WO2021040175A1 - 아크 경로 형성부 및 이를 포함하는 직류 릴레이 - Google Patents

아크 경로 형성부 및 이를 포함하는 직류 릴레이 Download PDF

Info

Publication number
WO2021040175A1
WO2021040175A1 PCT/KR2020/004654 KR2020004654W WO2021040175A1 WO 2021040175 A1 WO2021040175 A1 WO 2021040175A1 KR 2020004654 W KR2020004654 W KR 2020004654W WO 2021040175 A1 WO2021040175 A1 WO 2021040175A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
magnet part
magnetic field
disposed
arc
Prior art date
Application number
PCT/KR2020/004654
Other languages
English (en)
French (fr)
Inventor
박진희
유정우
Original Assignee
엘에스일렉트릭㈜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스일렉트릭㈜ filed Critical 엘에스일렉트릭㈜
Priority to JP2022513514A priority Critical patent/JP7464699B2/ja
Priority to CN202080062111.9A priority patent/CN114342032A/zh
Priority to EP20859517.3A priority patent/EP4024429A4/en
Priority to US17/639,099 priority patent/US11842870B2/en
Publication of WO2021040175A1 publication Critical patent/WO2021040175A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/01Relays in which the armature is maintained in one position by a permanent magnet and freed by energisation of a coil producing an opposing magnetic field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/36Stationary parts of magnetic circuit, e.g. yoke
    • H01H50/38Part of main magnetic circuit shaped to suppress arcing between the contacts of the relay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • H01H50/60Contact arrangements moving contact being rigidly combined with movable part of magnetic circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/163Details concerning air-gaps, e.g. anti-remanence, damping, anti-corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • H01H50/546Contact arrangements for contactors having bridging contacts

Definitions

  • the present invention relates to an arc path forming unit and a DC relay including the same, and more specifically, an arc path forming unit having a structure capable of preventing damage to the DC relay while forming an arc discharge path using electromagnetic force, and includes the same. It relates to a DC relay.
  • Direct current relay is a device that transmits a mechanical drive or current signal using the principle of an electromagnet.
  • DC relays are also referred to as magnetic switches, and are generally classified as electrical circuit switching devices.
  • the DC relay includes a fixed contact and a movable contact.
  • the fixed contact is connected to an external power source and load so that it can be energized.
  • the fixed contact and the movable contact may be in contact with each other or may be spaced apart.
  • an arc is generated between the fixed contact and the movable contact.
  • An arc is a high-pressure, high-temperature current flow. Therefore, the generated arc must be quickly discharged from the DC relay through a preset path.
  • the arc discharge path is formed by a magnet provided in the DC relay.
  • the magnet forms a magnetic field in a space where the fixed contact and the movable contact come into contact.
  • the discharge path of the arc may be formed by the formed magnetic field and the electromagnetic force generated by the flow of current.
  • FIG. 1 a space in which the fixed contact 1100 and the movable contact 1200 provided in the DC relay 1000 according to the prior art come into contact is shown. As described above, a permanent magnet 1300 is provided in the space.
  • the permanent magnet 1300 includes a first permanent magnet 1310 positioned at an upper side and a second permanent magnet 1320 positioned at a lower side.
  • the lower side of the first permanent magnet 1310 is magnetized to the N pole
  • the upper side of the second permanent magnet 1320 is magnetized to the S pole. Accordingly, the magnetic field is formed in a direction from the top to the bottom.
  • FIG. 1A shows a state in which current flows through the fixed contact 1100 on the left and flows out through the fixed contact 1100 on the right.
  • the electromagnetic force is formed to face outward like a hatched arrow. Therefore, the generated arc can be discharged outward along the direction of the electromagnetic force.
  • FIG. 1 shows a state in which current flows through the fixed contact 1100 on the right side and flows out through the fixed contact 1100 on the left.
  • the electromagnetic force is formed to face inward like a hatched arrow.
  • the generated arc is moved inward along the direction of the electromagnetic force.
  • Several members for driving the movable contact 1200 in the vertical direction are provided in the central part of the DC relay 1000, that is, in the space between the fixed contacts 1100.
  • a shaft, a spring member inserted through the shaft, and the like are provided at the above position.
  • the direction of the electromagnetic force formed inside the DC relay 1000 according to the prior art depends on the direction of the current supplied to the fixed contact 1200. Therefore, it is preferable that current is supplied to the fixed contact 1100 only in a preset direction, that is, the direction shown in FIG. 1A.
  • the user must consider the direction of the current whenever using a DC relay. This may cause inconvenience in using a DC relay.
  • a situation in which the direction of the current applied to the DC relay is changed due to inexperience in operation or the like cannot be excluded.
  • the members provided in the central portion of the DC relay may be damaged by the generated arc. Accordingly, there is a risk that a safety accident may occur as well as a reduction in the lifespan of the DC relay.
  • Korean Patent Document No. 10-1696952 discloses a DC relay. Specifically, a DC relay having a structure capable of preventing movement of a movable contact point using a plurality of permanent magnets is disclosed.
  • the DC relay having the above-described structure can prevent the movement of the movable contact by using a plurality of permanent magnets, but there is a limitation in that there is no consideration of a method for controlling the direction of the discharge path of the arc.
  • Korean Patent Document No. 10-1216824 discloses a DC relay. Specifically, a DC relay having a structure capable of preventing any separation between a movable contact and a fixed contact by using a damping magnet is disclosed.
  • the DC relay having the above-described structure only proposes a method for maintaining the contact state between the movable contact and the fixed contact. That is, there is a limitation in that it cannot provide a method for forming a discharge path of the arc generated when the movable contact and the fixed contact are separated from each other.
  • An object of the present invention is to provide an arc path forming unit having a structure capable of solving the above-described problems and a DC relay including the same.
  • an object of the present invention to provide an arc path forming unit having a structure in which the generated arc does not extend to a central portion, and a DC relay including the same.
  • an object of the present invention to provide an arc path forming unit having a structure in which an arc discharge path can be formed toward the outside, and a DC relay including the same, regardless of the direction of the current applied to the fixed contact.
  • an object of the present invention to provide an arc path forming unit having a structure capable of minimizing damage to a member located at a central portion by the generated arc, and a DC relay including the same.
  • an object of the present invention to provide an arc path forming unit having a structure in which the generated arc is moved and sufficiently extinguished, and a DC relay including the same.
  • an object of the present invention to provide an arc path forming unit having a structure capable of enhancing the strength of a magnetic field for forming an arc discharge path, and a DC relay including the same.
  • an object of the present invention to provide an arc path forming unit having a structure capable of changing an arc discharge path without excessive change in structure, and a DC relay including the same.
  • a space is formed therein, a magnet frame including a plurality of surfaces surrounding the space; And a magnet part coupled to the plurality of surfaces to form a magnetic field in the space, wherein the plurality of surfaces include: a first surface extending in one direction; A second surface disposed to face the first surface and extending in the one direction; And a third extending at a predetermined angle with the first and second surfaces, respectively, between one end of each of the first and second surfaces in the extension direction and the other end of the first and second surfaces, respectively, and disposed to face each other A first magnet portion including a surface and a fourth surface, wherein the magnet portion is positioned on any one of the first surface and the second surface; A second magnet part positioned on any one of the third and fourth surfaces; And a third magnet part positioned on the other surface of the first surface to the second surface, or the other surface of the third surface and the fourth surface, among the first surface and the second surface.
  • the first facing surface of the first magnet portion facing the other surface may include a second facing surface of the second magnet portion and the third magnet portion facing one of the first and second surfaces.
  • An arc path forming portion configured to have a polarity different from any one or more of the third opposing surfaces is provided.
  • first magnet part, the second magnet part, and the third magnet part of the arc path forming part are formed to extend in one direction, respectively, and the extended length of the first magnet part may be the second magnet part and the second magnet part. 3 It can be formed longer than the extension length of the magnet part.
  • the shortest distance between the second magnet part and the third magnet part of the arc path forming part is the shortest distance between the first magnet part and the second magnet part, and the first magnet part and the third magnet part. It can be formed longer than the shortest distance between.
  • the first magnet part of the arc path forming part is disposed on the first surface
  • the second magnet part is disposed on any one of the third surface and the fourth surface
  • the third magnet part is disposed on the first surface. Can be placed on two sides.
  • the second magnet part of the arc path forming part is disposed on the third surface
  • the third magnet part is disposed adjacent to the fourth surface
  • the first opposing surface of the first magnet part has an N pole
  • the second facing surface of the second magnet unit and the third facing surface of the third magnet unit may be configured to have an S-pole.
  • the second magnet part of the arc path forming part is disposed on the fourth surface
  • the third magnet part is disposed adjacent to the third surface
  • the first opposing surface of the first magnet part has an N pole.
  • the second facing surface of the second magnet unit and the third facing surface of the third magnet unit may be configured to have an S-pole.
  • first magnet part of the arc path forming part is disposed on the first surface
  • second magnet part is disposed on any one of the third surface and the fourth surface
  • third magnet part is disposed on the first surface. It may be disposed on the other side of the third side and the fourth side.
  • first opposing surface of the first magnet portion of the arc path forming portion is configured to have an N-pole
  • any one of the second opposing surface of the second magnet portion and the third opposing surface of the third magnet portion is It can be configured to have an N-pole and the other to have an S-pole.
  • first opposing surface of the first magnet portion of the arc path forming portion is configured to have an N-pole
  • second opposing surface of the second magnet portion and the third opposing surface of the third magnet portion have an S-pole. It can be configured to wear.
  • a fixed contact formed extending in one direction;
  • a movable contactor configured to be in contact with the fixed contactor or to be spaced apart from the fixed contactor;
  • An arc path forming part configured to form a magnetic field in the space to form a space in which the fixed contactor and the movable contactor are accommodated, and to form a discharge path of the arc generated by being spaced apart from the fixed contactor and the movable contactor
  • the arc path forming unit a space formed therein, the magnet frame including a plurality of surfaces surrounding the space;
  • the first facing surface of the first magnet portion facing the other surface may include a second facing surface of the second magnet portion and the third magnet portion facing one of the first and second surfaces. It provides a DC relay configured to have a polarity different from any one or more of the third opposing surfaces.
  • first magnet part, the second magnet part, and the third magnet part of the DC relay are formed to extend in one direction, respectively, and the extended length of the first magnet part may be the second magnet part and the third magnet part. It is formed longer than the extension length of the magnet part, and the shortest distance between the second magnet part and the third magnet part is the shortest distance between the first magnet part and the second magnet part, and the first magnet part and the third It may be formed longer than the shortest distance between the magnet parts.
  • the first magnet part of the DC relay is disposed on the first surface
  • the second magnet part is disposed on the third surface
  • the third magnet part is disposed adjacent to the fourth surface
  • the first The first opposing surface of the magnet unit may be configured to have an N-pole
  • the second opposing surface of the second magnet unit and the third opposing surface of the third magnet unit may be configured to have an S-pole.
  • the first magnet part of the DC relay is disposed on the first surface
  • the second magnet part is disposed on the fourth surface
  • the third magnet part is disposed adjacent to the third surface
  • the first The first opposing surface of the magnet unit may be configured to have an N-pole
  • the second opposing surface of the second magnet unit and the third opposing surface of the third magnet unit may be configured to have an S-pole.
  • the first magnet part of the DC relay is disposed on the first surface
  • the second magnet part is disposed on one of the third and fourth surfaces
  • the third magnet part is disposed on the third surface. It is disposed on the other one of the surface and the fourth surface
  • the first facing surface of the first magnet part is configured to have an N pole
  • One of the third facing surfaces may be configured to have an N-pole and the other to have an S-pole.
  • the first magnet part of the DC relay is disposed on the first surface
  • the second magnet part is disposed on one of the third and fourth surfaces
  • the third magnet part is disposed on the third surface. It is disposed on the other one of the surface and the fourth surface
  • the first facing surface of the first magnet part is configured to have an N pole
  • the third opposing surface may be configured to have an S-pole.
  • the arc path forming part forms a magnetic field inside the arc chamber.
  • the magnetic field creates an electromagnetic force with the current flowing through the fixed contactor and the movable contactor.
  • the electromagnetic force is formed in a direction away from the center of the arc chamber.
  • the generated arc is moved in a direction away from the center of the arc chamber in the same direction as the electromagnetic force.
  • the generated arc does not move to the central part of the arc chamber.
  • the magnet portions facing each other are configured such that one side facing each other has different polarities.
  • each fixed contactor is formed in a direction away from the center regardless of the direction of the current.
  • the user does not need to connect the power to the DC relay in consideration of the direction in which the arc moves. Accordingly, user convenience may be increased.
  • a plurality of other magnet portions formed to have a shorter length than any one magnet portion are disposed spaced apart from each other.
  • the plurality of magnet parts are configured to have the same polarity or different polarities, but at least one of the plurality of magnet parts is configured to have the same polarity as any one of the magnet parts.
  • the path of the arc formed by the magnetic field is formed so that the generated arc moves in a direction away from the center of the arc chamber. Therefore, various components located in the center are not damaged by the generated arc.
  • the generated arc extends toward the center of the magnet frame, which is a narrow space, not between the fixed contacts, but a wider space, that is, the outside of the fixed contacts.
  • the arc travels a long path and can be sufficiently extinguished.
  • the arc path forming portion includes a plurality of magnet portions.
  • Each magnet part forms a main magnetic field between each other.
  • Each magnet part forms its own negative magnetic field.
  • the secondary magnetic field is configured to strengthen the strength of the main magnetic field.
  • the strength of the electromagnetic force formed by the main magnetic field can be enhanced. Accordingly, the discharge path of the arc can be effectively formed.
  • each magnet unit can generate electromagnetic force in various directions simply by changing the arrangement method and polarity. At this time, the structure and shape of the magnet frame provided with each magnet part need not be changed.
  • FIG. 1 is a conceptual diagram illustrating a process in which a moving path of an arc is formed in a DC relay according to the prior art.
  • FIG. 2 is a perspective view of a DC relay according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the DC relay of FIG. 2.
  • FIG. 4 is a partially opened perspective view of the DC relay of FIG. 2.
  • FIG. 5 is a partially opened perspective view of the DC relay of FIG. 2.
  • FIG. 6 is a conceptual diagram of an arc path forming unit according to an embodiment of the present invention.
  • FIG. 7 is a conceptual diagram of an arc path forming unit according to a modified example of the embodiment of FIG. 6.
  • FIG. 8 is a conceptual diagram of an arc path forming unit according to another embodiment of the present invention.
  • FIG. 9 is a conceptual diagram of an arc path forming unit according to a modified example of the embodiment of FIG. 8.
  • FIG. 10 is a conceptual diagram of an arc path forming unit according to another embodiment of the present invention.
  • FIG. 11 is a conceptual diagram of an arc path forming unit according to a modified example of the embodiment of FIG. 10.
  • FIG. 12 is a conceptual diagram of an arc path forming unit according to another embodiment of the present invention.
  • FIG. 13 is a conceptual diagram of an arc path forming unit according to a modified example of the embodiment of FIG. 12.
  • FIG. 14 and 15 are conceptual diagrams illustrating a state in which an arc path is formed by the arc path forming unit according to the embodiment of FIG. 6.
  • 16 and 17 are conceptual diagrams illustrating a state in which an arc path is formed by the arc path forming unit according to the embodiment of FIG. 7.
  • FIG. 18 and 19 are conceptual diagrams illustrating a state in which an arc path is formed by the arc path forming unit according to the embodiment of FIG. 8.
