAV.
  • This application provides a four-rotor unmanned aerial vehicle to solve the problem that it is difficult to obtain high positioning accuracy when the RTK antenna is close.
  • An embodiment provides a four-rotor drone, including:
  • the left rotor assembly and the right rotor assembly both include a first cantilever, a first motor, a first blade and an RTK antenna, among which:
  • the fixed end of the first motor is connected to the lower side of the front end of the first cantilever, the first blade is connected to the movable end of the first motor, and the RTK antenna is arranged on the front end of the first cantilever. side.
  • Two RTK antennas are respectively arranged at the front end of the left rotor assembly and the right rotor assembly. Compared with the previous design, the interval is greatly increased. At the same time, the electromagnetic interference of the fuselage body is prevented. At the same time, the RTK antenna is set on the upper side of the first cantilever to make the RTK antenna In a relatively clean electromagnetic environment, the positioning accuracy is improved; the first blade is located directly below the RTK antenna, which is conducive to the heat dissipation of the RTK antenna.
  • a first electronic speed controller is further provided between the first motor and the RTK antenna, and the first electronic speed controller is electrically connected to the first motor. connect.
  • the first electronic speed governor can control the speed of the first motor, and at the same time isolate the distance between the RTK antenna and the first motor, and prevent the RTK antenna from being electromagnetically interfered by the first motor.
  • the first electronic governor is arranged on the upper side of the first cantilever, and the RTK antenna is arranged on the upper side of the first electronic governor. Increase the height of the RTK antenna and improve the antenna transmission effect.
  • a bracket is provided on the first cantilever, and the first motor, the RTK antenna, and the first electronic governor are all connected to the bracket.
  • the bracket includes a tube clamp, a first bracket plate, a second bracket plate, and a third bracket plate.
  • the tube clamp is sleeved on the surface of the first cantilever.
  • the first support plate is arranged on the lower side of the pipe clamp, the second support plate is arranged on the upper side of the pipe clamp, and the third support plate is arranged on the second support plate through a plurality of connecting posts.
  • the first motor is connected to the lower surface of the first support plate
  • the first electronic speed governor is connected to the upper surface of the second support plate
  • the RTK antenna is connected to the third support The upper surface of the board.
  • the front rotor assembly and the rear rotor assembly each include a second cantilever, a second motor, and a second blade, and the second motor and the second blade are both arranged on the upper side of the front end of the second cantilever;
  • a second electronic speed governor is also provided on the lower side of the front end of the second cantilever
  • a pan-tilt camera is provided on the second cantilever in the front rotor assembly.
  • the first cantilever in both the left-rotor assembly and the right-rotor assembly, can rotate a certain angle around its rear end to be locked in the working position and the locked position.
  • the main body of the fuselage is provided with a positioning member that fixes the first cantilever in the working position or the locking position respectively, and the positioning member can interact with the first cantilever.
  • a cantilever snap connection is provided.
  • both the left-rotor wing assembly and the right-rotor wing assembly can rotate 90°.
  • the left rotor assembly and the right rotor assembly both rotate clockwise or both rotate counterclockwise.
  • the two RTK antennas of the present application are respectively arranged at the front end of the left rotor assembly and the right rotor assembly, and the spacing is greatly increased compared with the previous design, while preventing electromagnetic interference of the fuselage body, and at the same time, the RTK antenna is arranged on the upper side of the first cantilever.
  • the RTK antenna is placed in a relatively clean electromagnetic environment to improve positioning accuracy.
  • the first blade is located directly below the RTK antenna, which is conducive to the heat dissipation of the RTK antenna.
