WO2021230515A1 - 가동 코어부 및 이를 포함하는 직류 릴레이 - Google Patents

가동 코어부 및 이를 포함하는 직류 릴레이 Download PDF

Info

Publication number
WO2021230515A1
WO2021230515A1 PCT/KR2021/004933 KR2021004933W WO2021230515A1 WO 2021230515 A1 WO2021230515 A1 WO 2021230515A1 KR 2021004933 W KR2021004933 W KR 2021004933W WO 2021230515 A1 WO2021230515 A1 WO 2021230515A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
movable
movable core
fixed
relay
Prior art date
Application number
PCT/KR2021/004933
Other languages
English (en)
French (fr)
Inventor
유정우
Original Assignee
엘에스일렉트릭 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스일렉트릭 주식회사 filed Critical 엘에스일렉트릭 주식회사
Publication of WO2021230515A1 publication Critical patent/WO2021230515A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • H01H50/56Contact spring sets

Definitions

  • the present invention relates to a movable core part and a DC relay including the same, and more particularly, to a movable core part having a structure in which the mobility of the movable core can be improved, and to a DC relay including the same.
  • a direct current relay is a device that transmits a mechanical drive or current signal using the principle of an electromagnet.
  • a DC relay is also called a magnetic switch, and is generally classified as an electrical circuit switching device.
  • the DC relay may be operated by receiving external control power.
  • the DC relay includes a fixed core and a movable core that can be magnetized by a control power supply.
  • the fixed core and the movable core are positioned adjacent to a bobbin on which a plurality of coils are wound.
  • the shaft and the movable contact connected to the shaft are also moved.
  • the movable contact can be moved toward the stationary contact.
  • the DC relay is energized with an external power source and load.
  • the electromagnetic field formed by the plurality of coils and the electromagnetic force formed thereby must exceed the elastic force applied by the elastic member.
  • the movable core is positioned below the fixed core so that the movable core is not affected by the current passed between the fixed contact and the movable contact.
  • the electromagnetic force depends on the magnitude of the current passed through the plurality of coils, the number of turns of the plurality of coils, and the like. Therefore, it is difficult to increase the electromagnetic force indefinitely in consideration of safety accident prevention and the size of the DC relay.
  • Korean Patent Document No. 10-1157632 discloses a normally closed electromagnetic relay. Specifically, it discloses a normally closed electromagnetic relay having a hollow protrusion disposed to face a fixed core with a movable core interposed therebetween, and having a structure in which the hollow protrusion is inserted into a groove of the movable core when the movable core is not moved.
  • Korean Patent Document No. 10-1267370 discloses a switching device for a starter. More specifically, by using a spacer made of an insulating material disposed to face the fixed core with the movable core interposed therebetween, there is disclosed a switching device for a starter having a structure capable of preventing arbitrary conduction between the bottom frame and the movable core.
  • this type of switching device for a starter does not provide a way to adjust the force required to move the movable core toward the stationary core.
  • the movable core is formed to have a unique shape. Accordingly, the movable core disclosed in the prior documents has a limitation in that it can be applied only to an electromagnetic relay or a switching device specialized therefor.
  • Patent Document 1 Korean Patent Document No. 10-1157632 (2012.06.19.)
  • Patent Document 2 Korean Patent Document No. 10-12673709 (2013.05.24.)
  • An object of the present invention is to provide a movable core part having a structure capable of solving the above problems and a DC relay including the same.
  • an object of the present invention is to provide a movable core part having a structure capable of reducing the minimum amount of force required to drive a movable contactor, and a DC relay including the same.
  • Another object of the present invention is to provide a movable core part having a structure capable of minimizing shape deformation of the movable core while achieving the above object and a DC relay including the same.
  • Another object of the present invention is to provide a movable core part having a structure in which a coupling state between a movable core part and a member for transmitting movement of the movable core part can be stably maintained, and a DC relay including the same.
  • Another object of the present invention is to provide a movable core part having a structure in which operation reliability can be improved and a DC relay including the same.
  • a fixed contact a movable contact positioned adjacent to the fixed contact and contacted or spaced apart from the fixed contact; a movable core coupled to the movable contactor to be movable in any one of a direction facing the movable contactor and a direction opposite to the movable contactor; and a stationary core positioned between the movable contactor and the movable core, the stationary core being magnetized to apply an attractive force to the movable core, wherein the movable core is opposite to the stationary core therein.
  • a DC relay including a space portion recessed from one side.
  • the movable core of the DC relay may include an upper surface covering the space from an upper side; and a side surface that is continuous with the upper surface and surrounds the space at the upper and lower sides of the space.
  • the movable core of the DC relay may have a circular cross-section and may have a cylindrical shape extending in a direction toward the fixed core.
  • the movable core of the DC relay may include an upper surface forming an upper surface of the movable core and having a circular cross section; a through hole positioned inside the upper surface and penetrating in a direction in which the movable core extends; and a side surface that is continuous while forming a predetermined angle with the outer periphery of the upper surface and forming a side surface of the movable core, wherein the space portion is defined by being surrounded by the upper surface and the side surface, and may be in communication with the through hole.
  • the DC relay includes a shaft extending between the movable core and the fixed core, one end of the extension direction is through-coupled to the through hole, and the other end of the extension direction is coupled to the movable contactor, The movable core, the shaft and the movable contact may be moved upward or downward together.
  • the shaft of the DC relay may include: a first portion coupled to the movable contactor and extending toward the movable core; and a second portion coupled to the movable core and extending from an end of the first portion, wherein a diameter of a cross-section of the first portion includes a diameter of a cross-section of the second portion and a diameter of a cross-section of the through hole can be made larger.
  • the DC relay may include: a coil that surrounds the fixed core and is electrically connected to the outside to form a magnetic field that magnetizes the fixed core; and a core spring positioned between the fixed core and the movable core and in contact with the fixed core and the movable core to elastically support the movable core, wherein the suction force applied by the fixed core is, the core spring It may be greater than the sum of the maximum value of the elastic force stored in the and the self-weight of the movable core.
  • the present invention the fixed contact; a movable contact positioned adjacent to the fixed contact and contacted or spaced apart from the fixed contact; a movable core coupled to the movable contactor to be movable in any one of a direction facing the movable contactor and a direction opposite to the movable contactor; and a fixed core positioned between the movable contactor and the movable core, the stationary core being magnetized to apply an attractive force to the movable core, wherein the movable core is recessed from one side opposite to the stationary core.
  • the DC relay includes a shaft extending between the movable core and the fixed core, one end of the extension direction is through-coupled to the through hole, and the other end of the extension direction is coupled to the movable contactor, The movable core, the shaft and the movable contact may be moved upward or downward together.
  • the movable core of the DC relay may include an upper surface surrounding the space portion from an upper side; and a side surface that is continuous with the upper surface and surrounds the space part on the front side, the rear side, left and right sides, respectively, wherein an end of the partition wall part in a direction opposite to the fixed core is opposite to the fixed core of the side surface It may be located closer to the upper surface than the end of the direction.
  • the movable core of the DC relay may include an upper surface surrounding the space portion from an upper side; and a side surface that is continuous with the upper surface and surrounds the space part on the front side, the rear side, left and right sides, respectively, wherein an end of the partition wall part in a direction opposite to the fixed core is opposite to the fixed core of the side surface It may be located at the same distance from the end of the direction and the upper surface.
  • the movable core portion includes a movable core.
  • the movable core includes a space portion recessed from one side opposite to the fixed core.
  • the space portion is located inside the movable core to reduce the internal weight of the movable core.
  • the size of the space is proportional to the amount of reduction in the self-weight of the movable core. That is, as the volume of the space portion increases, the dead weight of the movable core decreases.
  • the movable core is coupled to the movable contact via the shaft.
  • the shaft and the movable contact are also moved together.
  • the minimum force for moving the movable core is reduced by the above-described configuration. Accordingly, the minimum magnitude of the force required to drive the movable contact can also be reduced.
  • the space portion is recessed in the inside of the movable core. Specifically, the space portion is formed to be depressed toward the upper side from the opposite side, that is, from the lower side, rather than the upper surface elastically supported by the core spring.
  • the initial shape of the movable core that is, the cylindrical shape, may be maintained by the upper surface and the side surface surrounding the space portion.
  • the structural change of the movable core can be minimized. Furthermore, since the external shape of the movable core according to the embodiment of the present invention is similar to that of the previously used movable core, versatility can be guaranteed.
  • the manufacturing process of the movable core can be simplified by the above-described structure. Furthermore, as the manufacturing process is simplified, the manufacturing cost can also be reduced.
  • the shaft is through-coupled to the through hole formed in the upper surface of the movable core.
  • the space portion of the movable core is provided with a partition wall portion.
  • the partition wall portion surrounds the insert-coupled shaft.
  • the shaft is welded to the movable core (ie, the partition wall portion in one embodiment), so that the stability of the coupling can be improved.
  • the coupling state between the shaft and the movable core can be stably maintained.
  • the dead weight of the movable core is reduced, the required value of the electromagnetic force for moving the movable core can be reduced. Furthermore, the coupling state between the shaft and the movable core can be stably maintained.
  • the movable core may move toward the fixed core.
  • the shaft coupled thereto may also be moved.
  • the operation reliability of the movable core part and the DC relay including the same may be improved.
  • the volume of the movable core part and the entire DC relay can be reduced.
  • FIG. 1 is a perspective view illustrating a DC relay according to an embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a configuration for energization and interruption of energization among the configurations of the DC relay of FIG. 1 .
  • FIG. 3 is a front view showing a configuration for energization and energization interruption among the configurations of the DC relay of FIG. 1 .
  • FIG. 6 is a perspective view illustrating a movable core provided in the DC relay of FIG. 5 .
  • FIGS. 8A and 8B are cross-sectional views illustrating an operation process of a DC relay including a movable core according to an embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a DC relay showing a movable core according to another embodiment of the present invention.
  • FIG. 10 is a perspective view illustrating a movable core provided in the DC relay of FIG. 9 .
  • Fig. 11 is a cross-sectional perspective view showing an internal structure of the movable core of Fig. 8;
  • FIG. 12 is a cross-sectional perspective view illustrating a modified example of the movable core of FIG. 10 .
  • FIG. 13 is a cross-sectional perspective view showing another modified example of the movable core of FIG. 10 .
  • magnetize used in the following description refers to a phenomenon in which an object becomes magnetic in a magnetic field.
  • electrical current used in the following description refers to a state in which two or more members are electrically connected.
  • the DC relay 10 includes a frame part 100 , an opening/closing part 200 , a core part 300 , and a movable contact part 400 . ) is included.
  • the DC relay 10 includes a movable core part 500 according to an embodiment. Furthermore, referring to FIG. 9 , the DC relay 10 according to an embodiment of the present invention includes a movable core unit 600 according to another embodiment.
  • the movable core parts 500 and 600 according to each embodiment may be reliably moved toward the fixed core 310 . Accordingly, the energized state of the DC relay 10 may be stably maintained.
  • the frame part 100 forms the outside of the DC relay 10 .
  • a predetermined space is formed inside the frame part 100 . In the space, various devices that perform a function for the DC relay 10 to apply or block an externally transmitted current may be accommodated.
  • the frame part 100 functions as a kind of housing.
  • the frame part 100 may be formed of an insulating material such as synthetic resin. This is to prevent the inside and outside of the frame part 100 from being arbitrarily energized.
  • the upper frame 110 forms an upper side of the frame part 100 .
  • a predetermined space is formed inside the upper frame 110 .
  • the space communicates with a space formed inside the lower frame 120 .
  • the opening/closing part 200 and the movable contact part 400 may be accommodated in the inner space of the upper frame 110 .
  • the fixed contact 220 of the opening and closing unit 200 is positioned on the upper side in the illustrated embodiment.
  • the fixed contact 220 may be partially exposed on the upper side of the upper frame 110 to be electrically connected to an external power source or load.
  • a through hole through which the fixed contact 220 is through-coupled may be formed in the upper side of the upper frame 110 .
  • the lower frame 120 forms the lower side of the frame part 100 .
  • a predetermined space is formed inside the lower frame 120 .
  • the core part 300 may be accommodated in the inner space of the lower frame 120 .
  • the space communicates with a space formed inside the upper frame 110 .
  • the movable core parts 500 and 600 may be accommodated in the space of the lower frame 120 .
  • Each of the movable core parts 500 and 600 may be lifted up and down in the space. A detailed description thereof will be provided later.
  • the lower frame 120 may be coupled to the upper frame 110 .
  • An insulating plate 130 and a support plate 140 may be provided in a space between the lower frame 120 and the upper frame 110 .
  • the insulating plate 130 is positioned between the upper frame 110 and the lower frame 120 .
  • the insulating plate 130 electrically separates the upper frame 110 and the lower frame 120 from each other.
  • the insulating plate 130 may be formed of an insulating material such as synthetic resin.
  • a support plate 140 is positioned below the insulating plate 130 .
  • the insulating plate 130 may be supported by the support plate 140 .
  • the support plate 140 physically separates the upper frame 110 and the lower frame 120 from each other. In addition, the support plate 140 supports the insulating plate 130 .
  • the support plate 140 may be formed of a magnetic material. Accordingly, the support plate 140 may form a magnetic circuit together with the yoke 330 of the core part 300 . By the magnetic path, a driving force for moving each of the movable cores 510 and 610 of each of the movable core parts 500 and 600 toward the fixed core 310 may be formed.
  • a through hole (not shown) is formed in the center of the support plate 140 .
  • Each of the shafts 520 and 620 of each of the movable core parts 500 and 600 are through-coupled to the through hole (not shown) so as to be movable in the vertical direction.
  • each movable core (510, 610) is moved in a direction toward the fixed core (310) or in a direction spaced apart from the fixed core (310), each of the shafts (520, 620) and each of the shafts (520, 620)
  • the connected movable contactors 430 may also be moved together in the same direction.
  • the opening/closing unit 200 permits or blocks current flow according to the operation of the core unit 300 .
  • the opening/closing unit 200 may allow or block current flow by contacting or separating the fixed contactor 220 and the movable contactor 430 from each other.
  • the opening and closing part 200 is accommodated in the inner space of the upper frame 110 .
  • the opening/closing part 200 may be electrically and physically spaced apart from the core part 300 and each of the movable core parts 500 and 600 by the insulating plate 130 and the support plate 140 .
  • the opening/closing unit 200 includes an arc chamber 210 , a fixed contactor 220 , and a sealing member 230 .
  • a magnet member for forming an arc path may be provided outside the arc chamber 210 .
  • the magnet member may generate a magnetic field in the arc chamber 210 to generate an electromagnetic force that forms a path of the generated arc.
  • the arc chamber 210 extinguishes the arc generated by the fixed contact 220 and the movable contact 430 being spaced apart from each other in the inner space. Accordingly, the arc chamber 210 may be referred to as an “arc extinguishing unit”.
  • the arc chamber 210 hermetically accommodates the fixed contact 220 and the movable contact 430 . That is, the fixed contact 220 and the movable contact 430 are accommodated in the arc chamber 210 . Accordingly, the arc generated by the fixed contact 220 and the movable contact 430 being spaced apart does not flow out arbitrarily to the outside.
  • the arc chamber 210 may be filled with an extinguishing gas.
  • the extinguishing gas allows the generated arc to be extinguished and discharged to the outside of the DC relay 10 through a preset path.
  • a communication hole (not shown) may be formed through the wall surrounding the inner space of the arc chamber 210 .
  • the arc chamber 210 may be formed of an insulating material.
  • the arc chamber 210 may be formed of a material having high pressure resistance and high heat resistance. This is because the generated arc is a flow of high-temperature and high-pressure electrons.
  • the arc chamber 210 may be formed of a ceramic material.
  • a plurality of through-holes may be formed in the upper side of the arc chamber 210 .
  • a fixed contact 220 is through-coupled to each of the through holes.
  • the fixed contactor 220 is provided in two, including the first fixed contactor 220a and the second fixed contactor 220b. Accordingly, two through-holes formed in the upper side of the arc chamber 210 may also be formed.
  • the through-hole When the fixed contact 220 is through-coupled to the through-hole, the through-hole is sealed. That is, the fixed contact 220 is hermetically coupled to the through hole. Accordingly, the generated arc is not discharged to the outside through the through hole.
  • the lower side of the arc chamber 210 may be opened.
  • the insulating plate 130 and the sealing member 230 are in contact with the lower side of the arc chamber 210 . That is, the lower side of the arc chamber 210 is sealed by the insulating plate 130 and the sealing member 230 .
  • the arc chamber 210 may be electrically and physically spaced apart from the outer space of the upper frame 110 .
  • the arc extinguished in the arc chamber 210 is discharged to the outside of the DC relay 10 through a preset path.
  • the extinguished arc may be discharged to the outside of the arc chamber 210 through the communication hole (not shown).
  • the fixed contactor 220 is in contact with or spaced apart from the movable contactor 430 , and applies or blocks electric current inside and outside the DC relay 10 .
  • the inside and the outside of the DC relay 10 may be energized.
  • the fixed contactor 220 is spaced apart from the movable contactor 430 , the energization of the DC relay 10 inside and outside is cut off.
  • the fixed contact 220 is not moved. That is, the fixed contact 220 is fixedly coupled to the upper frame 110 and the arc chamber 210 . Accordingly, contact and separation between the fixed contactor 220 and the movable contactor 430 is achieved by the movement of the movable contactor 430 .
  • One end of the fixed contact 220, the upper end in the illustrated embodiment is exposed to the outside of the upper frame (110).
  • a power source or a load is connected to the one end to be energized, respectively.
  • a plurality of fixed contacts 220 may be provided.
  • the fixed contacts 220 include a first fixed contact 220a on the left and a second fixed contact 220b on the right, and a total of two fixed contacts 220 are provided.
  • the first fixed contact 220a is positioned to one side from the center in the longitudinal direction of the movable contact 430, and to the left in the illustrated embodiment.
  • the second fixed contactor 220b is located at the other side from the center in the longitudinal direction of the movable contactor 430 to the right in the illustrated embodiment.
  • Power may be energably connected to any one of the first fixed contactor 220a and the second fixed contactor 220b.
  • a load may be electrically connected to the other one of the first fixed contactor 220a and the second fixed contactor 220b.
  • the other end of the fixed contact 220 extends toward the movable contact 430 .
  • the lower end of the fixed contact 220 is located inside the arc chamber 210 .
  • the movable contactor 430 When the control power is cut off, the movable contactor 430 is spaced apart from the fixed contactor 220 by the elastic force of the elastic parts 540 and 640 of each movable core part 500 .
  • an arc is generated between the fixed contact 220 and the movable contact 430 .
  • the generated arc is extinguished by the extinguishing gas inside the arc chamber 210 and may be discharged to the outside.
  • the sealing member 230 blocks any communication between the arc chamber 210 and the space inside the upper frame 110 .
  • the sealing member 230 seals the lower side of the arc chamber 210 together with the insulating plate 130 and the support plate 140 .
  • the upper side of the sealing member 230 is coupled to the lower side of the arc chamber 210 .
  • the radially inner side of the sealing member 230 is coupled to the outer periphery of the insulating plate 130
  • the lower side of the sealing member 230 is coupled to the support plate 140 .
  • the arc generated in the arc chamber 210 and the arc extinguished by the extinguishing gas do not flow out of the mouth into the inner space of the upper frame 110 .
  • sealing member 230 may block any communication between the inner space of the cylinder 360 and the inner space of the frame part 100 .
  • the core part 300 moves the movable contact part 400 upward according to the application of control power together with each of the movable core parts 500 and 600 . In addition, when the application of the control power is released, the core part 300 moves the movable contact part 400 downward again.
  • the core unit 300 may be connected to an external control power supply (not shown) to be energized, and may receive control power.
  • the core part 300 is located below the opening/closing part 200 .
  • the core part 300 is accommodated in the lower frame 120 .
  • the core part 300 and the opening/closing part 200 may be electrically and physically spaced apart from each other by the insulating plate 130 and the support plate 140 .
  • a movable contact part 400 is positioned between the core part 300 and the opening/closing part 200 .
  • the movable contact part 400 may be moved by the driving force applied by the core part 300 and each of the movable core parts 500 and 600 . Accordingly, the movable contactor 430 and the fixed contactor 220 may be in contact, and the DC relay 10 may be energized.
  • the core part 300 includes a fixed core 310 , a bottom part 320 , a yoke 330 , a bobbin 340 , a coil 350 , and a cylinder 360 .
  • the fixed core 310 is magnetized by the magnetic field generated by the coil 350 to generate electromagnetic attraction.
  • electromagnetic attraction By the electromagnetic attraction, each of the movable cores 510 and 610 is moved toward the fixed core 310 (in the upward direction in FIGS. 5 and 9 ).
  • the fixed core 310 may be provided in any shape capable of generating electromagnetic force by being magnetized by a magnetic field.
  • the fixed core 310 may be formed of a magnetic material, or may be provided with a permanent magnet or an electromagnet.
  • the fixed core 310 is partially accommodated in the upper space inside the cylinder 360 .
  • the outer periphery of the fixed core 310 is in contact with the inner periphery of the cylinder (360).
  • the fixed core 310 is positioned between the support plate 140 and each of the movable cores 510 and 610 .
  • a through hole (not shown) is formed in the central portion of the fixed core 310 .
  • Each of the shafts 520 and 620 are coupled through the through hole (not shown) to be vertically movable.