  • 20 and 21 are conceptual diagrams illustrating a state in which an arc path is formed by the arc path forming unit according to the embodiment of FIG. 9.
  • 22 and 23 are conceptual diagrams illustrating a state in which an arc path is formed by the arc path forming unit according to the embodiment of FIG. 10.
  • 24 and 25 are conceptual diagrams illustrating a state in which an arc path is formed by the arc path forming unit according to the embodiment of FIG. 11.
  • 26 and 27 are conceptual diagrams illustrating a state in which an arc path is formed by the arc path forming unit according to the embodiment of FIG. 12.
  • 28 and 29 are conceptual diagrams illustrating a state in which an arc path is formed by the arc path forming unit according to the embodiment of FIG. 13.
  • magnetize used in the following description refers to a phenomenon in which an object becomes magnetized in a magnetic field.
  • polarity used in the following description refers to different properties of the anode and the cathode of an electrode. In an embodiment, the polarity may be divided into an N-pole or an S-pole.
  • electrical current means a state in which two or more members are electrically connected.
  • arc path refers to a path through which the generated arc is moved or extinguished and moved.
  • the DC relay 10 includes a frame part 100, an opening/closing part 200, a core part 300, and a movable contact part 400.
  • the DC relay 10 includes arc path forming units 500, 600, 700, and 800.
  • the arc path forming units 500, 600, 700, and 800 may form a discharge path of the generated arc.
  • the frame part 100 forms the outside of the DC relay 10.
  • a predetermined space is formed inside the frame unit 100.
  • Various devices that perform a function of applying or blocking a current transmitted from the outside by the DC relay 10 may be accommodated in the space.
  • the frame unit 100 functions as a type of housing.
  • the frame unit 100 may be formed of an insulating material such as synthetic resin. This is to prevent the inside and outside of the frame unit 100 from being energized arbitrarily.
  • the frame unit 100 includes an upper frame 110, a lower frame 120, an insulating plate 130, and a support plate 140.
  • the upper frame 110 forms an upper side of the frame part 100. A predetermined space is formed inside the upper frame 110.
  • the opening and closing part 200 and the movable contact part 400 may be accommodated in the inner space of the upper frame 110.
  • arc path forming portions 500, 600, 700, and 800 may be accommodated in the inner space of the upper frame 110.
  • the upper frame 110 may be combined with the lower frame 120.
  • An insulating plate 130 and a support plate 140 may be provided in the space between the upper frame 110 and the lower frame 120.
  • a fixed contact 220 of the opening/closing part 200 is positioned on one side of the upper frame 110 and on the upper side in the illustrated embodiment.
  • the fixed contact 220 may be partially exposed on the upper side of the upper frame 110 and may be connected to an external power source or a load so as to be energized.
  • a through hole through which the fixed contactor 220 is coupled may be formed on the upper side of the upper frame 110.
  • the lower frame 120 forms a lower side of the frame portion 100.
  • a predetermined space is formed inside the lower frame 120.
  • the core part 300 may be accommodated in the inner space of the lower frame 120.
  • the lower frame 120 may be coupled to the upper frame 110.
  • An insulating plate 130 and a support plate 140 may be provided in the space between the lower frame 120 and the upper frame 110.
  • the insulating plate 130 and the support plate 140 are configured to electrically and physically separate the inner space of the upper frame 110 and the inner space of the lower frame 120.
  • the insulating plate 130 is positioned between the upper frame 110 and the lower frame 120.
  • the insulating plate 130 is configured to electrically separate the upper frame 110 and the lower frame 120.
  • the insulating plate 130 may be formed of an insulating material such as synthetic resin.
  • the opening and closing portion 200 accommodated in the upper frame 110, the movable contact portion 400, and the arc path forming portion 500, 600, 700, 800 and the lower frame 120 accommodated in Any energization between the core parts 300 may be prevented.
  • a through hole (not shown) is formed in the center of the insulating plate 130.
  • the shaft 440 of the movable contact part 400 is penetrated into the through hole (not shown) so as to be movable in the vertical direction.
  • a support plate 140 is positioned under the insulating plate 130.
  • the insulating plate 130 may be supported by the support plate 140.
  • the support plate 140 is located between the upper frame 110 and the lower frame 120.
  • the support plate 140 is configured to physically separate the upper frame 110 and the lower frame 120. In addition, the support plate 140 is configured to support the insulating plate 130.
  • the support plate 140 may be formed of a magnetic material. Accordingly, the support plate 140 may form a magnetic circuit together with the yoke 330 of the core part 300. By the magnetic path, a driving force for moving the movable core 320 of the core part 300 toward the fixed core 310 may be formed.
  • a through hole (not shown) is formed in the center of the support plate 140.
  • the shaft 440 is coupled through the through hole (not shown) so as to be movable in the vertical direction.
  • the shaft 440 and the movable contactor 430 connected to the shaft 440 are also in the same direction. Can be moved together.
  • the opening/closing part 200 is configured to allow or block the conduction of current according to the operation of the core part 300. Specifically, the opening/closing part 200 may allow or block the conduction of current by contacting or spaced apart the fixed contact 220 and the movable contact 430.
  • the opening/closing part 200 is accommodated in the inner space of the upper frame 110.
  • the opening/closing part 200 may be electrically and physically spaced apart from the core part 300 by the insulating plate 130 and the support plate 140.
  • the opening/closing part 200 includes an arc chamber 210, a fixed contact 220, and a sealing member 230.
  • arc path forming units 500, 600, 700, and 800 may be provided outside the arc chamber 210.
  • the arc path forming units 500, 600, 700, and 800 may form a magnetic field for forming a path A.P of an arc generated inside the arc chamber 210. A detailed description of this will be described later.
  • the arc chamber 210 is configured to extinguish an arc generated when the fixed contact 220 and the movable contact 430 are spaced apart from each other in the inner space. Accordingly, the arc chamber 210 may be referred to as an “arc extinguishing unit”.
  • the arc chamber 210 is configured to hermetically accommodate the fixed contact 220 and the movable contact 430. That is, the fixed contactor 220 and the movable contactor 430 are accommodated in the arc chamber 210. Accordingly, the arc generated by the fixed contact 220 and the movable contact 430 spaced apart does not randomly leak to the outside.
  • the arc chamber 210 may be filled with an extinguishing gas.
  • the extinguishing gas allows the generated arc to be extinguished and discharged to the outside of the DC relay 10 through a preset path.
  • a communication hole (not shown) may be formed through the wall surrounding the inner space of the arc chamber 210.
  • the arc chamber 210 may be formed of an insulating material.
  • the arc chamber 210 may be formed of a material having high pressure resistance and high heat resistance. This is because the generated arc is a flow of electrons of high temperature and high pressure.
  • the arc chamber 210 may be formed of a ceramic material.
  • a plurality of through holes may be formed on the upper side of the arc chamber 210.
  • a fixed contact 220 is penetrated through each of the through holes.
  • the fixed contactors 220 are provided in two, including a first fixed contactor 220a and a second fixed contactor 220b. Accordingly, two through-holes formed on the upper side of the arc chamber 210 may also be formed.
  • the through hole is sealed. That is, the fixed contact 220 is hermetically coupled to the through hole. Accordingly, the generated arc is not discharged to the outside through the through hole.
  • the lower side of the arc chamber 210 may be open.
  • the insulating plate 130 and the sealing member 230 are in contact with the lower side of the arc chamber 210. That is, the lower side of the arc chamber 210 is sealed by the insulating plate 130 and the sealing member 230.
  • the arc chamber 210 may be electrically and physically spaced apart from the outer space of the upper frame 110.
  • the arc extinguished in the arc chamber 210 is discharged to the outside of the DC relay 10 through a preset path.
  • the extinguished arc may be discharged to the outside of the arc chamber 210 through the communication hole (not shown).
  • the fixed contactor 220 is configured to be in contact with or spaced apart from the movable contactor 430 to apply or cut off current inside and outside the DC relay 10.
  • the inside and the outside of the DC relay 10 may be energized.
  • the fixed contact 220 is spaced apart from the movable contact 430, the current inside and outside the DC relay 10 is blocked.
  • the fixed contact 220 does not move. That is, the fixed contact 220 is fixedly coupled to the upper frame 110 and the arc chamber 210. Accordingly, contact and separation between the fixed contact 220 and the movable contact 430 are achieved by the movement of the movable contact 430.
  • One end of the fixed contact 220, the upper end in the illustrated embodiment is exposed to the outside of the upper frame 110.
  • a power source or a load is connected to each of the one end so as to be energized.
  • the fixed contactor 220 may be provided in plural. In the illustrated embodiment, the fixed contactors 220 are provided in two, including a first fixed contactor 220a on the left and a second fixed contactor 220b on the right.
  • the first fixed contactor 220a is positioned to be skewed toward one side from the center of the movable contactor 430 in the longitudinal direction, and to the left in the illustrated embodiment.
  • the second fixed contactor 220b is positioned to be skewed to the other side from the center of the movable contactor 430 in the longitudinal direction to the right in the illustrated embodiment.
  • any one of the first fixed contactor 220a and the second fixed contactor 220b may be connected such that power is energized.
  • a load may be connected to the other of the first fixed contact 220a and the second fixed contact 220b so as to be energized.
  • the DC relay 10 may form an arc path A.P regardless of the direction of the power or load connected to the fixed contact 220. This is achieved by the arc path forming portion (500, 600, 700, 800), a detailed description thereof will be described later.
  • the other end of the fixed contact 220 in the illustrated embodiment, the lower end extends toward the movable contact 430.
  • the lower end of the fixed contact 220 is located inside the arc chamber 210.
  • an arc is generated between the fixed contact 220 and the movable contact 430.
  • the generated arc is extinguished by the extinguishing gas inside the arc chamber 210, and may be discharged to the outside along a path formed by the arc path forming units 500, 600, 700, and 800.
  • the sealing member 230 is configured to block any communication between the arc chamber 210 and the space inside the upper frame 110.
  • the sealing member 230 seals the lower side of the arc chamber 210 together with the insulating plate 130 and the support plate 140.
  • the upper side of the sealing member 230 is coupled to the lower side of the arc chamber 210.
  • the radially inner side of the sealing member 230 is coupled to the outer circumference of the insulating plate 130, and the lower side of the sealing member 230 is coupled to the support plate 140.
  • the arc generated in the arc chamber 210 and the arc extinguished by the extinguishing gas do not flow out of the mouth into the inner space of the upper frame 110.
  • sealing member 230 may be configured to block any communication between the inner space of the cylinder 370 and the inner space of the frame unit 100.
  • the core part 300 is configured to move the movable contact part 400 upward according to the application of the control power. In addition, when the application of the control power is released, the core part 300 is configured to move the movable contact part 400 back downward.
  • the core unit 300 may be connected to an external control power source (not shown) so as to be energized to receive control power.
  • the core part 300 is located under the opening/closing part 200. In addition, the core part 300 is accommodated in the lower frame 120. The core part 300 and the opening/closing part 200 may be electrically and physically separated by the insulating plate 130 and the support plate 140.
  • a movable contact part 400 is positioned between the core part 300 and the opening/closing part 200.
  • the movable contact unit 400 may be moved by a driving force applied by the core unit 300. Accordingly, the movable contactor 430 and the fixed contactor 220 may be brought into contact with each other so that the DC relay 10 may be energized.
  • the core portion 300 includes a fixed core 310, a movable core 320, a yoke 330, a bobbin 340, a coil 350, a return spring 360, and a cylinder 370.
  • the fixed core 310 is magnetized by a magnetic field generated from the coil 350 to generate an electromagnetic attraction.
  • the electromagnetic attraction By the electromagnetic attraction, the movable core 320 is moved toward the fixed core 310 (in the upward direction in FIG. 3).
  • the fixed core 310 is not moved. That is, the fixed core 310 is fixedly coupled to the support plate 140 and the cylinder 370.
  • the fixed core 310 may be provided in any form capable of generating an electromagnetic force by being magnetized by a magnetic field.
  • the fixed core 310 may be provided with a permanent magnet or an electromagnet.
  • the fixed core 310 is partially accommodated in the upper space inside the cylinder 370.
  • the outer periphery of the fixed core 310 is configured to contact the inner periphery of the cylinder 370.
  • the fixed core 310 is located between the support plate 140 and the movable core 320.
  • a through hole (not shown) is formed in the center of the fixed core 310.
  • the shaft 440 is penetrated into the through hole (not shown) so as to move up and down.
  • the fixed core 310 is positioned to be spaced apart from the movable core 320 by a predetermined distance. Accordingly, the distance at which the movable core 320 can be moved toward the fixed core 310 may be limited to the predetermined distance. Accordingly, the predetermined distance may be defined as "the moving distance of the movable core 320".
  • One end of the return spring 360 and an upper end in the illustrated embodiment are in contact with the lower side of the fixed core 310.
  • the return spring 360 is compressed and the restoring force is stored.
  • the movable core 320 may be returned to the lower side again by the restoring force.
  • the movable core 320 is configured to be moved toward the fixed core 310 by an electromagnetic attraction generated by the fixed core 310 when control power is applied.
  • the shaft 440 coupled to the movable core 320 is moved upward in a direction toward the fixed core 310, in the illustrated embodiment.
  • the movable contact unit 400 coupled to the shaft 440 is moved upward.
  • the fixed contact 220 and the movable contact 430 are brought into contact, so that the DC relay 10 may be energized with an external power source or a load.
  • the movable core 320 may be provided in any form capable of receiving an attractive force by an electromagnetic force.
  • the movable core 320 may be formed of a magnetic material, or may be provided with a permanent magnet or an electromagnet.
  • the movable core 320 is accommodated in the cylinder 370.
  • the movable core 320 may be moved in the longitudinal direction of the cylinder 370 inside the cylinder 370 and in the vertical direction in the illustrated embodiment.
  • the movable core 320 may be moved in a direction toward the fixed core 310 and in a direction away from the fixed core 310.
  • the movable core 320 is coupled to the shaft 440.
  • the movable core 320 may be moved integrally with the shaft 440.
  • the shaft 440 is also moved upward or downward. Accordingly, the movable contact 430 is also moved upward or downward.
  • the movable core 320 is located under the fixed core 310.
  • the movable core 320 is spaced apart from the fixed core 310 by a predetermined distance.
  • the predetermined distance is a distance at which the movable core 320 can be moved in the vertical direction.
  • the movable core 320 is formed to extend in the longitudinal direction. Inside the movable core 320, a hollow portion extending in the longitudinal direction is depressed by a predetermined distance. The hollow portion partially accommodates the return spring 360 and the lower side of the shaft 440 penetrating through the return spring 360.
  • a through hole is formed through the lower side of the hollow part in the longitudinal direction.
  • the hollow part and the through hole communicate with each other.
  • the lower end of the shaft 440 inserted in the hollow portion may proceed toward the through hole.
  • a space portion is recessed by a predetermined distance at the lower end of the movable core 320.
  • the space part communicates with the through hole.
  • the lower head of the shaft 440 is located in the space.
  • the yoke 330 forms a magnetic circuit as the control power is applied.
  • the magnetic path formed by the yoke 330 may be configured to adjust the direction of the magnetic field formed by the coil 350.
  • the coil 350 may generate a magnetic field in a direction in which the movable core 320 moves toward the fixed core 310.
  • the yoke 330 may be formed of an electrically conductive material.
  • the yoke 330 is accommodated in the lower frame 120.