  • Fig. 1 is a schematic structural diagram of a quad-rotor unmanned aerial vehicle according to a specific embodiment of the present application
  • Fig. 2 is a partially enlarged view of a quad-rotor drone according to a specific embodiment of the present application
  • Fig. 3 is an enlarged view of another part of the quad-rotor drone according to the specific embodiment of the present application.
  • Fig. 4 is an exploded view of a quad-rotor drone according to a specific embodiment of the present application.
  • connection shall be interpreted broadly, for example, they may be fixedly connected, detachably connected, or integrated. ; It can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components or the interaction relationship between two components.
  • connection shall be interpreted broadly, for example, they may be fixedly connected, detachably connected, or integrated. ; It can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components or the interaction relationship between two components.
  • the "on" or “under” of the first feature of the second feature may include direct contact between the first and second features, or may include the first and second features Not in direct contact but through other features between them.
  • the "above”, “above” and “above” of the first feature on the second feature include the first feature directly above and obliquely above the second feature, or it simply means that the first feature is higher in level than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the terms “upper”, “lower”, “right”, and other orientations or positional relationships are based on the orientations or positional relationships shown in the drawings, and are only for the convenience of description and simplifying operations, rather than indicating It may also imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation of the present application.
  • the terms “first” and “second” are only used to distinguish them in description, and have no special meaning.
  • the quad-rotor drone includes a fuselage body 1 and a left rotor assembly, a right rotor assembly, a front rotor assembly, and a rear rotor that are respectively located in four directions of the fuselage body 1. Rotor components.
  • the fuselage body 1 is provided with a GPS navigation module, and the bottom of the fuselage body 1 is provided with a tripod folder.
  • the tripod folder is an electric tripod folder, and the electric tripod folder There is a landing gear.
  • the left rotor assembly and the right rotor assembly have the same structure, and the front rotor assembly and the rear rotor assembly have the same structure.
  • both the left-rotor assembly and the right-rotor assembly include a first cantilever 2, a first motor 3, a first blade 4, and an RTK antenna 5.
  • the fixed end of the first motor 3 is connected to the first cantilever 2
  • the first blade 4 is connected to the movable end of the first motor 3, and the RTK antenna 5 is arranged on the upper side of the front end of the first cantilever 2.
  • the first cantilever 2 is made of carbon fiber material, the first cantilever 2 is a cylinder with a diameter of 16 mm, and the first motor 3 is a brushless motor.
  • the two RTK antennas 5 are respectively arranged at the front end of the left rotor assembly and the right rotor assembly. Compared with the previous design, the interval is greatly increased, while preventing electromagnetic interference of the fuselage body 1, and the RTK antenna 5 is arranged on the upper side of the first cantilever 2 , So that the RTK antenna 5 is in a relatively clean electromagnetic environment, and the positioning accuracy is improved. In addition, the first blade 4 is located directly below the RTK antenna 5, which is beneficial to the heat dissipation of the RTK antenna 5.
  • a first electronic speed governor 6 is also provided between the first motor 3 and the RTK antenna 5, and the first electronic speed governor 6 is electrically connected to the first motor 3, thereby adjusting the power of the first motor 3 Speed, while isolating the distance between the RTK antenna 5 and the first motor 3 to prevent the RTK antenna 5 from being electromagnetically interfered by the first motor 3.
  • the first electronic speed governor 6 is provided on the upper side of the first cantilever 2, and the RTK antenna 5 is provided on the upper side of the first electronic speed governor 6. Increase the height of the RTK antenna 5 to improve the antenna transmission effect.
