WO2021232560A1 - 一种重质油制备超高功率电极用针状焦的方法 - Google Patents
一种重质油制备超高功率电极用针状焦的方法 Download PDFInfo
- Publication number
- WO2021232560A1 WO2021232560A1 PCT/CN2020/101357 CN2020101357W WO2021232560A1 WO 2021232560 A1 WO2021232560 A1 WO 2021232560A1 CN 2020101357 W CN2020101357 W CN 2020101357W WO 2021232560 A1 WO2021232560 A1 WO 2021232560A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ultra
- needle coke
- high power
- heavy oil
- raw materials
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J41/00—Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
- B01J41/04—Processes using organic exchangers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/26—Selective adsorption, e.g. chromatography characterised by the separation mechanism
- B01D15/34—Size selective separation, e.g. size exclusion chromatography, gel filtration, permeation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/26—Selective adsorption, e.g. chromatography characterised by the separation mechanism
- B01D15/36—Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
- B01D15/361—Ion-exchange
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J39/00—Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/04—Processes using organic exchangers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J39/00—Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/08—Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/16—Organic material
- B01J39/18—Macromolecular compounds
- B01J39/20—Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J39/00—Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/26—Cation exchangers for chromatographic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J41/00—Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
- B01J41/08—Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
- B01J41/12—Macromolecular compounds
- B01J41/14—Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J41/00—Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
- B01J41/20—Anion exchangers for chromatographic processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B55/00—Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B57/00—Other carbonising or coking processes; Features of destructive distillation processes in general
- C10B57/02—Multi-step carbonising or coking processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B57/00—Other carbonising or coking processes; Features of destructive distillation processes in general
- C10B57/04—Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
- C10B57/045—Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing mineral oils, bitumen, tar or the like or mixtures thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G31/00—Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
- C10G31/11—Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by dialysis
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G55/00—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
- C10G55/02—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only
- C10G55/04—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only including at least one thermal cracking step
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B7/00—Heating by electric discharge
- H05B7/02—Details
- H05B7/06—Electrodes
- H05B7/08—Electrodes non-consumable
- H05B7/085—Electrodes non-consumable mainly consisting of carbon
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/017—Manufacturing methods or apparatus for heaters
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B7/00—Heating by electric discharge
- H05B7/02—Details
- H05B7/06—Electrodes
Definitions
- the invention relates to a method for preparing needle coke for ultra-high power electrodes from heavy oil, in particular to a method using heavy oil as a raw material, processed by size exclusion chromatography and ion exchange chromatography, and prepared by a two-stage continuous carbonization process Needle coke materials for ultra-high power electrodes belong to the field of preparation of advanced new carbon materials.
- ultra-high power electric furnace steelmaking has become the mainstream development trend of electric furnace steelmaking in the world. This not only greatly increases the demand for high-quality needle coke, but also The requirements for graphite electrode framework materials using coke as raw materials are becoming more and more stringent. Compared with ordinary graphite electrodes, the ultra-high-power electrodes made of needle coke can shorten the smelting time, reduce the power consumption of steel consumption, and double the production capacity.
- Needle coke is a carbonized product of coal-based pitch or petroleum-based pitch. It is a new type of carbon material with metallic luster and more voids. Its appearance is silver gray. Needle coke is a vigorously developed carbon material. High-quality varieties. The structure of needle coke has obvious flowing texture. There are a few large holes in the structure of needle coke. The hole shape is slightly elliptical, and its particle length and width are relatively large. High-end carbon products such as ultra-high-power electrodes, special carbon materials, carbon fibers and their composite materials, and raw materials for high-end carbon products such as carbon fibers and composite materials.
- needle coke for electrodes is generally required to have high true density, low coefficient of thermal expansion (CTE), high strength, low resistivity and good oxidation resistance.
- CTE coefficient of thermal expansion
- the quality of the needle coke electrode material depends on the selection of raw materials and the optimization of the coking process.
- the raw material requirements for the production of needle coke for ultra-high power electrodes high content of aromatic hydrocarbons (not including fused-ring macromolecular aromatic hydrocarbons) (30%-50%), heptane insoluble matter ⁇ 2%, BMCI ⁇ 120, ash content ⁇ Conditions such as 0.05%, S content ⁇ 0.5%, Ni ⁇ 50 ⁇ g/g, V ⁇ 50 ⁇ g/g, etc.
- the production process of needle coke mainly includes three parts: raw material pretreatment, carbonization into coke, and calcination. Among them, the raw material pretreatment methods include hydrogenation, two-stage thermal polycondensation, solvent treatment and so on.
- Raw materials such as FCC oil slurry undergo pyrolysis and polycondensation reactions to form mesophase pellets during the carbonization process, and the mesophase pellets grow, merge, and collide to form a wide-area mesophase.
- the content and nature of the mesophase, as well as the degree of matching with the effect of "air jet coke pulling" in the subsequent curing process, are the keys to determining the quality of needle coke.
- Calcining is calcining needle coke at about 1400°C to eliminate volatile components and improve density, mechanical strength, and electrical conductivity.
- the main deficiencies in the current process are: in the first step of the raw material and processing, the solid catalyst powder and other non-ideal components in the raw oil (the high-quality raw material for the production of needle coke materials for ultra-high power electrodes is rich in short side chains) Linearly connected polycyclic (3-4 ring) aromatics) are not conducive to the formation of high-quality mesophase.
- the second step is the process of carbonization into coke.
- the liquid phase carbonization process and the air-flow coking process are not sufficiently controlled, and the high-quality crystal structure cannot be fully developed.
- the content of anisotropic fiber structure is not high, and the ultra-high power electrode needle cannot be produced stably. Coke.