  • the yoke 330 is configured to surround the coil 350.
  • the coil 350 may be accommodated in the yoke 330 so as to be spaced apart from the inner circumferential surface of the yoke 330 by a predetermined distance.
  • a bobbin 340 is accommodated in the yoke 330. That is, the yoke 330, the coil 350, and the bobbin 340 on which the coil 350 is wound are sequentially arranged in a direction from the outer periphery of the lower frame 120 toward the radially inner side.
  • the upper side of the yoke 330 is in contact with the support plate 140.
  • the outer periphery of the yoke 330 may contact the inner periphery of the lower frame 120 or may be positioned to be spaced apart from the inner periphery of the lower frame 120 by a predetermined distance.
  • a coil 350 is wound around the bobbin 340.
  • the bobbin 340 is accommodated in the yoke 330.
  • the bobbin 340 may include flat upper and lower portions, and cylindrical pillar portions extending in a longitudinal direction and connecting the upper and lower portions. That is, the bobbin 340 is shaped like a bobbin.
  • the upper portion of the bobbin 340 is in contact with the lower side of the support plate 140.
  • a coil 350 is wound around the pillar portion of the bobbin 340.
  • the thickness at which the coil 350 is wound may be equal to or smaller than the diameters of the upper and lower portions of the bobbin 340.
  • a hollow portion extending in the longitudinal direction is formed through the pillar portion of the bobbin 340.
  • a cylinder 370 may be accommodated in the hollow part.
  • the pillar portion of the bobbin 340 may be disposed to have the same central axis as the fixed core 310, the movable core 320, and the shaft 440.
  • the coil 350 generates a magnetic field by the applied control power.
  • the fixed core 310 is magnetized by the magnetic field generated by the coil 350, so that an electromagnetic attraction may be applied to the movable core 320.
  • the coil 350 is wound around the bobbin 340. Specifically, the coil 350 is wound on the pillar portion of the bobbin 340 and stacked radially outward of the pillar portion. The coil 350 is accommodated in the yoke 330.
  • the coil 350 When the control power is applied, the coil 350 generates a magnetic field. In this case, the strength or direction of the magnetic field generated by the coil 350 may be controlled by the yoke 330.
  • the fixed core 310 is magnetized by the magnetic field generated by the coil 350.
  • the movable core 320 When the fixed core 310 is magnetized, the movable core 320 receives an electromagnetic force, that is, attractive force in a direction toward the fixed core 310. Accordingly, the movable core 320 is moved upward in a direction toward the fixed core 310, in the illustrated embodiment.
  • the return spring 360 provides a restoring force for returning the movable core 320 to its original position when the application of the control power is released after the movable core 320 is moved toward the fixed core 310.
  • the return spring 360 is compressed as the movable core 320 moves toward the fixed core 310 and stores a restoring force.
  • the stored restoring force is preferably smaller than the electromagnetic attraction applied to the movable core 320 by magnetizing the fixed core 310. This is to prevent the movable core 320 from being arbitrarily returned to its original position by the return spring 360 while the control power is applied.
  • the movable core 320 When the application of the control power is released, the movable core 320 receives a restoring force by the return spring 360. Of course, gravity due to the empty weight of the movable core 320 may also be applied to the movable core 320. Accordingly, the movable core 320 may be moved in a direction away from the fixed core 310 and returned to its original position.
  • the return spring 360 may be provided in any form capable of being deformed in shape to store a restoring force, return to its original shape, and transmit the restoring force to the outside.
  • the return spring 360 may be provided as a coil spring.
  • the shaft 440 is coupled through the return spring 360.
  • the shaft 440 may be moved in the vertical direction regardless of the shape deformation of the return spring 360 in a state in which the return spring 360 is coupled.
  • the return spring 360 is accommodated in a hollow portion recessed above the movable core 320.
  • one end of the return spring 360 facing the fixed core 310, an upper end in the illustrated embodiment is accommodated in a hollow portion recessed in the lower side of the fixed core 310.
  • the cylinder 370 accommodates the fixed core 310, the movable core 320, the return spring 360 and the shaft 440.
  • the movable core 320 and the shaft 440 may be moved upward and downward in the cylinder 370.
  • the cylinder 370 is located in a hollow portion formed in the pillar portion of the bobbin 340. The upper end of the cylinder 370 is in contact with the lower surface of the support plate 140.
  • the side surface of the cylinder 370 is in contact with the inner circumferential surface of the pillar portion of the bobbin 340.
  • the upper opening of the cylinder 370 may be sealed by the fixed core 310.
  • the lower surface of the cylinder 370 may contact the inner surface of the lower frame 120.
  • the movable contact unit 400 includes a configuration for moving the movable contact 430 and the movable contact 430. By the movable contact unit 400, the DC relay 10 may be energized with an external power source or a load.
  • the movable contact unit 400 is accommodated in the inner space of the upper frame 110.
  • the movable contact unit 400 is accommodated in the arc chamber 210 so as to move up and down.
  • a fixed contact 220 is positioned above the movable contact part 400.
  • the movable contact unit 400 is accommodated in the arc chamber 210 so as to be movable in a direction toward the fixed contact unit 220 and in a direction away from the fixed contact unit 220.
  • the core part 300 is located under the movable contact part 400.
  • the movement of the movable contact unit 400 may be achieved by movement of the movable core 320.
  • the movable contact part 400 includes a housing 410, a cover 420, a movable contact 430, a shaft 440, and an elastic part 450.
  • the housing 410 accommodates the movable contact 430 and the elastic portion 450 elastically supporting the movable contact 430.
  • one side of the housing 410 and the other side opposite thereto are open (see FIG. 5 ).
  • a movable contactor 430 may be inserted through the open portion.
  • An unopened side of the housing 410 may be configured to surround the received movable contactor 430.
  • a cover 420 is provided on the upper side of the housing 410.
  • the cover 420 is configured to cover an upper surface of the movable contact 430 accommodated in the housing 410.
  • the housing 410 and the cover 420 are formed of an insulating material to prevent unintended conduction.
  • the housing 410 and the cover 420 may be formed of synthetic resin or the like.
  • the lower side of the housing 410 is connected to the shaft 440.
  • the housing 410 and the movable contactor 430 accommodated therein may also be moved upward or downward.
  • the housing 410 and the cover 420 may be coupled by any member.
  • the housing 410 and the cover 420 may be coupled by fastening members (not shown) such as bolts and nuts.
  • the movable contactor 430 is in contact with the fixed contactor 220 according to the application of the control power, so that the DC relay 10 is energized with an external power source and a load.
  • the movable contactor 430 is spaced apart from the fixed contactor 220 when the application of the control power is released, so that the DC relay 10 is not energized with external power and load.
  • the movable contactor 430 is positioned adjacent to the fixed contactor 220.
  • the upper side of the movable contactor 430 is partially covered by the cover 420. In one embodiment, a portion of the upper surface of the movable contactor 430 may be in contact with the lower surface of the cover 420.
  • the lower side of the movable contactor 430 is elastically supported by the elastic portion 450.
  • the elastic part 450 may elastically support the movable contact 430 while being compressed by a predetermined distance.
  • the movable contactor 430 is formed to extend in the longitudinal direction and in the left-right direction in the illustrated embodiment. That is, the length of the movable contact 430 is formed longer than the width. Accordingly, both ends of the movable contactor 430 accommodated in the housing 410 in the longitudinal direction are exposed to the outside of the housing 410.
  • Contact protrusions protruding upward by a predetermined distance may be formed at both end portions.
  • the fixed contact 220 is in contact with the contact protrusion.
  • the contact protrusion may be formed at a position corresponding to each of the fixed contacts 220a and 220b. Accordingly, the moving distance of the movable contactor 430 may be reduced, and contact reliability between the fixed contactor 220 and the movable contactor 430 may be improved.
  • the width of the movable contactor 430 may be equal to a distance between each side of the housing 410 being spaced apart from each other. That is, when the movable contactor 430 is accommodated in the housing 410, both sides of the movable contactor 430 in the width direction may contact the inner surfaces of each side of the housing 410.
  • the shaft 440 transmits a driving force generated as the core part 300 is operated to the movable contact part 400.
  • the shaft 440 is connected to the movable core 320 and the movable contact 430.
  • the movable contact 430 may also be moved upward or downward by the shaft 440.
  • the shaft 440 is formed to extend in the longitudinal direction and in the vertical direction in the illustrated embodiment.
  • the lower end of the shaft 440 is insertedly coupled to the movable core 320.
  • the shaft 440 may be moved in the vertical direction together with the movable core 320.
  • the body portion of the shaft 440 is coupled through the fixed core 310 so as to move up and down.
  • a return spring 360 is coupled through the body portion of the shaft 440.
  • the upper end of the shaft 440 is coupled to the housing 410.
  • the shaft 440 and the housing 410 may be moved together.
  • the upper end and the lower end of the shaft 440 may be formed to have a larger diameter than the body portion of the shaft. Accordingly, the shaft 440 may stably maintain a coupled state with the housing 410 and the movable core 320.
  • the elastic part 450 elastically supports the movable contact 430.
  • the movable contact 430 comes into contact with the stationary contact 220, the movable contact 430 tends to be separated from the stationary contact 220 by an electromagnetic repulsion force.
  • the elastic part 450 is configured to elastically support the movable contact 430 to prevent the movable contact 430 from being randomly separated from the fixed contact 220.
  • the elastic part 450 may be provided in any form capable of storing a restoring force by deformation of a shape and providing the stored restoring force to other members.
  • the elastic part 450 may be provided with a coil spring.
  • One end of the elastic portion 450 facing the movable contact 430 is in contact with the lower side of the movable contact 430. Further, the other end opposite to the one end is in contact with the upper side of the housing 410.
  • the elastic part 450 may elastically support the movable contact 430 while being compressed by a predetermined distance to store a restoring force. Accordingly, even if an electromagnetic repulsive force is generated between the movable contactor 430 and the fixed contactor 220, the movable contactor 430 does not move arbitrarily.
  • a protrusion (not shown) inserted into the elastic portion 450 may be protruded under the movable contact 430.
  • a protrusion (not shown) inserted into the elastic part 450 may also protrude from the upper side of the housing 410.
  • the DC relay 10 includes arc path forming units 500, 600, 700, and 800.
  • the arc path forming units 500, 600, 700, and 800 are configured to form a path through which the arc generated by the fixed contact 220 and the movable contact 430 spaced apart from the arc chamber 210 is discharged.
  • the arc path forming portions 500, 600, 700, and 800 are located outside the arc chamber 210.
  • the arc path forming portions 500, 600, 700, and 800 are configured to surround the arc chamber 210. It will be appreciated that in the embodiment shown in FIGS. 6 to 13, the illustration of the arc chamber 210 has been omitted.
  • the arc path forming units 500, 600, 700, and 800 may form a magnetic path inside the arc chamber 210.
  • the arc path A.P is formed by the magnetic path.
  • the arc path forming part 500 includes a magnet frame 510 and a magnet part 520.
  • the magnet frame 510 forms the skeleton of the arc path forming part 500.
  • a magnet part 520 is disposed on the magnet frame 510. In one embodiment, the magnet part 520 may be coupled to the magnet frame 510.
  • the magnet frame 510 has a rectangular cross section extending in the longitudinal direction and in the left-right direction in the illustrated embodiment.
  • the shape of the magnet frame 510 may be changed according to the shape of the upper frame 110 and the arc chamber 210.
  • the magnet frame 510 includes a first surface 511, a second surface 512, a third surface 513, a fourth surface 514, an arc discharge hole 515, and a space 516.
  • the first surface 511, the second surface 512, the third surface 513, and the fourth surface 514 form an outer peripheral surface of the magnet frame 510. That is, the first surface 511, the second surface 512, the third surface 513, and the fourth surface 514 function as a wall of the magnet frame 510.
  • the outside of the first surface 511, the second surface 512, the third surface 513, and the fourth surface 514 may be contacted or fixedly coupled to the inner surface of the upper frame 110. Further, the magnet portion 520 may be positioned inside the first surface 511, the second surface 512, the third surface 513, and the fourth surface 514.
  • the first surface 511 forms a rear side surface.
  • the second surface 512 forms a front side surface and faces the first surface 511.
  • the third surface 513 forms a left surface.
  • the fourth side 514 forms a right side and faces the third side 513.
  • the first surface 511 is continuous with the third surface 513 and the fourth surface 514.
  • the first surface 511 may be combined with the third surface 513 and the fourth surface 514 to form a predetermined angle.
  • the predetermined angle may be a right angle.
  • the second surface 512 is continuous with the third surface 513 and the fourth surface 514.
  • the second surface 512 may be combined with the third surface 513 and the fourth surface 514 to form a predetermined angle.
  • the predetermined angle may be a right angle.
  • Each corner at which the first to fourth surfaces 511 to 514 are connected to each other may be chamfered.
  • the first magnet part 521 may be coupled to the inside of the first surface 511, that is, to one side of the first surface 511 facing the second surface 512.
  • the third magnet part 523 may be coupled to the inside of the second surface 512, that is, to one side of the second surface 512 facing the first surface 511.
  • a third magnet part 523 may be coupled to one side of the 514.
  • a fastening member (not shown) may be provided to couple each of the surfaces 511, 512, 513, and 514 to the magnet part 520.
  • An arc discharge hole 515 is formed through at least one of the first and second surfaces 511 and 512.
  • the arc discharge hole 515 is a passage through which the arc discharged from the arc chamber 210 is discharged to the inner space of the upper frame 110.
  • the arc discharge hole 515 communicates the space 516 of the magnet frame 510 and the space of the upper frame 110.
  • the arc discharge hole 515 is formed on the first surface 511 and the second surface 512, respectively.
  • the arc discharge hole 515 may be formed in an intermediate portion of the first surface 511 and the second surface 512 in the longitudinal direction.
  • the space surrounded by the first to fourth surfaces 511 to 514 may be defined as a space 516.
  • the fixed contact 220 and the movable contact 430 are accommodated in the space 516.
  • the arc chamber 210 is accommodated in the space 516.
  • the movable contactor 430 may be moved in a direction toward the fixed contactor 220 or in a direction away from the fixed contactor 220.
  • a path A.P of the arc generated in the arc chamber 210 is formed in the space 516. This is achieved by a magnetic field formed by the magnet portion 520.
  • the central portion of the space portion 516 may be defined as a central portion (C).
  • the first to fourth surfaces 511, 512, 513, and 514 may have the same linear distance from each corner to each other to the center C.
  • the center C is located between the first fixed contactor 220a and the second fixed contactor 220b.
  • a central portion of the movable contact unit 400 is positioned vertically below the central portion C. That is, a central portion such as the housing 410, the cover 420, the movable contact 430, the shaft 440 and the elastic part 450 is positioned vertically below the center C.
  • the arc path forming part 500 includes a magnet part 520.
  • the magnet part 520 forms a magnetic field in the space part 516.
  • the magnetic field formed by the magnet unit 520 generates electromagnetic force together with current flowing along the fixed contactor 220 and the movable contactor 430. Accordingly, the path A.P of the arc may be formed in the direction of the electromagnetic force.
  • the magnet part 520 may form a magnetic field between the magnet parts 520 adjacent to each other, or each magnet part 520 may form a magnetic field by itself.
  • the magnet unit 520 may be provided in any form capable of being magnetic by itself or capable of being magnetized by application of a current or the like. In one embodiment, the magnet unit 520 may be provided with a permanent magnet or an electromagnet.