  • the fixed core 310 is positioned to be spaced apart from each of the movable cores 510 and 610 by a predetermined distance. Accordingly, the distance at which the movable cores 510 and 610 can move toward the fixed core 310 may be limited to the predetermined distance. Accordingly, the predetermined distance may be defined as "the movement distance of each movable core 510 and 610".
  • each of the core springs 530 and 630 is in contact with the lower side of the fixed core 310, and the upper end in the illustrated embodiment is in contact.
  • each of the core springs 530 and 630 is compressed and a restoring force is stored.
  • each of the movable cores 510 and 610 may be returned to the lower side by the restoring force.
  • the bottom portion 320 forms the lower boundary of the cylinder 360 .
  • the bottom part 320 may be defined as one surface of the cylinder 360 surrounding the space formed inside the cylinder 360 from the lower side.
  • the bottom portion 320 defines a limit of a position at which each movable core 510 , 610 can be moved downward. That is, as each of the movable cores 510 and 610 moves downward, the lower end of each of the movable cores 510 and 610 is in contact with the bottom 320 . Accordingly, each of the movable cores 510 and 610 is no longer moved downward.
  • the bottom 320 is spaced apart from each movable core 510 , 610 .
  • each of the movable cores 510 and 610 facing the bottom 320 in a state in which each movable core 510 and 610 is not sucked by the fixed core 310 the lower end in the illustrated embodiment is the bottom It is spaced apart from the part 320 .
  • each movable core 510 , 610 may have its lower end in contact with the bottom 320 .
  • the partition wall part 616 is formed in the movable core part 600 according to another embodiment of the present invention.
  • the lower end of the partition wall part 616 may be extended to contact the bottom part 320 . A detailed description thereof will be provided later.
  • the bottom portion 320 is preferably formed of an insulating material such as synthetic resin. This is to prevent the electromagnetic force applied to each of the movable cores 510 and 610 from being disturbed.
  • the yoke 330 forms a magnetic circuit as control power is applied.
  • the magnetic path formed by the yoke 330 may control the direction of the magnetic field formed by the coil 350 .
  • the coil 350 may generate a magnetic field in a direction in which each of the movable cores 510 and 610 moves toward the fixed core 310 .
  • the yoke 330 may be formed of a conductive material capable of conducting electricity.
  • the yoke 330 is accommodated in the lower frame 120 .
  • the yoke 330 surrounds the coil 350 .
  • the coil 350 may be accommodated in the yoke 330 so as to be spaced apart from the inner circumferential surface of the yoke 330 by a predetermined distance.
  • the bobbin 340 is accommodated in the yoke 330 . That is, the yoke 330 , the coil 350 , and the bobbin 340 on which the coil 350 is wound are sequentially arranged in a direction radially inward from the outer periphery of the lower frame 120 .
  • the upper side of the yoke 330 is in contact with the support plate 140 .
  • the outer periphery of the yoke 330 may be in contact with the inner periphery of the lower frame 120 or may be positioned to be spaced apart from the inner periphery of the lower frame 120 by a predetermined distance.
  • a coil 350 is wound around the bobbin 340 .
  • the bobbin 340 is accommodated in the yoke 330 .
  • the bobbin 340 may include flat upper and lower portions, and a cylindrical column extending in the longitudinal direction to connect the upper and lower portions. That is, the bobbin 340 has a bobbin shape.
  • An upper portion of the bobbin 340 is in contact with a lower portion of the support plate 140 .
  • a coil 350 is wound around the column portion of the bobbin 340 .
  • a thickness around which the coil 350 is wound may be equal to or smaller than diameters of upper and lower portions of the bobbin 340 .
  • a hollow portion extending in the longitudinal direction is formed through the column portion of the bobbin 340 .
  • a cylinder 360 may be accommodated in the hollow part.
  • the pillar portion of the bobbin 340 may be disposed to have the same central axis as the fixed core 310 , each of the movable cores 510 and 610 , and each of the shafts 520 and 620 .
  • the coil 350 generates a magnetic field by the applied control power.
  • the fixed core 310 is magnetized by the magnetic field generated by the coil 350 , and electromagnetic attraction may be applied to each of the movable cores 510 and 610 .
  • the coil 350 is wound around the bobbin 340 . Specifically, the coil 350 is wound on the pillar portion of the bobbin 340 and is stacked radially outward of the pillar portion. The coil 350 is accommodated in the yoke 330 .
  • the coil 350 When the control power is applied, the coil 350 generates a magnetic field. In this case, the strength or direction of the magnetic field generated by the coil 350 may be controlled by the yoke 330 .
  • the fixed core 310 is magnetized by the magnetic field generated by the coil 350 .
  • each of the movable cores 510 and 610 When the fixed core 310 is magnetized, each of the movable cores 510 and 610 receives an electromagnetic force in a direction toward the fixed core 310 , that is, an attractive force. Accordingly, each of the movable cores 510 and 610 is moved upward in the direction toward the fixed core 310 , in the illustrated embodiment.
  • the strength of the magnetic field generated by the coil 350 increases. Also, as is known, the strength of the magnetic field generated by the coil 350 increases in proportion to the number of times the coil 350 is wound around the bobbin 340 .
  • each movable core 510 , 610 is provided with a structure capable of maintaining its original shape while reducing its own weight.
  • each of the movable cores 510 and 610 can be reliably moved without excessively increasing the number of times the coil 350 is wound. A detailed description thereof will be provided later.
  • Cylinder 360 accommodates a fixed core 310 , each movable core 510 , 610 , each core spring 530 , 630 , and each shaft 520 , 620 .
  • Each of the movable cores 510 and 610 and each of the shafts 520 and 620 may move upward and downward in the cylinder 360 .
  • the cylinder 360 is located in a hollow formed in the column part of the bobbin 340 .
  • the upper end of the cylinder 360 is in contact with the lower surface of the support plate (140).
  • the side surface of the cylinder 360 is in contact with the inner circumferential surface of the column part of the bobbin 340 .
  • the upper opening of the cylinder 360 may be sealed by the fixed core 310 .
  • the lower surface of the cylinder 360 that is, the bottom 320 may be in contact with the inner surface of the lower frame 120 .
  • the distance at which each movable core 510 and 610 moves in the downward direction may be limited by the bottom portion 320 .
  • the movable contact unit 400 includes a movable contact 430 and a configuration for moving the movable contact 430 .
  • the DC relay 10 may be energized with an external power source or load.
  • the movable contact part 400 is accommodated in the inner space of the upper frame 110 .
  • the movable contact part 400 is accommodated in the arc chamber 210 to be movable up and down.
  • a fixed contact 220 is positioned above the movable contact unit 400 .
  • the movable contact unit 400 is accommodated in the arc chamber 210 to be movable in a direction toward the fixed contact 220 and a direction away from the fixed contact 220 .
  • a core part 300 and each of the movable core parts 500 and 600 are positioned below the movable contact part 400 .
  • the movement of the movable contact part 400 may be achieved by movement of each of the movable cores 510 and 610 .
  • the movable contact unit 400 includes a housing 410 , a cover 420 , and a movable contact 430 .
  • the housing 410 accommodates the movable contact 430 and the respective elastic parts 540 and 640 for elastically supporting the movable contact 430 .
  • the housing 410 has one side and the other side opposite thereto open.
  • the movable contact 430 may be inserted through the open portion.
  • the unopened side of the housing 410 may be formed to surround the accommodated movable contact 430 .
  • a cover 420 is provided on the upper side of the housing 410 .
  • the cover 420 covers the upper surface of the movable contact 430 accommodated in the housing 410 .
  • the housing 410 and the cover 420 are preferably formed of an insulating material to prevent unintentional energization.
  • the housing 410 and the cover 420 may be formed of a synthetic resin or the like.
  • the lower side of the housing 410 is connected to each of the shafts 520 and 620 .
  • the housing 410 and the movable contact 430 accommodated therein may also be moved upward or downward.
  • the housing 410 and the cover 420 may be coupled by any member.
  • the housing 410 and the cover 420 may be coupled by a fastening member (not shown) such as a bolt or a nut.
  • the movable contactor 430 is in contact with the fixed contactor 220 according to the application of control power. Accordingly, the DC relay 10 is energized with an external power source and load. In addition, the movable contactor 430 is spaced apart from the fixed contactor 220 when the application of the control power is released. Accordingly, the DC relay 10 is cut off from the external power supply and the load.
  • the movable contact 430 may be formed of a conductive material.
  • the movable contactor 430 in contact with the fixed contactor 220 may be electrically connected to an external power source or load.
  • the movable contact 430 is positioned adjacent to the stationary contact 220 .
  • the upper side of the movable contact 430 is partially covered by the cover 420 .
  • a portion of the upper surface of the movable contactor 430 may be in contact with the lower surface of the cover 420 .
  • each of the elastic parts 540 and 640 may elastically support the movable contactor 430 in a compressed state by a predetermined distance.
  • the movable contact 430 is formed to extend in the longitudinal direction, in the illustrated embodiment, in the left-right direction. That is, the length of the movable contact 430 is formed to be longer than the width. Accordingly, both ends in the longitudinal direction of the movable contact 430 accommodated in the housing 410 are exposed to the outside of the housing 410 .
  • a contact protrusion formed to protrude upward by a predetermined distance may be formed at both ends.
  • the fixed contact 220 is in contact with the contact protrusion.
  • the contact protrusion may be formed at a position corresponding to each of the fixed contacts 220a and 220b. Accordingly, the moving distance of the movable contactor 430 may be reduced, and contact reliability between the fixed contactor 220 and the movable contactor 430 may be improved.
  • the width of the movable contactor 430 may be equal to the distance at which each side of the housing 410 is spaced apart from each other. That is, when the movable contact 430 is accommodated in the housing 410 , both sides of the movable contact 430 in the width direction may contact the inner surface of each side of the housing 410 .
  • a state in which the movable contact 430 is accommodated in the housing 410 may be stably maintained.
  • the DC relay 10 includes a movable core unit 500 .
  • the movable core part 500 is magnetized by the magnetic field formed by the coil 350 , and an attractive force is applied by the fixed core 310 . Accordingly, the movable core part 500 is moved upward in the direction toward the fixed core 310 , in the illustrated embodiment.
  • the movable core part 500 is connected to the movable contact part 400 .
  • the movable core part 500 and the movable contact part 400 may be moved together. Accordingly, the movable contact unit 400 and the fixed contact unit 220 may be in contact with each other or may be spaced apart from each other.
  • the movable core part 500 is formed in a structure in which its self-weight can be reduced. Accordingly, the magnitude of the force required to move the movable core part 500 is reduced.
  • the DC relay 10 can be reliably operated without the coil 350 being excessively wound to increase the magnitude of the magnetic field applied by the coil 350 .
  • the movable core part 500 includes a movable core 510 , a shaft 520 , a core spring 530 , and an elastic part 540 .
  • the movable core 510 is moved toward the fixed core 310 by electromagnetic attraction generated by the fixed core 310 when control power is applied.
  • the shaft 520 coupled to the movable core 510 moves upward in a direction toward the fixed core 310 , in the illustrated embodiment.
  • the movable contact part 400 coupled to the shaft 520 moves upward.
  • the fixed contactor 220 and the movable contactor 430 may be in contact so that the DC relay 10 may be energized with an external power source or load.
  • the movable core 510 may be provided in any shape capable of receiving attractive force by electromagnetic force.
  • the movable core 510 may be formed of a magnetic material, or may be provided with a permanent magnet or an electromagnet.
  • the movable core 510 is accommodated in the cylinder 360 .
  • the movable core 510 may be moved in the cylinder 360 in the height direction of the cylinder 360 , in the illustrated embodiment, in the vertical direction.
  • the movable core 510 may move in a direction toward the fixed core 310 and a direction away from the fixed core 310 .
  • the movable core 510 is coupled to the shaft 520 .
  • the movable core 510 may move integrally with the shaft 520 .
  • the shaft 520 also moves upward or downward. Accordingly, the movable contact 430 is also moved upward or downward.
  • the movable core 510 is positioned below the fixed core 310 .
  • the movable core 510 is spaced apart from the fixed core 310 by a predetermined distance.
  • the predetermined distance is a distance at which the movable core 510 can be moved in the vertical direction.
  • the movable core 510 has a circular cross-section, and has a cylindrical shape extending in one direction, in the vertical direction in the illustrated embodiment.
  • the movable core 510 may be of any shape that is vertically accommodated in the cylinder 360 and can be moved in a direction toward the fixed core 310 or in a direction opposite to the fixed core 310 .
  • the movable core 510 includes an upper surface 511 , a side surface 512 , a through hole 513 , a space portion 514 , and an opening 515 .
  • the upper surface 511 forms one side of the movable core 510 facing the fixed core 310 , the upper surface in the illustrated embodiment.
  • the upper surface 511 covers the space portion 514 formed inside the movable core 510 from the upper side.
  • the upper surface 511 is in contact with one end of the core spring 530 facing the movable core 510, the lower end in the illustrated embodiment. Accordingly, the movable core 510 may be elastically supported by the core spring 530 .
  • the upper surface 511 is provided in a circular shape through which a through hole 513 is formed in the center thereof.
  • the shape of the upper surface 511 may be changed according to the shape of the lower surface of the fixed core 310 .
  • the outer diameter of the upper surface 511 may be formed to be less than or equal to the inner diameter of the cylinder (360). In one embodiment, the outer diameter of the upper surface 511 may be formed to be the same as the inner diameter of the cylinder (360). Accordingly, when the fixed core 310 applies a magnetic force, the movable core 510 may move in the vertical direction without horizontal movement.
  • the upper surface 511 is continuous with the side surface 512 . Specifically, the outer periphery of the circular upper surface 511 is continuous with the side surface 512 . In an embodiment, the upper surface 511 and the side surface 512 may extend perpendicular to each other.
  • a through hole 513 is formed through the inside of the upper surface 511 .
  • the through hole 513 may be positioned to have a central axis equal to the center of the circular upper surface 511 .
  • the side surface 512 forms the side surface of the movable core 510 having a cylindrical shape.
  • the side surface 512 forms the side surface of the movable core 510 at the lower side of the upper surface 511 .
  • the side surface 512 covers the space portion 514 formed inside the movable core 510 from the front side, the rear side, the left side and the right side.
  • the side surface 512 is continuous with the upper surface 511 . Specifically, one side of the side surface 512 facing the upper surface 511, the upper edge in the illustrated embodiment may be continuous with the outer periphery of the upper surface (511).
  • the side surface 512 and the upper surface 511 may be continuous perpendicularly to each other.
  • the edge where the side surface 512 and the upper surface 511 are continuous may be chamfered.
  • the other end of the side 512 facing the bottom 320 in the illustrated embodiment, the lower end is spaced apart from the bottom 320 .
  • the lower end of side 512 may contact bottom 320 .
  • the through hole 513 is formed through the inside of the upper surface 511 in the direction toward the fixed core 310 and the direction opposite to the fixed core 310, in the vertical direction in the illustrated embodiment.
  • a shaft 520 is coupled through the through hole 513 . Accordingly, the movable core 510 and the shaft 520 may be raised and lowered integrally.
  • the through hole 513 is formed through the inside of the upper surface 511 .
  • the through hole 513 may be formed to have a circular cross-section, and may be disposed to have the same central axis as the center of the upper surface 511 .
  • the through hole 513 has a relatively large diameter, and has a first portion located closer to the fixed core 310 and a relatively small diameter, and is located further from the fixed core 310 compared to the first portion. It can be divided into a second part.
  • the first portion of the through hole 513 supports the lower end of the first portion of the shaft 520 having a relatively larger diameter. That is, the first portion of the through hole 513 is formed to be smaller than the diameter of the first portion of the shaft 520 .
  • a second portion of the shaft 520 having a relatively smaller diameter is through-coupled to the second portion of the through hole 513 . That is, the second portion of the through hole 513 is formed to have a diameter equal to or smaller than the diameter of the second portion of the shaft 520 .
  • the movable core 510 when the movable core 510 is moved upward, the first part of the shaft 520 supported by the first part of the through hole 513 is pressed upward. Accordingly, the movable core 510 and the shaft 520 may be raised and lowered integrally.
  • the through hole 513 communicates with the space portion 514 .
  • the second portion of the shaft 520 through-coupled to the through hole 513 may extend into the space portion 514 .
  • the space portion 514 is a space for accommodating the second portion of the shaft 520 through-coupled to the through hole 513 .
  • the space portion 514 reduces the self-weight of the entire movable core 510 .
  • the space 514 may be defined as a space surrounded by the upper surface 511 and the side surface 512 .
  • the upper side of the space portion 514 is surrounded by the upper surface 511 . Further, the front side, the rear side, the left side and the right side of the space portion 514 are surrounded by the side surface 512 .
  • the space portion 514 may be defined as a space formed by being depressed from the lower side in the illustrated embodiment, except for the upper surface 511 and the side surface 512 of the movable core 510 .
  • the space portion 514 is recessed in one side (ie, the lower side in the illustrated embodiment) opposite to the fixed core 310 in each direction of the movable core 510 .
  • the shape of the space part 514 may be changed according to the shape of the upper surface 511 and the side surface 512 .
  • the upper surface 511 and the side surface 512 form the upper surface and the side surface of a cylinder or cylinder, respectively.
  • the space portion 514 has a circular cross section and has a cylindrical or cylindrical shape extending in the vertical direction.
  • the space portion 514 communicates with the space positioned above the movable core 510 by the through hole 513 .
  • the second portion of the shaft 520 that is through-coupled to the through hole 513 may extend into the space portion 514 .
  • the space portion 514 communicates with the opening 515 .
  • the space portion 514 communicates with the space located below the movable core 510 by the opening 515 .
  • the volume of the space 514 may be changed.
  • the volume of the space portion 514 may be changed in proportion to the amount of the required reduction in self-weight of the movable core 510 .
  • the opening 515 is located on one side of the space portion 514 opposite to the upper surface 511 , and on the lower side in the illustrated embodiment.
  • the opening 515 is opened to communicate the space 514 and the space below the cylinder 360 .
  • the manufacturing process of the movable core 510 may be simplified.
  • the shaft 520 is coupled to the movable core 510 and the housing 410 of the movable contact part 400 , respectively.
  • the shaft 520 transfers the lifting and lowering of the movable core 510 to the housing 410 . Accordingly, when the movable core 510 is raised toward the fixed core 310 , the shaft 520 and the movable contact unit 400 coupled thereto are also raised together.
  • the movable contactor 430 and the fixed contactor 220 come into contact, so that the DC relay 10 may be electrically connected to an external power source or load.
  • the shaft 520 is formed to extend between the movable contact part 400 and the movable core 510 .
  • the shaft 520 has one side facing the movable contact unit 400 , and an upper end thereof in the illustrated embodiment is coupled to the housing 410 .
  • the other side of the shaft 520 facing the movable core 510, the lower end in the illustrated embodiment is through-coupled to the movable core (510).
  • the shaft 520 has a circular cross section and has a cylindrical shape extending in the vertical direction.
  • the shaft 520 may be divided into a plurality of parts according to the size of the member and diameter to be coupled.
  • the shaft 520 is coupled to the housing 410 , coupled to a first part having a relatively larger diameter and a movable core 510 , and to a second part having a relatively smaller diameter. can be distinguished.
  • the lower end of the first portion is partially inserted into the first portion of the through hole 513 .
  • the first portion of the through hole 513 is formed to have a larger diameter than the second portion of the through hole 513 .
  • the lower end of the first portion is supported at the edge where the first portion and the second portion of the through hole 513 are continuous.
  • the second portion is through-coupled to the through hole 513 and extends to the space portion 514 of the movable core 510 . Accordingly, the coupling state between the shaft 520 and the movable core 510 may be stably maintained.
  • the shaft 520 and the movable core 510 may be fixedly coupled. In one embodiment, the shaft 520 and the movable core 510 may be welded.
  • a core spring 530 is coupled through the shaft 520 .
  • the core spring 530 elastically supports the movable core 510 and the fixed core 310 .
  • the core spring 530 is positioned between the movable core 510 and the stationary core 310 .
  • the core spring 530 is in contact with the movable core 510 . Specifically, one end of the core spring 530 facing the movable core 510 , in the illustrated embodiment, the lower end is in contact with the upper surface of the movable core 510 .
  • the upper end of the core spring 530 facing the fixed core 310 is accommodated therein in the fixed core 310 . That is, in the illustrated embodiment, the core spring 530 is partially accommodated in a hollow formed radially outside the central axis of the fixed core 310 . The upper end of the core spring 530 is in contact with one surface of the fixed core 310 surrounding the hollow portion of the fixed core 310 from the upper side.
  • the core spring 530 is deformed in shape, stores elastic force (ie, restoring force), and may be provided in any form capable of transmitting the stored elastic force to other members.
  • the core spring 530 is provided in the form of a coil spring extending in the vertical direction and having a hollow portion formed therein.
  • the core spring 530 is coupled to the shaft 520 .
  • the shaft 520 is through-coupled to the hollow portion formed in the core spring 530 .
  • the core spring 530 When the movable core 510 is raised toward the fixed core 310 , the core spring 530 is compressed between the movable core 510 and the fixed core 310 and stores elastic force. When the current applied to the coil 350 is cut off and the movable core 510 is switched to a non-magnetized state, the core spring 530 is tensioned and the movable core 510 is lowered.
  • the elastic part 540 elastically supports the movable contact 430 .
  • the movable contact 430 comes into contact with the fixed contact 220 , the movable contact 430 tends to be separated from the fixed contact 220 by electromagnetic repulsive force.
  • the elastic part 540 elastically supports the movable contact 430 to prevent the movable contact 430 from being arbitrarily separated from the fixed contact 220 .
  • the elastic part 540 may be provided in any shape capable of storing a restoring force by deformation of a shape and providing the stored restoring force to another member.
  • the elastic part 540 may be provided as a coil spring.
  • One end of the elastic part 540 facing the movable contact 430 is in contact with the lower side of the movable contact 430 .
  • the other end opposite to the one end is in contact with the upper side of the housing 410 .
  • the elastic part 540 may be compressed by a predetermined distance to elastically support the movable contact 430 in a state in which restoring force is stored. Accordingly, even if an electromagnetic repulsive force is generated between the movable contactor 430 and the fixed contactor 220 , the movable contactor 430 is not arbitrarily moved.
  • a protrusion (not shown) inserted into the elastic part 540 may be protruded under the movable contact 430 .
  • a protrusion (not shown) inserted into the elastic part 540 may be protruded from the upper side of the housing 410 .
  • a space portion 514 is formed inside the movable core 510 . Accordingly, the self-weight of the movable core 510 is reduced, so that the amount of force required to elevate the movable core 510 can be reduced.