- the purpose of the present invention is to overcome the deficiencies of the prior art and provide a method for preparing needle coke for ultra-high power electrodes from heavy oil.
- Narrow molecular weight neutral raw materials are obtained by pretreatment, the pretreatment method is improved, the source of raw materials is expanded, and the production process is optimized; and the two-stage continuous carbonization method is adopted to produce high true density (>2.13g/cm 3 ) and low thermal expansion Coefficient ( ⁇ 1.15 ⁇ 10 -6 /°C) of high-quality ultra-high-power needle coke for electrodes.
- the method for preparing needle coke for ultra-high power electrodes from heavy oil includes the following steps: (1) using heavy oil as a raw material; (2) passing the raw material through size exclusion chromatography to separate the relative Components with a molecular mass of 400-1000; (3) Remove acidic and basic components through ion exchange chromatography to obtain neutral raw materials; (4) In the first stage of carbonization reaction, neutralize raw materials under the reaction pressure 2-8MPa, reaction temperature 400-450°C, react for 1-6 hours; (5) After the first stage carbonization reaction is completed, the reactor is heated to 460-520°C for the second stage carbonization reaction, and the reaction pressure is 0- The reaction is continued for 6-12 hours at 2MPa to obtain a green coke product, and the green coke is calcined at a high temperature to obtain needle coke for ultra-high power electrode.
- the filler used in the size exclusion chromatography is an organogel
- the organogel is selected from one of polystyrene, polyethyl acetate gel, cross-linked dextran, and cross-linked polyacrylamide.
- the flushing agent used in the size exclusion chromatography is one of hexane, tetrahydrofuran, dichloromethane, dioxane, cyclohexane, and dichloroethane, preferably tetrahydrofuran; for
- the diameter of the gel column of size exclusion chromatography is 50-100mm, and the height of the gel column is 800-1000mm.
- the resin used in ion exchange chromatography is a large-pore cation exchange resin prepared by introducing sulfonic acid groups or carboxylic acid groups into the skeleton and a large-pore anion exchange resin prepared by introducing quaternary or tertiary amine groups;
- the backbone of the cation exchange resin and the anion exchange resin is one or more of polystyrene, polyethylene, polymethyl methacrylate, and styrene-diethylene copolymer, preferably styrene-diethylene copolymer;
- the packed column of the ion exchange chromatography has a diameter of 10-20 mm, a column length of 500-1000 mm, a flow rate of 2 ml/min, and a temperature of 50°C.
- the N content of the neutral raw material is less than 0.5%, and the S content is less than 0.3%; the first stage carbonization reaction and the second stage carbonization reaction are continuous two-stage carbonization treatments.
- the present invention more specifically adopts the following technical solutions: (1)
- the heavy oil raw material is petroleum atmospheric residue, vacuum residue or its heavy distillate oil, medium and low temperature coal tar heavy components, high temperature coal tar fraction, catalytic cracking oil slurry , Hydrocracking tail oil and one or more of ethylene tar; (2) After the raw material is preheated to 50°C, it passes through the size exclusion chromatography of polystyrene packing, and the pore size of the packing is The diameter of the gel column bed is 50-100mm, the height of the gel column bed is 800-1000mm, and the temperature is 50°C; Tetrahydrofuran (THF) is used as the flushing agent, and the flow rate is 1.5ml/min; (3) Treat step (2) The latter raw materials are successively passed through a large pore cation exchange resin prepared by introducing sulfonic acid groups and a large pore anion exchange resin prepared by introducing quaternary amine groups with styrene-diethylene copolymer as the
- step (2) 100ml of tetrahydrofuran was mixed with 300g of heavy oil to be preheated to 50°C and then added to the gel column in multiple times.
- the temperature of the constant temperature water bath was maintained at 50°C, and the top of the column layer was pressurized to ensure a flow rate of 1.5ml/ min, collect the outflow oil.
- step (3) a large pore cation exchange resin with a column height of 800 mm is added to the packed column of ion exchange chromatography, wetted with 50 ml of tetrahydrofuran, and the effluent oil obtained in (2) is added to the column to ensure a flow rate of 2 ml /min, collect effluent oil A; add anion exchange resin with a large pore size of 800mm column height to the packed column of ion exchange chromatography, wet with 50ml tetrahydrofuran, add the above effluent oil A to the column, ensure a flow rate of 2ml/min, collect the effluent
- For oil B the tetrahydrofuran is distilled out to obtain a neutral raw material with a narrow molecular weight range; preferably, the N content in the neutral raw material is less than 0.5%, and the S content is less than 0.3%.
- step (5) the product produced in step (5) is calcined at a high temperature to obtain an ultra-high power electrode with true density> 2.13 g/cm 3 , ash content ⁇ 0.3, and CTE ⁇ 1.15 ⁇ 10 -6 /°C measured at 25 to 600 °C Use needle coke.
- the invention also provides the product prepared by the method for preparing the needle coke for the ultra-high power electrode from the heavy oil and the application of the product in the preparation of the graphite electrode.
- the method adopted by the present invention is a combined process of size exclusion chromatography pretreatment-ion exchange chromatography pretreatment-two-stage continuous carbonization.
- Size exclusion chromatography can remove the smaller and larger hydrocarbons in the raw materials, reduce the molecular weight distribution range of the reaction raw materials, and reduce the excessive carbonization of larger molecules and the polycondensation of smaller molecules during the reaction process under the same reaction time, pressure and temperature.
- the relative molecular weight is controlled at 400-1000, and the uniformity of the reaction raw materials is controlled at the molecular scale.
- the acidic and basic components in the raw materials are removed by ion exchange chromatography.