  • the magnet part 520 is coupled to the magnet frame 510.
  • a fastening member (not shown) may be provided.
  • the magnet portion 520 extends in the longitudinal direction and has a rectangular parallelepiped shape.
  • the magnet part 520 may be provided in any shape capable of forming a magnetic field.
  • a plurality of magnet units 520 may be provided.
  • the magnet unit 520 is provided in three, but the number may be changed.
  • the magnet part 520 includes a first magnet part 521, a second magnet part 522, and a third magnet part 523.
  • the first magnet part 521 forms a magnetic field together with the second magnet part 522 and the third magnet part 523.
  • the first magnet part 521 may itself form a magnetic field.
  • the first magnet part 521 is located inside the first surface 511. In addition, the first magnet part 521 is located in the middle of the first surface 511.
  • the first magnet part 521 is located inside the second surface 512. In addition, the first magnet part 521 is located in the middle of the second surface 512.
  • the first magnet portion 521 is formed to extend by a predetermined length in the longitudinal direction, in the left-right direction in the illustrated embodiment.
  • the first magnet part 521 may have an extended length longer than that of the second magnet part 522 and the third magnet part 523.
  • the first magnet part 521 is disposed to be perpendicular to the second magnet part 522. Specifically, the first magnet portion 521 is disposed such that a virtual line extending in the longitudinal direction is orthogonal to a virtual line extending the second magnet portion 522 in the longitudinal direction.
  • the first magnet part 521 is disposed to face the third magnet part 523. Specifically, the first magnet part 521 is configured to face the third magnet part 523 in a diagonal direction with the space part 516 therebetween.
  • the first magnet part 521 and the third magnet part 523 may partially overlap in the front-rear direction. That is, one side of the first magnet part 521, in the illustrated embodiment, a left end may be positioned on the third magnet part 523 in the front-rear direction. Likewise, one side of the third magnet part 523, in the illustrated embodiment, a right end may be positioned on the first magnet part 521 in the front-rear direction.
  • the first magnet part 521 includes a first opposing surface 521a and a first opposing surface 521b.
  • the first opposing surface 521a is defined as a side surface of the first magnet part 521 facing the space part 516.
  • the first facing surface 521a may be defined as a side surface of the first magnet part 521 facing the third magnet part 523.
  • the first opposite surface 521b is defined as the other side surface of the first magnet part 521 facing the first surface 511 or the second surface 512.
  • the first opposite surface 521b may be defined as a side surface of the first magnet part 521 facing the first opposite surface 521a.
  • the first opposing surface 521a and the first opposing surface 521b are configured to have different polarities. That is, the first opposing surface 521a may be magnetized to one of the N-pole and the S-pole, and the first opposite surface 521b may be magnetized to the other of the N-pole and the S-pole.
  • a magnetic field traveling from one of the first opposing surface 521a and the first opposing surface 521b to the other is formed by the first magnet portion 521 itself.
  • the polarity of the first facing surface 521a is the polarity of the second facing surface 522a of the second magnet unit 522 and the third facing surface 523a of the third magnet unit 523. It can be configured to be different.
  • the second magnet part 522 forms a magnetic field together with the first magnet part 521.
  • the second magnet part 522 may itself also form a magnetic field.
  • the second magnet portion 522 is formed to extend by a predetermined length in the longitudinal direction, in the front-rear direction in the illustrated embodiment.
  • the second magnet portion 522 may have an extension length shorter than that of the first magnet portion 521.
  • the second magnet portion 522 is located inside the fourth surface 514.
  • the second magnet part 522 may be located at a central portion of the fourth surface 514 in the longitudinal direction.
  • the second magnet part 522 may be located inside the third surface 513.
  • the second magnet part 522 is located spaced apart from the first magnet part 521 by a predetermined distance D1.
  • the second magnet portion 522 is positioned to be spaced apart from the third magnet portion 523 by a predetermined distance D3.
  • the separation distance D3 between the second magnet part 522 and the third magnet part 523 may be formed longer than the separation distance D1 between the second magnet part 522 and the first magnet part 521. have.
  • the second magnet portion 522 includes a second opposing surface 522a and a second opposing surface 522b.
  • the second opposing surface 522a is defined as one side surface of the second magnet part 522 facing the space part 516.
  • the second facing surface 522a may be defined as a side surface of the second magnet part 522 facing the first magnet part 521.
  • the second opposite surface 522b is defined as the other side surface of the second magnet portion 522 facing the fourth surface 514.
  • the second opposite surface 522b may be defined as a side surface of the second magnet part 522 facing the second opposite surface 522a.
  • the second opposing surface 522a and the second opposing surface 522b are configured to have different polarities. That is, the second opposite surface 522a may be magnetized to one of the N-pole and the S-pole, and the second opposite surface 522b may be magnetized to the other of the N-pole and S-pole.
  • a magnetic field traveling from one of the second opposing surface 522a and the second opposing surface 522b to the other is formed by the second magnet portion 522 itself.
  • the polarity of the second opposing surface 522a may be configured to be different from the polarity of the first opposing surface 521a of the first magnet part 521.
  • a magnetic field in a direction from one magnet portion to another magnet portion is formed between the first magnet portion 521 and the second magnet portion 522.
  • the polarity of the second facing surface 522a may be formed to be the same as the polarity of the third facing surface 523a of the third magnet part 523.
  • magnetic fields are formed between the second facing surface 522a and the third facing surface 523a in the direction of pushing each other.
  • the third magnet part 523 forms a magnetic field together with the first magnet part 521.
  • the third magnet part 523 may itself also form a magnetic field.
  • the third magnet part 523 is positioned to be skewed to the left on the inside of the second surface 512. That is, the third magnet part 523 is located further to the left than the arc discharge hole 515.
  • the third magnet part 523 is positioned to be skewed to the left on the inside of the first surface 511. That is, the third magnet part 523 is located further to the left than the arc discharge hole 515.
  • the third magnet part 523 is the third magnet part 522 facing the fourth surface 514 on which the second magnet part 522 is disposed so that the distance D3 separated from the second magnet part 522 is maximized. It is disposed adjacent to the surface 513.
  • the third magnet part 523 is formed to extend by a predetermined length in the longitudinal direction and in the left-right direction in the illustrated embodiment.
  • the third magnet portion 523 may have an extension length shorter than that of the first magnet portion 521.
  • the extended length of the third magnet portion 523 may be formed equal to the extended length of the second magnet portion 522.
  • the third magnet part 523 is disposed to face the first magnet part 521. Specifically, the third magnet part 523 is configured to face the first magnet part 521 in a diagonal direction toward the left with the space part 516 therebetween.
  • the third magnet part 523 is located spaced apart from the second magnet part 522 by a predetermined distance D3. In addition, the third magnet part 523 is positioned to be spaced apart from the first magnet part 521 by a predetermined distance D2.
  • the third magnet part 523 includes a third opposing surface 523a and a third opposing surface 523b.
  • the third opposing surface 523a is defined as one side surface of the third magnet part 523 facing the space part 516.
  • the third facing surface 523a may be defined as a side surface of the third magnet part 523 facing the first magnet part 521.
  • the third opposite surface 523b is defined as the other side surface of the third magnet part 523 facing the first surface 511 or the second surface 512.
  • the third opposite surface 523b may be defined as one side of the third magnet part 523 facing the third opposite surface 523a.
  • the third opposing surface 523a and the third opposing surface 523b are configured to have different polarities. That is, the third opposing surface 523a may be magnetized to one of the N-pole and the S-pole, and the third opposite surface 523b may be magnetized to the other of the N-pole and the S-pole.
  • a magnetic field traveling from one of the third opposing surface 523a and the third opposing surface 523b to the other is formed by the third magnet portion 523 itself.
  • the polarity of the third facing surface 523a may be configured to be different from the polarity of the first facing surface 521a of the first magnet part 521.
  • a magnetic field in a direction from one magnet portion to another magnet portion is formed between the first magnet portion 521 and the third magnet portion 523.
  • the polarity of the third facing surface 523a may be formed to be the same as the polarity of the second facing surface 522a of the second magnet part 522.
  • magnetic fields are formed between the second facing surface 522a and the third facing surface 523a in the direction of pushing each other.
  • the first magnet part 521 is formed to extend longer than the second magnet part 522 and the third magnet part 523.
  • the second magnet portion 522 and the third magnet portion 523 are disposed to be spaced apart by a predetermined distance D3.
  • the separation distance D3 between the second magnet part 522 and the third magnet part 523 is a separation distance D1 between the first magnet part 521 and the second magnet part 522 or the first magnet part 521.
  • the third magnet part 523 may be formed longer than the separation distance D2.
  • the second magnet portion 522 and the third magnet portion 523 are disposed so that the separation distance D3 is maximized.
  • the magnetic field formed in the vicinity of the first and second fixed contacts 220a and 220b is formed to have a greater inclination with respect to the first and second fixed contacts 220a and 220b.
  • the electromagnetic force generated in the vicinity of each of the fixed contacts 220a and 220b by the magnetic field is formed in a direction away from the center C. Accordingly, damage to the components disposed in the center C can be prevented.
  • the arc path forming part 600 includes a magnet frame 610 and a magnet part 620.
  • the magnet frame 610 has the same structure and function as the magnet frame 510 of the above-described embodiment. Accordingly, the description of the magnet frame 610 will be replaced with the description of the magnet frame 510 described above.
  • the magnet part 620 according to the present embodiment has almost the same structure and function as the magnet part 520 of the above-described embodiment. However, the magnet unit 620 according to the present exemplary embodiment differs from the magnet unit 520 according to the above-described exemplary embodiment in an arrangement method.
  • the magnet part 620 includes a first magnet part 621, a second magnet part 622 and a third magnet part 623.
  • the first magnet part 621 forms a magnetic field together with the second magnet part 622 and the third magnet part 623.
  • the first magnet part 621 may itself also form a magnetic field.
  • the second magnet part 622 forms a magnetic field together with the first magnet part 621.
  • the second magnet part 622 may itself form a magnetic field.
  • the second magnet portion 622 is disposed inside the third surface 613.
  • the second magnet part 622 is located in the middle of the third surface 613.
  • the third magnet part 623 forms a magnetic field together with the first magnet part 621.
  • the third magnet part 623 may itself form a magnetic field.
  • the third magnet part 623 is disposed inside the second surface 612.
  • the third magnet part 623 is positioned to be skewed to the right side of the second surface 612. That is, the third magnet part 623 is a fourth magnet part 623 facing the third surface 613 on which the second magnet part 622 is disposed so that the distance D3 separated from the second magnet part 622 is maximized. It is disposed adjacent to the face 614.
  • the first magnet part 621 is formed to extend longer than the second magnet part 622 and the third magnet part 623.
  • the second magnet portion 622 and the third magnet portion 623 are disposed to be spaced apart by a predetermined distance D3.
  • the separation distance D3 between the second magnet part 622 and the third magnet part 623 is the separation distance D1 between the first magnet part 621 and the second magnet part 622 or the first magnet part 621 ) And the third magnet part 623 may be formed longer than the separation distance D2.
  • the second magnet part 622 and the third magnet part 623 are disposed so that the separation distance D3 is maximized.
  • the magnetic field formed in the vicinity of the first and second fixed contacts 220a and 220b is formed to have a greater inclination with respect to the first and second fixed contacts 220a and 220b.
  • the electromagnetic force generated in the vicinity of each of the fixed contacts 220a and 220b by the magnetic field is formed in a direction away from the center C. Accordingly, damage to the components disposed in the center C can be prevented.
  • the arc path forming part 700 includes a magnet frame 710 and a magnet part 720.
  • the magnet frame 710 has the same structure and function as the magnet frames 510 and 610 of the above-described embodiments. Accordingly, the description of the magnet frame 710 will be replaced with the description of the magnet frames 510 and 610 described above.
  • the magnet unit 720 according to the present embodiment has almost the same structure and function as the magnet units 520 and 620 of the above-described embodiments.
  • the magnet part 720 includes a first magnet part 721, a second magnet part 722, and a third magnet part 723.
  • the first magnet part 721 forms a magnetic field together with the second magnet part 722 or the third magnet part 723.
  • the first magnet part 721 may itself also form a magnetic field.
  • the first magnet part 721 has the same structure and function as the first magnet parts 521 and 621 of the above-described embodiment.
  • first facing surface 721a is configured to have the same polarity as the second facing surface 722a of the second magnet part 722.
  • first facing surface 721a is configured to have a polarity different from that of the third facing surface 723a of the third magnet portion 723.
  • magnetic fields are formed between the first magnet part 721 and the second magnet part 722 in the direction of pushing each other.
  • a magnetic field in a direction from one magnet portion toward the other magnet portion is formed.
  • the second magnet part 722 forms a magnetic field together with the first magnet part 721 or the third magnet part 723.
  • the second magnet part 722 may itself form a magnetic field.
  • the second magnet part 722 is disposed inside the third surface 713.
  • the second magnet part 722 may be located in the middle of the third surface 713.
  • the second magnet part 722 is disposed so that the separation distance D3 from the third magnet part 723 is maximized.
  • the second magnet part 722 has the same structure and function as the second magnet parts 522 and 622 of the above-described embodiment.
  • the second facing surface 722a is configured to have the same polarity as the first facing surface 721a of the first magnet part 721.
  • the second facing surface 722a is configured to have a polarity different from that of the third facing surface 723a of the third magnet portion 723.
  • magnetic fields are formed between the second magnet portion 722 and the first magnet portion 721 in a direction pushing each other.
  • a magnetic field in a direction from one magnet portion toward the other magnet portion is formed.
  • the third magnet part 723 forms a magnetic field together with the first magnet part 721 or the second magnet part 722. In addition, the third magnet part 723 may itself form a magnetic field.
  • the third magnet portion 723 is disposed inside the fourth surface 714.
  • the third magnet part 723 may be located in the middle of the fourth surface 714.
  • the third magnet portion 723 is disposed so that the separation distance D3 from the second magnet portion 722 is maximized. That is, the second magnet part 722 is disposed on the third surface 723, and the third magnet part 723 is disposed on the fourth surface 724 where the separation distance D3 can be maximized. .
  • the third magnet part 723 has the same structure and function as the third magnet parts 523 and 623 of the above-described embodiment.
  • the third facing surface 723a is configured to have a polarity different from that of the first facing surface 721a of the first magnet unit 721 and the second facing surface 722a of the second magnet unit 722.
  • the first magnet part 721 is formed to extend longer than the second magnet part 722 and the third magnet part 723.
  • the second magnet portion 722 and the third magnet portion 723 are disposed to be spaced apart by a predetermined distance D3.
  • the separation distance D3 between the second magnet part 722 and the third magnet part 723 is the separation distance D1 between the first magnet part 721 and the second magnet part 722 or the first magnet part 721.
  • the third magnet part 723 may be formed longer than the separation distance D2.
  • a separation distance D1 between the first magnet part 721 and the second magnet part 722 and a separation distance D2 between the first magnet part 721 and the third magnet part 723 may be the same.
  • the second magnet portion 722 and the third magnet portion 723 are disposed such that the separation distance D3 is maximized.
  • the third facing surface 723a is configured to have a polarity different from that of the first facing surface 721a and the second facing surface 722a. Accordingly, the magnetic field is formed in a direction from the first magnet portion 721 and the second magnet portion 722 toward the third magnet portion 723 or the opposite direction.
  • the magnetic field formed in the vicinity of the first fixed contactor 220a and the second fixed contactor 220b is formed in a left-right direction or a left-right diagonal direction.