  • a bracket 7 is provided on the first cantilever 2, and the first motor 3, the RTK antenna 5 and the first electronic speed controller 6 are all connected to the bracket 7.
  • the support 7 includes a pipe clamp 70, a first support plate 71, a second support plate 72 and a third support plate 73.
  • the pipe clamp 70 is sleeved on the surface of the first cantilever 2, and the first support plate 71 is arranged under the pipe clamp 70.
  • Side, the second bracket plate 72 is arranged on the upper side of the pipe clamp 70, the third bracket plate 73 is arranged above the second bracket plate 72 through four connecting posts, and the first motor 3 is connected to the lower surface of the first bracket plate 71 ,
  • the first electronic speed governor 6 is connected to the upper surface of the second support plate 72, and the RTK antenna 5 is connected to the upper surface of the third support plate 73.
  • the tube clamp 70 uses a 16mm carbon tube folding positioning seat.
  • the first support plate 71, the second support plate 72 and the third support plate 73 are all metal plates.
  • both the front rotor assembly and the rear rotor assembly include a second cantilever 8, a second motor 9 and a second blade 10, and the second motor 9 and the second blade 10 are both arranged on the second cantilever 8.
  • the upper side of the front end; the lower side of the front end of the second cantilever 2 is also provided with a second electronic governor 11.
  • the first cantilever 2 and the second cantilever 8 are located on the same horizontal plane and have the same structure; the second motor 9 and the first motor 3 have the same model, and the second blade 10 and the first blade 4 have the same structure.
  • a pan-tilt camera 12 is provided on the second cantilever 8 in the front rotor assembly.
  • the use environment of the quad-rotor drone can be observed in real time through the pan/tilt camera 12.
  • the first cantilever 2 in both the left rotor assembly and the right rotor assembly can rotate a preset angle around its rear end to be locked in the working position and the locking position.
  • the working position refers to the position where the first cantilever 2 and the second cantilever 8 are perpendicular, that is, the position where the two first cantilevers 2 respectively extend in the left-right direction.
  • the quad-rotor drone can be folded, thereby reducing the volume of the quad-rotor drone and improving storage.
  • both the left rotor wing assembly and the right rotor wing assembly can rotate 90°, that is, they can be parallel to the front rotor assembly and the rear rotor assembly.
  • both the left rotor assembly and the right rotor assembly rotate 90° clockwise or counterclockwise, for example, both rotate 90° clockwise, the left rotor assembly rotates on the side of the front rotor assembly, and the right rotor assembly rotates
  • the rear is located on one side of the rear rotor assembly.
  • the quad-rotor drone is symmetrical in the front-to-back direction.
  • the front half and the rear half have the same width, and a first cantilever 2 and a second cantilever 8 are provided above the pan/tilt camera. .
  • the main body 1 of the fuselage is provided with positioning members 13 for fixing the first cantilever 2 in the working position and the locked position respectively, and the positioning members 13 can be clamped with the first cantilever 2.
  • the fuselage body 1 is provided with a positioning member 13 on the left and right sides, and another positioning member 13 is provided on the right side of the front rotor assembly and the left side of the rear rotor assembly.
  • the positioning member 13 has a C-shaped buckle limit, and can be connected to the first cantilever 2.
  • two positioning members 13 are provided on the working position, and one positioning member 13 is provided on the locking position.
  • the working principle of this application is: two RTK antennas 5 are respectively arranged at the front end of the left rotor assembly and the right rotor assembly, and the interval is greatly increased compared with the previous design, while preventing electromagnetic interference of the fuselage body 1, and at the same time, the RTK antenna 5 is arranged at The upper side of the first cantilever 2 keeps the RTK antenna 5 in a relatively clean electromagnetic environment to improve positioning accuracy. At the same time, the first blade 4 is located directly under the RTK antenna 5, which is beneficial to the heat dissipation of the RTK antenna 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