  • a magnetic field and electromagnetic force sufficient to move the movable core 510 toward the fixed core 310 may be formed.
  • the operation reliability of the DC relay 10 may be improved, and the overall volume of the DC relay 10 may be reduced.
  • the DC relay 10 is illustrated in a state in which it is not energized with an external power source or load.
  • the movable contactor 430 is spaced apart from the fixed contactor 220 and is positioned below the fixed contactor 220 .
  • the movable core 510 is spaced apart from the fixed core 310 and is located below the fixed core 310 .
  • the core spring 530 is in a state in which the degree of its shape deformation is fine, or the shape deformation is not. Accordingly, it will be understood that the magnitude of the elastic force (ie, restoring force) stored in the core spring 530 is also zero or a fine magnitude.
  • the movable core 510 has a space 514 formed therein. As described above, the self-weight of the movable core 510 is reduced by the volume of the space 514 .
  • the DC relay 10 in a state in which it is energized with an external power source or load is shown.
  • the coil 350 forms a magnetic field. Accordingly, the fixed core 310 and the movable core 510 are magnetized, and a suction force in a direction toward the fixed core 310 is applied to the movable core 510 .
  • the force required to lift the movable core 510 toward the fixed core 310 should be greater than the sum of the elastic force of the core spring 530 and the weight of the movable core 510 . That is, the magnetic field formed by the coil 350 must form an electromagnetic force greater than the sum of the above forces.
  • a space portion 514 is formed inside the movable core 510 . Accordingly, the dead weight of the movable core 510 is reduced, so that the amount of force required to move the movable core 510 is reduced. As a result, the minimum limit of the magnitude of the magnetic field formed by the coil 350 and the electromagnetic force formed thereby is reduced.
  • the movable core 510 can be stably raised toward the fixed core 310 without excessively increasing the amount of current applied to the coil 350 and the number of times the coil 350 is wound around the bobbin 340 .
  • the DC relay 10 includes a movable core unit 600 .
  • the movable core part 600 is magnetized by the magnetic field formed by the coil 350 , and an attractive force is applied by the fixed core 310 . Accordingly, the movable core part 600 is moved upward in the direction toward the fixed core 310 , in the illustrated embodiment.
  • the movable core part 600 is connected to the movable contact part 400 .
  • the movable core part 600 and the movable contact part 400 may be moved together. Accordingly, the movable contact unit 400 and the fixed contact unit 220 may be in contact with each other or may be spaced apart from each other.
  • the movable core part 600 is formed in a structure in which its self-weight can be reduced. Accordingly, the magnitude of the force required to move the movable core part 600 is reduced.
  • the DC relay 10 can be reliably operated without the coil 350 being excessively wound to increase the magnitude of the magnetic field applied by the coil 350 .
  • the coupling state of the members coupling the fixed core 310 and the movable core 610 may be stably maintained.
  • the movable core part 600 includes a movable core 610 , a shaft 620 , a core spring 630 and an elastic part 640 .
  • the movable core 610 is moved toward the fixed core 310 by electromagnetic attraction generated by the fixed core 310 when control power is applied.
  • the shaft 620 coupled to the movable core 610 moves upward in the direction toward the fixed core 310 , in the illustrated embodiment.
  • the movable contact part 400 coupled to the shaft 620 moves upward.
  • the fixed contactor 220 and the movable contactor 430 may be in contact so that the DC relay 10 may be energized with an external power source or load.
  • the movable core 610 may be provided in any shape capable of receiving attractive force by electromagnetic force.
  • the movable core 610 may be formed of a magnetic material, or may be provided with a permanent magnet or an electromagnet.
  • the movable core 610 is accommodated in the cylinder 360 .
  • the movable core 610 may be moved in the cylinder 360 in the height direction of the cylinder 360 , in the illustrated embodiment, in the vertical direction.
  • the movable core 610 may move in a direction toward the fixed core 310 and a direction away from the fixed core 310 .
  • the movable core 610 is coupled to the shaft 620 .
  • the movable core 610 may move integrally with the shaft 620 .
  • the shaft 620 also moves upward or downward. Accordingly, the movable contact 430 is also moved upward or downward.
  • the movable core 610 is positioned below the fixed core 310 .
  • the movable core 610 is spaced apart from the fixed core 310 by a predetermined distance.
  • the predetermined distance is a distance at which the movable core 610 can move in the vertical direction.
  • the movable core 610 has a circular cross-section, and has a cylindrical shape extending in one direction, in the vertical direction in the illustrated embodiment.
  • the movable core 610 may be of any shape that is liftably accommodated in the cylinder 360 and can be moved in a direction toward the fixed core 310 or in a direction opposite to the fixed core 310 .
  • the movable core 610 includes an upper surface 611 , a side surface 612 , a through hole 613 , a space portion 614 , an opening 615 , and a partition wall portion 616 .
  • the upper surface 611 forms one side of the movable core 610 facing the fixed core 310 , the upper surface in the illustrated embodiment.
  • the upper surface 611 covers the space portion 614 formed inside the movable core 610 from the upper side.
  • the upper surface 611 is in contact with one end of the core spring 630 facing the movable core 610 , the lower end in the illustrated embodiment. Accordingly, the movable core 610 may be elastically supported by the core spring 630 .
  • the upper surface 611 is provided in a circular shape through which a through hole 613 is formed in the center thereof.
  • the shape of the upper surface 611 may be changed according to the shape of the lower surface of the fixed core 310 .
  • the outer diameter of the upper surface 611 may be formed to be less than or equal to the inner diameter of the cylinder (360). In one embodiment, the outer diameter of the upper surface 611 may be formed to be the same as the inner diameter of the cylinder (360). Accordingly, when the fixed core 310 applies a magnetic force, the movable core 610 may move in the vertical direction without horizontal movement.
  • the upper surface 611 is continuous with the side surface 612 . Specifically, the outer periphery of the circular upper surface 611 is continuous with the side surface 612 . In an embodiment, the upper surface 611 and the side surface 612 may extend perpendicularly to each other.
  • a through hole 613 is formed through the inside of the upper surface 611 .
  • the through hole 613 may be positioned to have a central axis equal to the center of the circular upper surface 611 .
  • the side surface 612 forms the side surface of the movable core 610 having a cylindrical shape. In the illustrated embodiment, the side surface 612 forms the side surface of the movable core 610 on the lower side of the upper surface 611 .
  • the side surface 612 covers the space portion 614 formed inside the movable core 610 from the front side, the rear side, the left side and the right side.
  • the side surface 612 is continuous with the upper surface 611 . Specifically, one side of the side surface 612 facing the upper surface 611, the upper edge in the illustrated embodiment may be continuous with the outer periphery of the upper surface (611).
  • the side surface 612 and the upper surface 611 may be continuous perpendicular to each other.
  • the edge where the side surface 612 and the upper surface 611 are continuous may be chamfered.
  • the other end of the side surface 612 facing the bottom portion 320, the lower end in the illustrated embodiment is positioned spaced apart from the bottom portion (320).
  • the lower end of side 612 may contact bottom 320 .
  • the through hole 613 is formed through the inside of the upper surface 611 in a direction toward the fixed core 310 and a direction opposite to the fixed core 310, in the vertical direction in the illustrated embodiment.
  • a shaft 620 is through-coupled to the through hole 613 . Accordingly, the movable core 610 and the shaft 620 may be raised and lowered integrally.
  • the through hole 613 is formed through the inside of the upper surface 611 .
  • the through hole 613 may be formed to have a circular cross-section, and may be disposed to have the same central axis as the center of the upper surface 611 .
  • the through hole 613 has a relatively large diameter, and has a first portion located closer to the fixed core 310 and a relatively small diameter, and is located further from the fixed core 310 compared to the first portion. It can be divided into a second part.
  • the first portion of the through hole 613 supports the lower end of the first portion of the shaft 620 having a relatively larger diameter. That is, the first portion of the through hole 613 is formed to be smaller than the diameter of the first portion of the shaft 620 .
  • a second portion of the shaft 620 having a relatively smaller diameter is through-coupled to the second portion of the through hole 613 . That is, the second portion of the through hole 613 is formed to have a diameter equal to or smaller than the diameter of the second portion of the shaft 620 .
  • the movable core 610 when the movable core 610 is moved upward, the first part of the shaft 620 supported by the first part of the through hole 613 is pressed upward. Accordingly, the movable core 610 and the shaft 620 may be raised and lowered integrally.
  • the through hole 613 communicates with the space portion 614 . Specifically, the through hole 613 communicates with a hollow part formed by being surrounded by the partition wall part 616 positioned in the space part 614 .
  • the second portion of the shaft 620 through-coupled to the through-hole 613 may extend into the hollow portion formed by being surrounded by the partition wall portion 616 .
  • the space portion 614 is a space for accommodating the second portion of the shaft 620 through-coupled to the through hole 613 .
  • a hollow part ie, formed by being surrounded by the partition wall part 616 ) into which the second part of the shaft 620 is inserted is located in the space part 614 .
  • the space portion 614 reduces the self-weight of the entire movable core 610 .
  • the space portion 614 may be defined as a space surrounded by the upper surface 611 , the side surface 612 , and the partition wall portion 616 . That is, the outer periphery of the space portion 614 is defined by the upper surface 611 and the side surface 612 . In addition, the inner periphery of the space portion 614 is defined by the partition wall portion 616 .
  • the upper side of the space portion 614 is surrounded by the upper surface 611 .
  • the front side, the rear side, and the outside in the left and right directions of the space portion 614 are surrounded by the side surface 612 .
  • the inside of the front side, the rear side, the left and right directions of the space part 614 is surrounded by the partition wall part 616 .
  • the space portion 614 may be defined as a space formed by being depressed from the lower side in the illustrated embodiment, in the other direction except for the upper surface 611 and the side surface 612 of the movable core 610 .
  • the space portion 614 is recessed in one side (ie, the lower side in the illustrated embodiment) opposite to the fixed core 310 in each direction of the movable core 610 .
  • the shape of the space part 614 may be changed according to the shapes of the upper surface 611 , the side surface 612 , and the partition wall part 616 .
  • the upper surface 611 and the side surface 612 form the upper surface and the side surface of a cylinder or cylinder, respectively.
  • the partition wall portion 616 forms a cylinder or an inner circumferential surface of the cylinder.
  • the space portion 614 has a circular cross section, is formed extending in the vertical direction, and is a pipe-shaped cylinder or other space (that is, a hollow portion surrounded by the partition wall portion 616) located therein. It is cylindrical in shape.
  • the space portion 614 communicates with the space positioned above the movable core 610 by the through hole 613 .
  • the second portion of the shaft 620 that is through-coupled to the through hole 613 may extend into the space 614 .
  • the space 614 communicates with the opening 615 .
  • the space 614 communicates with a space located below the movable core 610 by the opening 615 .
  • the space portion 614 may communicate with the hollow portion surrounded by the partition wall portion 616 .
  • the shaft 620 passing through the through hole 613 and the hollow part may extend to the space part 614 .
  • the volume of the space 614 may be changed.
  • the volume of the space 614 may be changed in proportion to the amount of the required reduction in self-weight of the movable core 610 .
  • the opening 615 is located on one side of the space portion 614 opposite to the upper surface 611 , on the lower side in the illustrated embodiment.
  • the opening 615 is opened to communicate with the space 614 and the space below the cylinder 360 .
  • the opening 615 communicates with the hollow portion surrounded by the partition wall portion 616 . Accordingly, the hollow part surrounded by the partition wall part 616 may also communicate with the space below the cylinder 360 .
  • the manufacturing process of the movable core 610 may be simplified.
  • the partition wall part 616 supports the shaft 620 inserted and coupled to the movable core 610 .
  • the shaft 620 through-coupled to the through-hole 613 is supported by the partition wall part 616 , so that the coupling state between the movable core 610 and the shaft 620 may be stably maintained.
  • the movable core 610 and the shaft 620 may be welded to each other.
  • the partition wall portion 616 functions as a basic material to which the shaft 620 is welded.
  • the coupling state between the movable core 610 and the shaft 620 can be easily formed.
  • the partition wall portion 616 is located in the space portion 614 .
  • the partition wall part 616 divides the space formed inside the movable core 610 into a plurality of spaces.
  • the space formed inside the movable core 610 is a hollow part surrounded by the partition wall part 616 and a space part 614 surrounded by the partition wall part 616, the upper surface 611 and the side surface 612. is partitioned into
  • One end of the partition wall portion 616 surrounds the through hole 613 and is coupled to the upper surface 611 .
  • the hollow part surrounded by the partition wall part 616 may communicate with the through hole 613 .
  • the shaft 620 passing through the through hole 613 may be inserted and coupled to the hollow portion and positioned adjacent to the partition wall portion 616 .
  • the partition wall portion 616 may be provided in any shape capable of supporting the coupled shaft 620 .
  • the shaft 620 has a cylindrical shape having a circular cross-section
  • the partition wall portion 616 is also formed in a cylindrical shape having a hollow portion having a circular cross-section therein.
  • the shape of the partition wall part 616 may be changed according to the shape of the shaft 620 .
  • the diameter of the hollow portion formed by being surrounded by the partition wall portion 616 is smaller than the diameter of the first portion of the through hole 613, it is preferable to be formed equal to or smaller than the diameter of the second portion of the through hole 613.
  • the partition wall portion 616 is formed to extend in the height direction of the movable core 610 .
  • the partition wall portion 616 is formed to extend in a direction (ie, upper side) toward the upper surface 611 and a direction (ie, lower side) toward the opening 615 .
  • the length of the partition wall portion 616 extending in the direction (ie, the lower side) toward the opening 615 may be changed.
  • the partition wall part 616 is formed to extend by the extension length of the side surface 612 in the vertical direction.
  • the lower end of the partition wall portion 616 may be positioned on the same plane as the lower end of the side surface 612 .
  • the partition wall portion 616 is formed to extend shorter than the extension length of the side surface 612 in the vertical direction.
  • the lower end of the partition wall portion 616 may be located on the space portion 614 .
  • the partition wall portion 616 extends longer than the extension length of the side surface 612 in the vertical direction.
  • the lower end of the partition wall portion 616 may be located further lower than the lower end of the side surface (612). That is, the lower end of the partition wall portion 616 is located closer to the bottom portion 320 than the lower end of the side surface 612 .
  • the lower end of the partition wall portion 616 may be in contact with the bottom portion 320 .
  • the shaft 620 is coupled to the movable core 610 and the housing 410 of the movable contact part 400 , respectively.
  • the shaft 620 transfers the lifting and lowering of the movable core 610 to the housing 410 . Accordingly, when the movable core 610 is raised toward the fixed core 310 , the shaft 620 and the movable contact unit 400 coupled thereto are also raised together.
  • the movable contactor 430 and the fixed contactor 220 come into contact, so that the DC relay 10 may be electrically connected to an external power source or load.
  • the shaft 620 is formed to extend between the movable contact part 400 and the movable core 610 .
  • the shaft 620 has one side facing the movable contact unit 400 , and an upper end thereof in the illustrated embodiment is coupled to the housing 410 .
  • the other side of the shaft 620 facing the movable core 610, the lower end in the illustrated embodiment is through-coupled to the movable core (610).
  • the shaft 620 has a circular cross section and has a cylindrical shape extending in the vertical direction.
  • the shaft 620 may be divided into a plurality of parts according to the size of the member and diameter to be coupled.
  • the shaft 620 is coupled to the housing 410, coupled to a first portion having a relatively larger diameter and the movable core 610, and to a second portion having a relatively smaller diameter. can be distinguished.
  • the lower end of the first portion is partially inserted into the first portion of the through hole 613 .
  • the first portion of the through hole 613 is formed to have a larger diameter than the second portion of the through hole 613 .
  • the lower end of the first portion is supported at the edge where the first portion and the second portion of the through hole 613 are continuous.
  • the second portion is through-coupled to the through hole 613 and extends to the hollow portion surrounded by the partition wall portion 616 . Accordingly, the coupling state of the shaft 620 and the movable core 610 may be stably maintained.
  • the vertical extension length of the partition wall portion 616 may be formed in various ways. Accordingly, in an embodiment in which the partition wall portion 616 is extended so that the lower end of the partition wall portion 616 is located in the space portion 614 , the second part of the shaft 620 may have a through hole 613 and the hollow portion After passing through in turn, it may be exposed to the space portion 614 .
  • the shaft 620 and the movable core 610 may be fixedly coupled. In one embodiment, the shaft 620 and the movable core 610 may be welded. At this time, as described above, the coupling state between the shaft 620 and the movable core 610 can be easily formed by the partition wall portion 616 functioning as a base material.
  • a core spring 630 is coupled through the shaft 620 .
  • the core spring 630 elastically supports the movable core 610 and the fixed core 310 .
  • the core spring 630 is positioned between the movable core 610 and the stationary core 310 .
  • the core spring 630 is in contact with the movable core 610 . Specifically, one end of the core spring 630 facing the movable core 610, the lower end in the illustrated embodiment is in contact with the upper surface of the movable core (610).
  • the upper end of the core spring 630 facing the fixed core 310 is accommodated therein in the fixed core 310 . That is, in the illustrated embodiment, the core spring 630 is partially accommodated in a hollow formed radially outside the central axis of the fixed core 310 . The upper end of the core spring 630 is in contact with one surface of the fixed core 310 surrounding the hollow portion of the fixed core 310 from the upper side.
  • the core spring 630 is deformed in shape, stores elastic force (ie, restoring force), and may be provided in any form capable of transmitting the stored elastic force to other members.
  • the core spring 630 is provided in the form of a coil spring extending in the vertical direction and having a hollow portion formed therein.
  • the core spring 630 is coupled to the shaft 620 .
  • the shaft 620 is through-coupled to the hollow formed inside the core spring 630 .
  • the core spring 630 When the movable core 610 is raised toward the fixed core 310 , the core spring 630 is compressed between the movable core 610 and the fixed core 310 and stores elastic force. When the current applied to the coil 350 is cut off and the movable core 610 is switched to a non-magnetized state, the core spring 630 is tensioned and the movable core 610 is lowered.
  • the elastic part 640 elastically supports the movable contact 430 .
  • the movable contactor 430 comes into contact with the fixed contactor 220 , the movable contactor 430 tends to be separated from the fixed contactor 220 by electromagnetic repulsive force.
  • the elastic part 640 elastically supports the movable contactor 430 to prevent the movable contactor 430 from being arbitrarily separated from the fixed contactor 220 .
  • the elastic part 640 may be provided in any shape capable of storing restoring force by deformation of a shape and providing the stored restoring force to other members.
  • the elastic part 640 may be provided as a coil spring.
  • One end of the elastic part 640 facing the movable contact 430 is in contact with the lower side of the movable contact 430 .
  • the other end opposite to the one end is in contact with the upper side of the housing 410 .
  • the elastic part 640 may be compressed by a predetermined distance to elastically support the movable contact 430 in a state in which restoring force is stored. Accordingly, even if an electromagnetic repulsive force is generated between the movable contactor 430 and the fixed contactor 220 , the movable contactor 430 is not arbitrarily moved.
  • a protrusion (not shown) inserted into the elastic part 640 may be protruded below the movable contact 430 .
  • a protrusion (not shown) inserted into the elastic part 640 may be protruded from the upper side of the housing 410 .
  • a space 614 is formed inside the movable core 610 . Accordingly, the self-weight of the movable core 610 is reduced, so that the amount of force required to elevate the movable core 610 can be reduced.
  • a magnetic field and electromagnetic force sufficient to move the movable core 610 toward the fixed core 310 may be formed.
  • the operation reliability of the DC relay 10 may be improved, and the overall volume of the DC relay 10 may be reduced.
  • the movable core 610 is provided with a partition wall portion 616 positioned in the space portion 614 .
  • the partition wall part 616 supports the shaft 620 coupled to the movable core 610 , and enables the shaft 620 and the movable core 610 to be easily coupled.
  • the height of the lower end of the partition wall portion 616 is the same as the height of the lower end of the side surface 612 , that is, the embodiment shown in FIG. 11 is illustrated.
  • the DC relay 10 may be operated according to the following description even when the height of the lower end of the partition wall part 616 is changed as in the embodiment shown in FIGS. 12 and 13 .
  • the DC relay 10 is shown in a state in which it is not energized with an external power source or load.
  • the movable contactor 430 is spaced apart from the fixed contactor 220 and is positioned below the fixed contactor 220 .
  • the movable core 610 is spaced apart from the fixed core 310 and is located below the fixed core 310 .
  • the core spring 630 is in a state in which the degree of shape deformation is fine or the shape deformation is not. Accordingly, it will be understood that the magnitude of the elastic force (ie, restoring force) stored in the core spring 630 is also zero or a fine magnitude.
  • the movable core 610 has a space 614 formed therein. As described above, the self-weight of the movable core 610 is reduced by the volume of the space 614 .
  • the DC relay 10 in a state in which it is energized with an external power source or load is shown.
  • the coil 350 forms a magnetic field. Accordingly, the fixed core 310 and the movable core 610 are magnetized, and a suction force in a direction toward the fixed core 310 is applied to the movable core 610 .
  • the force required for the movable core 610 to rise toward the fixed core 310 should be greater than the combined force of the elastic force of the core spring 630 and the weight of the movable core 610 . That is, the magnetic field formed by the coil 350 must form an electromagnetic force greater than the sum of the above forces.
  • a space 614 is formed inside the movable core 610 . Accordingly, the dead weight of the movable core 610 is reduced, so that the magnitude of the force required to move the movable core 610 is reduced. As a result, the minimum limit of the magnitude of the magnetic field formed by the coil 350 and the electromagnetic force formed thereby is reduced.
  • the movable core 610 can be stably raised toward the fixed core 310 without excessively increasing the magnitude of the current applied to the coil 350 and the number of times the coil 350 is wound around the bobbin 340 .
  • the shaft 620 coupled to the movable core 610 may be supported by the partition wall portion 616 . Accordingly, the coupling state of the movable core 610 and the shaft 620 may be stably maintained.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