- the acidic components are mostly sulfur-containing compounds, and the basic components are mainly nitrogen-containing compounds. If the main chain or side chain of a fatty compound contains sulfur atoms, the carbon-hydrogen bond connected to it is greatly weakened, which is easy to break, and the thermal reaction is too fast; the nitrogen heteroatom in the aromatic hydrocarbon substituent increases the polarity of the molecule, the same The stability of the compound is greatly reduced.
- the mesophase nucleation and the growth rate of small balls are very fast during carbonization. Observation under the microscope shows that the mesophase basically belongs to the fine anisotropic mosaic structure, and there are some coarse anisotropic mosaic structures and coarse Fibrous structure is not conducive to the formation of high-quality mesophase pitch.
- the first stage of carbonization reaction is a low temperature (400-450°C) high pressure (2-8MPa) short time (1-6h) carbonization reaction. Under the protection of N 2 atmosphere, the low temperature causes the raw materials to undergo shallow pyrolysis and polycondensation reactions. Inhibit the escape of small molecular hydrocarbons, so the viscosity of the reaction system is low, and the fluidity of the product of a carbonization reaction is ensured. Low temperature and high pressure and short time are used as the reaction conditions.
- the first step of carbonization reaction is mild and moderate, ensuring high yield of the first reaction intermediate product.
- the crystallites are initially aligned and oriented, which is a good foundation for the second step of carbonization reaction;
- the second step is high temperature (460-520 deg.] C) a low pressure (0-2MPa) time (6-12h) carbonization reaction, the depth of carbonization under N 2, at which time the reaction feed microcrystalline shape, and have a certain orientation with Crystallinity, higher temperature promotes deep pyrolysis and thermal polycondensation reaction of reaction molecules, orderly orientation of reaction molecules, crystallinity and orientation degree gradually increase with the progress of the reaction, long-term reaction guarantees sufficient development and orientation of crystals.
- the small molecule light hydrocarbon gas produced is discharged in a low pressure environment, and the discharge of small molecules forms a stable gas flow. After a long time of reaction, sufficient gas flow is carried out to pull the coke, and the needle coke with uniaxially oriented streamline mesophase texture is obtained. product.
- the present invention has the following beneficial effects:
- the present invention involves abundant sources of raw materials, low cost, simple operation process, low energy consumption; reasonable design, simple production process, low equipment requirements, and easy realization of industrialization.
- size exclusion treatment and ion exchange chromatography can effectively improve the molecular weight and composition distribution of the raw materials and the distribution of elements, and will reduce the light components that are not conducive to the polycondensation reaction and the macromolecular components that are prone to excessive carbonization and impurities.
- the atomic components are removed to ensure the uniformity of the molecular weight of the raw materials.
- the use of two-stage continuous carbonization can make the raw materials fully react and ensure the orderly and full growth of crystals.
- the first step of carbonization is a low-temperature, high-pressure and short-time reaction, which can promote the full development of the mesophase structure, so that the crystallites are initially aligned and orientated;
- the second step is a high-temperature and low-pressure long-term reaction, which allows the raw materials to undergo a full pyrolysis and polycondensation reaction, and promotes the crystal structure
- Fully developed and orderly oriented arrangement, and full airflow coke pulling reaction is conducive to the formation of a uniaxial needle-like streamline optically anisotropic structure, and finally high-temperature calcination to produce needle coke for ultra-high power electrodes.
- the following examples further describe the method for preparing needle coke for ultra-high power electrodes provided by the present invention using heavy oil as a raw material.
- the temperature was increased to 410°C at a uniform rate, the reaction pressure was maintained at 4MPa, and the stirring was started, and the carbonization reaction time was 2h.
- the carbonization reaction in the first step continues to heat up to 460°C, reduce pressure to 0MPa and keep the pressure, carbonization reaction for 6h, obtain true density of 2.20g/cm 3 , ash content of 0.25, thermal expansion coefficient of 1.12 ⁇ 10 -6 /°C Needle coke for ultra-high power electrodes.
- the temperature is increased to 420°C at a uniform rate, the reaction pressure is maintained at 5 MPa, and the stirring is started, and the carbonization reaction time is 3 hours.
- the carbonization reaction in the first step is completed, continue to heat up to 470°C, reduce pressure to 0MPa and keep the pressure, carbonization reaction for 7h, get a true density of 2.18g/cm 3 , ash content of 0.2, and thermal expansion coefficient of 1.10 ⁇ 10 -6 /°C Needle coke for ultra-high power electrodes.
- the temperature is increased to 430°C at a uniform speed, the reaction pressure is maintained at 6MPa, and the stirring is started, and the carbonization reaction time is 4h.
- the carbonization reaction in the first step is completed, continue to heat up to 480°C, reduce pressure to 0MPa and maintain the pressure, and carbonize for 8 hours to obtain a true density of 2.30g/cm 3 , ash content of 0.25, and a thermal expansion coefficient of 1.06 ⁇ 10 -6 /°C Needle coke for ultra-high power electrodes.
- the temperature was increased to 440°C at a uniform speed, the reaction pressure was maintained at 7 MPa, the stirring was started, and the carbonization reaction time was 6 hours.