一种四旋翼无人机,包括:机身主体(1),左旋翼组件和右旋翼组件,均包括第一悬臂(2)、第一电机(3)、第一桨叶(4)和RTK天线(5),第一电机的固定端连接于第一悬臂前端的下侧,第一桨叶连接第一电机的活动端,RTK天线设置在第一悬臂前端的上侧。四旋翼无人机能够提升定位精度。

Description

四旋翼无人机
本申请要求申请日为2020年5月19日、申请号为202010425654.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无人机技术领域,例如涉及一种四旋翼无人机。
背景技术
RTK(Real Time Kinematic)技术,又称载波相位差分技术,是根据GPS的相对定位概念,建立在实时处理两个测量站的载波相位的基础上,基准站通过数据链实时地将采集的载波相对观测量和基准站坐标信息一同发送给移动基站。
目前,RTK技术被应用于无人机技术领域,可以通过实时获取导航卫星信号和RTK差分定位信息,为无人机飞行作业提供高精度定位支持。使用时,移动基站的RTK接收机设置在地面RTK测量仪支架的顶端,差分定位模块以及RTK天线固定在无人机上。
传统方案是将RTK天线安装在中心板上方的天线支架上,中心板空间本就有限,各个电子设备集中安装于中心板,电磁环境非常复杂,容易对RTK天线造成干扰而影响定位精度,而且两RTK天线距离较近,也不利于无人机获得较高的定位精度。
发明内容
本申请提供了一种四旋翼无人机,以解决RTK天线距离较近不易获得较高定位精度的问题。
一实施例提供一种四旋翼无人机,包括:
机身主体;
左旋翼组件和右旋翼组件,均包括第一悬臂、第一电机、第一桨叶和RTK天线,其中:
所述第一电机的固定端连接于所述第一悬臂前端的下侧,所述第一桨叶连接所述第一电机的活动端,所述RTK天线设置在所述第一悬臂前端的上侧。
两个RTK天线分别设置在左旋翼组件和右旋翼组件的前端,间隔相比之前 设计大大增加,同时防止机身主体的电磁干扰,同时将RTK天线设置在第一悬臂的上侧,使RTK天线处于较为干净的电磁环境,提升定位精度;第一桨叶位于RTK天线的正下方,有利于RTK天线的散热。
作为上述四旋翼无人机的可选方案,所述第一电机与所述RTK天线之间还设有第一电子调速器,所述第一电子调速器与所述第一电机电性连接。第一电子调速器能够控制第一电机的转速,同时隔离RTK天线和第一电机的间距,避免RTK天线受到第一电机的电磁干扰。
作为上述四旋翼无人机的可选方案,所述第一电子调速器设置在所述第一悬臂的上侧,所述RTK天线设置在所述第一电子调速器的上侧。提高RTK天线的高度,提升天线传输效果。
作为上述四旋翼无人机的可选方案,所述第一悬臂上设有支架,所述第一电机、所述RTK天线和所述第一电子调速器均连接于所述支架上。
作为上述四旋翼无人机的可选方案,所述支架包括管夹、第一支架板、第二支架板和第三支架板,所述管夹套设于所述第一悬臂的表面,所述第一支架板设置在所述管夹的下侧,所述第二支架板设置在所述管夹的上侧,所述第三支架板通过若干连接柱设置于所述第二支架板的上方,所述第一电机连接于所述第一支架板的下表面,所述第一电子调速器连接于所述第二支架板的上表面,所述RTK天线连接于所述第三支架板的上表面。
作为上述四旋翼无人机的可选方案,还包括:
前旋翼组件和后旋翼组件,均包括第二悬臂、第二电机和第二桨叶,所述第二电机和所述第二桨叶均设置在所述第二悬臂前端的上侧;
所述第二悬臂前端的下侧还设置有第二电子调速器;
前旋翼组件中的所述第二悬臂上设有云台相机。
作为上述四旋翼无人机的可选方案,所述左旋翼组件和所述右旋翼组件中,所述第一悬臂均能够绕自身后端旋转一定角度以锁止在工作位和锁止位。
作为上述四旋翼无人机的可选方案,所述机身主体设有分别在所述工作位或所述锁止位固定所述第一悬臂的定位件,所述定位件能够与所述第一悬臂卡接。
作为上述四旋翼无人机的可选方案,所述左旋翼组件和所述右旋翼组件均能够旋转90°。
作为上述四旋翼无人机的可选方案,所述左旋翼组件和所述右旋翼组件均 沿顺时针或均沿逆时针旋转。
本申请的两个RTK天线分别设置在左旋翼组件和右旋翼组件的前端,间隔相比之前设计大大增加,同时防止机身主体的电磁干扰,同时将RTK天线设置在第一悬臂的上侧,使RTK天线处于较为干净的电磁环境,提升定位精度,另外,第一桨叶位于RTK天线的正下方,有利于RTK天线的散热。
附图说明
图1是本申请的具体实施方式的四旋翼无人机的结构示意图;
图2是本申请的具体实施方式的四旋翼无人机的部分放大图;
图3是本申请的具体实施方式的四旋翼无人机的另一部分放大图;
图4是本申请的具体实施方式的四旋翼无人机的分解图。
图中:
1-机身主体;2-第一悬臂;3-第一电机;4-第一桨叶;5-RTK天线;6-第一电子调速器;7-支架;70-管夹;71-第一支架板;72-第二支架板;73-第三支架板;8-第二悬臂;9-第二电机;10-第二桨叶;11-第二电子调速器;12-云台相机;13-定位件。