가동 코어부 및 이를 포함하는 직류 릴레이가 구비된다. 본 발명의 다양한 실시 예에 따른 직류 릴레이는 내부에 형성된 공간인 공간부를 포함한다. 상기 공간부의 크기는 가동 코어의 자중(self-weight)의 감소분과 비례한다. 따라서, 공간부가 형성되는 만큼 가동 코어의 자중이 감소된다. 이에 따라, 고정 코어를 향해 가동 코어를 이동시키기 위해 요구되는 전자기력의 크기가 감소된다. 따라서, 직류 릴레이에 인가되는 전류의 크기 또는 코일의 권취 수 등이 과다하게 증가되지 않고도, 직류 릴레이의 작동 신뢰성이 향상될 수 있다.

Description

가동 코어부 및 이를 포함하는 직류 릴레이
본 발명은 가동 코어부 및 이를 포함하는 직류 릴레이에 관한 것으로, 보다 구체적으로, 가동 코어의 이동성이 향상될 수 있는 구조의 가동 코어부 및 이를 포함하는 직류 릴레이에 관한 것이다.
직류 릴레이(Direct current relay)는 전자석의 원리를 이용하여 기계적인 구동 또는 전류 신호를 전달해 주는 장치이다. 직류 릴레이는 전자 개폐기(Magnetic switch)라고도 하며, 통상 전기적인 회로 개폐 장치로 분류된다.
직류 릴레이는 외부의 제어 전원을 인가받아 작동될 수 있다. 직류 릴레이는 제어 전원에 의해 자화(magnetize)될 수 있는 고정 코어 및 가동 코어를 포함한다. 고정 코어 및 가동 코어는 복수 개의 코일이 권취된 보빈에 인접하게 위치된다.
제어 전원이 인가되면, 복수 개의 코일은 전자기장을 형성한다. 고정 코어 및 가동 코어는 상기 전자기장에 의해 자화되어, 고정 코어와 가동 코어 사이에는 전자기적 인력이 발생된다.
고정 코어는 고정되어 있으므로, 가동 코어가 고정 코어를 향해 이동된다. 가동 코어에는 샤프트 부재의 일측이 연결된다. 또한, 샤프트 부재의 타측은 가동 접촉자에 연결된다.
가동 코어가 고정 코어를 향해 이동되면, 샤프트 및 샤프트에 연결된 가동 접촉자 또한 이동된다. 상기 이동에 의해, 가동 접촉자는 고정 접촉자를 향해 이동될 수 있다. 가동 접촉자와 고정 접촉자가 접촉되면, 직류 릴레이는 외부의 전원 및 부하와 통전된다.
이때, 가동 코어의 임의 이동을 방지하기 위해, 고정 코어와 가동 코어 사이에는 탄성 부재가 구비된다. 탄성 부재는 고정 코어에 반대되는 방향의 힘을 가동 코어에 인가한다.
따라서, 가동 코어가 이동되기 위해서는, 복수 개의 코일에 의해 형성되는 전자기장 및 이에 의해 형성되는 전자기력이, 탄성 부재가 인가하는 탄성력을 초과하여야 한다.
더 나아가, 통상의 직류 릴레이는 고정 접촉자와 가동 접촉자 사이에 통전되는 전류에 의해 가동 코어가 영향을 받지 않도록, 가동 코어가 고정 코어의 하측에 위치된다.
따라서, 가동 코어가 이동되기 위해서는, 상기 탄성력 및 가동 코어의 자중(self-weight)을 초과하는 전자기력이 인가되어야만 한다.
그런데, 전자기력은 복수 개의 코일에 통전되는 전류의 크기, 복수 개의 코일의 권취 수 등에 의존한다. 따라서, 안전 사고 예방 및 직류 릴레이의 크기 등을 고려할 때, 전자기력을 무한정으로 증가시키기는 어렵다.
한국등록특허문헌 제10-1157632호는 통상 폐쇄형 전자기 릴레이를 개시한다. 구체적으로, 가동 코어를 사이에 두고 고정 코어를 마주하게 배치되는 중공 돌출부를 구비하여, 가동 코어가 이동되지 않은 경우 가동 코어의 홈에 중공 돌출부가 삽입되는 구조의 통상 폐쇄형 전자기 릴레이를 개시한다.
상기 선행문헌은, 가동 코어의 길이와 가동 코어와 고정 코어 사이의 길이 사이의 대소 관계를 조정하여 자기 흡인력이 확보되는 효과를 개시한다.
그런데, 이러한 유형의 통상 폐쇄형 전자기 릴레이는 가동 코어가 고정 코어를 향해 이동되기 위해 요구되는 힘을 조정하기 위한 방안을 제시하지 못한다. 즉, 상기 선행문헌은 가동 코어와 케이스 간의 상대적인 위치에 대해 고려할 뿐, 가동 코어 자체의 구조 변경에 대해서는 어떠한 내용도 개시하지 않는다.
한국등록특허문헌 제10-1267370호는 스타터용 스위칭 장치를 개시한다. 보다 구체적으로, 가동 코어를 사이에 두고 고정 코어와 마주하게 배치되는 절연성 소재의 스페이서를 이용하여, 바닥 프레임과 가동 코어 사이의 임의 통전을 방지할 수 있는 구조의 스타터용 스위칭 장치를 개시한다.
그런데, 이러한 유형의 스타터용 스위칭 장치는 가동 코어가 고정 코어를 향해 이동되기 위해 요구되는 힘을 조정하기 위한 방안을 제시하지 못한다.
더욱이, 상기 선행문헌들이 개시하는 전자기 릴레이 또는 스위칭 장치는, 가동 코어가 특유의 형상을 갖게 형성된다. 따라서, 상기 선행문헌들이 개시하는 가동 코어는 오로지 그에 특화된 전자기 릴레이 또는 스위칭 장치에만 적용이 가능하다는 한계가 있다.
(특허문헌 1) 한국등록특허문헌 제10-1157632호 (2012.06.19.)
(특허문헌 2) 한국등록특허문헌 제10-12673709호 (2013.05.24.)
본 발명은 상술한 문제점을 해결할 수 있는 구조의 가동 코어부 및 이를 포함하는 직류 릴레이를 제공함을 그 목적으로 한다.
먼저, 가동 접촉자를 구동하기 위해 요구되는 힘의 최소 크기를 감소시킬 수 있는 구조의 가동 코어부 및 이를 포함하는 직류 릴레이를 제공함을 일 목적으로 한다.
또한, 상기 목적을 달성하면서도 가동 코어의 형상 변형을 최소화할 수 있는 구조의 가동 코어부 및 이를 포함하는 직류 릴레이를 제공함을 일 목적으로 한다.
또한, 제조 공정이 간명해지고 제조 비용이 절감될 수 있는 구조의 가동 코어부 및 이를 포함하는 직류 릴레이를 제공함을 일 목적으로 한다.
또한, 가동 코어부와 가동 코어부의 이동을 전달하기 위한 부재 사이의 결합 상태가 안정적으로 유지될 수 있는 구조의 가동 코어부 및 이를 포함하는 직류 릴레이를 제공함을 일 목적으로 한다.
또한, 작동 신뢰성이 향상될 수 있는 구조의 가동 코어부 및 이를 포함하는 직류 릴레이를 제공함을 일 목적으로 한다.
또한, 부피의 소형화가 가능한 구조의 가동 코어부 및 이를 포함하는 직류 릴레이를 제공함을 일 목적으로 한다.
상기 목적을 달성하기 위해, 본 발명은, 고정 접촉자; 상기 고정 접촉자와 인접하게 위치되어, 상기 고정 접촉자와 접촉되거나 이격되는 가동 접촉자; 상기 가동 접촉자를 향하는 방향 및 상기 가동 접촉자에 반대되는 방향 중 어느 하나의 방향으로 이동 가능하게 상기 가동 접촉자에 결합되는 가동 코어; 및 상기 가동 접촉자와 상기 가동 코어 사이에 위치되며, 자화(magnetize)되어 상기 가동 코어에 흡인력(attractive force)을 인가하는 고정 코어를 포함하며, 상기 가동 코어는, 그 내부에 상기 고정 코어에 반대되는 일측에서 함몰 형성된 공간부를 포함하는 직류 릴레이를 제공한다.
또한, 상기 직류 릴레이의 상기 가동 코어는, 상기 공간부를 상측에서 덮는 상면; 및 상기 상면과 연속되며, 상기 공간부의 상기 상측 및 하측에서 상기 공간부를 둘러싸는 측면을 포함할 수 있다.
또한, 상기 직류 릴레이의 상기 가동 코어는, 원형의 단면을 갖고, 상기 고정 코어를 향하는 방향으로 연장 형성되는 원기둥 형상일 수 있다.
또한, 상기 직류 릴레이의 상기 가동 코어는, 상기 가동 코어의 윗면을 형성하며, 원형의 단면을 갖는 상면; 상기 상면의 내부에 위치되며, 상기 가동 코어가 연장 형성되는 방향으로 관통 형성되는 관통공; 및 상기 상면의 외주와 소정의 각도를 이루며 연속되고, 상기 가동 코어의 옆면을 형성하는 측면을 포함하며, 상기 공간부는, 상기 상면 및 상기 측면에 둘러싸여 정의되고, 상기 관통공과 연통될 수 있다.
또한, 상기 직류 릴레이의 상기 관통공은 원형의 단면을 갖고, 그 중심이 상기 상면의 중심과 같게 위치될 수 있다.
또한, 상기 직류 릴레이는, 상기 가동 코어 및 상기 고정 코어 사이에서 연장되며, 그 연장 방향의 일측이 상기 관통공에 관통 결합되고, 그 연장 방향의 타측이 상기 가동 접촉자에 결합되는 샤프트를 포함하며, 상기 가동 코어, 상기 샤프트 및 상기 가동 접촉자는 함께 상측 또는 하측으로 이동될 수 있다.
또한, 상기 직류 릴레이의 상기 샤프트는, 상기 가동 접촉자와 결합되고, 상기 가동 코어를 향해 연장되는 제1 부분; 및 상기 가동 코어와 결합되고, 상기 제1 부분의 단부에서 연장되는 제2 부분을 포함하며, 상기 제1 부분의 단면의 직경은, 상기 제2 부분의 단면의 직경 및 상기 관통공의 단면의 직경보다 크게 형성될 수 있다.
또한, 상기 직류 릴레이는, 상기 고정 코어를 둘러싸며, 외부와 통전 가능하게 연결되어 상기 고정 코어를 자화시키는 자기장을 형성하는 코일; 및 상기 고정 코어와 상기 가동 코어 사이에 위치되어, 상기 고정 코어와 상기 가동 코어에 각각 접촉되어 상기 가동 코어를 탄성 지지하는 코어 스프링을 포함하며, 상기 고정 코어가 인가하는 상기 흡인력은, 상기 코어 스프링에 저장되는 탄성력의 최대값 및 상기 가동 코어의 자중(self-weight)의 합보다 클 수 있다.
또한, 본 발명은, 고정 접촉자; 상기 고정 접촉자와 인접하게 위치되어, 상기 고정 접촉자와 접촉되거나 이격되는 가동 접촉자; 상기 가동 접촉자를 향하는 방향 및 상기 가동 접촉자에 반대되는 방향 중 어느 하나의 방향으로 이동 가능하게 상기 가동 접촉자에 결합되는 가동 코어; 및 상기 가동 접촉자와 상기 가동 코어 사이에 위치되며, 자화(magnetize)되어 상기 가동 코어에 흡인력(attractive force)을 인가하는 고정 코어를 포함하며, 상기 가동 코어는, 상기 고정 코어에 반대되는 일측에서 함몰 형성된 공간인 공간부; 상기 공간부의 내부에 위치되어, 상기 고정 코어를 향하는 방향 및 상기 고정 코어에 반대되는 방향으로 연장되는 격벽부를 포함하는 직류 릴레이를 제공한다.
또한, 상기 직류 릴레이의 상기 가동 코어는, 상기 공간부를 상측에서 덮는 상면; 상기 상면의 내부에 위치되며, 상기 고정 코어를 향하는 방향 및 상기 고정 코어에 반대되는 방향으로 관통 형성되는 관통공; 및 상기 격벽부에 둘러싸이며, 상기 관통공과 연통되는 중공부를 포함할 수 있다.
또한, 상기 직류 릴레이는, 상기 가동 코어 및 상기 고정 코어 사이에서 연장되며, 그 연장 방향의 일측이 상기 관통공에 관통 결합되고, 그 연장 방향의 타측이 상기 가동 접촉자에 결합되는 샤프트를 포함하며, 상기 가동 코어, 상기 샤프트 및 상기 가동 접촉자는 함께 상측 또는 하측으로 이동될 수 있다.
또한, 상기 직류 릴레이의 상기 샤프트는, 상기 가동 접촉자와 결합되고, 상기 가동 코어를 향해 연장되는 제1 부분; 및 상기 가동 코어와 결합되고, 상기 제1 부분의 단부에서 연장되는 제2 부분을 포함하며, 상기 제1 부분의 단면의 직경은, 상기 제2 부분의 단면의 직경 및 상기 관통공의 단면의 직경보다 크게 형성되고, 상기 제2 부분은, 상기 관통공에 관통 결합되고, 상기 격벽부에 둘러싸여 형성되는 중공부에 삽입 결합될 수 있다.
또한, 상기 직류 릴레이의 상기 가동 코어는, 상기 공간부를 상측에서 감싸는 상면; 및 상기 상면과 연속되며, 상기 공간부를 전방 측, 후방 측, 좌측 및 우측에서 각각 감싸는 측면을 포함하며, 상기 격벽부의 상기 고정 코어에 반대되는 방향의 단부는, 상기 측면의 상기 고정 코어에 반대되는 방향의 단부보다 상기 상면에 더 인접하게 위치될 수 있다.
또한, 상기 직류 릴레이의 상기 가동 코어는, 상기 공간부를 상측에서 감싸는 상면; 및 상기 상면과 연속되며, 상기 공간부를 전방 측, 후방 측, 좌측 및 우측에서 각각 감싸는 측면을 포함하며, 상기 격벽부의 상기 고정 코어에 반대되는 방향의 단부는, 상기 측면의 상기 고정 코어에 반대되는 방향의 단부와 상기 상면과 같은 거리에 위치될 수 있다.
또한, 상기 직류 릴레이의 상기 가동 코어는, 상기 공간부를 상측에서 감싸는 상면; 및 상기 상면과 연속되며, 상기 공간부를 전방 측, 후방 측, 좌측 및 우측에서 각각 감싸는 측면을 포함하며, 상기 격벽부의 상기 고정 코어에 반대되는 방향의 단부는, 상기 측면의 상기 고정 코어에 반대되는 방향의 단부보다 상기 상면에서 더 이격되어 위치될 수 있다.
본 발명에 따르면, 다음과 같은 효과가 달성될 수 있다.
먼저, 가동 코어부는 가동 코어를 포함한다. 가동 코어는 고정 코어에 반대되는 일측에서 함몰 형성된 공간부를 포함한다. 공간부는 가동 코어의 내부에 위치되어, 가동 코어의 내부 중량을 감소시킨다.
공간부의 크기는 가동 코어의 자중(self-weight)의 감소량과 비례한다. 즉, 공간부의 부피가 증가될수록, 가동 코어의 자중이 감소된다.
가동 코어가 고정 코어를 향해 이동되기 위해서는, 가동 코어의 자중 및 가동 코어를 탄성 지지하는 코어 스프링의 탄성력을 초과하는 전자기력이 인가되어야 한다. 이 중, 공간부로 인해 가동 코어의 자중이 감소되므로, 가동 코어가 이동되기 위한 힘의 크기가 감소된다.
가동 코어는 샤프트를 매개로 가동 접촉자와 결합된다. 가동 코어가 이동되면, 샤프트 및 가동 접촉자 또한 함께 이동된다. 상술한 구성에 의해 가동 코어를 이동시키기 위한 최소한의 힘이 감소된다. 이에 따라, 가동 접촉자를 구동하기 위해 요구되는 힘의 최소 크기 또한 감소될 수 있다.
또한, 공간부는 가동 코어의 내부에 함몰 형성된다. 구체적으로, 공간부는 코어 스프링이 탄성 지지하는 상면이 아닌 그 반대 측, 즉 하측에서 상측을 향해 함몰 형성된다.
가동 코어의 초기 형상, 즉 원통 형상은 공간부를 둘러싸는 상면 및 측면에 의해 유지될 수 있다.
이에 따라, 가동 코어의 자중을 감소시키면서도, 가동 코어의 구조 변경이 최소화될 수 있다. 더 나아가, 본 발명의 실시 예에 따른 가동 코어의 외형은 기존에 사용되던 가동 코어의 외형과 유사하므로, 범용성이 보장될 수 있다.
또한, 상술한 구조에 의해 가동 코어의 제조 공정이 간명해질 수 있다. 더 나아가, 제조 공정이 간명해짐에 따라, 제조 비용 또한 절감될 수 있다.
또한, 샤프트는 가동 코어의 상면에 형성된 관통공에 관통 결합된다. 일 실시 예에서, 가동 코어의 공간부에는 격벽부가 구비된다. 격벽부는 삽입 결합된 샤프트를 둘러싼다. 샤프트는 가동 코어(즉, 일 실시 예에서 격벽부)와 용접 결합되어, 그 결합의 안정성이 향상될 수 있다.
이에 따라, 샤프트와 가동 코어 사이의 결합 상태가 안정적으로 유지될 수 있다.
또한, 상술한 바와 같이, 가동 코어의 자중이 감소됨에 따라, 가동 코어를 이동시키기 위한 전자기력의 요구치가 감소될 수 있다. 더 나아가, 샤프트와 가동 코어 간의 결합 상태가 안정적으로 유지될 수 있다.
이에 따라, 상대적으로 작은 크기의 전류가 코일에 인가되는 경우에도 가동 코어가 고정 코어를 향해 이동될 수 있다. 또한, 가동 코어가 이동될 경우 이에 결합된 샤프트 또한 이동될 수 있다. 결과적으로, 가동 코어부 및 이를 포함하는 직류 릴레이의 작동 신뢰성이 향상될 수 있다.
또한, 상기 구성에 의해 가동 코어를 이동시키기 위해 과다한 크기의 전자기력이 요구되지 않는다. 따라서, 코일이 보빈에 권취되는 횟수 또는 코일에 인가되는 전류의 크기를 과다하게 증가시키지 않고도 가동 코어가 안정적으로 작동될 수 있다.
이에 따라, 가동 코어부 및 직류 릴레이 전체의 부피가 감소될 수 있다.
도 1은 본 발명의 실시 예에 따른 직류 릴레이를 도시하는 사시도이다.
도 2는 도 1의 직류 릴레이의 구성 중, 통전 및 통전 차단을 위한 구성을 도시하는 사시도이다.
도 3은 도 1의 직류 릴레이의 구성 중, 통전 및 통전 차단을 위한 구성을 도시하는 정면도이다.
도 4는 도 1의 직류 릴레이의 구성 중, 통전 및 통전 차단을 위한 구성을 도시하는 측면도이다.
도 5는 본 발명의 일 실시 예에 따른 가동 코어부를 포함하는 직류 릴레이를 도시하는 단면도이다.
도 6은 도 5의 직류 릴레이에 구비되는 가동 코어를 도시하는 사시도이다.
도 7은 도 6의 가동 코어의 내부 구조를 도시하는 단면 사시도이다.
도 8a 및 도 8b는 본 발명의 일 실시 예에 따른 가동 코어부를 포함하는 직류 릴레이의 작동 과정을 도시하는 단면도이다.
도 9는 본 발명의 다른 실시 예에 따른 가동 코어부를 도시하는 직류 릴레이의 단면도이다.
도 10은 도 9의 직류 릴레이에 구비되는 가동 코어를 도시하는 사시도이다.
도 11은 도 8의 가동 코어의 내부 구조를 도시하는 단면 사시도이다.
도 12는 도 10의 가동 코어의 일 변형 예를 도시하는 단면 사시도이다.
도 13은 도 10의 가동 코어의 다른 변형 예를 도시하는 단면 사시도이다.
도 14a 및 도 14b는 본 발명의 다른 실시 예에 따른 가동 코어부를 포함하는 직류 릴레이의 작동 과정을 도시하는 단면도이다.
이하, 첨부한 도면들을 참조하여 본 발명의 실시 예에 따른 가동 코어부(500, 600) 및 이를 포함하는 직류 릴레이(10)를 상세하게 설명한다.
이하의 설명에서는 본 발명의 특징을 명확하게 하기 위해, 일부 구성 요소들에 대한 설명이 생략될 수 있다.
1. 용어의 정의
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.
반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
이하의 설명에서 사용되는 "자화(magnetize)"라는 용어는 자기장 안에서 어떤 물체가 자성을 띠게 되는 현상을 의미한다.
이하의 설명에서 사용되는 "통전(electric current)"이라는 용어는, 두 개 이상의 부재가 전기적으로 연결되는 상태를 의미한다.
이하의 설명에서 사용되는 "좌측", "우측", "상측", "하측", "전방 측" 및 "후방 측"이라는 용어는 도 1에 도시된 좌표계를 참조하여 이해될 것이다.
2. 본 발명의 실시 예에 따른 직류 릴레이(10)의 구성의 설명
도 1 내지 도 4, 도 5 및 도 9를 참조하면, 본 발명의 실시 예에 따른 직류 릴레이(10)는 프레임부(100), 개폐부(200), 코어부(300) 및 가동 접촉자부(400)를 포함한다.
또한, 다시 도 5를 참조하면, 본 발명의 실시 예에 따른 직류 릴레이(10)는 일 실시 예에 따른 가동 코어부(500)를 포함한다. 더 나아가, 도 9를 참조하면, 본 발명의 실시 예에 따른 직류 릴레이(10)는 다른 실시 예에 따른 가동 코어부(600)를 포함한다.
각 실시 예에 따른 가동 코어부(500, 600)는 고정 코어(310)를 향해 신뢰성 있게 이동될 수 있다. 이에 따라, 직류 릴레이(10)의 통전 상태가 안정적으로 유지될 수 있다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시 예에 따른 직류 릴레이(10)의 각 구성을 설명하되, 가동 코어부(500, 600)는 별항으로 설명한다.
(1) 프레임부(100)의 설명
프레임부(100)는 직류 릴레이(10)의 외측을 형성한다. 프레임부(100)의 내부에는 소정의 공간이 형성된다. 상기 공간에는 직류 릴레이(10)가 외부에서 전달되는 전류를 인가하거나 차단하기 위한 기능을 수행하는 다양한 장치들이 수용될 수 있다.
즉, 프레임부(100)는 일종의 하우징으로 기능된다.
프레임부(100)는 합성 수지 등의 절연성 소재로 형성될 수 있다. 프레임부(100)의 내부와 외부가 임의로 통전되는 것을 방지하기 위함이다.
프레임부(100)는 상부 프레임(110), 하부 프레임(120), 절연 플레이트(130) 및 지지 플레이트(140)를 포함한다.
상부 프레임(110)은 프레임부(100)의 상측을 형성한다. 상부 프레임(110)의 내부에는 소정의 공간이 형성된다. 상기 공간은 하부 프레임(120)의 내부에 형성된 공간과 연통된다.
상부 프레임(110)의 내부 공간에는 개폐부(200) 및 가동 접촉자부(400)가 수용될 수 있다.
상부 프레임(110)은 하부 프레임(120)과 결합될 수 있다. 상부 프레임(110)과 하부 프레임(120) 사이의 공간에는 절연 플레이트(130) 및 지지 플레이트(140)가 구비될 수 있다.
상부 프레임(110)의 일측, 도시된 실시 예에서 상측에는 개폐부(200)의 고정 접촉자(220)가 위치된다. 고정 접촉자(220)는 상부 프레임(110)의 상측에 일부가 노출되어, 외부의 전원 또는 부하와 통전 가능하게 연결될 수 있다.
이를 위해, 상부 프레임(110)의 상측에는 고정 접촉자(220)가 관통 결합되는 관통공이 형성될 수 있다.
하부 프레임(120)은 프레임부(100)의 하측을 형성한다. 하부 프레임(120)의 내부에는 소정의 공간이 형성된다. 하부 프레임(120)의 내부 공간에는 코어부(300)가 수용될 수 있다. 상기 공간은 상부 프레임(110)의 내부에 형성된 공간과 연통된다.
또한, 하부 프레임(120)의 상기 공간에는 각 실시 예에 따른 가동 코어부(500, 600)가 수용될 수 있다. 각 가동 코어부(500, 600)는 상기 공간에서 상하 방향으로 승강될 수 있다. 이에 대한 상세한 설명은 후술하기로 한다.
하부 프레임(120)은 상부 프레임(110)과 결합될 수 있다. 하부 프레임(120)과 상부 프레임(110) 사이의 공간에는 절연 플레이트(130) 및 지지 플레이트(140)가 구비될 수 있다.
절연 플레이트(130) 및 지지 플레이트(140)는 상부 프레임(110)의 내부 공간과 하부 프레임(120)의 내부 공간을 전기적 및 물리적으로 분리한다.
절연 플레이트(130)는 상부 프레임(110)과 하부 프레임(120) 사이에 위치된다. 절연 플레이트(130)는 상부 프레임(110)과 하부 프레임(120)을 전기적으로 이격시킨다. 이를 위해, 절연 플레이트(130)는 합성 수지 등 절연성 소재로 형성될 수 있다.
절연 플레이트(130)에 의해, 상부 프레임(110) 내부에 수용된 개폐부(200), 가동 접촉자부(400)와 하부 프레임(120) 내부에 수용된 코어부(300) 간의 임의 통전이 방지될 수 있다.
절연 플레이트(130)의 중심부에는 관통공(미도시)이 형성된다. 상기 관통공(미도시)에는 각 가동 코어부(500, 600)의 각 샤프트(520, 620)가 상하 방향으로 이동 가능하게 관통 결합된다.
절연 플레이트(130)의 하측에는 지지 플레이트(140)가 위치된다. 절연 플레이트(130)는 지지 플레이트(140)에 의해 지지될 수 있다.
지지 플레이트(140)는 상부 프레임(110)과 하부 프레임(120) 사이에 위치된다.
