WO2021232505A1 - 一种新型组合阀 - Google Patents

一种新型组合阀 Download PDF

Info

Publication number
WO2021232505A1
WO2021232505A1 PCT/CN2020/094843 CN2020094843W WO2021232505A1 WO 2021232505 A1 WO2021232505 A1 WO 2021232505A1 CN 2020094843 W CN2020094843 W CN 2020094843W WO 2021232505 A1 WO2021232505 A1 WO 2021232505A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
spool
hole
valve core
port
Prior art date
Application number
PCT/CN2020/094843
Other languages
English (en)
French (fr)
Inventor
苑公社
田时勇
Original Assignee
杭州易超新能源汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州易超新能源汽车科技有限公司 filed Critical 杭州易超新能源汽车科技有限公司
Publication of WO2021232505A1 publication Critical patent/WO2021232505A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/44Details of seats or valve members of double-seat valves

Definitions

  • the invention belongs to the field of automobile air-conditioning control, and particularly relates to a new type of combined valve.
  • the field of automobile air-conditioning control particularly relates to a refrigeration and heating system in which an expansion valve and its bypass solenoid valve are arranged. Since the refrigerant flow is not reversed in this system, the solenoid valve is closed during heating and the expansion valve throttles the refrigerant, and during cooling, the solenoid valve is opened so that the inlet and outlet of the expansion valve are bypassed. The expansion valve does not throttle the refrigerant.
  • the multi-function implementation of multiple valve arrangements will make the overall system space layout large, high cost of assembly pipelines, and high energy consumption.
  • the electronic ball valve scheme is adopted, which is specifically equipped with control components, gear reduction mechanism, valve body components, and housing components.
  • the control component outputs pulse signals, and the motor drives the valve stem to rotate through the gear reduction mechanism, thereby driving the spherical valve core circumference Rotate to the direction, through the radial cutting groove of the spherical valve core to control the precision adjustment in the state of small flow.
  • this solution has two problems and defects as follows: 1 The spherical valve core is more difficult to process, and the processing cost is relatively high; 2 The flow control in the small flow state has lower adjustment accuracy than the electronic expansion valve needle solution.
  • the purpose of the present invention is to provide a new type of combined valve in view of the shortcomings of the prior art.
  • a new type of combined valve including a first valve core, a second valve core, a third valve core, a valve body, a lock nut, a valve head assembly and a drive unit;
  • a spool is coaxially nested in the third spool, and the second spool is coaxially nested on the first spool;
  • the first spool, the second spool, and the third spool are all located in the valve head assembly middle;
  • the first valve core includes a conical surface, an annular sleeve, a connecting spring, a spring support, a valve needle, a fixed sleeve, and a valve stem;
  • the valve stem is composed of an upper body and a lower body;
  • the second valve core includes a stop spring, an insert rubber, and
  • the third valve core includes a third valve core body part, a sealing ring, a gasket and a limit spring;
  • the valve body is provided with an inlet, an outlet, a pressure relief hole and a cavity;
  • the cavity is provided with a first Valve chamber, back pressure chamber, third valve chamber, fourth valve chamber and groove;
  • valve head components include upper valve seat, lower valve seat, anti-rotation pin, zero sleeve, valve sleeve, large O-ring, middle O Rings and small O-rings;
  • the lower end of the spring support is a positioning surface; the lower end of the connecting spring is a flat end; the upper end of the valve needle is an arc end; a second guide part is provided on the outside of the second valve core body, and the lower end of the second guide part is a supporting end surface; insert rubber
  • the lower end of the spool is the lower plane; the second spool body is provided with a first through hole and a second through hole; the upper end of the third spool body is a step surface, and the upper end surface of the step surface is a limit surface; the third spool body part A central hole, a damping hole and a vent hole are opened.
  • the central hole is provided with a first valve port, which communicates with the outflow port through the third valve port; a third guide part is provided on the outside of the third valve core body;
  • the upper valve seat is provided with a first balance through hole, the upper valve seat is provided with a lower end surface; the lower valve seat is provided with a second valve port, a second balance through hole and a positioning hole, and the lower valve seat is provided with an upper end surface, a shoulder surface and Interference surface;
  • the valve sleeve has a third valve port;
  • the valve stem is connected with the drive unit; the annular sleeve is sleeved on the valve stem; the connecting spring is located in the lower body and sleeves on the spring support, the flat end abuts the spring support; the arc end abuts on the positioning surface; the fixed sleeve is sleeved on the valve needle Press it into the lower body and fix it; the second valve core is located in the third valve chamber; the anti-off spring is pressed on the second valve core body; the rubber insert is injection molded on the second valve core body; the vent is connected The annular groove at the lower end of the third spool body; the sealing ring is installed in the annular groove at the lower end of the third spool body, and the gasket is sleeved on the third spool body to fix the sealing ring; the limit spring abuts on the lower layer of the step surface The end surface; the groove is opened at the bottom of the cavity for placing the O-ring; the first valve chamber is connected with the inlet and
  • the second valve port, the fourth valve chamber and the pressure relief hole constitute a pilot passage.
  • lock nut is provided with a recessed hole for borrowing force.
  • the anti-release spring generates a compression spring force to act on the second valve core, and when the lower plane conflicts with the second valve port, the fluid pressure difference between the upper and lower surfaces of the second valve core produces a downward pressure on the second valve core.
  • the fluid force, the compression spring force and the fluid force act together on the second spool to obtain the closing force of the second spool:
  • the closing force of the second valve core 2 ⁇ the area of the second valve port ⁇ the fluid pressure difference+the compression spring force.
  • the range of the middle diameter of the anti-release spring is d-2r ⁇ d+2r; where d is the distance between the centers of the two second valve ports, and r is the second valve port ⁇ radius.
  • the arc end is a spherical surface, an ellipsoidal surface or a curved surface.
  • the beneficial effect of the present invention is that the combined valve of the present invention is suitable for use in a heat pump type refrigeration and heating system.
  • the present invention prevents the second valve core from being opened by mistake. And greatly reduce the processing and production requirements for the valve body, and the single-drive design realizes low cost and low energy consumption.
  • Fig. 1 is a longitudinal cross-sectional view of the valve body in the first operating state (fully closed state) of the combined valve of the present invention
  • FIG. 2 is a longitudinal cross-sectional view of the valve body part in the second operating state (low flow control state) of the combined valve of the present invention
  • valve body part 3 is a longitudinal cross-sectional view of the valve body part in the third operating state (large flow control state) of the combined valve of the present invention
  • Figure 4 is a longitudinal sectional view of the valve body of the combined valve of the present invention.
  • Figure 5 is a longitudinal sectional view of the first valve core of the combined valve of the present invention.