  • the electromagnetic force generated in the vicinity of each of the fixed contacts 220a and 220b by the magnetic field is formed in a direction away from the center C. Accordingly, damage to the components disposed in the center C can be prevented.
  • the arc path forming part 800 includes a magnet frame 810 and a magnet part 820.
  • the magnet frame 810 has the same structure and function as the magnet frames 510, 610, and 710 of the above-described embodiments. Thus, the description of the magnet frame 810 will be replaced with the description of the above-described magnet frame (510, 610, 710).
  • the magnet part 820 has almost the same structure and function as the magnet parts 520, 620, and 720 of the above-described embodiments.
  • the magnet part 820 includes a first magnet part 821, a second magnet part 822, and a third magnet part 823.
  • the first magnet part 821 forms a magnetic field together with the second magnet part 822 or the third magnet part 823.
  • the first magnet part 821 may itself form a magnetic field.
  • the first magnet part 821 has the same structure and function as the first magnet parts 521, 621, and 721 of the above-described embodiment.
  • the first facing surface 821a is configured to have a polarity different from that of the second facing surface 822a of the second magnet unit 822 and the third facing surface 823a of the third magnet unit 823.
  • the second magnet part 822 forms a magnetic field together with the first magnet part 821 or the third magnet part 823.
  • the second magnet part 822 may itself form a magnetic field.
  • the second magnet part 822 has the same structure and function as the second magnet parts 522, 622, 722 of the above-described embodiment.
  • the second magnet part 822 has the same arrangement method as the second magnet part 722 of the above-described embodiment.
  • the second facing surface 822a is configured to have a polarity different from that of the first facing surface 821a of the first magnet portion 821.
  • the second facing surface 822a is configured to have the same polarity as the third facing surface 823a of the third magnet portion 823.
  • a magnetic field in a direction from one magnet portion toward the other magnet portion is formed.
  • magnetic fields are formed between the second magnet portion 822 and the third magnet portion 823 in a direction pushing each other.
  • the third magnet part 823 forms a magnetic field together with the first magnet part 821 or the second magnet part 822. In addition, the third magnet part 823 may itself form a magnetic field.
  • the third magnet part 823 has the same structure and function as the third magnet parts 523, 623, and 723 of the above-described embodiment.
  • the third magnet portion 823 has the same arrangement method as the third magnet portion 723 of the above-described embodiment.
  • the third facing surface 823a is configured to have a polarity different from that of the first facing surface 821a of the first magnet portion 821.
  • the third facing surface 823a is configured to have the same polarity as the second facing surface 823a of the second magnet portion 822.
  • a magnetic field in a direction from one magnet portion toward the other magnet portion is formed.
  • magnetic fields are formed between the third magnet portion 823 and the second magnet portion 822 in a direction pushing each other.
  • the first magnet part 821 is formed to extend longer than the second magnet part 822 and the third magnet part 823.
  • the second magnet portion 822 and the third magnet portion 823 are disposed to be spaced apart by a predetermined distance D3.
  • the separation distance D3 between the second magnet part 822 and the third magnet part 823 is the separation distance D1 between the first magnet part 821 and the second magnet part 822 or the first magnet part 821 ) And the third magnet portion 823 may be formed longer than the separation distance D2.
  • the separation distance D1 between the first magnet portion 821 and the second magnet portion 822 and the separation distance D2 between the first magnet portion 821 and the third magnet portion 823 may be the same.
  • the second magnet portion 822 and the third magnet portion 823 are disposed such that the separation distance D3 is maximized.
  • the first facing surface 821a is configured to have a polarity different from that of the second facing surface 822a and the third facing surface 823a. Accordingly, the magnetic field is formed in a direction from the first magnet portion 821 to the second magnet portion 822 and the third magnet portion 823 or the opposite direction.
  • the magnetic field formed in the vicinity of the first and second fixed contacts 220a and 220b is formed in the left and right diagonal directions.
  • the electromagnetic force generated in the vicinity of each of the fixed contacts 220a and 220b by the magnetic field is formed in a direction away from the center C. Accordingly, damage to the components disposed in the center C can be prevented.
  • the DC relay 10 includes arc path forming units 500, 600, 700, and 800.
  • the arc path forming units 500, 600, 700, and 800 form a magnetic field in the arc chamber 210.
  • a path A.P of an arc through which the arc generated by the fixed contact 220 and the movable contact 430 is spaced may be formed.
  • the magnetic field affecting each other of the different magnet units 520, 620, 720, 820 is referred to as a "main magnetic field (MMF)", each of the magnet units 520, 620, 720, and 820.
  • MMF main magnetic field
  • SMF Sub Magnetic Field
  • the current passing direction is that the current flows into the second fixed contact 220b and the movable contactor ( After passing through 430, it is a direction exiting through the first fixed contact 220a.
  • the first opposing surface 521a is magnetized to the N pole. Further, the second opposing surface 522a and the third opposing surface 523a are magnetized to the S pole.
  • the magnetic field is formed in a direction that diverges from the N pole and converges to the S pole.
  • the main magnetic field M.M.F formed between the first magnet portion 521 and the second magnet portion 522 is formed in a direction from the first facing surface 521a toward the second facing surface 522a.
  • the first magnet part 521 forms a negative magnetic field S.M.F in a direction from the first opposing surface 521a to the first opposing surface 521b.
  • the second magnet part 522 forms a negative magnetic field S.M.F in a direction from the second opposite surface 522b toward the second opposite surface 522a.
  • the sub magnetic field S.M.F is formed in the same direction as the main magnetic field M.M.F formed between the first magnet part 521 and the second magnet part 522. Accordingly, the strength of the main magnetic field M.M.F formed between the first magnet part 521 and the second magnet part 522 may be enhanced.
  • an electromagnetic force in a direction toward the right side of the front side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the right side of the front side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the left of the rear side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the left side of the rear side along the direction of the electromagnetic force.
  • the main magnetic field M.M.F formed between the first magnet portion 521 and the third magnet portion 523 is formed in a direction from the first facing surface 521a toward the third facing surface 523a.
  • the first magnet part 521 forms a negative magnetic field S.M.F in a direction from the first opposing surface 521a to the first opposing surface 521b.
  • the third magnet part 523 forms a negative magnetic field S.M.F in a direction from the third opposite surface 523b toward the third opposite surface 523a.
  • the sub magnetic field S.M.F is formed in the same direction as the main magnetic field M.M.F formed between the first magnet part 521 and the third magnet part 523. Accordingly, the strength of the main magnetic field M.M.F formed between the first magnet part 521 and the second magnet part 522 may be enhanced.
  • an electromagnetic force in a direction toward the left side of the front side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the left side of the front side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the right of the rear side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the right side of the rear side along the direction of the electromagnetic force.
  • the path A.P of the generated arc does not go toward the center C. Accordingly, damage to the components disposed in the center C can be prevented.
  • the first opposing surface 521a is magnetized to the S pole. Further, the second opposing surface 522a and the third opposing surface 523a are magnetized to the N pole.
  • the main magnetic field M.M.F formed between the first magnet portion 521 and the second magnet portion 522 is formed in a direction from the second facing surface 522a toward the first facing surface 521a.
  • the first magnet part 521 forms a negative magnetic field S.M.F in a direction from the first opposite surface 521b toward the first opposite surface 521a.
  • the second magnet part 522 forms a negative magnetic field S.M.F in a direction from the second opposite surface 522a to the second opposite surface 522b.
  • the sub magnetic field S.M.F is formed in the same direction as the main magnetic field M.M.F formed between the first magnet part 521 and the second magnet part 522. Accordingly, the strength of the main magnetic field M.M.F formed between the first magnet part 521 and the second magnet part 522 may be enhanced.
  • an electromagnetic force in a direction toward the left of the rear side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the left side of the rear side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the right of the front side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the right side of the front side along the direction of the electromagnetic force.
  • the main magnetic field M.M.F formed between the first magnet portion 521 and the third magnet portion 523 is formed in a direction from the third facing surface 523a toward the first facing surface 521a.
  • the first magnet part 521 forms a negative magnetic field S.M.F in a direction from the first opposite surface 521b toward the first opposite surface 521a.
  • the third magnet part 523 forms a negative magnetic field S.M.F in a direction from the third opposite surface 523a to the third opposite surface 523b.
  • the sub magnetic field S.M.F is formed in the same direction as the main magnetic field M.M.F formed between the first magnet part 521 and the third magnet part 523. Accordingly, the strength of the main magnetic field M.M.F formed between the first magnet part 521 and the second magnet part 522 may be enhanced.
  • an electromagnetic force in a direction toward the right of the rear side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the right side of the rear side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the left of the front side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the left side of the front side along the direction of the electromagnetic force.
  • the path A.P of the generated arc does not go toward the center C. Accordingly, damage to the components disposed in the center C can be prevented.
  • the first opposing surface 521a is magnetized to the N pole. Further, the second opposing surface 522a and the third opposing surface 523a are magnetized to the S pole.
  • the main magnetic field M.M.F formed between the first magnet portion 521 and the second magnet portion 522 is formed in a direction from the first facing surface 521a toward the second facing surface 522a.
  • the first magnet part 521 forms a negative magnetic field S.M.F in a direction from the first opposing surface 521a to the first opposing surface 521b.
  • the second magnet part 522 forms a negative magnetic field S.M.F in a direction from the second opposite surface 522b toward the second opposite surface 522a.
  • the sub magnetic field S.M.F is formed in the same direction as the main magnetic field M.M.F formed between the first magnet part 521 and the second magnet part 522. Accordingly, the strength of the main magnetic field M.M.F formed between the first magnet part 521 and the second magnet part 522 may be enhanced.
  • an electromagnetic force in a direction toward the left of the front side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the left side of the front side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the right of the rear side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the right side of the rear side along the direction of the electromagnetic force.
  • the main magnetic field M.M.F formed between the first magnet portion 521 and the third magnet portion 523 is formed in a direction from the first facing surface 521a toward the third facing surface 523a.
  • the first magnet part 521 forms a negative magnetic field S.M.F in a direction from the first opposing surface 521a to the first opposing surface 521b.
  • the third magnet part 523 forms a negative magnetic field S.M.F in a direction from the third opposite surface 523b toward the third opposite surface 523a.
  • the sub magnetic field S.M.F is formed in the same direction as the main magnetic field M.M.F formed between the first magnet part 521 and the third magnet part 523. Accordingly, the strength of the main magnetic field M.M.F formed between the first magnet part 521 and the second magnet part 522 may be enhanced.
  • an electromagnetic force in a direction toward the right of the front side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the right side of the front side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the left of the rear side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the left side of the rear side along the direction of the electromagnetic force.
  • the path A.P of the generated arc does not go toward the center C. Accordingly, damage to the components disposed in the center C can be prevented.
  • the first opposing surface 521a is magnetized to the S pole. Further, the second opposing surface 522a and the third opposing surface 523a are magnetized to the N pole.
  • the main magnetic field M.M.F formed between the first magnet portion 521 and the second magnet portion 522 is formed in a direction from the second facing surface 522a toward the first facing surface 521a.
  • the first magnet part 521 forms a negative magnetic field S.M.F in a direction from the first opposite surface 521b toward the first opposite surface 521a.
  • the second magnet part 522 forms a negative magnetic field S.M.F in a direction from the second opposite surface 522a to the second opposite surface 522b.
  • the sub magnetic field S.M.F is formed in the same direction as the main magnetic field M.M.F formed between the first magnet part 521 and the second magnet part 522. Accordingly, the strength of the main magnetic field M.M.F formed between the first magnet part 521 and the second magnet part 522 may be enhanced.
  • an electromagnetic force in a direction toward the right side of the rear side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the right side of the rear side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the left of the front side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the left side of the front side along the direction of the electromagnetic force.
  • the main magnetic field M.M.F formed between the first magnet portion 521 and the third magnet portion 523 is formed in a direction from the third facing surface 523a toward the first facing surface 521a.
  • the first magnet part 521 forms a negative magnetic field S.M.F in a direction from the first opposite surface 521b toward the first opposite surface 521a.
  • the third magnet part 523 forms a negative magnetic field S.M.F in a direction from the third opposite surface 523a to the third opposite surface 523b.
  • the sub magnetic field S.M.F is formed in the same direction as the main magnetic field M.M.F formed between the first magnet part 521 and the third magnet part 523. Accordingly, the strength of the main magnetic field M.M.F formed between the first magnet part 521 and the second magnet part 522 may be enhanced.
  • an electromagnetic force in a direction toward the left of the rear side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the left side of the rear side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the right of the front side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the right side of the front side along the direction of the electromagnetic force.
  • the path A.P of the generated arc does not go toward the center C. Accordingly, damage to the components disposed in the center C can be prevented.
  • the first magnet part 521 is formed to extend longer than the second magnet part 522 and the third magnet part 523.
  • the second magnet portion 522 and the third magnet portion 523 are disposed to be spaced apart by a predetermined distance D3.
  • the separation distance D3 between the second magnet part 522 and the third magnet part 523 is a separation distance D1 between the first magnet part 521 and the second magnet part 522 or the first magnet part 521.
  • the third magnet part 523 may be formed longer than the separation distance D2.
  • the second magnet portion 522 and the third magnet portion 523 are disposed so that the separation distance D3 is maximized.
  • the magnetic field formed in the vicinity of the first and second fixed contacts 220a and 220b is formed to have a greater inclination with respect to the first and second fixed contacts 220a and 220b.
  • the electromagnetic force generated in the vicinity of each of the fixed contacts 220a and 220b by the magnetic field is formed in a direction away from the center C. Accordingly, damage to the components disposed in the center C can be prevented.
  • the current passing direction is that the current flows into the second fixed contact 220b and the movable contactor ( After passing through 430, it is a direction exiting through the first fixed contact 220a.
  • FIGS. 18(b), 19(b), 20(b), and 21(b) the direction of current conduction in FIGS. 18(b), 19(b), 20(b), and 21(b) is that the current flows into the first fixed contactor 220a and moves. After passing through the contactor 430, it is a direction exiting through the second fixed contactor 220b.
  • the first opposing surface 621a is magnetized to the N pole. Further, the second opposing surface 622a and the third opposing surface 623a are magnetized to the S pole.
  • the process and direction in which the main magnetic field (M.M.F) and the sub magnetic field (S.M.F) are formed by the first magnet part 621 and the second magnet part 622 are the same as those of the above-described embodiment of FIG. 14.
  • an electromagnetic force in a direction toward the right of the front side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the right side of the front side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the left of the rear side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the left side of the rear side along the direction of the electromagnetic force.
  • the process and direction in which the main magnetic field (M.M.F) and the sub magnetic field (S.M.F) are formed by the first magnet part 621 and the third magnet part 623 are the same as those of the above-described embodiment of FIG. 14.
  • an electromagnetic force in a direction toward the left side of the front side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the left side of the front side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the right of the rear side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the right side of the rear side along the direction of the electromagnetic force.
  • the first opposing surface 621a is magnetized to the S pole. Further, the second opposing surface 622a and the third opposing surface 623a are magnetized to the N pole.
  • the process and direction in which the main magnetic field (M.M.F) and the sub magnetic field (S.M.F) are formed by the first magnet part 621 and the second magnet part 622 are the same as those of the embodiment of FIG. 15 described above.
  • an electromagnetic force in a direction toward the left of the rear side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the left side of the rear side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the right of the front side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the right side of the front side along the direction of the electromagnetic force.