지지 플레이트(140)는 상부 프레임(110)과 하부 프레임(120)을 물리적으로 이격시킨다. 또한, 지지 플레이트(140)는 절연 플레이트(130)를 지지한다.
지지 플레이트(140)는 자성체로 형성될 수 있다. 따라서, 지지 플레이트(140)는 코어부(300)의 요크(330)와 함께 자로(magnetic circuit)를 형성할 수 있다. 상기 자로에 의해, 각 가동 코어부(500, 600)의 각 가동 코어(510, 610)가 고정 코어(310)를 향해 이동되기 위한 구동력이 형성될 수 있다.
지지 플레이트(140)의 중심부에는 관통공(미도시)이 형성된다. 상기 관통공(미도시)에는 각 가동 코어부(500, 600)의 각 샤프트(520, 620)가 상하 방향으로 이동 가능하게 관통 결합된다.
따라서, 각 가동 코어(510, 610)가 고정 코어(310)를 향하는 방향 또는 고정 코어(310)에서 이격되는 방향으로 이동될 경우, 각 샤프트(520, 620) 및 각 샤프트(520, 620)에 연결된 가동 접촉자(430) 또한 같은 방향으로 함께 이동될 수 있다.
(2) 개폐부(200)의 설명
개폐부(200)는 코어부(300)의 동작에 따라 전류의 통전을 허용하거나 차단한다. 구체적으로, 개폐부(200)는 고정 접촉자(220) 및 가동 접촉자(430)가 접촉되거나 이격되어 전류의 통전을 허용하거나 차단할 수 있다.
개폐부(200)는 상부 프레임(110)의 내부 공간에 수용된다. 개폐부(200)는 절연 플레이트(130) 및 지지 플레이트(140)에 의해 코어부(300) 및 각 가동 코어부(500, 600)와 전기적 및 물리적으로 이격될 수 있다.
개폐부(200)는 아크 챔버(210), 고정 접촉자(220) 및 씰링(sealing) 부재(230)를 포함한다.
도시되지는 않았으나, 아크 챔버(210)의 외측에는 아크의 경로를 형성하기 위한 자석 부재가 구비될 수 있다. 상기 자석 부재는 아크 챔버(210)의 내부에 자기장을 형성하여, 발생된 아크의 경로를 형성하는 전자기력이 발생될 수 있다.
아크 챔버(210)는 고정 접촉자(220) 및 가동 접촉자(430)가 이격되어 발생되는 아크(arc)를 내부 공간에서 소호(extinguish)한다. 이에, 아크 챔버(210)는 "아크 소호부"로 지칭될 수도 있을 것이다.
아크 챔버(210)는 고정 접촉자(220)와 가동 접촉자(430)를 밀폐 수용한다. 즉, 고정 접촉자(220)와 가동 접촉자(430)는 아크 챔버(210) 내부에 수용된다. 따라서, 고정 접촉자(220)와 가동 접촉자(430)가 이격되어 발생되는 아크는 외부로 임의 유출되지 않게 된다.
아크 챔버(210) 내부에는 소호용 가스가 충전될 수 있다. 소호용 가스는 발생된 아크가 소호되며 기 설정된 경로를 통해 직류 릴레이(10)의 외부로 배출될 수 있게 한다. 이를 위해, 아크 챔버(210)의 내부 공간을 둘러싸는 벽체에는 연통공(미도시)이 관통 형성될 수 있다.
아크 챔버(210)는 절연성 소재로 형성될 수 있다. 또한, 아크 챔버(210)는 높은 내압성 및 높은 내열성을 갖는 소재로 형성될 수 있다. 이는, 발생되는 아크가 고온 고압의 전자의 흐름임에 기인한다. 일 실시 예에서, 아크 챔버(210)는 세라믹(ceramic) 소재로 형성될 수 있다.
아크 챔버(210)의 상측에는 복수 개의 관통공이 형성될 수 있다. 상기 관통공 각각에는 고정 접촉자(220)가 관통 결합된다.
도시된 실시 예에서, 고정 접촉자(220)는 제1 고정 접촉자(220a) 및 제2 고정 접촉자(220b)를 포함하여 두 개로 구비된다. 이에 따라, 아크 챔버(210)의 상측에 형성되는 관통공 또한 두 개로 형성될 수 있다.
상기 관통공에 고정 접촉자(220)가 관통 결합되면, 상기 관통공은 밀폐된다. 즉, 고정 접촉자(220)는 상기 관통공에 밀폐 결합된다. 이에 따라, 발생된 아크는 상기 관통공을 통해 외부로 배출되지 않는다.
아크 챔버(210)의 하측은 개방될 수 있다. 아크 챔버(210)의 하측에는 절연 플레이트(130) 및 씰링 부재(230)가 접촉된다. 즉, 아크 챔버(210)의 하측은 절연 플레이트(130) 및 씰링 부재(230)에 의해 밀폐된다.
이에 따라, 아크 챔버(210)는 상부 프레임(110)의 외측 공간과 전기적, 물리적으로 이격될 수 있다.
아크 챔버(210)에서 소호된 아크는 기 설정된 경로를 통해 직류 릴레이(10)의 외부로 배출된다. 일 실시 예에서, 소호된 아크는 상기 연통공(미도시)을 통해 아크 챔버(210)의 외부로 배출될 수 있다.
고정 접촉자(220)는 가동 접촉자(430)와 접촉되거나 이격되어, 직류 릴레이(10)의 내부와 외부의 통전을 인가하거나 차단한다.
구체적으로, 고정 접촉자(220)가 가동 접촉자(430)와 접촉되면, 직류 릴레이(10)의 내부와 외부가 통전될 수 있다. 반면, 고정 접촉자(220)가 가동 접촉자(430)와 이격되면, 직류 릴레이(10)의 내부와 외부의 통전이 차단된다.
명칭에서 알 수 있듯이, 고정 접촉자(220)는 이동되지 않는다. 즉, 고정 접촉자(220)는 상부 프레임(110) 및 아크 챔버(210)에 고정 결합된다. 따라서, 고정 접촉자(220)와 가동 접촉자(430)의 접촉 및 이격은 가동 접촉자(430)의 이동에 의해 달성된다.
고정 접촉자(220)의 일측 단부, 도시된 실시 예에서 상측 단부는 상부 프레임(110)의 외측으로 노출된다. 상기 일측 단부에는 전원 또는 부하가 각각 통전 가능하게 연결된다.
고정 접촉자(220)는 복수 개로 구비될 수 있다. 도시된 실시 예에서, 고정 접촉자(220)는 좌측의 제1 고정 접촉자(220a) 및 우측의 제2 고정 접촉자(220b)를 포함하여, 총 두 개로 구비된다.
제1 고정 접촉자(220a)는 가동 접촉자(430)의 길이 방향의 중심으로부터 일측, 도시된 실시 예에서 좌측으로 치우치게 위치된다. 또한, 제2 고정 접촉자(220b)는 가동 접촉자(430)의 길이 방향의 중심으로부터 타측, 도시된 실시 예에서 우측으로 치우치게 위치된다.
제1 고정 접촉자(220a) 및 제2 고정 접촉자(220b) 중 어느 하나에는 전원이 통전 가능하게 연결될 수 있다. 또한, 제1 고정 접촉자(220a) 및 제2 고정 접촉자(220b) 중 다른 하나에는 부하가 통전 가능하게 연결될 수 있다.
고정 접촉자(220)의 타측 단부, 도시된 실시 예에서 하측 단부는 가동 접촉자(430)를 향해 연장된다.
가동 접촉자(430)가 고정 접촉자(220)를 향하는 방향, 도시된 실시 예에서 상측으로 이동되면, 상기 하측 단부는 가동 접촉자(430)와 접촉된다. 이에 따라, 직류 릴레이(10)의 외부와 내부가 통전될 수 있다.
고정 접촉자(220)의 상기 하측 단부는 아크 챔버(210) 내부에 위치된다.
제어 전원이 차단될 경우, 가동 접촉자(430)는 각 가동 코어부(500)의 탄성부(540, 640)의 탄성력에 의해 고정 접촉자(220)에서 이격된다.
이때, 고정 접촉자(220)와 가동 접촉자(430)가 이격됨에 따라, 고정 접촉자(220)와 가동 접촉자(430) 사이에는 아크가 발생된다. 발생된 아크는 아크 챔버(210) 내부의 소호용 가스에 소호되며 외부로 배출될 수 있다.
씰링 부재(230)는 아크 챔버(210)와 상부 프레임(110) 내부의 공간의 임의 연통을 차단한다. 씰링 부재(230)는 절연 플레이트(130) 및 지지 플레이트(140)와 함께 아크 챔버(210)의 하측을 밀폐한다.
구체적으로, 씰링 부재(230)의 상측은 아크 챔버(210)의 하측과 결합된다. 또한, 씰링 부재(230)의 방사상 내측은 절연 플레이트(130)의 외주와 결합되며, 씰링 부재(230)의 하측은 지지 플레이트(140)에 결합된다.
이에 따라, 아크 챔버(210)에서 발생된 아크 및 소호용 가스에 의해 소호된 아크는 상부 프레임(110)의 내부 공간으로 입의 유출되지 않게 된다.
또한, 씰링 부재(230)는 실린더(360)의 내부 공간과 프레임부(100)의 내부 공간의 임의 연통을 차단할 수 있다.
(3) 코어부(300)의 설명
코어부(300)는 각 가동 코어부(500, 600)와 함께 제어 전원의 인가에 따라 가동 접촉자부(400)를 상측으로 이동시킨다. 또한, 제어 전원의 인가가 해제될 경우, 코어부(300)는 가동 접촉자부(400)를 다시 하측으로 이동시킨다.
코어부(300)는 외부의 제어 전원(미도시)과 통전 가능하게 연결되어, 제어 전원을 인가받을 수 있다.
코어부(300)는 개폐부(200)의 하측에 위치된다. 또한, 코어부(300)는 하부 프레임(120)의 내부에 수용된다. 코어부(300)와 개폐부(200)는 절연 플레이트(130) 및 지지 플레이트(140)에 의해 전기적, 물리적으로 이격될 수 있다.
코어부(300)와 개폐부(200) 사이에는 가동 접촉자부(400)가 위치된다. 코어부(300) 및 각 가동 코어부(500, 600)가 인가하는 구동력에 의해 가동 접촉자부(400)가 이동될 수 있다. 이에 따라, 가동 접촉자(430)와 고정 접촉자(220)가 접촉되어 직류 릴레이(10)가 통전될 수 있다.
코어부(300)는 고정 코어(310), 바닥부(320), 요크(330), 보빈(340), 코일(350) 및 실린더(360)를 포함한다.
고정 코어(310)는 코일(350)에서 발생되는 자기장에 의해 자화(magnetize)되어 전자기적 인력을 발생시킨다. 상기 전자기적 인력에 의해, 각 가동 코어(510, 610)가 고정 코어(310)를 향해 이동된다(도 5 및 도 9에서 상측 방향).
고정 코어(310)는 이동되지 않는다. 즉, 고정 코어(310)는 지지 플레이트(140) 및 실린더(360)에 고정 결합된다.
고정 코어(310)는 자기장에 의해 자화되어 전자기력을 발생시킬 수 있는 임의의 형태로 구비될 수 있다. 일 실시 예에서, 고정 코어(310)는 자성체 소재로 형성되거나, 영구 자석 또는 전자석 등으로 구비될 수 있다.
고정 코어(310)는 실린더(360) 내부의 상측 공간에 부분적으로 수용된다. 또한, 고정 코어(310)의 외주는 실린더(360)의 내주에 접촉된다.
고정 코어(310)는 지지 플레이트(140)와 각 가동 코어(510, 610) 사이에 위치된다.
고정 코어(310)의 중심부에는 관통공(미도시)이 형성된다. 상기 관통공(미도시)에는 각 샤프트(520, 620)가 상하 이동 가능하게 관통 결합된다.
고정 코어(310)는 각 가동 코어(510, 610)와 소정 거리만큼 이격되도록 위치된다. 따라서, 각 가동 코어(510, 610)가 고정 코어(310)를 향해 이동될 수 있는 거리는 상기 소정 거리로 제한될 수 있다. 이에, 상기 소정 거리는 "각 가동 코어(510, 610)의 이동 거리"로 정의될 수 있을 것이다.
고정 코어(310)의 하측에는 각 코어 스프링(530, 630)의 일측 단부, 도시된 실시 예에서 상측 단부가 접촉된다. 고정 코어(310)가 자화되어 각 가동 코어(510, 610)가 상측으로 이동되면, 각 코어 스프링(530, 630)이 압축되며 복원력이 저장된다.
이에 따라, 제어 전원의 인가가 해제되어 고정 코어(310)의 자화가 종료되면, 각 가동 코어(510, 610)가 상기 복원력에 의해 다시 하측으로 복귀될 수 있다.
바닥부(320)는 실린더(360)의 하측 경계를 형성한다. 달리 표현하면, 바닥부(320)는 실린더(360)의 내부에 형성된 공간을 하측에서 감싸는 실린더(360)의 일 면으로 정의될 수 있다.
바닥부(320)는 각 가동 코어(510, 610)가 하측으로 이동될 수 있는 위치의 한계를 형성한다. 즉, 각 가동 코어(510, 610)가 하측을 향하는 이동이 진행됨에 따라, 각 가동 코어(510, 610)의 하측 단부는 바닥부(320)에 접촉된다. 이에 따라, 각 가동 코어(510, 610)는 더 이상 하측으로 이동되지 않게 된다.
도시된 실시 예에서, 바닥부(320)는 각 가동 코어(510, 610)와 이격된다.
구체적으로, 각 가동 코어(510, 610)가 고정 코어(310)에 흡인되지 않은 상태에서 바닥부(320)를 향하는 각 가동 코어(510, 610)의 일측, 도시된 실시 예에서 하측 단부는 바닥부(320)와 이격된다.
대안적으로, 각 가동 코어(510, 610)는 그 하측 단부가 바닥부(320)에 접촉될 수 있다.
특히, 후술될 바와 같이, 본 발명의 다른 실시 예에 따른 가동 코어부(600)에는 격벽부(616)가 형성된다. 상기 실시 예에서, 격벽부(616)의 하측 단부는 바닥부(320)와 접촉되도록 연장 형성될 수 있다. 이에 대한 상세한 설명은 후술하기로 한다.
이때, 바닥부(320)는 합성 수지 등의 절연성 소재로 형성되는 것이 바람직하다. 각 가동 코어(510, 610)에 인가되는 전자기력 등이 교란되는 것을 방지하기 위함이다.
요크(330)는 제어 전원이 인가됨에 따라 자로(magnetic circuit)을 형성한다. 요크(330)가 형성하는 자로는 코일(350)이 형성하는 자기장의 방향을 조절할 수 있다.
이에 따라, 제어 전원이 인가되면 코일(350)은 각 가동 코어(510, 610)가 고정 코어(310)를 향해 이동되는 방향으로 자기장을 생성할 수 있다. 요크(330)는 통전 가능한 전도성 소재로 형성될 수 있다.
요크(330)는 하부 프레임(120)의 내부에 수용된다. 요크(330)는 코일(350)을 둘러싼다. 코일(350)은 요크(330)의 내주면과 소정 거리만큼 이격되도록 요크(330)의 내부에 수용될 수 있다.
요크(330)의 내부에는 보빈(340)이 수용된다. 즉, 하부 프레임(120)의 외주로부터 방사상 내측을 향하는 방향으로 요크(330), 코일(350) 및 코일(350)이 권취되는 보빈(340)이 순서대로 배치된다.
요크(330)의 상측은 지지 플레이트(140)에 접촉된다. 또한, 요크(330)의 외주는 하부 프레임(120)의 내주에 접촉되거나, 하부 프레임(120)의 내주로부터 소정 거리만큼 이격되도록 위치될 수 있다.
보빈(340)에는 코일(350)이 권취된다. 보빈(340)은 요크(330) 내부에 수용된다.
보빈(340)은 평판형의 상부 및 하부와, 길이 방향으로 연장 형성되어 상기 상부와 하부를 연결하는 원통형의 기둥부를 포함할 수 있다. 즉, 보빈(340)은 실패(bobbin) 형상이다.
보빈(340)의 상부는 지지 플레이트(140)의 하측과 접촉된다. 보빈(340)의 기둥부에는 코일(350)이 권취된다. 코일(350)이 권취되는 두께는 보빈(340)의 상부 및 하부의 직경과 같거나 더 작게 형성될 수 있다.
보빈(340)의 기둥부에는 길이 방향으로 연장되는 중공부가 관통 형성된다. 상기 중공부에는 실린더(360)가 수용될 수 있다. 보빈(340)의 기둥부는 고정 코어(310), 각 가동 코어(510, 610) 및 각 샤프트(520, 620)와 같은 중심축을 갖도록 배치될 수 있다.
코일(350)은 인가된 제어 전원에 의해 자기장을 발생시킨다. 코일(350)이 발생시키는 자기장에 의해 고정 코어(310)가 자화되어, 각 가동 코어(510, 610)에 전자기적 인력이 인가될 수 있다.
코일(350)은 보빈(340)에 권취된다. 구체적으로, 코일(350)은 보빈(340)의 기둥부에 권취되어, 상기 기둥부의 방사상 외측으로 적층된다. 코일(350)은 요크(330)의 내부에 수용된다.
제어 전원이 인가되면, 코일(350)은 자기장을 생성한다. 이때, 요크(330)에 의해 코일(350)이 생성하는 자기장의 세기 또는 방향 등이 제어될 수 있다. 코일(350)이 생성한 자기장에 의해 고정 코어(310)가 자화된다.
고정 코어(310)가 자화되면, 각 가동 코어(510, 610)는 고정 코어(310)를 향하는 방향으로의 전자기력, 즉, 인력을 받게 된다. 이에 따라, 각 가동 코어(510, 610)는 고정 코어(310)를 향하는 방향, 도시된 실시 예에서 상측으로 이동된다.
각 가동 코어(510, 610)가 신뢰성 있게 이동되기 위해서는, 코일(350)이 생성하는 자기장의 세기가 클수록 유리하다. 또한, 알려진 바와 같이, 코일(350)이 생성하는 자기장의 세기는 코일(350)이 보빈(340)에 권취되는 횟수에 비례하여 증가된다.
그러나, 직류 릴레이(10) 전체의 크기를 고려하면, 코일(350)이 권취되는 횟수가 무한정 증가되기는 어렵다.
이에, 본 발명의 실시 예에 따른 직류 릴레이(10)는 각 가동 코어(510, 610)가 그 자중이 감소되면서도, 원래 형상을 유지할 수 있는 구조로 구비된다.
이에 따라, 본 발명의 실시 예에 따른 직류 릴레이(10)는 코일(350)이 권취되는 횟수를 과다하게 증가시키지 않고도, 각 가동 코어(510, 610)가 신뢰성 있게 이동될 수 있다. 이에 대한 상세한 설명은 후술하기로 한다.
실린더(360)는 고정 코어(310), 각 가동 코어(510, 610), 각 코어 스프링(530, 630) 및 각 샤프트(520, 620)를 수용한다. 각 가동 코어(510, 610) 및 각 샤프트(520, 620)는 실린더(360) 내부에서 상측 및 하측 방향으로 이동될 수 있다.
실린더(360)는 보빈(340)의 기둥부에 형성된 중공부에 위치된다. 실린더(360)의 상측 단부는 지지 플레이트(140)의 하측 면에 접촉된다.
실린더(360)의 측면은 보빈(340)의 기둥부의 내주면에 접촉된다. 실린더(360)의 상측 개구부는 고정 코어(310)에 의해 밀폐될 수 있다.
실린더(360)의 하측 면, 즉 바닥부(320)는 하부 프레임(120)의 내면에 접촉될 수 있다. 각 가동 코어(510, 610)가 하측 방향으로 이동되는 거리가 바닥부(320)에 의해 제한될 수 있음은 상술한 바와 같다.
(4) 가동 접촉자부(400)의 설명
가동 접촉자부(400)는 가동 접촉자(430) 및 가동 접촉자(430)를 이동시키기 위한 구성을 포함한다. 가동 접촉자부(400)에 의해, 직류 릴레이(10)는 외부의 전원 또는 부하와 통전될 수 있다.
가동 접촉자부(400)는 상부 프레임(110)의 내부 공간에 수용된다. 또한, 가동 접촉자부(400)는 아크 챔버(210)의 내부에 상하 이동 가능하게 수용된다.
가동 접촉자부(400)의 상측에는 고정 접촉자(220)가 위치된다. 가동 접촉자부(400)는 고정 접촉자(220)를 향하는 방향 및 고정 접촉자(220)에서 멀어지는 방향으로 이동 가능하게 아크 챔버(210)의 내부에 수용된다.
가동 접촉자부(400)의 하측에는 코어부(300) 및 각 가동 코어부(500, 600)가 위치된다. 가동 접촉자부(400)의 상기 이동은 각 가동 코어(510, 610)의 이동에 의해 달성될 수 있다.
가동 접촉자부(400)는 하우징(410), 커버(420) 및 가동 접촉자(430)를 포함한다.
하우징(410)은 가동 접촉자(430) 및 가동 접촉자(430)를 탄성 지지하는 각 탄성부(540, 640)를 수용한다.
도시된 실시 예에서, 하우징(410)은 일측 및 그에 대향하는 타측이 개방된다. 상기 개방된 부분에는 가동 접촉자(430)가 관통 삽입될 수 있다.
하우징(410)의 개방되지 않은 측면은, 수용된 가동 접촉자(430)를 감싸게 형성될 수 있다.
하우징(410)의 상측에는 커버(420)가 구비된다. 커버(420)는 하우징(410)에 수용된 가동 접촉자(430)의 상측 면을 덮는다.
하우징(410) 및 커버(420)는 의도치 않은 통전이 방지되도록 절연성 소재로 형성되는 것이 바람직하다. 일 실시 예에서, 하우징(410) 및 커버(420)는 합성 수지 등으로 형성될 수 있다.
하우징(410)의 하측은 각 샤프트(520, 620)와 연결된다. 각 샤프트(520, 620)와 연결된 각 가동 코어(510, 610)가 상측 또는 하측으로 이동되면, 하우징(410) 및 이에 수용된 가동 접촉자(430) 또한 상측 또는 하측으로 이동될 수 있다.
하우징(410)과 커버(420)는 임의의 부재에 의해 결합될 수 있다. 일 실시 예에서, 하우징(410)과 커버(420)는 볼트, 너트 등의 체결 부재(미도시)에 의해 결합될 수 있다.
가동 접촉자(430)는 제어 전원의 인가에 따라 고정 접촉자(220)와 접촉된다. 이에 따라, 직류 릴레이(10)는 외부의 전원 및 부하와 통전된다. 또한, 가동 접촉자(430)는 제어 전원의 인가가 해제될 경우 고정 접촉자(220)와 이격된다. 이에 따라, 직류 릴레이(10)는 외부의 전원 및 부하와의 통전이 차단된다.
가동 접촉자(430)는 전도성 소재로 형성될 수 있다. 고정 접촉자(220)와 접촉된 가동 접촉자(430)는 외부의 전원 또는 부하와 통전 가능하게 연결될 수 있다.
가동 접촉자(430)는 고정 접촉자(220)에 인접하게 위치된다.
가동 접촉자(430)의 상측은 커버(420)에 의해 부분적으로 덮여진다. 일 실시 예에서, 가동 접촉자(430)의 상측 면의 일부는 커버(420)의 하측 면과 접촉될 수 있다.
가동 접촉자(430)의 하측은 각 탄성부(540, 640)에 의해 탄성 지지된다. 가동 접촉자(430)가 하측으로 임의 이동되지 않도록, 각 탄성부(540, 640)는 소정 거리만큼 압축된 상태에서 가동 접촉자(430)를 탄성 지지할 수 있다.
가동 접촉자(430)는 길이 방향, 도시된 실시 예에서 좌우 방향으로 연장 형성된다. 즉, 가동 접촉자(430)의 길이는 폭보다 길게 형성된다. 따라서, 하우징(410)에 수용된 가동 접촉자(430)의 길이 방향의 양측 단부는 하우징(410)의 외측으로 노출된다.
상기 양측 단부에는 상측으로 소정 거리만큼 돌출 형성된 접촉 돌출부가 형성될 수 있다. 상기 접촉 돌출부에는 고정 접촉자(220)가 접촉된다.
상기 접촉 돌출부는 각 고정 접촉자(220a, 220b)에 대응되는 위치에 형성될 수 있다. 이에 따라, 가동 접촉자(430)의 이동 거리가 감소되고, 고정 접촉자(220)와 가동 접촉자(430)의 접촉 신뢰성이 향상될 수 있다.
가동 접촉자(430)의 폭은 하우징(410)의 각 측면이 서로 이격되는 거리와 동일할 수 있다. 즉, 가동 접촉자(430)가 하우징(410)에 수용되면, 가동 접촉자(430)의 폭 방향 양 측면은 하우징(410)의 각 측면의 내면에 접촉될 수 있다.
이에 따라, 가동 접촉자(430)가 하우징(410)에 수용된 상태가 안정적으로 유지될 수 있다.
3. 본 발명의 일 실시 예에 따른 가동 코어부(500)의 설명
다시 도 2 내지 도 5를 참조하면, 본 발명의 실시 예에 따른 직류 릴레이(10)는 가동 코어부(500)를 포함한다.