  • FIG. 6 is a schematic diagram of the second valve core of the combined valve of the present invention; wherein, (a) is a longitudinal sectional view, (b) is a top view of the second valve core body;
  • Figure 7 is a longitudinal sectional view of the third valve core of the combined valve of the present invention.
  • FIG. 8 is a schematic diagram of the valve head assembly of the combined valve of the present invention. wherein, (a) is a longitudinal sectional view, (b) is a top view of the lower valve body;
  • Figure 9 is a longitudinal sectional view of the lock nut of the combined valve of the present invention.
  • Fig. 10 is a left side view of a longitudinal section of the valve body.
  • Figures 1 to 3 and Figure 10 are longitudinal cross-sectional views of the main body of the combined valve of the present invention.
  • the three states are a fully closed state, a small flow control state, and a large flow control state.
  • the small flow control state is a functional state of an electronic expansion valve that achieves high-precision flow adjustment through the subdivision change of the effective flow area of the valve port;
  • the large flow control state is a state that achieves low flow resistance and low pressure loss.
  • the function state of the solenoid valve with large flow rate is a functional state of an electronic expansion valve that achieves high-precision flow adjustment through the subdivision change of the effective flow area of the valve port.
  • the function state of the solenoid valve with large flow rate is a functional state of an electronic expansion valve that achieves high-precision flow adjustment through the subdivision change of the effective flow area of the valve port.
  • the combined valve of the present invention mainly includes a first valve core 1, a second valve core 2, a third valve core 3, a valve body 4, a lock nut 5, a valve head assembly 6 and a drive unit 7. Since the driving unit 7 of the combined valve of the present invention is not within the discussion content of the present invention, this part of the content is not mainly described here.
  • the flow control mode of the combined valve from fully closed to fully open is divided into three stages: small flow control state, transition stage and large flow flow state.
  • the first spool 1 is used for small flow state control
  • the second spool 2 is used for the transition from small flow state to large flow state
  • the third spool 3 is used for large flow flow control
  • the small flow control state corresponds to the fine adjustment interval
  • the transition phase corresponds to the transition section
  • the large flow rate corresponds to the large flow section.
  • the first spool 1 is coaxially nested on the third spool 3, and the second spool 2 is nested coaxially on the first spool 1, becoming the second spool driven by the lifting action of the first spool 1.
  • the first spool 1, the second spool 2, and the third spool 3 are all located in the valve head assembly 6, which is an integrated coaxial assembly.
  • the valve head assembly 6 is located in the valve body 4. The body is screwed to fix it.
  • the first valve core 1 includes a cone portion 11, an annular sleeve 12, a connecting spring 13, a spring support 14, a valve needle 15, a fixed sleeve 16 and a valve stem 17.
  • the lower end of the spring support 14 is a positioning surface 14A.
  • the valve stem 17 is composed of an upper body 17A and a lower body 17B.
  • the lower end of the connecting spring 13 is a flattened end 13A.
  • the upper end of the valve needle 15 is a circular arc end 15A.
  • the valve stem 17 is connected to the drive unit 7.
  • the annular sleeve 12 is sleeved on the valve stem 17 and is used to reduce the relative axial rotational movement between the valve stem 17 and the supporting end surface 24 of the second valve core 2 during the ascending process of the valve stem 17.
  • the upper arc end 15A of the valve needle 15 is spherical, ellipsoidal or curved.
  • the connecting spring 13, the spring support 14, and the valve needle 15 are all located in the lower body 17B of the valve stem 17, the compression connecting spring 13 is sleeved on the spring support 14, and the lower flat end 13A abuts on the spring support 14; the valve needle The upper arc end 15A of 15 abuts on the positioning surface 14A of the spring support 14 to form a point contact between the two; the fixing sleeve 16 is sleeved on the valve needle 15 to press it into the lower body 17B and fix it.
  • the second valve core 2 includes a stop spring 21, an insert rubber 22 and a second valve core body 25.
  • a second guide portion 26 is provided outside the second valve core body 25, and the lower end of the second guide portion 26 is a supporting end surface 24.
  • the lower end of the insert rubber 22 is a lower flat surface 23.
  • the second guiding portion 26 is used for guiding the second valve core body 25 during the up and down movement.
  • the supporting end surface 24 conflicts with the annular sleeve 12 of the first valve core 1.
  • the insert rubber 22 is insert injection molded on the second valve core body 25.
  • Two first through holes 27 and one second through hole 28 are symmetrically opened on the second valve core body 25 for fluid balance and circulation.
  • the anti-off spring 21 is pressed on the second valve core body 25 for resetting when the second valve core 2 is closed.
  • the third valve core 3 includes a third valve core body portion 34, a sealing ring 36, a gasket 37 and a limit spring 38.
  • the upper end of the third valve core body portion 34 is a stepped surface 31, and the upper end surface of the stepped surface 31 is a limit surface 31A.
  • the limit spring 38 abuts on the lower end surface of the step surface 31.
  • the third valve core body part 34 is provided with a central hole 32, a damping hole 33 and an exhaust hole 39.
  • the central hole 32 is provided with a first valve port 1A.
  • the two damping holes 33 are arranged symmetrically.
  • this embodiment is provided with two second valve ports 2A, which reduces the design requirements for the diameter of the orifice 33.
  • a third guide portion 35 is provided outside the third valve core body portion 34.
  • the first valve port 1A is opened on the central hole 32 and conflicts with the tapered surface 11 of the first valve core 1.
  • the sealing ring 36 is installed in the annular groove at the lower end of the third spool body part 34, the gasket 37 is sleeved on the third spool body part 34 for fixing the sealing ring 36; the vent 39 is used to install the sealing ring 36
  • the air in the annular groove at the lower end of the third valve core body portion 34 is discharged.
  • the first valve port 1A conflicts with and separates from the first valve core 1 to realize fluid communication and disconnection.
  • the rectangular valve body 4 is provided with an inlet 4A, an outlet 4B, a pressure relief hole 45 and a cavity 47; the cavity 47 is provided with a first valve chamber 41, a back pressure chamber 42, and a The three valve chamber 43, the fourth valve chamber 44 and the groove 48.
  • the groove 48 is opened at the bottom of the cavity 47.
  • the first valve chamber 41 communicates with the inflow port 4A and the center hole 32, respectively.
  • the valve body 4 is provided with a fluid inlet 4A on one side, and a fluid outlet 4B on the other side.
  • the cavity 47 is used for accommodating the integrated valve head assembly 6.
  • the fourth valve chamber 44 communicates with the outflow port 4B through the pressure relief hole 45, and is used to guide the fluid in the fourth valve chamber 44 to quickly relieve pressure.
  • the valve body 4 is provided with a groove 48 for placing a static sealing O-ring to avoid local internal leakage of fluid.
  • the lock nut 5 is used for fastening the valve head assembly 6 after assembly.
  • the lock nut 5 is provided with a borrowing concave hole 5B, which is convenient for screwing and assembling with the cavity 47 of the valve body 4.
  • the valve head assembly 6 is used as an assembly positioning reference and realizes the zero adjustment function in a small flow state.