  • the process and direction in which the main magnetic field (M.M.F) and the sub magnetic field (S.M.F) are formed by the first magnet part 621 and the third magnet part 623 are the same as those of the embodiment of FIG. 15 described above.
  • an electromagnetic force in a direction toward the right of the rear side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the right side of the rear side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the left of the front side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the left side of the front side along the direction of the electromagnetic force.
  • the path A.P of the generated arc does not go toward the center C. Accordingly, damage to the components disposed in the center C can be prevented.
  • the first opposing surface 621a is magnetized to the N pole. Further, the second opposing surface 622a and the third opposing surface 623a are magnetized to the S pole.
  • the process and direction in which the main magnetic field (M.M.F) and the sub magnetic field (S.M.F) are formed by the first magnet part 621 and the second magnet part 622 are the same as those of the embodiment of FIG. 16 described above.
  • an electromagnetic force in a direction toward the left of the front side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the left side of the front side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the right of the rear side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the right side of the rear side along the direction of the electromagnetic force.
  • the process and direction in which the main magnetic field (M.M.F) and the sub magnetic field (S.M.F) are formed by the first magnet part 621 and the third magnet part 623 are the same as those of the above-described embodiment of FIG. 16.
  • an electromagnetic force in a direction toward the right side of the front side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the right side of the front side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the left of the rear side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the left side of the rear side along the direction of the electromagnetic force.
  • the path A.P of the generated arc does not go toward the center C. Accordingly, damage to the components disposed in the center C can be prevented.
  • the first opposing surface 621a is magnetized to the S pole. Further, the second opposing surface 622a and the third opposing surface 623a are magnetized to the N pole.
  • the process and direction in which the main magnetic field (M.M.F) and the sub magnetic field (S.M.F) are formed by the first magnet part 621 and the second magnet part 622 are the same as those of the embodiment of FIG. 17 described above.
  • an electromagnetic force in a direction toward the right of the rear side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the right side of the rear side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the left of the front side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the left side of the front side along the direction of the electromagnetic force.
  • the process and direction in which the main magnetic field (M.M.F) and the sub magnetic field (S.M.F) are formed by the first magnet part 621 and the third magnet part 623 are the same as those of the above-described embodiment of FIG. 17.
  • an electromagnetic force in a direction toward the left of the rear side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the left side of the rear side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the right of the front side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the right side of the front side along the direction of the electromagnetic force.
  • the path A.P of the generated arc does not go toward the center C. Accordingly, damage to the components disposed in the center C can be prevented.
  • the first magnet part 621 is formed to extend longer than the second magnet part 622 and the third magnet part 623.
  • the second magnet portion 622 and the third magnet portion 623 are disposed to be spaced apart by a predetermined distance D3.
  • the separation distance D3 between the second magnet part 622 and the third magnet part 623 is the separation distance D1 between the first magnet part 621 and the second magnet part 622 or the first magnet part 621 ) And the third magnet part 623 may be formed longer than the separation distance D2.
  • the second magnet part 622 and the third magnet part 623 are disposed so that the separation distance D3 is maximized.
  • the magnetic field formed in the vicinity of the first and second fixed contacts 220a and 220b is formed to have a greater inclination with respect to the first and second fixed contacts 220a and 220b.
  • the electromagnetic force generated in the vicinity of each of the fixed contacts 220a and 220b by the magnetic field is formed in a direction away from the center C. Accordingly, damage to the components disposed in the center C can be prevented.
  • the current passing direction is that the current flows into the second fixed contact 220b, and the movable contactor ( After passing through 430, it is a direction exiting through the first fixed contact 220a.
  • the current flows into the first fixed contactor 220a and moves. After passing through the contactor 430, it is a direction exiting through the second fixed contactor 220b.
  • a first opposing surface 721a and a second opposing surface 722a are magnetized to an N pole. Further, the second opposing surface 722a and the third opposing surface 723a are magnetized to the S pole.
  • the main magnetic fields M.M.F formed between the first magnet part 721 and the second magnet part 722 are formed in a direction pushing each other.
  • the main magnetic field M.M.F emitted from the first facing surface 721a is formed in a direction away from the second facing surface 722a.
  • the main magnetic field M.M.F emitted from the second facing surface 722a is also formed in a direction away from the first facing surface 721a.
  • the main magnetic field M.M.F formed between the first magnet portion 721 and the third magnet portion 723 is formed in a direction from the first facing surface 721a toward the third facing surface 723a.
  • the main magnetic field M.M.F formed between the second magnet portion 722 and the third magnet portion 723 is formed in a direction from the second facing surface 722a toward the third facing surface 723a.
  • the first magnet part 721 forms a negative magnetic field S.M.F in a direction from the first opposing surface 721a to the first opposing surface 721b.
  • the second magnet part 722 forms a negative magnetic field S.M.F in a direction from the second opposite surface 722a to the second opposite surface 722b.
  • the third magnet portion 723 forms a negative magnetic field S.M.F in a direction from the third opposite surface 723b toward the third opposite surface 723b.
  • the sub magnetic field S.M.F is formed in the same direction as each of the main magnetic fields M.M.F formed between the first magnet part 721, the second magnet part 722, and the third magnet part 723. Accordingly, the strength of the main magnetic field M.M.F formed between the first magnet part 721, the second magnet part 722, and the third magnet part 723 may be strengthened.
  • an electromagnetic force in a direction toward the rear side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the rear side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the front side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the front side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the front side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the front side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the rear side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the rear side along the direction of the electromagnetic force.
  • the path A.P of the generated arc does not go toward the center C. Accordingly, damage to the components disposed in the center C can be prevented.
  • the first opposing surface 721a and the second opposing surface 722a are magnetized to the S pole. Further, the third opposing surface 723a is magnetized to the N pole.
  • the main magnetic fields M.M.F formed between the first magnet part 721 and the second magnet part 722 are formed in a direction pushing each other.
  • the main magnetic field M.M.F emitted from the first facing surface 721a is formed in a direction away from the second facing surface 722a.
  • the main magnetic field M.M.F emitted from the second facing surface 722a is also formed in a direction away from the first facing surface 721a.
  • the main magnetic field M.M.F formed between the first magnet portion 721 and the third magnet portion 723 is formed in a direction from the third facing surface 723a toward the first facing surface 721a.
  • the main magnetic field M.M.F formed between the second magnet portion 722 and the third magnet portion 723 is formed in a direction from the third facing surface 723a toward the second facing surface 722a.
  • the first magnet part 721 forms a negative magnetic field S.M.F in a direction from the first opposite surface 721b toward the first opposite surface 721a.
  • the second magnet part 722 forms a negative magnetic field S.M.F in a direction from the second opposite surface 722b toward the second opposite surface 722a.
  • the third magnet portion 723 forms a negative magnetic field S.M.F in a direction from the third opposing surface 723a to the third opposing surface 723a.
  • the sub magnetic field S.M.F is formed in the same direction as each of the main magnetic fields M.M.F formed between the first magnet part 721, the second magnet part 722, and the third magnet part 723. Accordingly, the strength of the main magnetic field M.M.F formed between the first magnet part 721, the second magnet part 722, and the third magnet part 723 may be strengthened.
  • an electromagnetic force in a direction toward the front side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the front side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the rear side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the rear side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the rear side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the rear side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the front side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the front side along the direction of the electromagnetic force.
  • the path A.P of the generated arc does not go toward the center C. Accordingly, damage to the components disposed in the center C can be prevented.
  • the first opposing surface 721a and the second opposing surface 722a are magnetized to the N pole. Further, the second opposing surface 722a and the third opposing surface 723a are magnetized to the S pole.
  • an electromagnetic force in a direction toward the rear side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the rear side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the front side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the front side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the front side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the front side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the rear side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the rear side along the direction of the electromagnetic force.
  • the path A.P of the generated arc does not go toward the center C. Accordingly, damage to the components disposed in the center C can be prevented.
  • the first opposing surface 721a and the second opposing surface 722a are magnetized to the S pole. Further, the third opposing surface 723a is magnetized to the N pole.
  • an electromagnetic force in a direction toward the front side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the front side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the rear side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the rear side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the rear side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the rear side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the front side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the front side along the direction of the electromagnetic force.
  • the path A.P of the generated arc does not go toward the center C. Accordingly, damage to the components disposed in the center C can be prevented.
  • the first magnet part 721 is formed to extend longer than the second magnet part 722 and the third magnet part 723.
  • the second magnet portion 722 and the third magnet portion 723 are disposed to be spaced apart by a predetermined distance D3.
  • the separation distance D3 between the second magnet part 722 and the third magnet part 723 is the separation distance D1 between the first magnet part 721 and the second magnet part 722 or the first magnet part 721.
  • the third magnet part 723 may be formed longer than the separation distance D2.
  • a separation distance D1 between the first magnet part 721 and the second magnet part 722 and a separation distance D2 between the first magnet part 721 and the third magnet part 723 may be the same.
  • the second magnet portion 722 and the third magnet portion 723 are disposed such that the separation distance D3 is maximized.
  • the third facing surface 723a is configured to have a polarity different from that of the first facing surface 721a and the second facing surface 722a. Accordingly, the magnetic field is formed in a direction from the first magnet portion 721 and the second magnet portion 722 toward the third magnet portion 723 or the opposite direction.
  • the magnetic field formed in the vicinity of the first fixed contactor 220a and the second fixed contactor 220b is formed in a left-right direction or a left-right diagonal direction.
  • the electromagnetic force generated in the vicinity of each of the fixed contacts 220a and 220b by the magnetic field is formed in a direction away from the center C. Accordingly, damage to the components disposed in the center C can be prevented.
  • the current passing direction is that the current flows into the second fixed contact 220b and the movable contact ( After passing through 430, it is a direction exiting through the first fixed contact 220a.
  • FIGS. 26(b), 27(b), 28(b), and 29(b) the direction of current conduction in FIGS. 26(b), 27(b), 28(b), and 29(b) is that the current flows into the first fixed contact 220a and moves. After passing through the contactor 430, it is a direction exiting through the second fixed contactor 220b.
  • the first opposing surface 821a is magnetized to the N pole. Further, the second opposing surface 822a and the third opposing surface 823a are magnetized to the S pole.
  • the process and direction in which the main magnetic field (M.M.F) and the sub magnetic field (S.M.F) are formed by the first magnet part 821 and the second magnet part 822 are the same as those of the above-described embodiment of FIG. 14.
  • an electromagnetic force in a direction toward the right of the front side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the right side of the front side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the left of the rear side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the left side of the rear side along the direction of the electromagnetic force.
  • a process and direction in which a main magnetic field (M.M.F) and a sub magnetic field (S.M.F) are formed by the first magnet part 821 and the third magnet part 823 are the same as those of the above-described embodiment of FIG. 14.
  • an electromagnetic force in a direction toward the left side of the front side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the left side of the front side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the right of the rear side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the right side of the rear side along the direction of the electromagnetic force.
  • the path A.P of the generated arc does not go toward the center C. Accordingly, damage to the components disposed in the center C can be prevented.
  • the first opposing surface 821a is magnetized to the S pole. Further, the second opposing surface 822a and the third opposing surface 823a are magnetized to the N pole.
  • a process and direction in which the main magnetic field (M.M.F) and the sub magnetic field (S.M.F) are formed by the first magnet part 821 and the second magnet part 822 are the same as those of the above-described embodiment of FIG. 15.
  • an electromagnetic force in a direction toward the left side of the rear side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the left side of the rear side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the right of the front side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the right side of the front side along the direction of the electromagnetic force.
  • a process and direction in which the main magnetic field (M.M.F) and the sub magnetic field (S.M.F) are formed by the first magnet part 821 and the third magnet part 823 are the same as those of the above-described embodiment of FIG. 15.
  • an electromagnetic force in a direction toward the right of the rear side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the right side of the rear side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the left of the front side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the left side of the front side along the direction of the electromagnetic force.
  • the path A.P of the generated arc does not go toward the center C. Accordingly, damage to the components disposed in the center C can be prevented.
  • the first opposing surface 821a is magnetized to the N pole. Further, the second opposing surface 822a and the third opposing surface 823a are magnetized to the S pole.
  • the process and direction in which the main magnetic field (M.M.F) and the sub magnetic field (S.M.F) are formed by the first magnet part 821 and the second magnet part 822 are the same as those of the embodiment of FIG. 16 described above.
  • an electromagnetic force in a direction toward the left of the front side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the left side of the front side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the right of the rear side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the right side of the rear side along the direction of the electromagnetic force.
  • a process and direction in which the main magnetic field (M.M.F) and the sub magnetic field (S.M.F) are formed by the first magnet part 821 and the third magnet part 823 are the same as those of the above-described embodiment of FIG. 16.
  • an electromagnetic force in a direction toward the right side of the front side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the right side of the front side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the left of the rear side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the left side of the rear side along the direction of the electromagnetic force.
  • the path A.P of the generated arc does not go toward the center C. Accordingly, damage to the components disposed in the center C can be prevented.
  • the first opposing surface 821a is magnetized to the S pole. Further, the second opposing surface 822a and the third opposing surface 823a are magnetized to the N pole.
  • the process and direction in which the main magnetic field (M.M.F) and the sub magnetic field (S.M.F) are formed by the first magnet part 821 and the second magnet part 822 are the same as those of the above-described embodiment of FIG. 17.
  • an electromagnetic force in a direction toward the right of the rear side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the right side of the rear side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the left of the front side is generated near the first fixed contact 220a.
  • the arc path A.P is formed to face the left side of the front side along the direction of the electromagnetic force.
  • the process and direction in which the main magnetic field (M.M.F) and the sub magnetic field (S.M.F) are formed by the first magnet part 821 and the third magnet part 823 are the same as those of the above-described embodiment of FIG. 17.
  • an electromagnetic force in a direction toward the left of the rear side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the left side of the rear side along the direction of the electromagnetic force.
  • an electromagnetic force in a direction toward the right of the front side is generated near the second fixed contact 220b.
  • the arc path A.P is formed to face the right side of the front side along the direction of the electromagnetic force.
  • the path A.P of the generated arc does not go toward the center C. Accordingly, damage to the components disposed in the center C can be prevented.
  • the first magnet part 821 is formed to extend longer than the second magnet part 822 and the third magnet part 823.
  • the second magnet portion 822 and the third magnet portion 823 are disposed to be spaced apart by a predetermined distance D3.
  • the separation distance D3 between the second magnet part 822 and the third magnet part 823 is the separation distance D1 between the first magnet part 821 and the second magnet part 822 or the first magnet part 821 ) And the third magnet portion 823 may be formed longer than the separation distance D2.
  • the separation distance D1 between the first magnet portion 821 and the second magnet portion 822 and the separation distance D2 between the first magnet portion 821 and the third magnet portion 823 may be the same.
  • the second magnet portion 822 and the third magnet portion 823 are disposed such that the separation distance D3 is maximized.
  • the first facing surface 821a is configured to have a polarity different from that of the second facing surface 822a and the third facing surface 823a. Accordingly, the magnetic field is formed in a direction from the first magnet portion 821 to the second magnet portion 822 and the third magnet portion 823 or the opposite direction.
  • the magnetic field formed in the vicinity of the first and second fixed contacts 220a and 220b is formed in the left and right diagonal directions.
  • the electromagnetic force generated in the vicinity of each of the fixed contacts 220a and 220b by the magnetic field is formed in a direction away from the center C. Accordingly, damage to the components disposed in the center C can be prevented.