가동 코어부(500)는 코일(350)이 형성하는 자기장에 의해 자화되어, 고정 코어(310)에 의해 흡인력(attractive force)을 인가받는다. 이에 따라, 가동 코어부(500)가 고정 코어(310)를 향하는 방향, 도시된 실시 예에서 상측으로 이동된다.
가동 코어부(500)는 가동 접촉자부(400)와 연결된다. 가동 코어부(500)와 가동 접촉자부(400)는 함께 이동될 수 있다. 이에 따라, 가동 접촉자부(400)와 고정 접촉자(220)가 서로 접촉되거나 이격될 수 있다.
또한, 본 발명의 일 실시 예에 따른 가동 코어부(500)는 그 자중(self-weight)이 감소될 수 있는 구조로 형성된다. 이에 따라, 가동 코어부(500)를 이동시키기 위해 요구되는 힘의 크기가 감소된다.
따라서, 코일(350)이 인가하는 자기장의 크기를 증가시키기 위해 코일(350)이 과다하게 권취되지 않고도, 직류 릴레이(10)가 신뢰성 있게 작동될 수 있다.
이하, 도 2 내지 도 8을 참조하여, 본 발명의 일 실시 예에 따른 가동 코어부(500)를 상세하게 설명한다.
(1) 본 발명의 일 실시 예에 따른 가동 코어부(500)의 구성의 설명
도시된 실시 예에서, 가동 코어부(500)는 가동 코어(510), 샤프트(520), 코어 스프링(530) 및 탄성부(540)를 포함한다.
가동 코어(510)는 제어 전원이 인가되면 고정 코어(310)가 생성하는 전자기적 인력에 의해 고정 코어(310)를 향해 이동된다.
가동 코어(510)의 이동에 따라, 가동 코어(510)에 결합된 샤프트(520)가 고정 코어(310)를 향하는 방향, 도시된 실시 예에서 상측으로 이동된다. 또한, 샤프트(520)가 이동됨에 따라, 샤프트(520)에 결합된 가동 접촉자부(400)가 상측으로 이동된다.
이에 따라, 고정 접촉자(220)와 가동 접촉자(430)가 접촉되어 직류 릴레이(10)가 외부의 전원 또는 부하와 통전될 수 있다.
가동 코어(510)는 전자기력에 의한 인력을 받을 수 있는 임의의 형태로 구비될 수 있다. 일 실시 예에서, 가동 코어(510)는 자성체 소재로 형성되거나, 영구 자석 또는 전자석 등으로 구비될 수 있다.
가동 코어(510)는 실린더(360)의 내부에 수용된다. 또한, 가동 코어(510)는 실린더(360) 내부에서 실린더(360)의 높이 방향, 도시된 실시 예에서 상하 방향으로 이동될 수 있다.
구체적으로, 가동 코어(510)는 고정 코어(310)를 향하는 방향 및 고정 코어(310)에서 멀어지는 방향으로 이동될 수 있다.
가동 코어(510)는 샤프트(520)와 결합된다. 가동 코어(510)는 샤프트(520)와 일체로 이동될 수 있다. 가동 코어(510)가 상측 또는 하측으로 이동되면, 샤프트(520) 또한 상측 또는 하측으로 이동된다. 이에 따라, 가동 접촉자(430) 또한 상측 또는 하측으로 이동된다.
가동 코어(510)는 고정 코어(310)의 하측에 위치된다. 가동 코어(510)는 고정 코어(310)와 소정 거리만큼 이격된다. 상기 소정 거리는 가동 코어(510)가 상하 방향으로 이동될 수 있는 거리임은 상술한 바와 같다.
도시된 실시 예에서, 가동 코어(510)는 원형의 단면을 갖고, 일 방향, 도시된 실시 예에서 상하 방향으로 연장 형성된 원통 형상이다. 가동 코어(510)는 실린더(360)에 승강 가능하게 수용되어, 고정 코어(310)를 향하는 방향 또는 고정 코어(310)에 반대되는 방향으로 이동될 수 있는 임의의 형상일 수 있다.
도시된 실시 예에서, 가동 코어(510)는 상면(511), 측면(512), 관통공(513), 공간부(514) 및 개구부(515)를 포함한다.
상면(511)은 고정 코어(310)를 향하는 가동 코어(510)의 일측, 도시된 실시 예에서 상측 면을 형성한다. 상면(511)은 가동 코어(510)의 내부에 형성된 공간부(514)를 상측에서 덮는다.
또한, 상면(511)에는 가동 코어(510)를 향하는 코어 스프링(530)의 일측 단부, 도시된 실시 예에서 하측 단부가 접촉된다. 이에 따라, 가동 코어(510)는 코어 스프링(530)에 의해 탄성 지지될 수 있다.
도시된 실시 예에서, 상면(511)은 그 중심에 관통공(513)이 관통 형성된 원형으로 구비된다. 상면(511)의 형상은 고정 코어(310)의 하면의 형상에 따라 변경될 수 있다.
상면(511)의 외경은 실린더(360)의 내경 이하로 형성될 수 있다. 일 실시 예에서, 상면(511)의 외경은 실린더(360)의 내경과 같게 형성될 수 있다. 이에 따라, 고정 코어(310)가 자기력을 인가하면, 가동 코어(510)는 수평 방향의 요동 없이 수직 방향으로 이동될 수 있다.
상면(511)은 측면(512)과 연속된다. 구체적으로, 원형의 상면(511)의 외주는 측면(512)과 연속된다. 일 실시 예에서, 상면(511)과 측면(512)은 서로 수직하게 연장될 수 있다.
상면(511)의 내부에는 관통공(513)이 관통 형성된다. 일 실시 예에서, 관통공(513)은 원형인 상면(511)의 중심과 같은 중심축을 갖게 위치될 수 있다.
측면(512)은 원통 형상인 가동 코어(510)의 옆면을 형성한다. 도시된 실시 예에서, 측면(512)은 상면(511)의 하측에서, 가동 코어(510)의 옆면을 형성한다. 측면(512)은 가동 코어(510)의 내부에 형성된 공간부(514)를 전방 측, 후방 측, 좌측 및 우측에서 덮는다.
측면(512)은 상면(511)과 연속된다. 구체적으로, 상면(511)을 향하는 측면(512)의 일측, 도시된 실시 예에서 상측 모서리는 상면(511)의 외주와 연속될 수 있다.
일 실시 예에서, 측면(512)과 상면(511)은 서로 수직하게 연속될 수 있다. 측면(512)과 상면(511)이 연속되는 모서리는 모따기(taper)될 수 있다.
도시된 실시 예에서, 바닥부(320)를 향하는 측면(512)의 타측 단부, 도시된 실시 예에서 하측 단부는 바닥부(320)와 이격되어 위치된다. 대안적으로, 상술한 바와 같이, 측면(512)의 상기 하측 단부는 바닥부(320)와 접촉될 수 있다.
관통공(513)은 상면(511)의 내부에서, 고정 코어(310)를 향하는 방향 및 고정 코어(310)에 반대되는 방향, 도시된 실시 예에서 상하 방향으로 관통 형성된다.
관통공(513)에는 샤프트(520)가 관통 결합된다. 이에 따라, 가동 코어(510)와 샤프트(520)가 일체로 승강될 수 있다.
관통공(513)은 상면(511)의 내부에 관통 형성된다. 일 실시 예에서, 관통공(513)은 원형의 단면을 갖게 형성되어, 상면(511)의 중심과 같은 중심축을 갖도록 배치될 수 있다.
관통공(513)은 상대적으로 큰 직경을 갖고, 고정 코어(310)에 보다 가깝게 위치되는 제1 부분 및 상대적으로 작은 직경을 갖고, 상기 제1 부분에 비해 고정 코어(310)에서 더 멀게 위치되는 제2 부분으로 구분될 수 있다.
관통공(513)의 상기 제1 부분은 샤프트(520) 중 상대적으로 더 큰 직경을 갖는 제1 부분의 하측 단부를 지지한다. 즉, 관통공(513)의 상기 제1 부분은 샤프트(520)의 상기 제1 부분의 직경보다 작게 형성된다.
관통공(513)의 상기 제2 부분에는 샤프트(520) 중 상대적으로 더 작은 직경을 갖는 제2 부분이 관통 결합된다. 즉, 관통공(513)의 상기 제2 부분은 샤프트(520)의 상기 제2 부분의 직경 이하로 형성된다.
따라서, 가동 코어(510)가 상측으로 이동되면, 관통공(513)의 상기 제1 부분에 지지되는 샤프트(520)의 상기 제1 부분이 상측으로 가압된다. 이에 따라, 가동 코어(510)와 샤프트(520)가 일체로 승강될 수 있다.
관통공(513)은 공간부(514)와 연통된다. 관통공(513)에 관통 결합된 샤프트(520)의 상기 제2 부분은 공간부(514)으로 연장될 수 있다.
공간부(514)는 관통공(513)에 관통 결합된 샤프트(520)의 상기 제2 부분을 수용하는 공간이다. 또한, 공간부(514)는 가동 코어(510) 전체의 자중(self-weight)을 감소시킨다.
공간부(514)는 상면(511) 및 측면(512)에 둘러싸인 공간으로 정의될 수 있다.
구체적으로, 공간부(514)의 상측은 상면(511)에 둘러싸인다. 또한, 공간부(514)의 전방 측, 후방 측, 좌측 및 우측은 측면(512)에 둘러싸인다.
즉, 공간부(514)는 가동 코어(510) 중 상면(511) 및 측면(512)을 제외한 나머지 방향, 도시된 실시 예에서 하측에서 함몰되어 형성된 공간으로 정의될 수 있다.
달리 표현하면, 공간부(514)는 가동 코어(510)의 각 방향 중, 고정 코어(310)에 반대되는 일측(즉, 도시된 실시 예에서 하측)에서 함몰 형성된다.
공간부(514)의 형상은 상면(511) 및 측면(512)의 형상에 따라 변경될 수 있다. 도시된 실시 예에서, 상면(511) 및 측면(512)은 각각 원통 또는 원기둥의 윗면 및 옆면을 형성한다. 이에 따라, 공간부(514)는 원형의 단면을 갖고, 상하 방향으로 연장 형성된 원통 또는 원기둥 형상이다.
공간부(514)는 관통공(513)에 의해 가동 코어(510)의 상부에 위치되는 공간과 연통된다. 관통공(513)에 관통 결합된 샤프트(520)의 상기 제2 부분은 공간부(514)으로 연장될 수 있다.
공간부(514)는 개구부(515)와 연통된다. 공간부(514)는 개구부(515)에 의해 가동 코어(510)의 하부에 위치되는 공간과 연통된다.
공간부(514)의 부피는 변경될 수 있다. 공간부(514)의 부피는 요구되는 가동 코어(510)의 자중(self-weight) 감소분의 크기에 비례하여 변경될 수 있다.
개구부(515)는 상면(511)에 반대되는 공간부(514)의 일측, 도시된 실시 예에서 하측에 위치된다. 개구부(515)는 개방 형성되어, 공간부(514)와 실린더(360)의 하측 공간을 연통한다.
따라서, 공간부(514)가 하측이 폐쇄되는 경우에 비해, 가동 코어(510)의 제조 공정이 간명해질 수 있다.
샤프트(520)는 가동 코어(510) 및 가동 접촉자부(400)의 하우징(410)과 각각 결합된다. 샤프트(520)는 가동 코어(510)의 승강을 하우징(410)에 전달한다. 이에 따라, 가동 코어(510)가 고정 코어(310)를 향해 상승되면, 샤프트(520) 및 이에 결합된 가동 접촉자부(400) 또한 함께 상승된다.
결과적으로, 가동 접촉자(430)와 고정 접촉자(220)가 접촉되어, 직류 릴레이(10)가 외부의 전원 또는 부하와 통전 가능하게 연결될 수 있다.
샤프트(520)는 가동 접촉자부(400)와 가동 코어(510) 사이에서 연장 형성된다. 도시된 실시 예에서, 샤프트(520)는 가동 접촉자부(400)를 향하는 일측, 도시된 실시 예에서 상측 단부가 하우징(410)과 결합된다.
또한, 가동 코어(510)를 향하는 샤프트(520)의 타측, 도시된 실시 예에서 하측 단부는 가동 코어(510)에 관통 결합된다. 도시된 실시 예에서, 샤프트(520)는 원형의 단면을 갖고, 상하 방향으로 연장된 원기둥 형상이다.
샤프트(520)는 결합되는 부재 및 직경의 크기에 따라 복수 개의 부분으로 구분될 수 있다. 도시된 실시 예에서, 샤프트(520)는 하우징(410)과 결합되고, 상대적으로 더 큰 직경을 갖는 제1 부분 및 가동 코어(510)와 결합되고, 상대적으로 더 작은 직경을 갖는 제2 부분으로 구분될 수 있다.
제1 부분의 상기 하측 단부는 관통공(513)의 제1 부분에 부분적으로 삽입된다. 상술한 바와 같이, 관통공(513)의 제1 부분은 관통공(513)의 제2 부분에 비해 큰 직경을 갖게 형성된다.
따라서, 제1 부분의 상기 하측 단부는 관통공(513)의 제1 부분 및 제2 부분이 연속되는 모서리에 지지된다.
또한, 제2 부분은 관통공(513)에 관통 결합되어, 가동 코어(510)의 공간부(514)까지 연장된다. 이에 따라, 샤프트(520)와 가동 코어(510)의 결합 상태가 안정적으로 유지될 수 있다.
샤프트(520)와 가동 코어(510)는 고정 결합될 수 있다. 일 실시 예에서, 샤프트(520)와 가동 코어(510)는 용접 결합될 수 있다.
샤프트(520)에는 코어 스프링(530)이 관통 결합된다.
코어 스프링(530)은 가동 코어(510)와 고정 코어(310)를 탄성 지지한다. 코어 스프링(530)은 가동 코어(510) 및 고정 코어(310) 사이에 위치된다.
코어 스프링(530)은 가동 코어(510)와 접촉된다. 구체적으로, 가동 코어(510)를 향하는 코어 스프링(530)의 일측 단부, 도시된 실시 예에서 하측 단부는 가동 코어(510)의 상면에 접촉된다.
고정 코어(310)를 향하는 코어 스프링(530)의 타측 단부, 도시된 실시 예에서 상측 단부는 고정 코어(310)에 내부에 수용된다. 즉, 도시된 실시 예에서, 코어 스프링(530)은 고정 코어(310)의 중심축의 방사상 외측에 형성된 중공부에 부분적으로 수용된다. 코어 스프링(530)의 상측 단부는 고정 코어(310)의 상기 중공부를 상측에서 감싸는 고정 코어(310)의 일 면에 접촉된다.
코어 스프링(530)은 형상이 변형되며 탄성력(즉, 복원력)을 저장하고, 저장된 탄성력을 다른 부재에 전달할 수 있는 임의의 형태로 구비될 수 있다. 도시된 실시 예에서, 코어 스프링(530)은 상하 방향으로 연장되고 내부에 중공부가 관통 형성된 코일 스프링(coil spring)의 형태로 구비된다.
코어 스프링(530)은 샤프트(520)와 결합된다. 구체적으로, 코어 스프링(530)의 내부에 형성된 상기 중공부에 샤프트(520)가 관통 결합된다.
가동 코어(510)가 고정 코어(310)를 향해 상승되면, 코어 스프링(530)은 가동 코어(510) 및 고정 코어(310) 사이에서 압축되며 탄성력을 저장한다. 코일(350)에 인가된 전류가 차단되어 가동 코어(510)가 자화되지 않은 상태로 전환되면, 코어 스프링(530)은 인장되며 가동 코어(510)를 하강시킨다.
탄성부(540)는 가동 접촉자(430)를 탄성 지지한다. 가동 접촉자(430)가 고정 접촉자(220)와 접촉될 경우, 전자기적 반발력에 의해 가동 접촉자(430)는 고정 접촉자(220)에서 이격되려는 경향을 갖게 된다.
이때, 탄성부(540)는 가동 접촉자(430)를 탄성 지지하여, 가동 접촉자(430)가 고정 접촉자(220)에서 임의 이격되는 것을 방지한다.
탄성부(540)는 형상의 변형에 의해 복원력을 저장하고, 저장된 복원력을 다른 부재에 제공할 수 있는 임의의 형태로 구비될 수 있다. 일 실시 예에서, 탄성부(540)는 코일 스프링으로 구비될 수 있다.
가동 접촉자(430)를 향하는 탄성부(540)의 일측 단부는 가동 접촉자(430)의 하측에 접촉된다. 또한, 상기 일측 단부에 대향하는 타측 단부는 하우징(410)의 상측에 접촉된다.
탄성부(540)는 소정 거리만큼 압축되어 복원력을 저장한 상태로 가동 접촉자(430)를 탄성 지지할 수 있다. 이에 따라, 가동 접촉자(430)와 고정 접촉자(220) 사이에서 전자기적 반발력이 발생되더라도, 가동 접촉자(430)가 임의로 이동되지 않게 된다.
탄성부(540)의 안정적인 결합을 위해, 가동 접촉자(430)의 하측에는 탄성부(540)에 삽입되는 돌출부(미도시)가 돌출 형성될 수 있다. 마찬가지로, 하우징(410)의 상측에도 탄성부(540)에 삽입되는 돌출부(미도시)가 돌출 형성될 수 있다.
(2) 본 발명의 일 실시 예에 따른 가동 코어부(500)를 포함하는 직류 릴레이(10)의 작동 과정의 설명
본 발명의 일 실시 예에 따른 가동 코어부(500)는 가동 코어(510)의 내부에 공간부(514)가 형성된다. 이에 따라, 가동 코어(510)의 자중(self-weight)이 감소되어, 가동 코어(510)를 승강시키기 위해 요구되는 힘의 크기가 감소될 수 있다.
따라서, 보빈(340)에 코일(350)이 과다하게 권취되지 않더라도, 가동 코어(510)가 고정 코어(310)를 향해 이동되기에 충분한 크기의 자기장 및 전자기력이 형성될 수 있다.
이에 따라, 직류 릴레이(10)의 작동 신뢰성이 향상되고, 직류 릴레이(10)의 전체 부피가 감소될 수 있다.
이하, 도 8a 및 도 8b를 참조하여, 본 발명의 일 실시 예에 따른 가동 코어부(500)를 포함하는 직류 릴레이(10)의 작동 과정을 상세하게 설명한다.
도 8a를 참조하면, 외부의 전원 또는 부하와 통전되지 않은 상태의 직류 릴레이(10)가 도시된다.
즉, 가동 접촉자(430)는 고정 접촉자(220)와 이격되어, 고정 접촉자(220)의 하측에 위치된다. 또한, 가동 코어(510)는 고정 코어(310)와 이격되어, 고정 코어(310)의 하측에 위치된다.
이때, 코어 스프링(530)은 그 형상 변형의 정도가 미세하거나, 형상 변형이 되지 않은 상태이다. 이에 따라, 코어 스프링(530)에 저장된 탄성력(즉, 복원력)의 크기 또한 0 또는 미세한 크기임이 이해될 것이다.
한편, 가동 코어(510)는 내부에 공간부(514)가 형성된다. 공간부(514)의 부피만큼 가동 코어(510)의 자중(self-weight)이 감소됨은 상술한 바와 같다.
도 8b를 참조하면, 외부의 전원 또는 부하와 통전되는 상태의 직류 릴레이(10)가 도시된다.
먼저, 코일(350)에 전류가 인가되면, 코일(350)은 자기장을 형성한다. 이에 따라, 고정 코어(310) 및 가동 코어(510)가 자화되어, 가동 코어(510)는 고정 코어(310)를 향하는 방향의 흡인력이 인가된다.
이때, 가동 코어(510)가 고정 코어(310)를 향해 상승되기 위해 요구되는 힘은, 코어 스프링(530)의 탄성력 및 가동 코어(510)의 자중을 합친 힘보다 커야 한다. 즉, 코일(350)이 형성하는 자기장은 상기 힘들의 함보다 큰 전자기력을 형성하여야 한다.
상술한 바와 같이, 가동 코어(510)의 내부에는 공간부(514)가 형성된다. 따라서, 가동 코어(510)의 자중이 감소되어, 가동 코어(510)를 이동시키기 위해 요구되는 힘의 크기가 감소된다. 결과적으로, 코일(350)이 형성하는 자기장 및 이에 의해 형성되는 전자기력의 크기의 최소 한도치가 감소된다.
따라서, 코일(350)에 인가되는 전류의 크기 및 보빈(340)에 코일(350)이 권취되는 횟수가 과다하게 증가되지 않고도, 가동 코어(510)가 안정적으로 고정 코어(310)를 향해 상승될 수 있다.
결과적으로, 직류 릴레이(10)의 작동 신뢰성이 향상될 수 있다.
4. 본 발명의 다른 실시 예에 따른 가동 코어부(600)의 설명
도 9 내지 도 13을 참조하면, 본 발명의 실시 예에 따른 직류 릴레이(10)는 가동 코어부(600)를 포함한다.
가동 코어부(600)는 코일(350)이 형성하는 자기장에 의해 자화되어, 고정 코어(310)에 의해 흡인력(attractive force)을 인가받는다. 이에 따라, 가동 코어부(600)가 고정 코어(310)를 향하는 방향, 도시된 실시 예에서 상측으로 이동된다.
가동 코어부(600)는 가동 접촉자부(400)와 연결된다. 가동 코어부(600)와 가동 접촉자부(400)는 함께 이동될 수 있다. 이에 따라, 가동 접촉자부(400)와 고정 접촉자(220)가 서로 접촉되거나 이격될 수 있다.
또한, 본 발명의 다른 실시 예에 따른 가동 코어부(600)는 그 자중(self-weight)이 감소될 수 있는 구조로 형성된다. 이에 따라, 가동 코어부(600)를 이동시키기 위해 요구되는 힘의 크기가 감소된다.
따라서, 코일(350)이 인가하는 자기장의 크기를 증가시키기 위해 코일(350)이 과다하게 권취되지 않고도, 직류 릴레이(10)가 신뢰성 있게 작동될 수 있다.
더 나아가, 본 발명의 다른 실시 예에 따른 가동 코어부(600)는 고정 코어(310)와 가동 코어(610)를 결합하는 부재의 결합 상태가 안정적으로 유지될 수 있다.
이하, 도 9 내지 도 14를 참조하여, 본 발명의 다른 실시 예에 따른 가동 코어부(600)를 상세하게 설명한다.
(1) 본 발명의 일 실시 예에 따른 가동 코어부(600)의 구성의 설명
도시된 실시 예에서, 가동 코어부(600)는 가동 코어(610), 샤프트(620), 코어 스프링(630) 및 탄성부(640)를 포함한다.
가동 코어(610)는 제어 전원이 인가되면 고정 코어(310)가 생성하는 전자기적 인력에 의해 고정 코어(310)를 향해 이동된다.
가동 코어(610)의 이동에 따라, 가동 코어(610)에 결합된 샤프트(620)가 고정 코어(310)를 향하는 방향, 도시된 실시 예에서 상측으로 이동된다. 또한, 샤프트(620)가 이동됨에 따라, 샤프트(620)에 결합된 가동 접촉자부(400)가 상측으로 이동된다.
이에 따라, 고정 접촉자(220)와 가동 접촉자(430)가 접촉되어 직류 릴레이(10)가 외부의 전원 또는 부하와 통전될 수 있다.
가동 코어(610)는 전자기력에 의한 인력을 받을 수 있는 임의의 형태로 구비될 수 있다. 일 실시 예에서, 가동 코어(610)는 자성체 소재로 형성되거나, 영구 자석 또는 전자석 등으로 구비될 수 있다.
가동 코어(610)는 실린더(360)의 내부에 수용된다. 또한, 가동 코어(610)는 실린더(360) 내부에서 실린더(360)의 높이 방향, 도시된 실시 예에서 상하 방향으로 이동될 수 있다.
구체적으로, 가동 코어(610)는 고정 코어(310)를 향하는 방향 및 고정 코어(310)에서 멀어지는 방향으로 이동될 수 있다.
가동 코어(610)는 샤프트(620)와 결합된다. 가동 코어(610)는 샤프트(620)와 일체로 이동될 수 있다. 가동 코어(610)가 상측 또는 하측으로 이동되면, 샤프트(620) 또한 상측 또는 하측으로 이동된다. 이에 따라, 가동 접촉자(430) 또한 상측 또는 하측으로 이동된다.
가동 코어(610)는 고정 코어(310)의 하측에 위치된다. 가동 코어(610)는 고정 코어(310)와 소정 거리만큼 이격된다. 상기 소정 거리는 가동 코어(610)가 상하 방향으로 이동될 수 있는 거리임은 상술한 바와 같다.
도시된 실시 예에서, 가동 코어(610)는 원형의 단면을 갖고, 일 방향, 도시된 실시 예에서 상하 방향으로 연장 형성된 원통 형상이다. 가동 코어(610)는 실린더(360)에 승강 가능하게 수용되어, 고정 코어(310)를 향하는 방향 또는 고정 코어(310)에 반대되는 방향으로 이동될 수 있는 임의의 형상일 수 있다.