- the carbonization reaction in the first step continues to heat up to 490°C, reduce pressure to 0MPa and keep the pressure, carbonization reaction for 9h, obtain true density of 2.23g/cm 3 , ash content of 0.15, thermal expansion coefficient of 1.01 ⁇ 10 -6 /°C Needle coke for ultra-high power electrodes.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Plasma & Fusion (AREA)
- Coke Industry (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
一种重质油制备超高功率电极用针状焦的方法。本方法是以重质油为原料,采用体积排阻分离方法,以聚苯乙烯作为分离柱填料,分离出相对分子质量分布为400-1000的特定分子体积的组分;通过离子交换色谱,分别去除掉其中的酸性分和碱性分,得到中性原料;处理后的原料经过两段连续炭化过程制备得到生焦,生焦经高温锻烧得到真密度大于2.13g/cm 3、在25-600℃下测定的CTE≤1.15×10 -6/℃的超高功率电极用针状焦。所述方法改进了预处理方法,扩大了原料来源,优化了生产工艺。
Description
本发明涉及一种重质油制备超高功率电极用针状焦的方法,具体为一种以重质油为原料,经体积排阻色谱和离子交换色谱处理后,经两段连续炭化工艺制备超高功率电极用针状焦材料,属于高级新型炭材料制备领域。
目前随着宇航、冶金、化工等技术的发展,超高功率电炉炼钢已成为当下世界电炉炼钢的主流发展走势,这不仅大大的增加了对优质针状焦的需要量,而且对针状焦为原材料的石墨电极骨架材料的要求也越来越严格。针状焦制得的超高功率电极与普通的石墨电极相比,可以缩短冶炼时间,减少钢铁消耗的电耗,进而使生产能力加倍的提高。
针状焦是煤基沥青或石油基沥青的炭化产物,是一种有金属光泽,有较多空隙的新型炭素材料,它的外观呈现银灰色,针状焦是当今碳材料中大力发展的一个优质品种。针状焦结构具有明显流动纹理,针状焦的结构中有少量大孔,其孔形状略呈椭圆形,其颗粒长宽比较大纹理走向略似纤维状或者针状,有润滑触感,是生产超高功率电极、特种炭素材料、炭纤维及其复合材料等高端炭素制品炭纤维及其复合材料等高端炭素制品的原料。为制备现代冶金工业所需的HP、UHP,一般要求电极用针状焦应具备高真密度、低热膨胀系数(CTE)、高强度、低电阻率和良好的抗氧化性。而针状焦电极材料的品质优劣依赖于原料的筛选和焦化工艺的优化。
一般,生产超高功率电极用针状焦的原料的要求:芳烃(不包括稠环大分子芳烃)含量高(30%-50%)、庚烷不溶物<2%、BMCI≥120、灰分<0.05%、S含量≤0.5%、Ni≤50μg/g、V≤50μg/g等条件。针状焦的生产工艺流程主要包括原料预处理、炭化成焦、煅烧三部分。其中原料预处理方法有加氢、二段热缩聚、溶剂处理等。原料如FCC油浆在炭化过程中经过热解和缩聚反应形成中间相小球,中间相小球通过生长、融并、碰撞形成广域中间相。中间相的含量和性质,以及与后续固化过程中“气流拉焦”作用的匹配度,是决定针状焦质 量的关键。煅烧是将针状焦在1400℃左右下煅烧,以达到排除挥发性组分提高密度、机械强度、导电性能的目的。
目前工艺中主要不足表现为:第一步原料与处理过程中,原料油中的催化剂固体粉末及其他非理想组分(生产超高功率电极用针状焦材料的优质原料为富含短侧链线型连接的多环(3-4环)芳烃)都不利于优质中间相的形成。第二步炭化成焦过程,目前对液相炭化过程与气流拉焦过程控制不够,不能使优质晶体结构充分发育,致使各向异性的纤维结构含量不高,不能稳定生产超高功率电极用针状焦。此外,生焦中较多的含硫和含氮化合物会在高温煅烧过程中逸出,即发生膨胀,导致针状焦熟焦产品出现裂纹,从而降低了针状焦的品质,因此对原料油进行酸性组分和碱性组分的脱除尤为重要。
目前我国生产的电极用针状焦存在的主要问题是真密度低而热膨胀系数(CTE)大,因此国产焦尚不能完全取代进口焦。主要原因是在生产过程中,原料的筛选、预处理和炭化成焦工艺条件还有待进一步改善。
发明内容
本发明的目的在于克服现有技术的不足,提供一种重质油制备超高功率电极用针状焦的方法,主要采用重质油为原料,通过对其进行体积排阻色谱和离子交换色谱预处理得到窄分子量的中性原料,改进了预处理方法,扩大了原料来源,优化了生产工艺;并采用两段连续炭化方法,生产得到高真密度(>2.13g/cm
3),低热膨胀系数(<1.15×10
-6/℃)的优质超高功率电极用针状焦。
本发明所述的一种重质油制备超高功率电极用针状焦的方法,包含以下步骤:(1)以重质油为原料;(2)将原料通过体积排阻色谱,分离出相对分子质量为400-1000的组分;(3)通过离子交换色谱,去除掉其中的酸性分和碱性分,得到中性原料;(4)第一段炭化反应,将中性原料在反应压力2-8MPa、反应温度400-450℃下,反应1-6小时;(5)第一段炭化反应完成后,反应釜升温至460-520℃进行第二段炭化反应,在反应压力为0-2MPa下继续反应6-12小时,得到生焦产品,生焦经高温煅烧得到超高功率电极用针状焦。
本发明中,所述体积排阻色谱所用的填料为有机凝胶,所述有机凝胶选自 聚苯乙烯、聚乙酸乙酯凝胶、交联葡聚糖、交联聚丙烯酰胺中的一种,优选为聚苯乙烯,所述体积排阻色谱所用冲洗剂为己烷、四氢呋喃、二氯甲烷、二嗯烷、环己烷、二氯乙烷中的一种,优选为四氢呋喃;填料孔径为
体积排阻色谱的凝胶柱直径为50-100mm,凝胶柱高度为800-1000mm。