  • the valve head assembly 6 includes an upper valve seat 63, a lower valve seat 64, an anti-rotation pin 67, a zero sleeve 68, a valve sleeve 69, a large O-ring 69A, a middle O-ring 69B, and a small O-ring 69C.
  • the upper valve seat 63 has 4 first balance through holes 63A equally arranged.
  • the upper valve seat 63 is connected to the lower valve seat 64 and is located in the valve sleeve 69; the valve sleeve 69 has a third valve port 3A, and the third valve port 3A is sealed against the sealing ring 36 for sealing.
  • the upper valve seat 63 is provided with a lower end surface 62.
  • the zero position sleeve 68 is sleeved on the upper valve seat 63 and is used for the first valve core 1 to return to the zero position to realize the zero adjustment function.
  • the first valve chamber 41 communicates with the outflow port 4B through the first valve port 1A and the third valve port 3A.
  • the lower valve seat 64 is provided with an upper end surface 61, a shoulder surface 61A, and an abutting surface 64C.
  • the lower valve seat 64 opens with a second valve port 2A, a second balance through hole 64A, and a positioning hole 64B.
  • the second valve port 2A is opened on the lower valve seat 64 and conflicts with the lower plane 23 of the insert rubber 22 to cooperate to achieve a soft and hard seal.
  • the two second valve ports 2A are symmetrically arranged.
  • the anti-rotation pin 67 is inserted into the positioning hole 64B and the second through hole 28 at the same time to prevent the second valve core 2 from rotating in the radial direction during the up and down movement, because the lower surface 23 of the insert rubber 22 rotates relative to the second valve port 2A After that, the seal will fail, resulting in a risk of internal leakage.
  • the large O-ring 69A is sleeved on the upper valve seat 63
  • the small O-ring 69C is located between the upper valve seat 63 and the lower valve seat 64
  • the middle O-ring 69B is sleeved on the lower valve seat 64, both of which are used to achieve static sealing.
  • the second valve port 2A, the fourth valve chamber 44 and the pressure relief hole 45 constitute the pilot passage 46; the second valve port 2A is used to realize the on-off of the fluid in the pilot passage 46, and the third valve chamber 43 is connected to the pilot through the second valve port 2A Pathway 46.
  • the third valve chamber 43 is located between the upper end surface 61 and the lower end surface 62, and is used to accommodate the up and down movement of the second valve core 2; The dynamic pressure of the fluid during the up and down lifting of the spool 1 is balanced.
  • the back pressure chamber 42 is interposed between the step surface 31 and the shoulder surface 61A, and the back pressure chamber 42 is connected to the third valve chamber 43 through the second balance through hole 64A.
  • the center of the stop spring 21 The diameter range is d-2r ⁇ d+2r, so as to ensure that the compression spring force directly acts on the upper end of the sealing part; and when the lower surface 23 of the insert rubber 22 conflicts with the second valve port 2A, the upper and lower surfaces of the second valve core 2 There will be a partial fluid pressure difference, which will produce a downward fluid force on the second valve core 2; the compression spring force and the downward fluid force work together on the second valve core 2:
  • the valve closing force of the second valve core 2 2 ⁇ the area of the second valve port 2A ⁇ the fluid pressure difference+the compression force of the anti-off spring 21.
  • the pilot passage 46 is closed by the second spool 2, and the third valve port 3A is closed by the third spool 3.
  • the first spool 1 to control the high-precision adjustment in the small flow state; when the lift of the first spool 1 exceeds the specified amount, according to the conflict between the annular sleeve 12 of the first spool 1 and the supporting end surface 24, As a result, the second valve core 2 is driven to move upward, opening the pilot passage 46, and the third valve core 3 opens the third valve port 3A to a large flow state.
  • the downward force of the third valve core 3 due to the downward force exerted by the limit spring 38 and the fluid pressure difference between the upper and lower fluids ensures that the third valve port 3A is in a fully closed state, and the fluid force is the main effect.
  • the large flow passage does not circulate, that is, it becomes a small flow control state in which the refrigerant flow rate is controlled according to the lift amount of the first valve body 1.
  • the fluid enters from the inlet 4A of the valve body 4, flows through the first valve chamber 41, the first valve port 1A, and flows out from the outlet 4B, some of which pass through the third valve body part 34 in turn
  • the orifice 33, the back pressure chamber 42, the second balance through hole 64A of the lower valve seat 64, the first through hole 27 of the second valve core body 25, the third valve chamber 43, and the first balance through hole of the upper valve seat 63 63A enters the driving unit 7 to realize the fluid dynamic pressure difference balance during the up and down movement of the first spool 1.
  • the fluid force on the upper side opens the second valve port 2A to realize the circulation of the pilot passage 46, that is, the fluid in the back pressure chamber 42 passes through the first through hole 27, the third valve chamber 43, and the third valve chamber 43 of the second valve core body 25 in sequence.
  • the second valve port 2A then passes through the pilot passage 46, and finally flows out from the outflow port 4B of the valve body 4, so that the fluid in the back pressure chamber 42 can be quickly relieved of pressure.
  • the fluid in the chamber 41 generates partial resistance, so that the third valve core 3 forms a fluid pressure difference between the upper and lower sides.
  • the fluid pressure in the upper chamber of the back pressure chamber 42 is lower than the fluid pressure in the lower chamber of the first valve chamber 41.
  • the pressure difference pushes the third valve core 3 to overcome the spring force of the compression limit spring 38 to lift up.
  • the limit surface 31A of the third valve core body portion 34 abuts against the contact surface 64C of the lower valve seat 64, a third valve is formed.
  • the maximum lift state of the core 3; at this time, the third valve port 3A is opened to become a large flow state.
  • valve body 4 in a state of large flow, fluid enters from the inlet 4A of the valve body 4, flows through the first valve chamber 41, the third valve port 3A, and flows out from the outlet 4B; part of it flows out from the pilot passage 46, and the other Part of it is the same as above, that is, it passes through the orifice 33 of the third valve core body part 34, the back pressure chamber 42, the second balance through hole 64A of the lower valve seat 64, the first through hole 27 and the third through hole of the second valve core body 25 in sequence.
  • the valve chamber 43 and the first balance through hole 63A of the upper valve seat 63 enter the driving unit 7 to realize the fluid dynamic pressure difference balance during the up and down movement of the first valve core 1.
  • the first spool 1 (first valve port 1A) for the small flow control state and the third spool 3 (third valve port 5A) for the large flow control state )
  • the first spool 1 is nested on the third spool 3
  • the second spool 2 is further nested on the first spool 1.
  • the combination of the three can effectively reduce the space layout of the combined valve. At the same time, it further satisfies the independence of the small flow control state and the large flow control state without interfering with each other, effectively preventing the second spool 2 from opening by mistake, and the friction generated during the overall axial movement is basically negligible.
  • the present invention can take into account both the high-precision regulation of the flow in the small flow area and the low pressure loss and low energy consumption in the state of large flow control.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lift Valve (AREA)
  • Multiple-Way Valves (AREA)
  • Sliding Valves (AREA)