具体实施方式
在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本实施例的描述中,术语“上”、“下”、“右”、等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示 所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。
本申请提供一种四旋翼无人机,如图1,该四旋翼无人机包括机身主体1以及分别位于机身主体1四个方向的左旋翼组件、右旋翼组件、前旋翼组件和后旋翼组件。
机身主体1上设有GPS导航模块,机身主体1的底部设有脚架折叠器,可选地,该脚架折叠器为电动型脚架折叠器,并且,该电动型脚架折叠器上设有起落架。
在本实施例中,左旋翼组件和右旋翼组件的结构相同,前旋翼组件和后旋翼组件的结构相同。
如图2所示,左旋翼组件和右旋翼组件均包括第一悬臂2、第一电机3、第一桨叶4和RTK天线5,其中:第一电机3的固定端连接于第一悬臂2前端的下侧,第一桨叶4连接第一电机3的活动端,RTK天线5设置在第一悬臂2前端的上侧。
可选地,第一悬臂2由碳纤维材料制成,第一悬臂2为直径16mm的圆柱体,第一电机3选用无刷电机。
两个RTK天线5分别设置在左旋翼组件和右旋翼组件的前端,间隔相比之前设计大大增加,同时防止机身主体1的电磁干扰,同时将RTK天线5设置在第一悬臂2的上侧,使RTK天线5处于较为干净的电磁环境,提升定位精度,另外,第一桨叶4位于RTK天线5的正下方,有利于RTK天线5的散热。
在本实施例中,第一电机3和RTK天线5之间还设有第一电子调速器6,第一电子调速器6与第一电机3电性连接,从而调整第一电机3的转速,同时隔离RTK天线5和第一电机3的间距,避免RTK天线5受到第一电机3的电磁干扰。
第一电子调速器6设置在第一悬臂2的上侧,RTK天线5设置在第一电子调速器6的上侧。提高RTK天线5的高度,提升天线传输效果。
第一悬臂2上设有支架7,第一电机3、RTK天线5和第一电子调速器6均连接于支架7上。
支架7包括管夹70、第一支架板71、第二支架板72和第三支架板73,管夹70套设于第一悬臂2的表面,第一支架板71设置在管夹70的下侧,第二支 架板72设置在管夹70的上侧,第三支架板73通过四个连接柱设置于第二支架板72的上方,第一电机3连接于第一支架板71的下表面,第一电子调速器6连接于第二支架板72的上表面,RTK天线5连接于第三支架板73的上表面。
在本实施例中,管夹70选用16mm碳管折叠定位座。
可选地,为了减小RTK天线5受到电磁干扰,第一支架板71、第二支架板72和第三支架板73均为金属板。
继续参见图1和图3,前旋翼组件和后旋翼组件均包括第二悬臂8、第二电机9和第二桨叶10,第二电机9和第二桨叶10均设置在第二悬臂8前端的上侧;第二悬臂2前端的下侧还设置有第二电子调速器11。可选地,第一悬臂2和第二悬臂8位于同一水平面上,且结构相同;第二电机9和第一电机3的型号相同,第二桨叶10和第一桨叶4的结构相同。
示例性地,前旋翼组件中的第二悬臂8上设有云台相机12。通过云台相机12能够实时观察该四旋翼无人机的使用环境。
示例性地,左旋翼组件和右旋翼组件中的第一悬臂2均能够绕自身后端旋转预设角度以锁止在工作位和锁止位。在本实施例中,工作位是指第一悬臂2与第二悬臂8垂直的位置,即两个第一悬臂2分别沿左右方向延伸的位置。当第一悬臂2旋转预设角度后,能够收拢该四旋翼无人机,从而减小四旋翼无人机的体积,提高收纳性。
在本实施例中,左旋翼组件和右旋翼组件均能够旋转90°,即能够与前旋翼组件和后旋翼组件平行。
并且,可选地,左旋翼组件和右旋翼组件均沿顺时针或逆时针旋转90°,例如,均沿顺时针旋转90°,左旋翼组件旋转后位于前旋翼组件一侧,右旋翼组件旋转后位于后旋翼组件的一侧,该四旋翼无人机沿前后方向对称,前半部分和后半部分具有相同的宽度,并且云台相机的上方设有第一悬臂2和第二悬臂8挡着。
如图4所示,机身主体1设有分别在工作位和锁止位固定第一悬臂2的定位件13,定位件13能够与第一悬臂2卡接。示例性地,机身主体1分别在左右两侧设有一个定位件13,以及在前旋翼组件的右侧以及后旋翼组件的左侧各设有另一个定位件13。
定位件13具有C形的卡扣限位,进而能够与第一悬臂2卡接。
并且,为了保证第一悬臂2在工作位时的稳定,工作位上设有两个定位件 13,而锁止位上设有一个定位件13。
本申请的工作原理为:两个RTK天线5分别设置在左旋翼组件和右旋翼组件的前端,间隔相比之前设计大大增加,同时防止机身主体1的电磁干扰,同时将RTK天线5设置在第一悬臂2的上侧,使RTK天线5处于较为干净的电磁环境,提升定位精度,同时第一桨叶4位于RTK天线5的正下方,有利于RTK天线5的散热。