本发明中,所述离子交换色谱所用树脂为向骨架中引入磺酸基或羧酸基制得的大孔径阳离子交换树脂和引入季胺基或叔胺基制得的大孔径阴离子交换树脂;所述阳离子交换树脂和阴离子交换树脂的骨架为聚苯乙烯、聚乙烯、聚甲基丙烯酸甲酯、苯乙烯-二乙烯共聚体中的一种或几种,优选为苯乙烯-二乙烯共聚体;所述离子交换色谱的填充柱直径10-20mm,柱长500-1000mm,流速2ml/min,温度50℃。
本发明中,所述中性原料N含量低于0.5%,S含量低于0.3%;所述第一段炭化反应和第二段炭化反应为连续两段碳化处理。
本发明更具体的采取以下技术方案:(1)重质油原料为石油常压渣油、减压渣油或其重馏分油、中低温煤焦油重组分、高温煤焦油馏分、催化裂化油浆、加氢裂化尾油和乙烯焦油中的一种或几种;(2)原料预热至50℃后通过聚苯乙烯填料的体积排阻色谱,填料孔径为
凝胶柱床直径为50-100mm,凝胶柱床高度为800-1000mm,温度为50℃;以四氢呋喃(THF)作为冲洗剂,流速为1.5ml/min;(3)将步骤(2)处理后的原料依次通过以苯乙烯-二乙烯共聚体为骨架,引入磺酸基制得的大孔径阳离子交换树脂和引入季胺基制得的大孔径阴离子交换树脂,得到中性原料;所述离子交换色谱的填充柱直径10-20mm,柱长500-1000mm,流速2ml/min,恒温水浴温度为50℃;(4)将步骤(3)中得到的中性原料加入高压釜中进行第一段炭化反应,在惰性气体或氮气气氛中,反应压力2-8MPa、反应温度400-450℃下,反应1-6小时;(5)第一段炭化反应完成后,高压釜升温至460-520℃进行第二段炭化反应,在反应压力为0-2MPa下继续反应6-12小时,得到生焦产品,生焦经高温煅烧得到超高功率电极用针状焦。
进一步的,步骤(2)中取四氢呋喃100ml混合300g重质油预热至50℃后分多次加入至凝胶柱内,恒温水浴保持温度为50℃,柱层顶部加压保证流速 1.5ml/min,收集流出油。
进一步的,步骤(3)中,在离子交换色谱的填充柱加入800mm柱高的大孔径阳离子交换树脂,用50ml四氢呋喃润湿,将(2)中得到的流出油加入至柱内,保证流速2ml/min,收集流出油A;在离子交换色谱的填充柱加入800mm柱高的大孔径阴离子交换树脂,用50ml四氢呋喃润湿,将上述流出油A加入至柱内,保证流速2ml/min,收集流出油B,蒸馏出其中的四氢呋喃,得到窄分子量范围的中性原料;优选的,所述中性原料中N含量低于0.5%,S含量低于0.3%。
进一步的,步骤(4)与步骤(5)反应过程中需不断进行匀速搅拌。
进一步的,步骤(5)生成的产品,经高温煅烧得到真密度>2.13g/cm
3、灰分≤0.3,在25~600℃下测定的CTE≤1.15×10
-6/℃的超高功率电极用针状焦。
本发明还提供了上述重质油制备超高功率电极用针状焦的方法制备得到的产品以及该产品在制备石墨电极中的应用。
本发明采取的方法是体积排阻色谱预处理-离子交换色谱预处理-两段连续炭化组合工艺。通过体积排阻色谱可以去除掉原料中分子量较小和较大的烃类,缩小反应原料分子量分布范围,减少在相同反应时间、压力、温度下反应过程中较大分子过度炭化和较小分子缩聚不完全的情况,相对分子质量控制在400-1000,在分子尺度控制反应原料均一性。
通过离子交换色谱去除掉原料中的酸性分和碱性分,其中酸性分以含硫化合物居多,碱性分以含氮化合物为主。若脂肪性化合物的主链或侧链带有硫原子,使与之相连的碳氢键大大减弱,易于断裂,热反应过快;芳烃取代基中含有氮杂原子使分子的极性增加,同样使化合物的稳定性大大降低。杂原子含量较高时,在炭化时中间相成核和小球成长速度很快,在显微镜下观察发现中间相基本上属于微细各向异性镶嵌结构,还有部分粗各向异性镶嵌结构和粗纤维组织,不利于优质中间相沥青的形成。
第一段炭化反应为低温(400-450℃)高压(2-8MPa)短时间(1-6h)炭化反应,在N
2气氛的保护下,低温使原料发生浅度热解与缩聚反应,高压抑制小分子烃的逸出,因此反应体系粘度低,保证一次炭化反应产物的流动性。低温高压短时间作为反应条件,第一步炭化反应温和适度,保证第一部反应中间产 物的高收率,同时微晶初步排列定向,为第二步炭化反应做好基础;第二步反应为高温(460-520℃)低压(0-2MPa)长时间(6-12h)炭化反应,在N
2保护下深度炭化,此时反应原料中微晶以初具规模,且有一定的定向性与结晶度,较高的温度促使反应分子发生深度热解与热缩聚反应,反应分子有序取向,结晶度与定向度随着反应的进行逐步提高,长时间反应保障了晶体充足的发育与定向。同时产生的小分子轻烃气体在低压环境排出,小分子的排出形成稳定气流,通过长时间的反应,进行充分的气流拉焦,得到具有单轴取向流线型中间相织构的针状焦生焦产品。
本发明与已有制备方法相比有益效果是:
(1)本发明涉及的原料来源丰富,成本低,操作过程简单,能耗较低;设计合理,生产工艺简单,对设备要求低,易于实现工业化。
(2)采用本方法,体积排阻处理和离子交换色谱可以有效改善原料的分子量和组成分布以及元素的分布,将不利于缩聚反应的轻组分和易过度炭化的大分子组分和含杂原子组分去除,保证原料的分子量的均一性。
(3)采用两段连续炭化可以使原料充分反应,保证晶体的有序充分生长。第一步炭化为低温高压短时间反应,可以促进中间相结构充分发育,使微晶初步排列定向;第二步炭化为高温低压长时间反应,使原料进行充分热解缩聚反应,并促使晶体结构充分发育与有序定向排列,充分进行气流拉焦反应,有利于形成单轴针状流线光学各向异性结构,最终经高温煅烧生成超高功率电极用针状焦。
下面结合实施例进一步叙述本发明所提供的以重质油为原料制备超高功率电极用针状焦的方法。
实施例1:
(1)在直径60mm、高度1000mm的凝胶柱底部加一玻璃棉垫,加入800mm柱高的聚苯乙烯,顶部也加一玻璃棉垫,用50ml四氢呋喃对色谱柱进行润湿,取四氢呋喃100ml混合300g催化裂化油浆预热至50℃后分多次加入至柱内,恒温水浴保持温度为50℃,柱层顶部加压保证流速1.5ml/min,收集流出油;(2) 在直径15mm、高度1000mm的凝胶柱底部加一玻璃棉垫,加入800mm柱高的以苯乙烯-二乙烯共聚体为骨架,引入磺酸基制得的大孔径阳离子交换树脂,顶部也加一玻璃棉垫,用50ml四氢呋喃润湿,将(1)中得到的流出油加入至柱内,顶部加压保证流速2ml/min,收集流出油;(3)在直径15mm、高度1000mm的凝胶柱底部加一玻璃棉垫,加入800mm柱高的以苯乙烯-二乙烯共聚体为骨架,引入季胺基制得的大孔径阴离子交换树脂,顶部也加一玻璃棉垫,用50ml四氢呋喃润湿,将(2)中得到的流出油加入至柱内,顶部加压保证流速2ml/min,收集流出油,蒸馏出其中的四氢呋喃,得到窄分子量范围的中性原料;(4)将步骤(3)得到的中性原料100g加入至高压釜,通入氮气置换空气3次,流量2L/min。匀速升温至410℃,保持反应压力为4MPa,启动搅拌,炭化反应时间2h。第一步炭化反应完成后继续升温至460℃,减压至0MPa并保持压力,炭化反应6h,得到真密度为2.20g/cm
3、灰分为0.25,热膨胀系数为1.12×10
-6/℃的超高功率电极用针状焦。
实施例2:
(1)在直径60mm、高度1000mm的凝胶柱底部加一玻璃棉垫,加入750mm柱高的聚苯乙烯,顶部也加一玻璃棉垫,用50ml四氢呋喃对色谱柱进行润湿,取四氢呋喃100ml混合300g催化裂化油浆预热至50℃后分多次加入至柱内,恒温水浴保持温度为50℃,柱层顶部加压保证流速1.5ml/min,收集流出油;(2)在直径15mm、高度1000mm的凝胶柱底部加一玻璃棉垫,加入750mm柱高的以苯乙烯-二乙烯共聚体为骨架,引入磺酸基制得的大孔径阳离子交换树脂,顶部也加一玻璃棉垫,用50ml四氢呋喃润湿,将(1)中得到的流出油加入至柱内,顶部加压保证流速2ml/min,收集流出油;(3)在直径15mm、高度1000mm的凝胶柱底部加一玻璃棉垫,加入750mm柱高的以苯乙烯-二乙烯共聚体为骨架,引入季胺基制得的大孔径阴离子交换树脂,顶部也加一玻璃棉垫,用50ml四氢呋喃润湿,将(2)中得到的流出油加入至柱内,顶部加压保证流速2ml/min,收集流出油,蒸馏出其中的四氢呋喃,得到窄分子量范围的中性原料;(4)将步骤(3)得到的中性原料100g加入至高压釜,通入氮气置换空气3次,流量2L/min。匀速升温至420℃,保持反应压力为5MPa,启动搅拌,炭化反应时间 3h。第一步炭化反应完成后继续升温至470℃,减压至0MPa并保持压力,炭化反应7h,得到真密度为2.18g/cm
3、灰分为0.2,热膨胀系数为1.10×10
-6/℃的超高功率电极用针状焦。
实施例3:
(1)在直径60mm、高度1000mm的凝胶柱底部加一玻璃棉垫,加入850mm柱高的聚苯乙烯,顶部也加一玻璃棉垫,用50ml四氢呋喃对色谱柱进行润湿,取四氢呋喃100ml混合300g催化裂化油浆预热至50℃后分多次加入至柱内,恒温水浴保持温度为50℃,柱层顶部加压保证流速1.5ml/min,收集流出油;(2)在直径15mm、高度1000mm的凝胶柱底部加一玻璃棉垫,加入850mm柱高的以苯乙烯-二乙烯共聚体为骨架,引入磺酸基制得的大孔径阳离子交换树脂,顶部也加一玻璃棉垫,用50ml四氢呋喃润湿,将(1)中得到的流出油加入至柱内,顶部加压保证流速2ml/min,收集流出油;(3)在直径15mm、高度1000mm的凝胶柱底部加一玻璃棉垫,加入850mm柱高的以苯乙烯-二乙烯共聚体为骨架,引入季胺基制得的大孔径阴离子交换树脂,顶部也加一玻璃棉垫,用50ml四氢呋喃润湿,将(2)中得到的流出油加入至柱内,顶部加压保证流速2ml/min,收集流出油,蒸馏出其中的四氢呋喃,得到窄分子量范围的中性原料;(4)将步骤(3)得到的中性原料100g加入至高压釜,通入氮气置换空气3次,流量2L/min。匀速升温至430℃,保持反应压力为6MPa,启动搅拌,炭化反应时间4h。第一步炭化反应完成后继续升温至480℃,减压至0MPa并保持压力,炭化反应8h,得到真密度为2.30g/cm
3、灰分为0.25,热膨胀系数为1.06×10
-6/℃的超高功率电极用针状焦。
实施例4:
(1)在直径60mm、高度1000mm的凝胶柱底部加一玻璃棉垫,加入900mm柱高的聚苯乙烯,顶部也加一玻璃棉垫,用50ml四氢呋喃对色谱柱进行润湿,取四氢呋喃100ml混合300g催化裂化油浆预热至50℃后分多次加入至柱内,恒温水浴保持温度为50℃,柱层顶部加压保证流速1.5ml/min,收集流出油;(2)在直径15mm、高度1000mm的凝胶柱底部加一玻璃棉垫,加入900mm柱高的以苯乙烯-二乙烯共聚体为骨架,引入磺酸基制得的大孔径阳离子交换树脂,顶 部也加一玻璃棉垫,用50ml四氢呋喃润湿,将(1)中得到的流出油加入至柱内,顶部加压保证流速2ml/min,收集流出油;(3)在直径15mm、高度1000mm的凝胶柱底部加一玻璃棉垫,加入900mm柱高的以苯乙烯-二乙烯共聚体为骨架,引入季胺基制得的大孔径阴离子交换树脂,顶部也加一玻璃棉垫,用50ml四氢呋喃润湿,将(2)中得到的流出油加入至柱内,顶部加压保证流速2ml/min,收集流出油,蒸馏出其中的四氢呋喃,得到窄分子量范围的中性原料;(4)将步骤(3)得到的中性原料100g加入至高压釜,通入氮气置换空气3次,流量2L/min。匀速升温至440℃,保持反应压力为7MPa,启动搅拌,炭化反应时间6h。第一步炭化反应完成后继续升温至490℃,减压至0MPa并保持压力,炭化反应9h,得到真密度为2.23g/cm
3、灰分为0.15,热膨胀系数为1.01×10
-6/℃的超高功率电极用针状焦。
Claims (10)
- 一种重质油制备超高功率电极用针状焦的方法,其特征在于,包括以下步骤:(1)以重质油为原料;(2)将原料通过体积排阻色谱,分离出相对分子质量为400-1000的组分;(3)通过离子交换色谱,去除掉其中的酸性分和碱性分,得到中性原料;(4)第一段炭化反应,将中性原料在反应压力2-8MPa、反应温度400-450℃下,反应1-6小时;(5)第一段炭化反应完成后,反应釜升温至460-520℃进行第二段炭化反应,在反应压力为0-2MPa下继续反应6-12小时,得到生焦产品,生焦经高温煅烧得到超高功率电极用针状焦。