Abstract

一种组合阀,该组合阀包括第一阀芯(1)、第二阀芯(2)和第三阀芯(3);其中,第二阀芯(2)和第三阀芯(3)与第一阀芯(1)同轴心,第一阀芯(1)嵌套在第三阀芯(3)上,第二阀芯(2)进一步嵌套在第一阀芯(1)上,成为根据第一阀芯(1)的升降动作而开闭驱动第二阀芯(2)的一种控制状态;当小流量控制用的第一阀芯(1)的升程量为规定量以下时,先导通路(46)由第二阀芯(2)关闭,第三阀口(3A)由第三阀芯(3)关闭;当第一阀芯(1)的升程量超过规定量时,第二阀芯(2)随第一阀芯(1)的上升而上升并将先导通路(46)打开,第三阀芯(3)随此将第三阀口(3A)打开成为大流量控制状态。该组合阀能兼顾小流量区域的高精度调节,及大流量状态的低压损和可控化,防止第二阀芯(2)误打开的同时,实现低成本、低能耗。

Description

一种新型组合阀 技术领域
本发明属于汽车空调控制领域,尤其涉及一种新型组合阀。
背景技术
作为汽车空调控制领域,尤其涉及到一种制冷制热系统中,在该系统中布置有膨胀阀及其旁通用电磁阀。由于在该系统中不使制冷剂的流动反转,在制热时将电磁阀关闭而由膨胀阀对制冷剂进行节流,在制冷时将电磁阀打开使得膨胀阀的出入口旁通,此时的膨胀阀不对制冷剂进行节流。但多个阀布置实现多功能的方式会使得整体系统空间布局大型化、配套管路组装成本高、以及所带来的高能耗等问题点。
基于此,现有技术中存在两种电动阀设计方案来解决上述问题点,基本共同原理为:制热时由电动阀对制冷剂进行节流,制冷时将电动阀全开,具体内容如下:
(1)采用电子球阀方案,具体配设有控制部件、齿轮减速机构、阀体部件、壳体部件,由控制部件输出脉冲信号,电机通过齿轮减速机构带动阀杆转动,进而带动球状阀芯周向转动,通过球状阀芯径向切割槽来控制小流量状态下的精度调节。但是该方案存在两个问题缺陷如下:①球状阀芯加工难度较大,加工成本偏高,②小流量状态下的流量控制相比电子膨胀阀阀针方案调节精度低。
(2)采用组合阀方案,现有技术中存在一种实施方式,具体为将先导式电磁阀与电子膨胀阀本体相结合,特别的,电子膨胀阀控制用的第一阀芯和先导通路控制用的第二阀芯配设为可沿同一方向升降但相互隔着规定距离(不同轴),电磁阀主阀芯单独布置,通过先导回路与电子膨胀阀进行连通,具体内容可见现有专利1组合阀 CN 103161978 A,专利2组合阀CN 103245139 A,专利3组合阀CN 103162477 A。分析该方案存在问题缺陷如下:①用于小流量控制用的电子膨胀阀第一阀芯部件、用于大流量控制用的主阀芯部件分体布置装配,增加装配零件的同时新增外泄漏风险点;②连接先导通路的复杂性导致阀体内部孔加工难度高、成本大;③阀内部空间布局不紧凑。
技术问题
本发明的目的在于针对现有技术的不足,提供一种新型组合阀。
技术解决方案
本发明的目的是通过以下技术方案来实现的:一种新型组合阀,包括第一阀芯、第二阀芯、第三阀芯、阀本体、锁紧螺母、阀头组件和驱动单元;第一阀芯同轴心嵌套在第三阀芯中,第二阀芯同轴心嵌套在第一阀芯上;第一阀芯、第二阀芯、第三阀芯皆位于阀头组件中;
第一阀芯包括锥面部、环形套、连接弹簧、弹簧支承件、阀针、固定套和阀杆;阀杆由上部本体和下部本体构成;第二阀芯包括止脱弹簧、嵌件橡胶和第二阀芯本体;第三阀芯包括第三阀芯本体部、密封圈、垫圈和限位弹簧;阀本体设有流入口、流出口、泄压孔和腔体;腔体内设有第一阀室、背压室、第三阀室、第四阀室和沟槽;阀头组件包括上阀座、下阀座、防转销、零位套、阀套、大O型圈、中O型圈和小O型圈;
弹簧支承件下端为定位面;连接弹簧的下端为磨平端;阀针的上端为圆弧端;第二阀芯本体外侧设有第二导向部,第二导向部下端为支承端面;嵌件橡胶的下端为下平面;第二阀芯本体开有第一通孔和第二通孔;第三阀芯本体部上端为台阶面,台阶面的上层端面为限位面;第三阀芯本体部开有中心孔、阻尼孔和排气孔,中心孔处设有第一阀口,第一阀口通过第三阀口与流出口连通;第三阀芯本体部外侧设有第三导向部;上阀座开有第一平衡通孔,上阀座设有下端面;下阀座开有第二阀口、第二平衡通孔和定位孔,下阀座设有上端面、轴肩面和抵触面;阀套开有第三阀口;
阀杆和驱动单元连接;环形套套在阀杆上;连接弹簧位于下部本体中且套在弹簧支承件上,磨平端抵住弹簧支承件;圆弧端抵在定位面上;固定套套在阀针将其压入下部本体并固定;第二阀芯位于第三阀室中;止脱弹簧压在第二阀芯本体上;嵌件橡胶嵌件注塑在第二阀芯本体上;排气孔连通第三阀芯本体部下端的环形槽;密封圈安装在第三阀芯本体部下端的环形槽中,垫圈套在第三阀芯本体部上用于固定密封圈;限位弹簧抵在台阶面的下层端面上;沟槽开在腔体底部,用于放置O型圈;第一阀室分别与流入口、中心孔连通;第四阀室通过泄压孔连通流出口;背压室位于于台阶面与轴肩面之间,通过第二平衡通孔连接第三阀室;第三阀室连通第二阀口,介于上端面和下端面之间,并通过第一平衡通孔连通驱动单元;零位套套在上阀座上;上阀座连接下阀座,均位于阀套中;大O型圈套在上阀座上,小O型圈位于上阀座和下阀座之间,中O型圈套在下阀座上;防转销同时插入定位孔和第二通孔;第三阀口抵住密封圈进行密封;阀头组件安装于腔体内;锁紧螺母与腔体螺纹旋接固定阀头组件。
进一步地,所述第二阀口、第四阀室和泄压孔构成先导通路。
进一步地,所述锁紧螺母开有借力凹孔。
进一步地,所述止脱弹簧产生压缩弹簧力作用在第二阀芯上,同时下平面与第二阀口抵触时,第二阀芯的上下表面的流体压差对第二阀芯产生向下的流体作用力,压缩弹簧力和流体作用力共同作用于第二阀芯,得到第二阀芯的闭阀力:
第二阀芯的闭阀力=2×第二阀口面积×流体压差+压缩弹簧力。
进一步地,所述第二阀口有两个,止脱弹簧的中径的范围在d-2r~d+2r;其中,d为两个第二阀口的圆心距离,r为第二阀口的半径。
进一步地,所述圆弧端为球面、椭球面或曲面。
有益效果