Claims (10)

  1. 一种四旋翼无人机,包括:
    机身主体(1);
    左旋翼组件和右旋翼组件,均包括第一悬臂(2)、第一电机(3)、第一桨叶(4)和RTK天线(5),其中:
    所述第一电机(3)的固定端连接于所述第一悬臂(2)前端的下侧,所述第一桨叶(4)连接所述第一电机(3)的活动端,所述RTK天线(5)设置在所述第一悬臂(2)前端的上侧。
  2. 根据权利要求1所述的四旋翼无人机,其中,所述第一电机(3)与所述RTK天线(5)之间还设有第一电子调速器(6),所述第一电子调速器(6)与所述第一电机(3)电性连接。
  3. 根据权利要求2所述的四旋翼无人机,其中,所述第一电子调速器(6)设置在所述第一悬臂(2)的上侧,所述RTK天线(5)设置在所述第一电子调速器(6)的上侧。
  4. 根据权利要求3所述的四旋翼无人机,其中,所述第一悬臂(2)上设有支架(7),所述第一电机(3)、所述RTK天线(5)和所述第一电子调速器(6)均连接于所述支架(7)上。
  5. 根据权利要求1所述的四旋翼无人机,其中,所述支架(7)包括管夹(70)、第一支架板(71)、第二支架板(72)和第三支架板(73),所述管夹(70)套设于所述第一悬臂(2)的表面,所述第一支架板(71)设置在所述管夹(70)的下侧,所述第二支架板(72)设置在所述管夹(70)的上侧,所述第三支架板(73)通过若干连接柱设置于所述第二支架板(72)的上方,所述第一电机(3)连接于所述第一支架板(71)的下表面,所述第一电子调速器(6)连接于所述第二支架板(72)的上表面,所述RTK天线(5)连接于所述第三支架板(73)的上表面。
  6. 根据权利要求2-5任一项所述的四旋翼无人机,还包括:
    前旋翼组件和后旋翼组件,均包括第二悬臂(8)、第二电机(9)和第二桨叶(10),所述第二电机(9)和所述第二桨叶(10)均设置在所述第二悬臂(8)前端的上侧;
    所述第二悬臂(2)前端的下侧还设置有第二电子调速器(11);
    前旋翼组件中的所述第二悬臂(8)上设有云台相机(12)。
  7. 根据权利要求6所述的四旋翼无人机,其中,所述左旋翼组件和所述右 旋翼组件中,所述第一悬臂(2)均能够绕自身后端旋转预设角度以锁止在工作位和锁止位。
  8. 根据权利要求7所述的四旋翼无人机,其中,所述机身主体(1)设有分别在所述工作位或所述锁止位固定所述第一悬臂(2)的定位件(13),所述定位件(13)能够与所述第一悬臂(2)卡接。
  9. 根据权利要求7所述的四旋翼无人机,其中,所述左旋翼组件和所述右旋翼组件均能够旋转90°。
  10. 根据权利要求9所述的四旋翼无人机,其中,所述左旋翼组件和所述右旋翼组件均沿顺时针或均沿逆时针旋转。
PCT/CN2020/127949 2020-05-19 2020-11-11 四旋翼无人机 WO2021232703A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010425654.4A CN111572791A (zh) 2020-05-19 2020-05-19 一种四旋翼无人机
CN202010425654.4 2020-05-19

Publications (1)

Publication Number Publication Date
WO2021232703A1 true WO2021232703A1 (zh) 2021-11-25

Family

ID=72121111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127949 WO2021232703A1 (zh) 2020-05-19 2020-11-11 四旋翼无人机

Country Status (2)