  • the arc path forming units 500, 600, 700, and 800 according to each embodiment of the present invention described above form a magnetic field.
  • the electromagnetic force is formed to have a direction away from the center (C).
  • the arc generated by the fixed contact 220 and the movable contact 430 spaced apart is moved along the path A.P of the arc formed according to the electromagnetic force. Accordingly, the generated arc is moved in a direction away from the center C.
  • M.M.F main magnetic field

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

아크 경로 형성부 및 이를 포함하는 직류 릴레이가 개시된다. 본 발명의 실시 예에 따른 아크 경로 형성부는 복수 개의 자석부를 포함한다. 복수 개의 자석부 중 어느 하나는 자석 프레임의 일측 면에 배치된다. 복수 개의 자석부 중 나머지는 자석 프레임의 타측 면에 각각 배치된다. 상기 일측 면에 배치되는 자석부는, 다른 자석부들보다 길게 형성된다. 또한, 타측 면에 각각 배치되는 자석부는 서로 최대한 이격되도록 배치된다. 이에 따라, 각 자석부 사이에 형성되는 자기장은 각 고정 접촉자에서 발생되는 전자기력이 중심부에서 멀어지는 방향으로 발생되도록 형성된다. 그 결과, 중심부에 배치되는 구성 요소들의 손상이 방지될 수 있다.

Description

아크 경로 형성부 및 이를 포함하는 직류 릴레이
본 발명은 아크 경로 형성부 및 이를 포함하는 직류 릴레이에 관한 것으로, 보다 구체적으로, 전자기력을 이용하여 아크의 배출 경로를 형성하면서도 직류 릴레이의 손상을 방지할 수 있는 구조의 아크 경로 형성부 및 이를 포함하는 직류 릴레이에 관한 것이다.
직류 릴레이(Direct current relay)는 전자석의 원리를 이용하여 기계적인 구동 또는 전류 신호를 전달해 주는 장치이다. 직류 릴레이는 전자 개폐기(Magnetic switch)라고도 하며, 전기적인 회로 개폐 장치로 분류됨이 일반적이다.
직류 릴레이는 고정 접점 및 가동 접점을 포함한다. 고정 접점은 외부의 전원 및 부하와 통전 가능하게 연결된다. 고정 접점과 가동 접점은 서로 접촉되거나, 이격될 수 있다.
고정 접점과 가동 접점의 접촉 및 이격에 의해, 직류 릴레이를 통한 통전이 허용되거나 차단된다. 상기 이동은, 가동 접점에 구동력을 인가하는 구동부에 의해 달성된다.
고정 접점과 가동 접점이 이격되면, 고정 접점과 가동 접점 사이에는 아크(arc)가 발생된다. 아크는 고압, 고온의 전류의 흐름이다. 따라서, 발생된 아크는 기 설정된 경로를 통해 직류 릴레이에서 신속하게 배출되어야 한다.
아크의 배출 경로는 직류 릴레이에 구비되는 자석에 의해 형성된다. 상기 자석은 고정 접점과 가동 접점이 접촉되는 공간의 내부에 자기장을 형성한다. 형성된 자기장 및 전류의 흐름에 의해 발생된 전자기력에 의해 아크의 배출 경로가 형성될 수 있다.
도 1을 참조하면, 종래 기술에 따른 직류 릴레이(1000)에 구비되는 고정 접점(1100) 및 가동 접점(1200)이 접촉되는 공간이 도시된다. 상술한 바와 같이, 상기 공간에는 영구 자석(1300)이 구비된다.
영구 자석(1300)은 상측에 위치되는 제1 영구 자석(1310) 및 하측에 위치되는 제2 영구 자석(1320)을 포함한다. 제1 영구 자석(1310)의 하측은 N극으로, 제2 영구 자석(1320)의 상측은 S극으로 자화(magnetize)된다. 이에 따라, 자기장은 상측에서 하측을 향하는 방향으로 형성된다.
도 1의 (a)는 전류가 좌측의 고정 접점(1100)을 통해 유입되어, 우측의 고정 접점(1100)을 통해 유출되는 상태를 도시한다. 플레밍의 왼손 법칙에 의해, 전자기력은 빗금친 화살표와 같이 외측을 향하도록 형성된다. 따라서, 발생된 아크는 전자기력의 방향을 따라 외측으로 배출될 수 있다.
반면, 도 1의 (b)는 전류가 우측의 고정 접점(1100)을 통해 유입되어, 좌측의 고정 접점(1100)을 통해 유출되는 상태를 도시한다. 플레밍의 왼손 법칙에 의해, 전자기력은 빗금친 화살표와 같이 내측을 향하도록 형성된다. 따라서, 발생된 아크는 전자기력의 방향을 따라 내측으로 이동된다.
직류 릴레이(1000)의 중앙 부분, 즉 각 고정 접점(1100) 사이의 공간에는 가동 접점(1200)을 상하 방향으로 구동시키기 위한 여러 부재들이 구비된다. 일 예로, 샤프트, 샤프트에 관통 삽입되는 스프링 부재 등이 상기 위치에 구비된다.
따라서, 도 1의 (b)와 같이 발생된 아크가 중앙 부분을 향해 이동될 경우, 상기 위치에 구비되는 여러 부재들이 아크의 에너지에 의해 손상될 우려가 있다.
또한, 도 1에 도시된 바와 같이, 종래 기술에 따른 직류 릴레이(1000) 내부에서 형성되는 전자기력의 방향은 고정 접점(1200)에 통전되는 전류의 방향에 의존한다. 따라서, 고정 접점(1100)에는 기 설정된 방향, 즉 도 1의 (a)에 도시된 방향으로만 전류가 통전되는 것이 바람직하다.
즉, 사용자는 직류 릴레이를 사용할 때마다 전류의 방향을 고려해야 한다. 이는 직류 릴레이의 사용에 불편함을 초래할 수 있다. 또한, 사용자의 의도와 무관하게, 조작 미숙 등으로 직류 릴레이에 인가되는 전류의 방향이 바뀌는 상황도 배제할 수 없다.
이 경우, 발생된 아크에 의해 직류 릴레이의 중앙 부분에 구비된 부재들이 손상될 수 있다. 이에 따라, 직류 릴레이의 내구 연한이 감소됨은 물론, 안전 사고가 발생될 우려가 있다.
한국등록특허문헌 제10-1696952호는 직류 릴레이를 개시한다. 구체적으로, 복수 개의 영구 자석을 이용하여, 가동 접점의 이동을 방지할 수 있는 구조의 직류 릴레이를 개시한다.
그런데, 상술한 구조의 직류 릴레이는 복수 개의 영구 자석을 이용하여 가동 접점의 이동을 방지할 수는 있으나, 아크의 배출 경로의 방향을 제어하기 위한 방안에 대한 고찰이 없다는 한계가 있다.
한국등록특허문헌 제10-1216824호는 직류 릴레이를 개시한다. 구체적으로, 감쇠 자석을 이용하여 가동 접점과 고정 접점 간의 임의 이격을 방지할 수 있는 구조의 직류 릴레이를 개시한다.
그러나, 상술한 구조의 직류 릴레이는 가동 접점과 고정 접점의 접촉 상태를 유지하기 위한 방안만을 제시한다. 즉, 가동 접점과 고정 접점이 이격될 경우 발생되는 아크의 배출 경로를 형성하기 위한 방안을 제시하지 못한다는 한계가 있다.
한국등록특허문헌 제10-1696952호 (2017.01.16.)
한국등록특허문헌 제10-1216824호 (2012.12.28.)
본 발명은 상술한 문제점을 해결할 수 있는 구조의 아크 경로 형성부 및 이를 포함하는 직류 릴레이를 제공함을 목적으로 한다.
먼저, 발생된 아크가 중앙 부분으로 연장되지 않는 구조의 아크 경로 형성부 및 이를 포함하는 직류 릴레이를 제공함을 일 목적으로 한다.
또한, 고정 접점에 인가되는 전류의 방향과 무관하게, 아크의 배출 경로가 외측을 향해 형성될 수 있는 구조의 아크 경로 형성부 및 이를 포함하는 직류 릴레이를 제공함을 일 목적으로 한다.
또한, 발생된 아크에 의해 중앙 부분에 위치되는 부재의 손상을 최소화할 수 있는 구조의 아크 경로 형성부 및 이를 포함하는 직류 릴레이를 제공함을 일 목적으로 한다.
또한, 발생된 아크가 이동되며 충분히 소호될 수 있는 구조의 아크 경로 형성부 및 이를 포함하는 직류 릴레이를 제공함을 일 목적으로 한다.
또한, 아크의 배출 경로를 형성하기 위한 자기장의 세기를 강화할 수 있는 구조의 아크 경로 형성부 및 이를 포함하는 직류 릴레이를 제공함을 일 목적으로 한다.
또한, 구조의 과다한 변경 없이도, 아크의 배출 경로를 변경할 수 있는 구조의 아크 경로 형성부 및 이를 포함하는 직류 릴레이를 제공함을 일 목적으로 한다.
상기 목적을 달성하기 위해, 본 발명은, 내부에 공간이 형성되며, 상기 공간을 둘러싸는 복수 개의 면을 포함하는 자석 프레임; 및 상기 복수 개의 면에 결합되어 상기 공간에 자기장을 형성하도록 구성되는 자석부를 포함하며, 상기 복수 개의 면은, 일 방향으로 연장 형성되는 제1 면; 상기 제1 면을 마주하도록 배치되고, 상기 일 방향으로 연장 형성되는 제2 면; 및 상기 제1 면 및 상기 제2 면의 상기 연장 방향의 각 일측 단부 및 각 타측 단부 사이에서 각각 상기 제1 면 및 상기 제2 면과 소정의 각도를 이루며 연장되며, 서로 마주하도록 배치되는 제3 면 및 제4 면을 포함하며, 상기 자석부는, 상기 제1 면 및 상기 제2 면 중 어느 하나의 면에 위치되는 제1 자석부; 상기 제3 면 및 상기 제4 면 중 어느 하나의 면에 위치되는 제2 자석부; 및 상기 제1 면 내지 상기 제2 면 중 다른 하나의 면 또는 상기 제3 면 및 상기 제4 면 중 다른 하나의 면에 위치되는 제3 자석부를 포함하며, 상기 제1 면 및 상기 제2 면 중 상기 다른 하나의 면을 향하는 상기 제1 자석부의 제1 대향 면은, 상기 제1 면 및 상기 제2 면 중 상기 어느 하나의 면을 향하는 상기 제2 자석부의 제2 대향 면 및 상기 제3 자석부의 제3 대향 면 중 어느 하나 이상의 면과 다른 극성(polarity)을 띠도록 구성되는 아크 경로 형성부를 제공한다.
또한, 상기 아크 경로 형성부의 상기 제1 자석부, 상기 제2 자석부 및 상기 제3 자석부는 각각 일 방향으로 연장 형성되고, 상기 제1 자석부의 상기 연장 길이는, 상기 제2 자석부 및 상기 제3 자석부의 연장 길이보다 길게 형성될 수 있다.
또한, 상기 아크 경로 형성부의 상기 제2 자석부와 상기 제3 자석부 사이의 최단 거리는, 상기 제1 자석부와 상기 제2 자석부 사이의 최단 거리 및 상기 제1 자석부와 상기 제3 자석부 사이의 최단 거리보다 길게 형성될 수 있다.
또한, 상기 아크 경로 형성부의 상기 제1 자석부는 상기 제1 면에 배치되고, 상기 제2 자석부는 상기 제3 면 및 상기 제4 면 중 어느 하나의 면에 배치되며, 상기 제3 자석부는 상기 제2 면에 배치될 수 있다.
또한, 상기 아크 경로 형성부의 상기 제2 자석부는 상기 제3 면에 배치되고, 상기 제3 자석부는 상기 제4 면에 인접하게 배치되며, 상기 제1 자석부의 상기 제1 대향 면은 N극을 띠도록 구성되고, 상기 제2 자석부의 상기 제2 대향 면 및 상기 제3 자석부의 상기 제3 대향 면은 S극을 띠도록 구성될 수 있다.
또한, 상기 아크 경로 형성부의 상기 제2 자석부는 상기 제4 면에 배치되고, 상기 제3 자석부는 상기 제3 면에 인접하게 배치되며, 상기 제1 자석부의 상기 제1 대향 면은 N극을 띠도록 구성되고, 상기 제2 자석부의 상기 제2 대향 면 및 상기 제3 자석부의 상기 제3 대향 면은 S극을 띠도록 구성될 수 있다.
또한, 상기 아크 경로 형성부의 상기 제1 자석부는 상기 제1 면에 배치되고, 상기 제2 자석부는 상기 제3 면 및 상기 제4 면 중 어느 하나의 면에 배치되며, 상기 제3 자석부는 상기 제3 면 및 상기 제4 면 중 다른 하나의 면에 배치될 수 있다.
또한, 상기 아크 경로 형성부의 상기 제1 자석부의 상기 제1 대향 면은 N극을 띠도록 구성되고, 상기 제2 자석부의 상기 제2 대향 면 및 상기 제3 자석부의 제3 대향 면 중 어느 하나는 N극을 띠고, 다른 하나는 S극을 띠도록 구성될 수 있다.
또한, 상기 아크 경로 형성부의 상기 제1 자석부의 상기 제1 대향 면은 N극을 띠도록 구성되고, 상기 제2 자석부의 상기 제2 대향 면 및 상기 제3 자석부의 제3 대향 면은 S극을 띠도록 구성될 수 있다.
또한, 본 발명은, 일 방향으로 연장 형성되는 고정 접촉자; 상기 고정 접촉자에 접촉되거나 상기 고정 접촉자와 이격되도록 구성되는 가동 접촉자; 내부에 상기 고정 접촉자 및 상기 가동 접촉자가 수용되는 공간이 형성되며, 상기 고정 접촉자 및 상기 가동 접촉자가 이격되어 발생되는 아크의 배출 경로를 형성하도록, 상기 공간에 자기장을 형성하게 구성되는 아크 경로 형성부를 포함하며, 상기 아크 경로 형성부는, 내부에 공간이 형성되며, 상기 공간을 둘러싸는 복수 개의 면을 포함하는 자석 프레임; 및 상기 복수 개의 면에 결합되어 상기 공간에 자기장을 형성하도록 구성되는 자석부를 포함하며, 상기 복수 개의 면은, 일 방향으로 연장 형성되는 제1 면; 상기 제1 면을 마주하도록 배치되고, 상기 일 방향으로 연장 형성되는 제2 면; 및 상기 제1 면 및 상기 제2 면의 상기 연장 방향의 각 일측 단부 및 각 타측 단부 사이에서 각각 상기 제1 면 및 상기 제2 면과 소정의 각도를 이루며 연장되며, 서로 마주하는 제3 면 및 제4 면을 포함하며, 상기 자석부는, 상기 제1 면 및 상기 제2 면 중 어느 하나의 면에 위치되는 제1 자석부; 상기 제3 면 및 상기 제4 면 중 어느 하나의 면에 위치되는 제2 자석부; 및 상기 제1 면 내지 상기 제2 면 중 다른 하나의 면 또는 상기 제3 면 및 상기 제4 면 중 다른 하나의 면에 위치되는 제3 자석부를 포함하며, 상기 제1 면 및 상기 제2 면 중 상기 다른 하나의 면을 향하는 상기 제1 자석부의 제1 대향 면은, 상기 제1 면 및 상기 제2 면 중 상기 어느 하나의 면을 향하는 상기 제2 자석부의 제2 대향 면 및 상기 제3 자석부의 제3 대향 면 중 어느 하나 이상의 면과 다른 극성(polarity)을 띠도록 구성되는 직류 릴레이를 제공한다.