- 根据权利要求1所述的一种重质油制备超高功率电极用针状焦的方法,其特征在于:所述重质油原料包括石油常压渣油、石油减压渣油、石油重馏分油、中低温煤焦油重组分、高温煤焦油馏分、催化裂化油浆、加氢裂化尾油和乙烯焦油中的一种或几种。
- 根据权利要求3所述的一种重质油制备超高功率电极用针状焦的方法,其特征在于:所述体积排阻色谱的填料为聚苯乙烯,冲洗剂为四氢呋喃。
- 根据权利要求1所述的一种重质油制备超高功率电极用针状焦的方法,其特征在于:使(2)处理后的原料先后通过向骨架中引入磺酸基或羧酸基制得的大孔径阳离子交换树脂和引入季胺基或叔胺基制得的大孔径阴离子交换树脂,得到中性原料;所述阳离子交换树脂和阴离子交换树脂的骨架为聚苯乙烯、聚乙烯、聚甲基丙烯酸甲酯、苯乙烯-二乙烯共聚体中的一种或几种;所述离子交换色谱的填充柱直径10-20mm,柱长500-1000mm,流速2ml/min,温度50℃。
- 根据权利要求5所述的一种重质油制备超高功率电极用针状焦的方法,其特征在于:所述步骤(3)为将步骤(2)处理后的原料依次通过以苯乙烯-二乙烯共聚体为骨架,引入磺酸基制得的大孔径阳离子交换树脂和引入季胺基制得的大孔径阴离子交换树脂,得到中性原料。
- 根据权利要求1所述的一种重质油制备超高功率电极用针状焦的方法,其 特征在于:所述中性原料N含量低于0.5%,S含量低于0.3%,相对分子质量分布在400-1000之间;所述第一段炭化反应和第二段炭化反应为连续两段碳化处理。
- 根据权利要求1所述的一种重质油制备超高功率电极用针状焦的方法,其特征在于:所述针状焦的真密度>2.13g/cm 3、灰分≤0.3、在25~600℃下测定的CTE≤1.15×10 -6/℃。
- 权利要求1-8任一所述的一种重质油制备超高功率电极用针状焦的方法制备得到的产品。
- 权利要求9所述的产品在制备石墨电极中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/423,488 US11286425B2 (en) | 2020-05-22 | 2020-07-10 | Method for preparing needle coke for ultra-high power (UHP) electrodes from heavy oil |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010439340.X | 2020-05-22 | ||
CN202010439340.XA CN111592902B (zh) | 2020-05-22 | 2020-05-22 | 一种重质油制备超高功率电极用针状焦的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021232560A1 true WO2021232560A1 (zh) | 2021-11-25 |
Family
ID=72186169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/101357 WO2021232560A1 (zh) | 2020-05-22 | 2020-07-10 | 一种重质油制备超高功率电极用针状焦的方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11286425B2 (zh) |
CN (1) | CN111592902B (zh) |
WO (1) | WO2021232560A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116120956B (zh) * | 2022-11-17 | 2024-09-27 | 陕西榆能集团能源化工研究院有限公司 | 一种复合工艺制备针状焦的方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110186478A1 (en) * | 2008-09-09 | 2011-08-04 | Jx Nippon Oil & Energy Corporation | Process for producing needle coke for graphite electrode and stock oil composition for use in the process |
CN106403579A (zh) * | 2016-10-21 | 2017-02-15 | 中国石油大学(华东) | 一种中间相沥青制备优质针焦电极材料的方法 |
CN106544045A (zh) * | 2016-10-21 | 2017-03-29 | 中国石油大学(华东) | 一种中间相沥青制备优质针状焦的连续工艺 |
CN106566570A (zh) * | 2016-10-21 | 2017-04-19 | 中国石油大学(华东) | 一种重质油制备优质针状焦的方法 |
CN106635142A (zh) * | 2016-10-21 | 2017-05-10 | 中国石油大学(华东) | 一种重质油制备优质针状焦的连续工艺 |
CN110066675A (zh) * | 2019-04-24 | 2019-07-30 | 中国石油大学(华东) | 一种连续生产优质针状焦的方法 |
CN110066676A (zh) * | 2019-04-24 | 2019-07-30 | 中国石油大学(华东) | 一种生产优质针状焦的连续工艺 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100176029A1 (en) * | 2009-01-09 | 2010-07-15 | Conocophillips Company | Upgrading Slurry Oil Using Chromatographic Reactor Systems |