Country Link
CN (1) CN111572791A (zh)
WO (1) WO2021232703A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111572791A (zh) * 2020-05-19 2020-08-25 广东电网有限责任公司清远供电局 一种四旋翼无人机
CN114056542A (zh) * 2021-08-13 2022-02-18 南京晓飞智能科技有限公司 一种复合式多旋翼无人机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205060006U (zh) * 2015-09-24 2016-03-02 广州地理研究所 一种四旋翼无人机
KR20170038208A (ko) * 2015-09-30 2017-04-07 김영진 무인비행체용 내장형 전파수신안테나와 충격흡수장치 및 이를 갖는 무인비행체
CN207595263U (zh) * 2017-11-02 2018-07-10 深圳市九天创新科技有限责任公司 一种四旋翼单相机测绘无人机
CN210310879U (zh) * 2019-05-21 2020-04-14 深圳市大疆创新科技有限公司 无人飞行器
US10644385B1 (en) * 2019-03-14 2020-05-05 L3Harris Technologies, Inc. Wideband antenna system components in rotary aircraft rotors
CN111572791A (zh) * 2020-05-19 2020-08-25 广东电网有限责任公司清远供电局 一种四旋翼无人机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2677443C (en) * 2009-08-31 2013-04-09 Cmc Electronique Inc./Cmc Electronics Inc. Control of passive intermodulation on aircrafts
CN204368421U (zh) * 2014-12-25 2015-06-03 武汉智能鸟无人机有限公司 一种新型四旋翼无人机
CN206125442U (zh) * 2016-10-21 2017-04-26 北京京东尚科信息技术有限公司 无人机电机安装座及无人机
CN106628107A (zh) * 2016-12-08 2017-05-10 天津中翔腾航科技股份有限公司 一种可折叠的四旋翼无人机
CN209852586U (zh) * 2019-05-21 2019-12-27 深圳市大疆创新科技有限公司 无人飞行器
CN110304243A (zh) * 2019-05-30 2019-10-08 郑州大学 六自由度全解耦无人机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205060006U (zh) * 2015-09-24 2016-03-02 广州地理研究所 一种四旋翼无人机
KR20170038208A (ko) * 2015-09-30 2017-04-07 김영진 무인비행체용 내장형 전파수신안테나와 충격흡수장치 및 이를 갖는 무인비행체
CN207595263U (zh) * 2017-11-02 2018-07-10 深圳市九天创新科技有限责任公司 一种四旋翼单相机测绘无人机
US10644385B1 (en) * 2019-03-14 2020-05-05 L3Harris Technologies, Inc. Wideband antenna system components in rotary aircraft rotors
CN210310879U (zh) * 2019-05-21 2020-04-14 深圳市大疆创新科技有限公司 无人飞行器
CN111572791A (zh) * 2020-05-19 2020-08-25 广东电网有限责任公司清远供电局 一种四旋翼无人机

Also Published As

Publication number Publication date
CN111572791A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2021232703A1 (zh) 四旋翼无人机
US20220402607A1 (en) Foldable multi-rotor aerial vehicle
US20200148350A1 (en) Unmanned aircraft
EP2780228B1 (en) Transformable aerial vehicle
EP3137848B1 (en) Interchangeable mounting platform
US10710717B2 (en) Multirotor aircraft and a method for controlling the multirotor aircraft
US11530038B2 (en) Detachable protection structure for unmanned aerial systems
CN108780331B (zh) 云台控制方法和设备、云台以及无人机
BR112013007255B1 (pt) sistema
CN208998806U (zh) 一种无人机飞控三轴测试平台
WO2018058328A1 (zh) 螺旋桨保护罩及使用该螺旋桨保护罩的无人机
CN110199235A (zh) 一种用于与无人机通信的天线组件及无人机系统
WO2019128446A1 (zh) 起落架及具有此起落架的无人飞行器
WO2021027881A1 (zh) 一种无人飞行器
US20190210718A1 (en) Foldable rotor blade assembly and aerial vehicle with a foldable rotor blade assembly
WO2019061781A1 (zh) 云台及无人飞行器
CN210052062U (zh) 无人机目标跟踪与定位装置
CN106602263A (zh) 基于组合导航构建的捷联式高精度稳定平台系统
WO2018018503A1 (zh) 机架组件及使用该机架组件的无人机
WO2020037791A1 (zh) 云台减震结构、云台系统及无人飞行器
CN109490929A (zh) 飞控与导航一体机
WO2023237076A1 (zh) 一种拍摄机构、无人机及无人机的控制方法
WO2019100824A1 (zh) 无人飞行器
WO2023173988A1 (zh) 一种无人机跟踪装置
JP2022095709A (ja) マルチロータuavシステム及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936687

Country of ref document: EP

Kind code of ref document: A1