도시된 실시 예에서, 가동 코어(610)는 상면(611), 측면(612), 관통공(613), 공간부(614), 개구부(615) 및 격벽부(616)를 포함한다.
상면(611)은 고정 코어(310)를 향하는 가동 코어(610)의 일측, 도시된 실시 예에서 상측 면을 형성한다. 상면(611)은 가동 코어(610)의 내부에 형성된 공간부(614)를 상측에서 덮는다.
또한, 상면(611)에는 가동 코어(610)를 향하는 코어 스프링(630)의 일측 단부, 도시된 실시 예에서 하측 단부가 접촉된다. 이에 따라, 가동 코어(610)는 코어 스프링(630)에 의해 탄성 지지될 수 있다.
도시된 실시 예에서, 상면(611)은 그 중심에 관통공(613)이 관통 형성된 원형으로 구비된다. 상면(611)의 형상은 고정 코어(310)의 하면의 형상에 따라 변경될 수 있다.
상면(611)의 외경은 실린더(360)의 내경 이하로 형성될 수 있다. 일 실시 예에서, 상면(611)의 외경은 실린더(360)의 내경과 같게 형성될 수 있다. 이에 따라, 고정 코어(310)가 자기력을 인가하면, 가동 코어(610)는 수평 방향의 요동 없이 수직 방향으로 이동될 수 있다.
상면(611)은 측면(612)과 연속된다. 구체적으로, 원형의 상면(611)의 외주는 측면(612)과 연속된다. 일 실시 예에서, 상면(611)과 측면(612)은 서로 수직하게 연장될 수 있다.
상면(611)의 내부에는 관통공(613)이 관통 형성된다. 일 실시 예에서, 관통공(613)은 원형인 상면(611)의 중심과 같은 중심축을 갖게 위치될 수 있다.
측면(612)은 원통 형상인 가동 코어(610)의 옆면을 형성한다. 도시된 실시 예에서, 측면(612)은 상면(611)의 하측에서, 가동 코어(610)의 옆면을 형성한다. 측면(612)은 가동 코어(610)의 내부에 형성된 공간부(614)를 전방 측, 후방 측, 좌측 및 우측에서 덮는다.
측면(612)은 상면(611)과 연속된다. 구체적으로, 상면(611)을 향하는 측면(612)의 일측, 도시된 실시 예에서 상측 모서리는 상면(611)의 외주와 연속될 수 있다.
일 실시 예에서, 측면(612)과 상면(611)은 서로 수직하게 연속될 수 있다. 측면(612)과 상면(611)이 연속되는 모서리는 모따기(taper)될 수 있다.
도시된 실시 예에서, 바닥부(320)를 향하는 측면(612)의 타측 단부, 도시된 실시 예에서 하측 단부는 바닥부(320)와 이격되어 위치된다. 대안적으로, 상술한 바와 같이, 측면(612)의 상기 하측 단부는 바닥부(320)와 접촉될 수 있다.
관통공(613)은 상면(611)의 내부에서, 고정 코어(310)를 향하는 방향 및 고정 코어(310)에 반대되는 방향, 도시된 실시 예에서 상하 방향으로 관통 형성된다.
관통공(613)에는 샤프트(620)가 관통 결합된다. 이에 따라, 가동 코어(610)와 샤프트(620)가 일체로 승강될 수 있다.
관통공(613)은 상면(611)의 내부에 관통 형성된다. 일 실시 예에서, 관통공(613)은 원형의 단면을 갖게 형성되어, 상면(611)의 중심과 같은 중심축을 갖도록 배치될 수 있다.
관통공(613)은 상대적으로 큰 직경을 갖고, 고정 코어(310)에 보다 가깝게 위치되는 제1 부분 및 상대적으로 작은 직경을 갖고, 상기 제1 부분에 비해 고정 코어(310)에서 더 멀게 위치되는 제2 부분으로 구분될 수 있다.
관통공(613)의 상기 제1 부분은 샤프트(620) 중 상대적으로 더 큰 직경을 갖는 제1 부분의 하측 단부를 지지한다. 즉, 관통공(613)의 상기 제1 부분은 샤프트(620)의 상기 제1 부분의 직경보다 작게 형성된다.
관통공(613)의 상기 제2 부분에는 샤프트(620) 중 상대적으로 더 작은 직경을 갖는 제2 부분이 관통 결합된다. 즉, 관통공(613)의 상기 제2 부분은 샤프트(620)의 상기 제2 부분의 직경 이하로 형성된다.
따라서, 가동 코어(610)가 상측으로 이동되면, 관통공(613)의 상기 제1 부분에 지지되는 샤프트(620)의 상기 제1 부분이 상측으로 가압된다. 이에 따라, 가동 코어(610)와 샤프트(620)가 일체로 승강될 수 있다.
관통공(613)은 공간부(614)와 연통된다. 구체적으로, 관통공(613)은 공간부(614)에 위치되는 격벽부(616)에 둘러싸여 형성되는 중공부와 연통된다. 관통공(613)에 관통 결합된 샤프트(620)의 상기 제2 부분은 격벽부(616)에 둘러싸여 형성되는 상기 중공부로 연장될 수 있다.
공간부(614)는 관통공(613)에 관통 결합된 샤프트(620)의 상기 제2 부분을 수용하는 공간이다. 공간부(614)에는 샤프트(620)의 상기 제2 부분이 삽입 결합되는 중공부(즉, 격벽부(616)에 둘러싸여 형성되는)가 위치된다. 또한, 공간부(614)는 가동 코어(610) 전체의 자중(self-weight)을 감소시킨다.
공간부(614)는 상면(611), 측면(612) 및 격벽부(616)에 둘러싸인 공간으로 정의될 수 있다. 즉, 공간부(614)의 외주는 상면(611) 및 측면(612)에 의해 정의된다. 또한, 공간부(614)의 내주는 격벽부(616)에 의해 정의된다.
구체적으로, 공간부(614)의 상측은 상면(611)에 둘러싸인다. 또한, 공간부(614)의 전방 측, 후방 측, 좌측 및 우측 방향의 외측은 측면(612)에 둘러싸인다. 더 나아가, 공간부(614)의 전방 측, 후방 측, 좌측 및 우측 방향의 내측은 격벽부(616)에 둘러싸인다.
즉, 공간부(614)는 가동 코어(610) 중 상면(611) 및 측면(612)을 제외한 나머지 방향, 도시된 실시 예에서 하측에서 함몰되어 형성된 공간으로 정의될 수 있다.
달리 표현하면, 공간부(614)는 가동 코어(610)의 각 방향 중, 고정 코어(310)에 반대되는 일측(즉, 도시된 실시 예에서 하측)에서 함몰 형성된다.
공간부(614)의 형상은 상면(611), 측면(612) 및 격벽부(616)의 형상에 따라 변경될 수 있다. 도시된 실시 예에서, 상면(611) 및 측면(612)은 각각 원통 또는 원기둥의 윗면 및 옆면을 형성한다. 또한, 격벽부(616)는 원통 또는 원기둥의 내주면을 형성한다.
이에 따라, 공간부(614)는 원형의 단면을 갖고, 상하 방향으로 연장 형성되며, 내부에 다른 공간(즉, 격벽부(616)에 둘러싸인 중공부)이 위치되는 관(pipe) 형의 원통 또는 원기둥 형상이다.
공간부(614)는 관통공(613)에 의해 가동 코어(610)의 상부에 위치되는 공간과 연통된다. 관통공(613)에 관통 결합된 샤프트(620)의 상기 제2 부분은 공간부(614)으로 연장될 수 있다.
공간부(614)는 개구부(615)와 연통된다. 공간부(614)는 개구부(615)에 의해 가동 코어(610)의 하부에 위치되는 공간과 연통된다.
본 실시 예의 다양한 변형 예 중 어느 하나 이상에서, 공간부(614)는 격벽부(616)에 둘러싸인 중공부와 연통될 수 있다. 관통공(613) 및 상기 중공부를 통과한 샤프트(620)는 공간부(614)까지 연장될 수 있다.
공간부(614)의 부피는 변경될 수 있다. 공간부(614)의 부피는 요구되는 가동 코어(610)의 자중(self-weight) 감소분의 크기에 비례하여 변경될 수 있다.
개구부(615)는 상면(611)에 반대되는 공간부(614)의 일측, 도시된 실시 예에서 하측에 위치된다. 개구부(615)는 개방 형성되어, 공간부(614)와 실린더(360)의 하측 공간을 연통한다.
또한, 개구부(615)는 격벽부(616)에 둘러싸인 중공부와 연통된다. 이에 따라, 격벽부(616)에 둘러싸인 중공부와 실린더(360)의 하측 공간 또한 연통될 수 있다.
따라서, 공간부(614)의 하측이 폐쇄되는 경우에 비해, 가동 코어(610)의 제조 공정이 간명해질 수 있다.
격벽부(616)는 가동 코어(610)에 삽입 결합된 샤프트(620)를 지지한다. 관통공(613)에 관통 결합된 샤프트(620)는 격벽부(616)에 의해 지지되어, 가동 코어(610)와 샤프트(620)의 결합 상태가 안정적으로 유지될 수 있다.
후술될 바와 같이, 일 실시 예에서, 가동 코어(610)와 샤프트(620)는 용접 결합될 수 있다. 상기 실시 예에서, 격벽부(616)는 샤프트(620)가 용접 결합되기 위한 모재(basic material)로 기능된다.
따라서, 가동 코어(610)와 샤프트(620)의 결합 상태가 용이하게 형성될 수 있다.
격벽부(616)는 공간부(614)에 위치된다. 격벽부(616)는 가동 코어(610)의 내부에 형성된 공간을 복수 개의 공간으로 구획한다. 도시된 실시 예에서, 가동 코어(610)의 내부에 형성된 공간은, 격벽부(616)에 둘러싸인 중공부 및 격벽부(616), 상면(611) 및 측면(612)에 둘러싸인 공간부(614)으로 구획된다.
상면(611)을 향하는 격벽부(616)의 일측 단부, 도시된 실시 예에서 상측 단부는 상면(611)과 연속된다. 격벽부(616)의 상기 일측 단부는 관통공(613)을 둘러싸며 상면(611)과 결합된다.
이에 따라, 격벽부(616)에 둘러싸이는 중공부는 관통공(613)과 연통될 수 있다. 결과적으로, 관통공(613)에 관통된 샤프트(620)는 중공부에 삽입 결합되어, 격벽부(616)에 인접하게 위치될 수 있다.
격벽부(616)는 결합된 샤프트(620)를 지지할 수 있는 임의의 형태로 구비될 수 있다. 도시된 실시 예에서, 샤프트(620)는 원형의 단면을 갖는 원기둥 형상인 바, 격벽부(616) 또한 내부에 원형의 단면을 갖는 중공부가 형성된 원기둥 형상으로 형성된다. 격벽부(616)의 형상은 샤프트(620)의 형상에 따라 변경될 수 있다.
이때, 격벽부(616)에 둘러싸여 형성되는 중공부의 직경은 관통공(613)의 제1 부분의 직경보다 작되, 관통공(613)의 제2 부분의 직경과 같거나 더 작게 형성되는 것이 바람직하다.
격벽부(616)는 가동 코어(610)의 높이 방향으로 연장 형성된다. 도시된 실시 예에서, 격벽부(616)는 상면(611)을 향하는 방향(즉, 상측) 및 개구부(615)를 향하는 방향(즉, 하측)을 향하는 방향으로 연장 형성된다.
개구부(615)를 향하는 방향(즉, 하측)을 향해 연장되는 격벽부(616)의 길이는 변경될 수 있다.
즉, 도 11에 도시된 실시 예에서, 격벽부(616)는 상하 방향으로 측면(612)의 연장 길이만큼 연장 형성된다. 상기 실시 예에서, 격벽부(616)의 하측 단부는 측면(612)의 하측 단부와 같은 평면 상에 위치될 수 있다.
도 12에 도시된 실시 예에서, 격벽부(616)는 상하 방향으로 측면(612)의 연장 길이보다 짧게 연장 형성된다. 상기 실시 예에서, 격벽부(616)의 하측 단부는 공간부(614) 상에 위치될 수 있다.
도 13에 도시된 실시 예에서, 격벽부(616)는 상하 방향으로 측면(612)의 연장 길이보다 길게 연장된다. 상기 실시 예에서, 격벽부(616)의 하측 단부는 측면(612)의 하측 단부보다 더 하측에 위치될 수 있다. 즉, 격벽부(616)의 하측 단부는 측면(612)의 하측 단부보다 바닥부(320)에 더 인접하게 위치된다.
상기 실시 예에서, 직류 릴레이(10)가 외부의 전원 또는 부하와 통전되지 않은 상태에서, 격벽부(616)의 하측 단부는 바닥부(320)와 접촉될 수 있다.
샤프트(620)는 가동 코어(610) 및 가동 접촉자부(400)의 하우징(410)과 각각 결합된다. 샤프트(620)는 가동 코어(610)의 승강을 하우징(410)에 전달한다. 이에 따라, 가동 코어(610)가 고정 코어(310)를 향해 상승되면, 샤프트(620) 및 이에 결합된 가동 접촉자부(400) 또한 함께 상승된다.
결과적으로, 가동 접촉자(430)와 고정 접촉자(220)가 접촉되어, 직류 릴레이(10)가 외부의 전원 또는 부하와 통전 가능하게 연결될 수 있다.
샤프트(620)는 가동 접촉자부(400)와 가동 코어(610) 사이에서 연장 형성된다. 도시된 실시 예에서, 샤프트(620)는 가동 접촉자부(400)를 향하는 일측, 도시된 실시 예에서 상측 단부가 하우징(410)과 결합된다.
또한, 가동 코어(610)를 향하는 샤프트(620)의 타측, 도시된 실시 예에서 하측 단부는 가동 코어(610)에 관통 결합된다. 도시된 실시 예에서, 샤프트(620)는 원형의 단면을 갖고, 상하 방향으로 연장된 원기둥 형상이다.
샤프트(620)는 결합되는 부재 및 직경의 크기에 따라 복수 개의 부분으로 구분될 수 있다. 도시된 실시 예에서, 샤프트(620)는 하우징(410)과 결합되고, 상대적으로 더 큰 직경을 갖는 제1 부분 및 가동 코어(610)와 결합되고, 상대적으로 더 작은 직경을 갖는 제2 부분으로 구분될 수 있다.
제1 부분의 상기 하측 단부는 관통공(613)의 제1 부분에 부분적으로 삽입된다. 상술한 바와 같이, 관통공(613)의 제1 부분은 관통공(613)의 제2 부분에 비해 큰 직경을 갖게 형성된다.
따라서, 제1 부분의 상기 하측 단부는 관통공(613)의 제1 부분 및 제2 부분이 연속되는 모서리에 지지된다.
또한, 제2 부분은 관통공(613)에 관통 결합되고, 격벽부(616)에 둘러싸인 중공부까지 연장된다. 이에 따라, 샤프트(620)와 가동 코어(610)의 결합 상태가 안정적으로 유지될 수 있다.
상술한 바와 같이, 격벽부(616)의 상하 방향의 연장 길이는 다양하게 형성될 수 있다. 따라서, 격벽부(616)의 하측 단부가 공간부(614)에 위치되도록 격벽부(616)가 연장되는 실시 예에서, 샤프트(620)의 상기 제2 부분은 관통공(613) 및 상기 중공부에 차례로 관통된 후, 공간부(614)에 노출될 수 있다.
샤프트(620)와 가동 코어(610)는 고정 결합될 수 있다. 일 실시 예에서, 샤프트(620)와 가동 코어(610)는 용접 결합될 수 있다. 이때, 모재로 기능되는 격벽부(616)에 의해 샤프트(620)와 가동 코어(610)의 결합 상태가 용이하게 형성될 수 있음은 상술한 바와 같다.
샤프트(620)에는 코어 스프링(630)이 관통 결합된다.
코어 스프링(630)은 가동 코어(610)와 고정 코어(310)를 탄성 지지한다. 코어 스프링(630)은 가동 코어(610) 및 고정 코어(310) 사이에 위치된다.
코어 스프링(630)은 가동 코어(610)와 접촉된다. 구체적으로, 가동 코어(610)를 향하는 코어 스프링(630)의 일측 단부, 도시된 실시 예에서 하측 단부는 가동 코어(610)의 상면에 접촉된다.
고정 코어(310)를 향하는 코어 스프링(630)의 타측 단부, 도시된 실시 예에서 상측 단부는 고정 코어(310)에 내부에 수용된다. 즉, 도시된 실시 예에서, 코어 스프링(630)은 고정 코어(310)의 중심축의 방사상 외측에 형성된 중공부에 부분적으로 수용된다. 코어 스프링(630)의 상측 단부는 고정 코어(310)의 상기 중공부를 상측에서 감싸는 고정 코어(310)의 일 면에 접촉된다.
코어 스프링(630)은 형상이 변형되며 탄성력(즉, 복원력)을 저장하고, 저장된 탄성력을 다른 부재에 전달할 수 있는 임의의 형태로 구비될 수 있다. 도시된 실시 예에서, 코어 스프링(630)은 상하 방향으로 연장되고 내부에 중공부가 관통 형성된 코일 스프링(coil spring)의 형태로 구비된다.
코어 스프링(630)은 샤프트(620)와 결합된다. 구체적으로, 코어 스프링(630)의 내부에 형성된 상기 중공부에 샤프트(620)가 관통 결합된다.
가동 코어(610)가 고정 코어(310)를 향해 상승되면, 코어 스프링(630)은 가동 코어(610) 및 고정 코어(310) 사이에서 압축되며 탄성력을 저장한다. 코일(350)에 인가된 전류가 차단되어 가동 코어(610)가 자화되지 않은 상태로 전환되면, 코어 스프링(630)은 인장되며 가동 코어(610)를 하강시킨다.
탄성부(640)는 가동 접촉자(430)를 탄성 지지한다. 가동 접촉자(430)가 고정 접촉자(220)와 접촉될 경우, 전자기적 반발력에 의해 가동 접촉자(430)는 고정 접촉자(220)에서 이격되려는 경향을 갖게 된다.
이때, 탄성부(640)는 가동 접촉자(430)를 탄성 지지하여, 가동 접촉자(430)가 고정 접촉자(220)에서 임의 이격되는 것을 방지한다.
탄성부(640)는 형상의 변형에 의해 복원력을 저장하고, 저장된 복원력을 다른 부재에 제공할 수 있는 임의의 형태로 구비될 수 있다. 일 실시 예에서, 탄성부(640)는 코일 스프링으로 구비될 수 있다.
가동 접촉자(430)를 향하는 탄성부(640)의 일측 단부는 가동 접촉자(430)의 하측에 접촉된다. 또한, 상기 일측 단부에 대향하는 타측 단부는 하우징(410)의 상측에 접촉된다.
탄성부(640)는 소정 거리만큼 압축되어 복원력을 저장한 상태로 가동 접촉자(430)를 탄성 지지할 수 있다. 이에 따라, 가동 접촉자(430)와 고정 접촉자(220) 사이에서 전자기적 반발력이 발생되더라도, 가동 접촉자(430)가 임의로 이동되지 않게 된다.
탄성부(640)의 안정적인 결합을 위해, 가동 접촉자(430)의 하측에는 탄성부(640)에 삽입되는 돌출부(미도시)가 돌출 형성될 수 있다. 마찬가지로, 하우징(410)의 상측에도 탄성부(640)에 삽입되는 돌출부(미도시)가 돌출 형성될 수 있다.
(2) 본 발명의 다른 실시 예에 따른 가동 코어부(600)를 포함하는 직류 릴레이(10)의 작동 과정의 설명
본 발명의 다른 실시 예에 따른 가동 코어부(600)는 가동 코어(610)의 내부에 공간부(614)가 형성된다. 이에 따라, 가동 코어(610)의 자중(self-weight)이 감소되어, 가동 코어(610)를 승강시키기 위해 요구되는 힘의 크기가 감소될 수 있다.
따라서, 보빈(340)에 코일(350)이 과다하게 권취되지 않더라도, 가동 코어(610)가 고정 코어(310)를 향해 이동되기에 충분한 크기의 자기장 및 전자기력이 형성될 수 있다.
이에 따라, 직류 릴레이(10)의 작동 신뢰성이 향상되고, 직류 릴레이(10)의 전체 부피가 감소될 수 있다.
더 나아가, 가동 코어(610)에는 공간부(614)에 위치되는 격벽부(616)가 구비된다. 격벽부(616)는 가동 코어(610)에 결합된 샤프트(620)를 지지하고, 샤프트(620)와 가동 코어(610)가 용이하게 결합될 수 있게 한다.
이하, 도 14a 및 도 14b를 참조하여, 본 발명의 다른 실시 예에 따른 가동 코어부(600)를 포함하는 직류 릴레이(10)의 작동 과정을 상세하게 설명한다.
도시된 실시 예는, 격벽부(616)의 하측 단부의 높이가 측면(612)의 하측 단부의 높이와 같은 실시 예, 즉 도 11에 도시된 실시 예가 도시되었다. 다만, 도 12 및 도 13에 도시된 실시 예와 같이 격벽부(616)의 하측 단부의 높이가 변경되는 경우에도 이하의 설명에 따라 직류 릴레이(10)가 작동될 수 있음이 이해될 것이다.
도 14a를 참조하면, 외부의 전원 또는 부하와 통전되지 않은 상태의 직류 릴레이(10)가 도시된다.
즉, 가동 접촉자(430)는 고정 접촉자(220)와 이격되어, 고정 접촉자(220)의 하측에 위치된다. 또한, 가동 코어(610)는 고정 코어(310)와 이격되어, 고정 코어(310)의 하측에 위치된다.
이때, 코어 스프링(630)은 그 형상 변형의 정도가 미세하거나, 형상 변형이 되지 않은 상태이다. 이에 따라, 코어 스프링(630)에 저장된 탄성력(즉, 복원력)의 크기 또한 0 또는 미세한 크기임이 이해될 것이다.
한편, 가동 코어(610)는 내부에 공간부(614)가 형성된다. 공간부(614)의 부피만큼 가동 코어(610)의 자중(self-weight)이 감소됨은 상술한 바와 같다.
도 14b를 참조하면, 외부의 전원 또는 부하와 통전되는 상태의 직류 릴레이(10)가 도시된다.
먼저, 코일(350)에 전류가 인가되면, 코일(350)은 자기장을 형성한다. 이에 따라, 고정 코어(310) 및 가동 코어(610)가 자화되어, 가동 코어(610)는 고정 코어(310)를 향하는 방향의 흡인력이 인가된다.
이때, 가동 코어(610)가 고정 코어(310)를 향해 상승되기 위해 요구되는 힘은, 코어 스프링(630)의 탄성력 및 가동 코어(610)의 자중을 합친 힘보다 커야 한다. 즉, 코일(350)이 형성하는 자기장은 상기 힘들의 함보다 큰 전자기력을 형성하여야 한다.
상술한 바와 같이, 가동 코어(610)의 내부에는 공간부(614)가 형성된다. 따라서, 가동 코어(610)의 자중이 감소되어, 가동 코어(610)를 이동시키기 위해 요구되는 힘의 크기가 감소된다. 결과적으로, 코일(350)이 형성하는 자기장 및 이에 의해 형성되는 전자기력의 크기의 최소 한도치가 감소된다.
따라서, 코일(350)에 인가되는 전류의 크기 및 보빈(340)에 코일(350)이 권취되는 횟수가 과다하게 증가되지 않고도, 가동 코어(610)가 안정적으로 고정 코어(310)를 향해 상승될 수 있다.
더 나아가, 가동 코어(610)에 결합된 샤프트(620)는 격벽부(616)에 의해 지지될 수 있다. 이에 따라, 가동 코어(610)와 샤프트(620)의 결합 상태가 안정적으로 유지될 수 있다.
결과적으로, 직류 릴레이(10)의 작동 신뢰성이 향상될 수 있다.
이상 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 당 업계에서 통상의 지식을 가진 자라면 이하의 청구범위에 기재된 본 발명의 사상 및 영역을 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
10: 직류 릴레이
100: 프레임부
110: 상부 프레임
120: 하부 프레임
130: 절연 플레이트
140: 지지 플레이트
200: 개폐부
210: 아크 챔버
220: 고정 접촉자
220a: 제1 고정 접촉자
220b: 제2 고정 접촉자
230: 씰링 부재
300: 코어부
310: 고정 코어
320: 바닥부
330: 요크
340: 보빈
350: 코일
360: 실린더
400: 가동 접촉자부
410: 하우징
420: 커버
430: 가동 접촉자
500: 본 발명의 일 실시 예에 따른 가동 코어부
510: 가동 코어
511: 상면
512: 측면
513: 관통공
514: 공간부
515: 개구부
520: 샤프트
530: 코어 스프링
540: 탄성부
600: 본 발명의 다른 실시 예에 따른 가동 코어부
610: 가동 코어
611: 상면
612: 측면
613: 관통공
614: 공간부
615: 개구부
616: 격벽부
620: 샤프트
630: 코어 스프링
640: 탄성부