-
2020
- 2020-05-22 CN CN202010439340.XA patent/CN111592902B/zh active Active
- 2020-07-10 US US17/423,488 patent/US11286425B2/en active Active
- 2020-07-10 WO PCT/CN2020/101357 patent/WO2021232560A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110186478A1 (en) * | 2008-09-09 | 2011-08-04 | Jx Nippon Oil & Energy Corporation | Process for producing needle coke for graphite electrode and stock oil composition for use in the process |
CN106403579A (zh) * | 2016-10-21 | 2017-02-15 | 中国石油大学(华东) | 一种中间相沥青制备优质针焦电极材料的方法 |
CN106544045A (zh) * | 2016-10-21 | 2017-03-29 | 中国石油大学(华东) | 一种中间相沥青制备优质针状焦的连续工艺 |
CN106566570A (zh) * | 2016-10-21 | 2017-04-19 | 中国石油大学(华东) | 一种重质油制备优质针状焦的方法 |
CN106635142A (zh) * | 2016-10-21 | 2017-05-10 | 中国石油大学(华东) | 一种重质油制备优质针状焦的连续工艺 |
CN110066675A (zh) * | 2019-04-24 | 2019-07-30 | 中国石油大学(华东) | 一种连续生产优质针状焦的方法 |
CN110066676A (zh) * | 2019-04-24 | 2019-07-30 | 中国石油大学(华东) | 一种生产优质针状焦的连续工艺 |
Also Published As
Publication number | Publication date |
---|---|
US11286425B2 (en) | 2022-03-29 |
CN111592902B (zh) | 2021-05-28 |
US20220041934A1 (en) | 2022-02-10 |
CN111592902A (zh) | 2020-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103013566B (zh) | 一种利用煤焦油沥青制备针状焦原料的工艺 | |
CN111575037B (zh) | 一种高模量碳纤维与其前驱体中间相沥青的制备方法 | |
CN110699107B (zh) | 一种煤沥青临氢催化-供氢处理制备可纺中间相沥青的方法 | |
CN111575036B (zh) | 一种重质油体积排阻分离-分级炭化制备优质针状焦的方法 | |
CN109970038A (zh) | 以中低温煤焦油为原料生产中间相炭微球的方法 | |
CN109370642A (zh) | 一种用于制备煤系针状焦的延迟焦化工艺 | |
CN111575053B (zh) | 一种体积排阻分离-热缩聚制备中间相沥青的方法及其应用 | |
CN110357069B (zh) | 用乳化-加氢-热聚三元耦合体系制备中间相炭微球的方法 | |
WO2021232560A1 (zh) | 一种重质油制备超高功率电极用针状焦的方法 | |
CN106566570A (zh) | 一种重质油制备优质针状焦的方法 | |
CN106635142A (zh) | 一种重质油制备优质针状焦的连续工艺 | |
CN113353915A (zh) | 中间相炭微球、制备方法与球形多孔活性碳材料及其应用 | |
CN112158834A (zh) | 一种炭黑改性煤沥青制备高性能石墨的方法 | |
CN109181730B (zh) | 一种煤油共炼残渣制备针状焦的方法 | |
CN103642511A (zh) | 一种优质针状焦原料的制备方法 | |
CN108102692A (zh) | 一种煤基原料生产针状焦的工艺方法 | |
CN110066676A (zh) | 一种生产优质针状焦的连续工艺 | |
CN112574770B (zh) | 一种优质煤系针状焦的制备方法 | |
CN112538362B (zh) | 一种改善煤沥青流变性能的方法 | |
CN114940489A (zh) | 一种煤液化残渣制备碳纳米管的方法 | |
CN113862033A (zh) | 一种流化焦化和延迟焦化组合制备低热膨胀系数针状焦的方法 | |
CN110642248A (zh) | 一种改变分子排列组合的细结构高纯石墨生产方法 | |
CN113684057B (zh) | 利用环烷基沥青和富芳烃燃料油生产接头用针状焦调和原料的工艺 | |
CN115404090B (zh) | 利用煤基与石油基重组分复配制备针状焦的方法 | |
CN116925797A (zh) | 一种负极材料或超高功率电极用针状焦的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20936085 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20936085 Country of ref document: EP Kind code of ref document: A1 |