本发明的有益效果是:本发明组合阀适合用于热泵式制冷制热系统。本发明在兼顾满足小流量高精度精准控制和低压损可控化大流量流通功能的基础上,防止第二阀芯误打开,阀体内部一体式装配,采用紧凑型布局设计,占用空间小,且极大降低对阀体的加工制作要求,单驱动设计,实现低成本和低能耗。
附图说明
图1是本发明的组合阀的第一动作状态(全闭状态)的阀主体部分纵剖面图;
图2是本发明的组合阀的第二动作状态(小流量控制状态)的阀主体部分纵剖面图;
图3是本发明的组合阀的第三动作状态(大流量控制状态)的阀主体部分纵剖面图;
图4是本发明的组合阀的阀本体纵剖视图;
图5是本发明的组合阀的第一阀芯纵剖视图;
图6是本发明的组合阀的第二阀芯示意图;其中,(a)是纵剖视图,(b)是第二阀芯本体俯视图;
图7是本发明的组合阀的第三阀芯纵剖视图;
图8是本发明的组合阀的阀头组件示意图;其中,(a)是纵剖视图,(b)是下阀体俯视图;
图9是本发明的组合阀的锁紧螺母纵剖视图;
图10是阀主体部分纵剖左视图。
本发明的实施方式
为了使本技术领域的人员更好的理解本发明,下面结合附图和具体实施方式对本发明作进一步的详细说明。
图1~3和图10是本发明组合阀的主体部分的纵向剖面图,三种状态分别为全闭状态、小流量控制状态、大流量控制状态。所述小流量控制状态为一种通过阀口有效流通面积的细分变化从而实现流量的高精度调节的电子膨胀阀功能状态;所述大流量控制状态为一种实现低流阻、低压损下的大流量流通的电磁阀功能状态。
本发明组合阀主要设有第一阀芯1、第二阀芯2、第三阀芯3、阀本体4、锁紧螺母5、阀头组件6和驱动单元7。由于本发明组合阀的驱动单元7不在本发明讨论内容之内,因此该部分内容在这里不做主要阐述。组合阀由全闭到全开区间的流量控制方式分为三个阶段:小流量控制状态、过渡阶段和大流量流通状态。第一阀芯1用于小流量状态控制,第二阀芯2用于小流量状态到大流量状态的过渡,第三阀芯3用于大流量流通控制;小流量控制状态对应精调区间,过渡阶段对应转换区间,大流量流通对应大流量区间。第一阀芯1同轴心嵌套在第三阀芯3上,第二阀芯2再同轴心嵌套在第一阀芯1上,成为由第一阀芯1的升降动作驱动第二阀芯2开闭的一种控制状态。第一阀芯1、第二阀芯2、第三阀芯3皆位于阀头组件6中,为一体式同轴心装配,阀头组件6位于阀本体4中,通过锁紧螺母5与阀本体螺纹旋接进行固定。
如图5所示,第一阀芯1包括锥面部11、环形套12、连接弹簧13、弹簧支承件14、阀针15、固定套16和阀杆17。弹簧支承件14下端为定位面14A。阀杆17由上部本体17A和下部本体17B构成。连接弹簧13的下端为磨平端13A。阀针15的上端为圆弧端15A。阀杆17和驱动单元7连接。环形套12套在阀杆17上,用于在阀杆17上升过程中和第二阀芯2的支承端面24抵触时降低两者之间的相对轴向旋转运动。阀针15的上部圆弧端15A为球面、椭球面或曲面。连接弹簧13、弹簧支承件14、阀针15皆位于阀杆17的下部本体17B中,压缩连接弹簧13套在弹簧支承件14上,下侧磨平端13A抵在弹簧支承件14上;阀针15的上部圆弧端15A抵在弹簧支承件14的定位面14A上,两者之间形成点接触;固定套16套在阀针15将其压入下部本体17B并固定。通过阀针15的圆弧端15A与弹簧支承件14的定位面14A构成点接触,降低连接弹簧13的磨平端13A与弹簧支承件14的滑动摩擦力,且该种柔性连接方式也适用于第一阀芯1产生轴偏离的场合,有效降低第一阀芯1上下运动过程中卡死的风险。
如图6所示,第二阀芯2包括止脱弹簧21、嵌件橡胶22和第二阀芯本体25。第二阀芯本体25外侧设有第二导向部26,第二导向部26下端为支承端面24。嵌件橡胶22的下端为下平面23。第二导向部26用于第二阀芯本体25上下运动过程中进行导向。支承端面24与第一阀芯1的环形套12相抵触。嵌件橡胶22嵌件注塑在第二阀芯本体25上。第二阀芯本体25上对称开有两个用于流体平衡流通的第一通孔27和一个第二通孔28。止脱弹簧21压在第二阀芯本体25上,用于第二阀芯2关闭时进行复位。
如图7所示,第三阀芯3包括第三阀芯本体部34、密封圈36、垫圈37和限位弹簧38。第三阀芯本体部34上端为台阶面31,台阶面31的上层端面为限位面31A。限位弹簧38抵在台阶面31的下层端面上。第三阀芯本体部34开有中心孔32、阻尼孔33和排气孔39,中心孔32处设有第一阀口1A,两个阻尼孔33对称设置,阻尼孔33的孔径越小越好,本实施例设置了两个第二阀口2A,降低对所述阻尼孔33的孔径设计要求。第三阀芯本体部34外侧设有第三导向部35。第一阀口1A开设于中心孔32上且与第一阀芯1的锥面部11相抵触。密封圈36安装在第三阀芯本体部34下端的环形槽中,垫圈37套在第三阀芯本体部34上用于固定密封圈36;排气孔39用于在安装密封圈36时将第三阀芯本体部34下端的环形槽内空气排出。第一阀口1A与第一阀芯1抵触和分离实现流体通断。
如图4所示,长方状的阀本体4设有流入口4A、流出口4B、泄压孔45和腔体47;腔体47内设有第一阀室41、背压室42、第三阀室43、第四阀室44和沟槽48。沟槽48开在腔体47底部。第一阀室41分别与流入口4A、中心孔32连通。阀本体4一侧配设有流体流入口4A,另一侧配设有流体流出口4B。腔体47用于收纳一体式阀头组件6。第四阀室44通过泄压孔45连通流出口4B,用于引导第四阀室44内流体进行快速泄压。阀本体4设置沟槽48用于放置静密封O型圈,避免流体产生局部内泄漏。
如图9所示,锁紧螺母5用于阀头组件6装配后进行紧固。锁紧螺母5开有借力凹孔5B,便于与阀本体4的腔体47进行旋合装配。