Claims (15)

  1. 고정 접촉자;
    상기 고정 접촉자와 인접하게 위치되어, 상기 고정 접촉자와 접촉되거나 이격되는 가동 접촉자;
    상기 가동 접촉자를 향하는 방향 및 상기 가동 접촉자에 반대되는 방향 중 어느 하나의 방향으로 이동 가능하게 상기 가동 접촉자에 결합되는 가동 코어; 및
    상기 가동 접촉자와 상기 가동 코어 사이에 위치되며, 자화(magnetize)되어 상기 가동 코어에 흡인력(attractive force)을 인가하는 고정 코어를 포함하며,
    상기 가동 코어는,
    그 내부에 상기 고정 코어에 반대되는 일측에서 함몰 형성된 공간부를 포함하는,
    직류 릴레이.
  2. 제1항에 있어서,
    상기 가동 코어는,
    상기 공간부를 상측에서 덮는 상면; 및
    상기 상면과 연속되며, 상기 공간부의 상기 상측 및 하측에서 상기 공간부를 둘러싸는 측면을 포함하는,
    직류 릴레이.
  3. 제1항에 있어서,
    상기 가동 코어는,
    원형의 단면을 갖고, 상기 고정 코어를 향하는 방향으로 연장 형성되는 원기둥 형상인,
    직류 릴레이.
  4. 제3항에 있어서,
    상기 가동 코어는,
    상기 가동 코어의 윗면을 형성하며, 원형의 단면을 갖는 상면;
    상기 상면의 내부에 위치되며, 상기 가동 코어가 연장 형성되는 방향으로 관통 형성되는 관통공; 및
    상기 상면의 외주와 소정의 각도를 이루며 연속되고, 상기 가동 코어의 옆면을 형성하는 측면을 포함하며,
    상기 공간부는,
    상기 상면 및 상기 측면에 둘러싸여 정의되고,
    상기 관통공과 연통되는,
    직류 릴레이.
  5. 제4항에 있어서,
    상기 관통공은 원형의 단면을 갖고, 그 중심이 상기 상면의 중심과 같게 위치되는,
    직류 릴레이.
  6. 제4항에 있어서,
    상기 가동 코어 및 상기 고정 코어 사이에서 연장되며, 그 연장 방향의 일측이 상기 관통공에 관통 결합되고, 그 연장 방향의 타측이 상기 가동 접촉자에 결합되는 샤프트를 포함하며,
    상기 가동 코어, 상기 샤프트 및 상기 가동 접촉자는 함께 상측 또는 하측으로 이동되는,
    직류 릴레이.
  7. 제6항에 있어서,
    상기 샤프트는,
    상기 가동 접촉자와 결합되고, 상기 가동 코어를 향해 연장되는 제1 부분; 및
    상기 가동 코어와 결합되고, 상기 제1 부분의 단부에서 연장되는 제2 부분을 포함하며,
    상기 제1 부분의 단면의 직경은,
    상기 제2 부분의 단면의 직경 및 상기 관통공의 단면의 직경보다 크게 형성되는,
    직류 릴레이.
  8. 제1항에 있어서,
    상기 고정 코어를 둘러싸며, 외부와 통전 가능하게 연결되어 상기 고정 코어를 자화시키는 자기장을 형성하는 코일; 및
    상기 고정 코어와 상기 가동 코어 사이에 위치되어, 상기 고정 코어와 상기 가동 코어에 각각 접촉되어 상기 가동 코어를 탄성 지지하는 코어 스프링을 포함하며,
    상기 고정 코어가 인가하는 상기 흡인력은, 상기 코어 스프링에 저장되는 탄성력의 최대값 및 상기 가동 코어의 자중(self-weight)의 합보다 큰,
    직류 릴레이.
  9. 고정 접촉자;
    상기 고정 접촉자와 인접하게 위치되어, 상기 고정 접촉자와 접촉되거나 이격되는 가동 접촉자;
    상기 가동 접촉자를 향하는 방향 및 상기 가동 접촉자에 반대되는 방향 중 어느 하나의 방향으로 이동 가능하게 상기 가동 접촉자에 결합되는 가동 코어; 및
    상기 가동 접촉자와 상기 가동 코어 사이에 위치되며, 자화(magnetize)되어 상기 가동 코어에 흡인력(attractive force)을 인가하는 고정 코어를 포함하며,
    상기 가동 코어는,
    상기 고정 코어에 반대되는 일측에서 함몰 형성된 공간인 공간부;
    상기 공간부의 내부에 위치되어, 상기 고정 코어를 향하는 방향 및 상기 고정 코어에 반대되는 방향으로 연장되는 격벽부를 포함하는,
    직류 릴레이.
  10. 제9항에 있어서,
    상기 가동 코어는,
    상기 공간부를 상측에서 덮는 상면;
    상기 상면의 내부에 위치되며, 상기 고정 코어를 향하는 방향 및 상기 고정 코어에 반대되는 방향으로 관통 형성되는 관통공; 및
    상기 격벽부에 둘러싸이며, 상기 관통공과 연통되는 중공부를 포함하는,
    직류 릴레이.
  11. 제10항에 있어서,
    상기 가동 코어 및 상기 고정 코어 사이에서 연장되며, 그 연장 방향의 일측이 상기 관통공에 관통 결합되고, 그 연장 방향의 타측이 상기 가동 접촉자에 결합되는 샤프트를 포함하며,
    상기 가동 코어, 상기 샤프트 및 상기 가동 접촉자는 함께 상측 또는 하측으로 이동되는,
    직류 릴레이.
  12. 제11항에 있어서,
    상기 샤프트는,
    상기 가동 접촉자와 결합되고, 상기 가동 코어를 향해 연장되는 제1 부분; 및
    상기 가동 코어와 결합되고, 상기 제1 부분의 단부에서 연장되는 제2 부분을 포함하며,
    상기 제1 부분의 단면의 직경은,
    상기 제2 부분의 단면의 직경 및 상기 관통공의 단면의 직경보다 크게 형성되고,
    상기 제2 부분은,
    상기 관통공에 관통 결합되고, 상기 격벽부에 둘러싸여 형성되는 중공부에 삽입 결합되는,
    직류 릴레이.
  13. 제9항에 있어서,
    상기 가동 코어는,
    상기 공간부를 상측에서 감싸는 상면; 및
    상기 상면과 연속되며, 상기 공간부를 전방 측, 후방 측, 좌측 및 우측에서 각각 감싸는 측면을 포함하며,
    상기 격벽부의 상기 고정 코어에 반대되는 방향의 단부는, 상기 측면의 상기 고정 코어에 반대되는 방향의 단부보다 상기 상면에 더 인접하게 위치되는,
    직류 릴레이.
  14. 제9항에 있어서,
    상기 가동 코어는,
    상기 공간부를 상측에서 감싸는 상면; 및
    상기 상면과 연속되며, 상기 공간부를 전방 측, 후방 측, 좌측 및 우측에서 각각 감싸는 측면을 포함하며,
    상기 격벽부의 상기 고정 코어에 반대되는 방향의 단부는, 상기 측면의 상기 고정 코어에 반대되는 방향의 단부와 상기 상면과 같은 거리에 위치되는,
    직류 릴레이.
  15. 제9항에 있어서,
    상기 가동 코어는,
    상기 공간부를 상측에서 감싸는 상면; 및
    상기 상면과 연속되며, 상기 공간부를 전방 측, 후방 측, 좌측 및 우측에서 각각 감싸는 측면을 포함하며,
    상기 격벽부의 상기 고정 코어에 반대되는 방향의 단부는, 상기 측면의 상기 고정 코어에 반대되는 방향의 단부보다 상기 상면에서 더 이격되어 위치되는,
    직류 릴레이.
PCT/KR2021/004933 2020-05-12 2021-04-20 가동 코어부 및 이를 포함하는 직류 릴레이 WO2021230515A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200056695A KR102452354B1 (ko) 2020-05-12 2020-05-12 가동 코어부 및 이를 포함하는 직류 릴레이
KR10-2020-0056695 2020-05-12

Publications (1)

Publication Number Publication Date
WO2021230515A1 true WO2021230515A1 (ko) 2021-11-18

Family

ID=78525203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/004933 WO2021230515A1 (ko) 2020-05-12 2021-04-20 가동 코어부 및 이를 포함하는 직류 릴레이

Country Status (2)

Country Link
KR (1) KR102452354B1 (ko)
WO (1) WO2021230515A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230075641A (ko) * 2021-11-23 2023-05-31 엘에스일렉트릭(주) 아크 유도부 및 이를 포함하는 직류 릴레이

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070027567A (ko) * 2005-03-28 2007-03-09 마츠시다 덴코 가부시키가이샤 접점 장치
KR20100125806A (ko) * 2009-05-21 2010-12-01 엘에스산전 주식회사 전기 액츄에이터 및 이를 구비한 릴레이
KR101375585B1 (ko) * 2010-03-15 2014-03-18 오므론 가부시키가이샤 접촉 스위칭 장치
KR20160007249A (ko) * 2014-07-11 2016-01-20 엘에스산전 주식회사 전자 개폐기
KR20160121961A (ko) * 2015-04-13 2016-10-21 엘에스산전 주식회사 오버 트래블 조절이 가능한 전자개폐기

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5569349B2 (ja) 2009-12-11 2014-08-13 株式会社デンソー 電磁継電器
JP5471532B2 (ja) 2010-02-04 2014-04-16 株式会社デンソー スタータ用スイッチ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070027567A (ko) * 2005-03-28 2007-03-09 마츠시다 덴코 가부시키가이샤 접점 장치
KR20100125806A (ko) * 2009-05-21 2010-12-01 엘에스산전 주식회사 전기 액츄에이터 및 이를 구비한 릴레이
KR101375585B1 (ko) * 2010-03-15 2014-03-18 오므론 가부시키가이샤 접촉 스위칭 장치
KR20160007249A (ko) * 2014-07-11 2016-01-20 엘에스산전 주식회사 전자 개폐기
KR20160121961A (ko) * 2015-04-13 2016-10-21 엘에스산전 주식회사 오버 트래블 조절이 가능한 전자개폐기

Also Published As

Publication number Publication date
KR20210138404A (ko) 2021-11-19
KR102452354B1 (ko) 2022-10-07

Similar Documents

Publication Publication Date Title
WO2021006414A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2021040175A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2021040172A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2021006415A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2020241969A1 (ko) 직류 릴레이 및 그 제작 방법
WO2020256263A1 (ko) 직류 릴레이
WO2021182788A2 (ko) 기중 차단기
WO2022092808A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2020241970A1 (ko) 직류 릴레이
WO2022005077A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2021112343A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2021040174A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2021040176A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2021230515A1 (ko) 가동 코어부 및 이를 포함하는 직류 릴레이
WO2020241968A1 (ko) 직류 릴레이
WO2022098032A2 (ko) 가동 접촉자부 및 이를 포함하는 직류 릴레이
WO2022065638A1 (ko) 가동 접촉자부 및 이를 포함하는 직류 릴레이
WO2022005021A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2021040177A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2021182789A2 (ko) 기중 차단기
WO2023090788A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2023090793A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2023090792A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2023090794A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2023090790A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804046

Country of ref document: EP

Kind code of ref document: A1