如图8所示,阀头组件6用于做装配定位基准及实现小流量状态下的零位调节功能。阀头组件6包括上阀座63、下阀座64、防转销67、零位套68、阀套69、大O型圈69A、中O型圈69B和小O型圈69C。上阀座63开有4个均分布置的第一平衡通孔63A。上阀座63连接下阀座64,均位于阀套69中;阀套69开有第三阀口3A,第三阀口3A抵住密封圈36进行密封。上阀座63设有下端面62。零位套68套在上阀座63上,用于第一阀芯1回归零位,实现调零功能。第一阀室41通过第一阀口1A和第三阀口3A与流出口4B连通。下阀座64设有上端面61、轴肩面61A和抵触面64C。下阀座64开有第二阀口2A、第二平衡通孔64A和定位孔64B。第二阀口2A开设于下阀座64上且与嵌件橡胶22的下平面23相抵触,配合实现软硬密封,两个第二阀口2A对称设置。防转销67同时插入定位孔64B和第二通孔28,用于防止第二阀芯2上下运动过程中沿径向转动,因为嵌件橡胶22的下平面23与第二阀口2A相对转动后会导致密封失效,产生内泄漏风险。大O型圈69A套在上阀座63上,小O型圈69C位于上阀座63和下阀座64之间,中O型圈69B套在下阀座64上,均用于实现静密封。第二阀口2A、第四阀室44和泄压孔45构成先导通路46;第二阀口2A用于实现先导通路46中流体通断,第三阀室43通过第二阀口2A连接先导通路46。第三阀室43介于上端面61和下端面62之间,用于容纳第二阀芯2上下运动;第三阀室43通过第一平衡通孔63A连接驱动单元7,用于实现第一阀芯1上下升降过程中的流体动态压力平衡。背压室42介于台阶面31与轴肩面61A之间,背压室42通过第二平衡通孔64A连接第三阀室43。
设两个第二阀口2A的圆心距离为d,半径为r;为保证第二阀芯2关闭状态下的密封可靠性,即防止第二阀芯2被误打开,止脱弹簧21的中径的范围在d-2r~d+2r,从而保证压缩弹簧力直接作用在密封部位上端;且嵌件橡胶22的下平面23与第二阀口2A抵触时,第二阀芯2的上下表面会存在有部分流体压差,该压差会对第二阀芯2产生向下方的流体作用力;压缩弹簧力和向下方的流体作用力共同作用于第二阀芯2上:
第二阀芯2的闭阀力=2×第二阀口2A面积×流体压差+止脱弹簧21压缩力。
当小流量控制用的第一阀芯1的升程量为规定量以下时,先导通路46由第二阀芯2关闭,第三阀口3A由第三阀芯3关闭,根据第一阀芯1的升程量来控制小流量状态下的高精度调节;当第一阀芯1的升程量超过规定量时,根据第一阀芯1的环形套12与所述支承端面24相抵触,从而带动第二阀芯2向上运动,打开先导通路46,第三阀芯3随之将第三阀口3A打开成为大流量流通状态。依据本发明结构原理,详细阐述其从全闭状态到全开状态的动作原理如下:
从全闭状态起,向驱动单元7施加脉冲使得第一阀芯1向上运动时,如图2所示,第一阀口1A被打开,实现小流量状态下的流体流通,根据第一阀芯1和第一阀口1A的有效细分流通面积的变化对流量进行高精度调节。
当第一阀芯1的升程量在规定量以下时,如图2所示,此时第二阀芯2由于受到压缩止脱弹簧21的向下方的施力,且嵌件橡胶22的下平面23与第二阀口2A抵触,造成第二阀芯2的上下表面会存在有部分流体压差,该压差会对第二阀芯2产生向下方的流体作用力,以上两部分力共同作用关闭第二阀口2A,即第二阀口2A、第四阀室44和泄压孔45构成先导通路46为不流通状态。同理,第三阀芯3由于限位弹簧38施加向下的力和上下流体压差导致的向下作用的流体力保证所述第三阀口3A为全闭状态,其中流体力是主要作用力,此时大流量通路不流通,即成为根据所述第一阀芯1的升程量而控制制冷剂流量的小流量控制状态。
在小流量控制状态下,流体从阀本体4的流入口4A进入,流经第一阀室41、第一阀口1A,从流出口4B流出,其中一部分依次通过第三阀芯本体部34的阻尼孔33、背压室42、下阀座64的第二平衡通孔64A、第二阀芯本体25的第一通孔27、第三阀室43、上阀座63的第一平衡通孔63A进入驱动单元7,实现第一阀芯1上下运动过程中的流体动态压差平衡。
当第一阀芯1的升程量超过规定量时,如图3所示,此时第一阀芯1的环形套12与支承端面24相抵触从而带动第二阀芯2向上运动,成为由第一阀芯1的上升带动第二阀芯2上升并打开先导通路46的状态。特别地,在第一阀芯1的环形套12与支承端面24相抵触,带动第二阀芯2向上运动过程中,需克服压缩止脱弹簧21向下方的施力和第二阀芯本体25上的流体作用力,从而打开第二阀口2A,实现先导通路46的流通,即背压室42中的流体依次通过第二阀芯本体25的第一通孔27、第三阀室43、第二阀口2A再通过先导通路46,最后从阀本体4的流出口4B流出,使背压室42中的流体得以快速泄压,第三阀芯本体部34的阻尼孔33对第一阀室41中的流体产生部分阻力,从而使得第三阀芯3上下形成流体压差,具体表现为背压室42的上腔流体压力小于第一阀室41的下腔流体压力,所形成的流体压差推动第三阀芯3克服压缩限位弹簧38的弹簧力向上抬升,当第三阀芯本体部34的限位面31A与下阀座64的抵触面64C抵接时,形成第三阀芯3的最大升程状态;此时,第三阀口3A打开成为大流量流通状态。
同理,在大流量流通状态下,流体从阀本体4的流入口4A进入,流经第一阀室41、第三阀口3A,从流出口4B流出;其中一部分从先导通路46流出,另一部分同上,即依次通过第三阀芯本体部34的阻尼孔33、背压室42、下阀座64的第二平衡通孔64A、第二阀芯本体25的第一通孔27、第三阀室43、上阀座63的第一平衡通孔63A进入驱动单元7,实现第一阀芯1上下运动过程中的流体动态压差平衡。
根据以上所阐述内容可知,本发明组合阀中,由于小流量控制状态用的第一阀芯1(第一阀口1A)和大流量控制状态用的第三阀芯3(第三阀口5A)相互独立,具体为第一阀芯1嵌套在第三阀芯3上,第二阀芯2进一步嵌套在第一阀芯1上,三者相结合,实现组合阀空间布局有效减小的同时,进一步满足小流量控制状态与大流量控制状态的相互独立,互不干扰,有效防止第二阀芯2的误打开,且整体轴向运动过程中所产生的摩擦力基本可以忽略不计,并进一步配设有流体平衡通路,实现运动部件的动态压差平衡,减小负荷。即本发明可兼顾小流量区域的流通高精准调节和大流量控制状态下的低压损、低能耗。

Claims (6)

  1. 一种新型组合阀,其特征在于,包括第一阀芯、第二阀芯、第三阀芯、阀本体、锁紧螺母、阀头组件和驱动单元等。第一阀芯同轴心嵌套在第三阀芯中,第二阀芯同轴心嵌套在第一阀芯上;第一阀芯、第二阀芯、第三阀芯皆位于阀头组件中。
    第一阀芯包括锥面部、环形套、连接弹簧、弹簧支承件、阀针、固定套和阀杆;阀杆由上部本体和下部本体构成;第二阀芯包括止脱弹簧、嵌件橡胶和第二阀芯本体;第三阀芯包括第三阀芯本体部、密封圈、垫圈和限位弹簧;阀本体设有流入口、流出口、泄压孔和腔体;腔体内设有第一阀室、背压室、第三阀室、第四阀室和沟槽;阀头组件包括上阀座、下阀座、防转销、零位套、阀套、大O型圈、中O型圈和小O型圈。
    弹簧支承件下端为定位面;连接弹簧的下端为磨平端;阀针的上端为圆弧端;第二阀芯本体外侧设有第二导向部,第二导向部下端为支承端面;嵌件橡胶的下端为下平面;第二阀芯本体开有第一通孔和第二通孔;第三阀芯本体部上端为台阶面,台阶面的上层端面为限位面;第三阀芯本体部开有中心孔、阻尼孔和排气孔,中心孔处设有第一阀口,第一阀口通过第三阀口与流出口连通;第三阀芯本体部外侧设有第三导向部;上阀座开有第一平衡通孔,上阀座设有下端面;下阀座开有第二阀口、第二平衡通孔和定位孔,下阀座设有上端面、轴肩面和抵触面;阀套开有第三阀口。
    阀杆和驱动单元连接;环形套套在阀杆上;连接弹簧位于下部本体中且套在弹簧支承件上,磨平端抵住弹簧支承件;圆弧端抵在定位面上;固定套套在阀针将其压入下部本体并固定;第二阀芯位于第三阀室中;止脱弹簧压在第二阀芯本体上;嵌件橡胶嵌件注塑在第二阀芯本体上;排气孔连通第三阀芯本体部下端的环形槽;密封圈安装在第三阀芯本体部下端的环形槽中,垫圈套在第三阀芯本体部上用于固定密封圈;限位弹簧抵在台阶面的下层端面上;沟槽开在腔体底部,用于放置O型圈;第一阀室分别与流入口、中心孔连通;第四阀室通过泄压孔连通流出口;背压室位于于台阶面与轴肩面之间,通过第二平衡通孔连接第三阀室;第三阀室连通第二阀口,介于上端面和下端面之间,并通过第一平衡通孔连通驱动单元;零位套套在上阀座上;上阀座连接下阀座,均位于阀套中;大O型圈套在上阀座上,小O型圈位于上阀座和下阀座之间,中O型圈套在下阀座上;防转销同时插入定位孔和第二通孔;第三阀口抵住密封圈进行密封;阀头组件安装于腔体内;锁紧螺母与腔体螺纹旋接固定阀头组件。
  2. 根据权利要求1所述的新型组合阀,其特征在于,所述第二阀口、第四阀室和泄压孔构成先导通路。
  3. 根据权利要求1所述的新型组合阀,其特征在于,所述锁紧螺母开有借力凹孔。
  4. 根据权利要求1所述的新型组合阀,其特征在于,所述止脱弹簧产生压缩弹簧力作用在第二阀芯上,同时下平面与第二阀口抵触时,第二阀芯的上下表面的流体压差对第二阀芯产生向下的流体作用力,压缩弹簧力和流体作用力共同作用于第二阀芯,得到第二阀芯的闭阀力:
    第二阀芯的闭阀力=2×第二阀口面积×流体压差+压缩弹簧力。
  5. 根据权利要求1所述的新型组合阀,其特征在于,所述第二阀口有两个,止脱弹簧的中径的范围在d-2r~d+2r;其中,d为两个第二阀口的圆心距离,r为第二阀口的半径。
  6. 根据权利要求1所述的新型组合阀,其特征在于,所述圆弧端为球面、椭球面或曲面。
PCT/CN2020/094843 2020-05-22 2020-06-08 一种新型组合阀 WO2021232505A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010443403.9A CN111637230B (zh) 2020-05-22 2020-05-22 一种新型组合阀
CN202010443403.9 2020-05-22

Publications (1)

Publication Number Publication Date
WO2021232505A1 true WO2021232505A1 (zh) 2021-11-25

Family

ID=72329928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094843 WO2021232505A1 (zh) 2020-05-22 2020-06-08 一种新型组合阀

Country Status (2)

Country Link
CN (1) CN111637230B (zh)
WO (1) WO2021232505A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004015012B3 (de) * 2004-03-26 2005-09-15 Sauer-Danfoss (Neumünster) GmbH & Co OHG Ventilanordnung in einem Hyraulikkreis, Verwendung derselben und Anordnung zum Steuern eines hydraulischen Fahrzeugantriebs
CN102691810A (zh) * 2011-03-25 2012-09-26 株式会社不二工机 复合阀
CN103161978A (zh) * 2011-12-15 2013-06-19 株式会社不二工机 组合阀
CN103245139A (zh) * 2012-02-14 2013-08-14 株式会社不二工机 组合阀
CN108547812A (zh) * 2018-04-25 2018-09-18 王英 先导式流量阀
CN110630307A (zh) * 2019-10-29 2019-12-31 巨隆集团芜湖兴隆液压有限公司 安全阀
CN111120667A (zh) * 2018-10-30 2020-05-08 杭州三花研究院有限公司 电磁阀

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10318569B3 (de) * 2003-04-17 2004-05-27 Saia-Burgess Dresden Gmbh Gasregel- und Sicherheitsventil
JP5019862B2 (ja) * 2006-08-07 2012-09-05 株式会社不二工機 パイロット型制御弁
KR101342780B1 (ko) * 2006-08-07 2013-12-19 가부시기가이샤 후지고오키 파일럿형 제어 밸브
JP5802539B2 (ja) * 2011-12-15 2015-10-28 株式会社不二工機 複合弁
CN203614847U (zh) * 2013-10-23 2014-05-28 宁波明启液压机械有限公司 一种先导式减压阀
CN105570470B (zh) * 2015-12-20 2017-12-15 西安航天动力研究所 一种内置先导电磁阀
JP6643292B2 (ja) * 2017-09-28 2020-02-12 株式会社不二工機 電動弁

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004015012B3 (de) * 2004-03-26 2005-09-15 Sauer-Danfoss (Neumünster) GmbH & Co OHG Ventilanordnung in einem Hyraulikkreis, Verwendung derselben und Anordnung zum Steuern eines hydraulischen Fahrzeugantriebs
CN102691810A (zh) * 2011-03-25 2012-09-26 株式会社不二工机 复合阀
CN103161978A (zh) * 2011-12-15 2013-06-19 株式会社不二工机 组合阀
CN103245139A (zh) * 2012-02-14 2013-08-14 株式会社不二工机 组合阀
CN108547812A (zh) * 2018-04-25 2018-09-18 王英 先导式流量阀
CN111120667A (zh) * 2018-10-30 2020-05-08 杭州三花研究院有限公司 电磁阀
CN110630307A (zh) * 2019-10-29 2019-12-31 巨隆集团芜湖兴隆液压有限公司 安全阀

Also Published As

Publication number Publication date
CN111637230B (zh) 2021-03-30
CN111637230A (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
EP2725268B1 (en) Flow control valve
KR20180037045A (ko) 전자 팽창 밸브
US20210071921A1 (en) Electronic expansion valve
WO2020083065A1 (zh) 电子膨胀阀
US11614171B2 (en) Solenoid valve with hard seal structure
CN111365466B (zh) 电子膨胀阀及使用该电子膨胀阀的空调系统
WO2021232505A1 (zh) 一种新型组合阀
CN100557282C (zh) 流量控制阀
KR20080112147A (ko) 정지 기능을 갖는 롱스트로크 조절기 밸브
US11796234B2 (en) Electronic expansion valve and air conditioning system with electronic expansion valve
CN114635991A (zh) 一种电子阀
CN211261369U (zh) 电子膨胀阀
WO2024021828A1 (zh) 电子膨胀阀及制冷设备
CN105114642A (zh) 一种超低温电磁阀及其应用
CN220168583U (zh) 电子膨胀阀
CN215172335U (zh) 阀针组件以及包括该阀针组件的电子膨胀阀
CN217519254U (zh) 双孔口膨胀阀和包括其的制冷系统
WO2021042955A1 (zh) 电子膨胀阀
CN110836269B (zh) 电子膨胀阀及使用该电子膨胀阀的空调系统
WO2023274394A1 (zh) 一种电动阀
CN219242692U (zh) 可用于高压环境下的小动力驱动球阀
CN110836562A (zh) 电子膨胀阀及使用该电子膨胀阀的空调系统
WO2024021815A1 (zh) 电子膨胀阀以及制冷设备
WO2024021821A1 (zh) 电子膨胀阀及制冷设备
CN114110206B (zh) 多通控制阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936306

Country of ref document: EP

Kind code of ref document: A1