또한, 상기 직류 릴레이의 상기 제1 자석부, 상기 제2 자석부 및 상기 제3 자석부는 각각 일 방향으로 연장 형성되고, 상기 제1 자석부의 상기 연장 길이는, 상기 제2 자석부 및 상기 제3 자석부의 연장 길이보다 길게 형성되며, 상기 제2 자석부와 상기 제3 자석부 사이의 최단 거리는, 상기 제1 자석부와 상기 제2 자석부 사이의 최단 거리 및 상기 제1 자석부와 상기 제3 자석부 사이의 최단 거리보다 길게 형성될 수 있다.
또한, 상기 직류 릴레이의 상기 제1 자석부는 상기 제1 면에 배치되며, 상기 제2 자석부는 상기 제3 면에 배치되고, 상기 제3 자석부는 상기 제4 면에 인접하게 배치되며, 상기 제1 자석부의 상기 제1 대향 면은 N극을 띠도록 구성되고, 상기 제2 자석부의 상기 제2 대향 면 및 상기 제3 자석부의 상기 제3 대향 면은 S극을 띠도록 구성될 수 있다.
또한, 상기 직류 릴레이의 상기 제1 자석부는 상기 제1 면에 배치되며, 상기 제2 자석부는 상기 제4 면에 배치되고, 상기 제3 자석부는 상기 제3 면에 인접하게 배치되며, 상기 제1 자석부의 상기 제1 대향 면은 N극을 띠도록 구성되고, 상기 제2 자석부의 상기 제2 대향 면 및 상기 제3 자석부의 상기 제3 대향 면은 S극을 띠도록 구성될 수 있다.
또한, 상기 직류 릴레이의 상기 제1 자석부는 상기 제1 면에 배치되고, 상기 제2 자석부는 상기 제3 면 및 상기 제4 면 중 어느 하나의 면에 배치되며, 상기 제3 자석부는 상기 제3 면 및 상기 제4 면 중 다른 하나의 면에 배치되고, 상기 제1 자석부의 상기 제1 대향 면은 N극을 띠도록 구성되며, 상기 제2 자석부의 상기 제2 대향 면 및 상기 제3 자석부의 제3 대향 면 중 어느 하나는 N극을 띠고, 다른 하나는 S극을 띠도록 구성될 수 있다.
또한, 상기 직류 릴레이의 상기 제1 자석부는 상기 제1 면에 배치되고, 상기 제2 자석부는 상기 제3 면 및 상기 제4 면 중 어느 하나의 면에 배치되며, 상기 제3 자석부는 상기 제3 면 및 상기 제4 면 중 다른 하나의 면에 배치되고, 상기 제1 자석부의 상기 제1 대향 면은 N극을 띠도록 구성되며, 상기 제2 자석부의 상기 제2 대향 면 및 상기 제3 자석부의 제3 대향 면은 S극을 띠도록 구성될 수 있다.
본 발명에 따르면, 다음과 같은 효과가 달성될 수 있다.
먼저, 아크 경로 형성부는 아크 챔버 내부에 자기장을 형성한다. 자기장은 고정 접촉자 및 가동 접촉자에 흐르는 전류와 함께 전자기력을 형성한다. 상기 전자기력은 아크 챔버의 중심에서 멀어지는 방향으로 형성된다.
이에 따라, 발생된 아크는 전자기력의 방향과 동일하게 아크 챔버의 중심에서 멀어지는 방향으로 이동된다. 따라서, 발생된 아크가 아크 챔버의 중심 부분으로 이동되지 않는다.
또한, 서로 마주하는 자석부는 마주하는 일측이 서로 다른 극성을 갖도록 구성된다.
즉, 각 고정 접촉자 부근에서 형성되는 전자기력은, 전류의 방향과 무관하게 중심부에서 멀어지는 방향으로 형성된다.
따라서, 사용자는 아크가 이동되는 방향을 고려하여 직류 릴레이에 전원을 연결하지 않아도 된다. 이에 따라 사용자의 편의성이 증대될 수 있다.
또한, 어느 하나의 자석부보다 짧은 길이를 갖도록 형성되는 다른 복수 개의 자석부는 서로 이격 배치된다. 상기 복수 개의 자석부는 동일한 극성 또는 다른 극성을 띠되, 복수 개의 자석부 중 적어도 하나는 상기 어느 하나의 자석부와 같은 극성을 띠도록 구성된다.
이에 따라, 상기 자기장에 의해 형성되는 아크의 경로는 발생된 아크가 아크 챔버의 중심부에서 멀어지는 방향으로 이동되도록 형성된다. 따라서, 발생된 아크에 의해 중심부에 위치되는 여러 구성 요소들이 손상되지 않게 된다.
또한, 발생된 아크는 좁은 공간인 자석 프레임의 중심, 즉 고정 접촉자 사이가 아닌, 보다 넓은 공간, 즉 고정 접촉자의 외측을 향해 연장된다.
따라서, 아크가 긴 경로를 이동하며 충분히 소호될 수 있다.
또한, 아크 경로 형성부는 복수 개의 자석부를 포함한다. 각 자석부는 서로 간에 주 자기장을 형성한다. 각 자석부는 자체적으로 부 자기장을 형성한다. 부 자기장은 주 자기장의 세기를 강화하도록 구성된다.
따라서, 주 자기장에 의해 형성되는 전자기력의 세기가 강화될 수 있다. 이에 따라, 아크의 배출 경로가 효과적으로 형성될 수 있다.
또한, 각 자석부는 배치 방식 및 극성을 변경하는 것만으로도 다양한 방향으로 전자기력을 형성할 수 있다. 이때, 각 자석부가 구비되는 자석 프레임은 구조 및 형상이 변경되지 않아도 된다.
따라서, 아크 경로 형성부 전체 구조를 과다하게 변경하지 않고도, 아크의 배출 방향을 용이하게 변경할 수 있다. 이에 따라, 사용자의 편의성이 증대될 수 있다.
도 1은 종래 기술에 따른 직류 릴레이에서 아크의 이동 경로가 형성되는 과정을 도시하는 개념도이다.
도 2는 본 발명의 실시 예에 따른 직류 릴레이의 사시도이다.
도 3은 도 2의 직류 릴레이의 단면도이다.
도 4는 도 2의 직류 릴레이의 부분 개방 사시도이다.
도 5는 도 2의 직류 릴레이의 부분 개방 사시도이다.
도 6은 본 발명의 일 실시 예에 따른 아크 경로 형성부의 개념도이다.
도 7은 도 6의 실시 예의 변형 예에 따른 아크 경로 형성부의 개념도이다.
도 8은 본 발명의 다른 실시 예에 따른 아크 경로 형성부의 개념도이다.
도 9는 도 8의 실시 예의 변형 예에 따른 아크 경로 형성부의 개념도이다.
도 10은 본 발명의 또다른 실시 예에 따른 아크 경로 형성부의 개념도이다.
도 11은 도 10의 실시 예의 변형 예에 따른 아크 경로 형성부의 개념도이다.
도 12는 본 발명의 또다른 실시 예에 따른 아크 경로 형성부의 개념도이다.
도 13은 도 12의 실시 예의 변형 예에 따른 아크 경로 형성부의 개념도이다.
도 14 및 도 15는 도 6의 실시 예에 따른 아크 경로 형성부에 의해 아크의 경로가 형성된 상태를 도시하는 개념도이다.
도 16 및 도 17은 도 7의 실시 예에 따른 아크 경로 형성부에 의해 아크의 경로가 형성된 상태를 도시하는 개념도이다.
도 18 및 도 19는 도 8의 실시 예에 따른 아크 경로 형성부에 의해 아크의 경로가 형성된 상태를 도시하는 개념도이다.
도 20 및 도 21은 도 9의 실시 예에 따른 아크 경로 형성부에 의해 아크의 경로가 형성된 상태를 도시하는 개념도이다.
도 22 및 도 23은 도 10의 실시 예에 따른 아크 경로 형성부에 의해 아크의 경로가 형성된 상태를 도시하는 개념도이다.
도 24 및 도 25는 도 11의 실시 예에 따른 아크 경로 형성부에 의해 아크의 경로가 형성된 상태를 도시하는 개념도이다.
도 26 및 도 27은 도 12의 실시 예에 따른 아크 경로 형성부에 의해 아크의 경로가 형성된 상태를 도시하는 개념도이다.
도 28 및 도 29는 도 13의 실시 예에 따른 아크 경로 형성부에 의해 아크의 경로가 형성된 상태를 도시하는 개념도이다.
이하, 첨부한 도면들을 참조하여 본 발명의 실시 예에 따른 아크 경로 형성부 및 이를 포함하는 직류 릴레이를 상세하게 설명한다.
이하의 설명에서는 본 발명의 특징을 명확하게 하기 위해, 일부 구성 요소들에 대한 설명이 생략될 수 있다.
이하, 첨부한 도면들을 참조하여 본 발명의 실시 예에 따른 아크 경로 형성부 및 이를 포함하는 직류 릴레이를 상세하게 설명한다.
이하의 설명에서는 본 발명의 특징을 명확하게 하기 위해, 일부 구성 요소들에 대한 설명이 생략될 수 있다.
1. 용어의 정의
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.
반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
이하의 설명에서 사용되는 "자화(magnetize)"라는 용어는 자기장 안에서 어떤 물체가 자성을 띠게 되는 현상을 의미한다.
이하의 설명에서 사용되는 "극성(polarity)"이라는 용어는 전극의 양극과 음극 등이 가지고 있는 서로 다른 성질을 의미한다. 일 실시 예에서, 극성은 N극 또는 S극으로 구분될 수 있다.
이하의 설명에서 사용되는 "통전(electric current)"이라는 용어는, 두 개 이상의 부재가 전기적으로 연결되는 상태를 의미한다.
이하의 설명에서 사용되는 "아크 경로(arc path)"라는 용어는, 발생된 아크가 이동, 또는 소호되며 이동되는 경로를 의미한다.
이하의 설명에서 사용되는 "좌측", "우측", "상측", "하측", "전방 측" 및 "후방 측"이라는 용어는 도 2에 도시된 좌표계를 참조하여 이해될 것이다.
2. 본 발명의 실시 예에 따른 직류 릴레이(10)의 구성의 설명
도 2 및 도 3을 참조하면, 본 발명의 실시 예에 따른 직류 릴레이(10)는 프레임부(100), 개폐부(200), 코어부(300) 및 가동 접촉자부(400)를 포함한다.
또한, 도 4 내지 도 13을 참조하면, 본 발명의 실시 예에 따른 직류 릴레이(10)는 아크 경로 형성부(500, 600, 700, 800)를 포함한다. 아크 경로 형성부(500, 600, 700, 800)는 발생된 아크의 배출 경로를 형성할 수 있다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시 예에 따른 직류 릴레이(10)의 각 구성을 설명하되, 아크 경로 형성부(500, 600, 700, 800)는 별항으로 설명한다.
(1) 프레임부(100)의 설명
프레임부(100)는 직류 릴레이(10)의 외측을 형성한다. 프레임부(100)의 내부에는 소정의 공간이 형성된다. 상기 공간에는 직류 릴레이(10)가 외부에서 전달되는 전류를 인가하거나 차단하기 위한 기능을 수행하는 다양한 장치들이 수용될 수 있다.
즉, 프레임부(100)는 일종의 하우징으로 기능된다.
프레임부(100)는 합성 수지 등의 절연성 소재로 형성될 수 있다. 프레임부(100)의 내부와 외부가 임의로 통전되는 것을 방지하기 위함이다.
프레임부(100)는 상부 프레임(110), 하부 프레임(120), 절연 플레이트(130) 및 지지 플레이트(140)를 포함한다.
상부 프레임(110)은 프레임부(100)의 상측을 형성한다. 상부 프레임(110)의 내부에는 소정의 공간이 형성된다.
상부 프레임(110)의 내부 공간에는 개폐부(200) 및 가동 접촉자부(400)가 수용될 수 있다. 또한, 상부 프레임(110)의 내부 공간에는 아크 경로 형성부(500, 600, 700, 800)가 수용될 수 있다.
상부 프레임(110)은 하부 프레임(120)과 결합될 수 있다. 상부 프레임(110)과 하부 프레임(120) 사이의 공간에는 절연 플레이트(130) 및 지지 플레이트(140)가 구비될 수 있다.
상부 프레임(110)의 일측, 도시된 실시 예에서 상측에는 개폐부(200)의 고정 접촉자(220)가 위치된다. 고정 접촉자(220)는 상부 프레임(110)의 상측에 일부가 노출되어, 외부의 전원 또는 부하와 통전 가능하게 연결될 수 있다.
이를 위해, 상부 프레임(110)의 상측에는 고정 접촉자(220)가 관통 결합되는 관통공이 형성될 수 있다.
하부 프레임(120)은 프레임부(100)의 하측을 형성한다. 하부 프레임(120)의 내부에는 소정의 공간이 형성된다. 하부 프레임(120)의 내부 공간에는 코어부(300)가 수용될 수 있다.
하부 프레임(120)은 상부 프레임(110)과 결합될 수 있다. 하부 프레임(120)과 상부 프레임(110) 사이의 공간에는 절연 플레이트(130) 및 지지 플레이트(140)가 구비될 수 있다.
절연 플레이트(130) 및 지지 플레이트(140)는 상부 프레임(110)의 내부 공간과 하부 프레임(120)의 내부 공간을 전기적 및 물리적으로 분리하도록 구성된다.
절연 플레이트(130)는 상부 프레임(110)과 하부 프레임(120) 사이에 위치된다. 절연 플레이트(130)는 상부 프레임(110)과 하부 프레임(120)을 전기적으로 이격시키도록 구성된다. 이를 위해, 절연 플레이트(130)는 합성 수지 등 절연성 소재로 형성될 수 있다.
절연 플레이트(130)에 의해, 상부 프레임(110) 내부에 수용된 개폐부(200), 가동 접촉자부(400) 및 아크 경로 형성부(500, 600, 700, 800)와 하부 프레임(120) 내부에 수용된 코어부(300) 간의 임의 통전이 방지될 수 있다.
절연 플레이트(130)의 중심부에는 관통공(미도시)이 형성된다. 상기 관통공(미도시)에는 가동 접촉자부(400)의 샤프트(440)가 상하 방향으로 이동 가능하게 관통 결합된다.
절연 플레이트(130)의 하측에는 지지 플레이트(140)가 위치된다. 절연 플레이트(130)는 지지 플레이트(140)에 의해 지지될 수 있다.
지지 플레이트(140)는 상부 프레임(110)과 하부 프레임(120) 사이에 위치된다.
지지 플레이트(140)는 상부 프레임(110)과 하부 프레임(120)을 물리적으로 이격시키도록 구성된다. 또한, 지지 플레이트(140)는 절연 플레이트(130)를 지지하도록 구성된다.
지지 플레이트(140)는 자성체로 형성될 수 있다. 따라서, 지지 플레이트(140)는 코어부(300)의 요크(330)와 함께 자로(magnetic circuit)를 형성할 수 있다. 상기 자로에 의해, 코어부(300)의 가동 코어(320)가 고정 코어(310)를 향해 이동되기 위한 구동력이 형성될 수 있다.
지지 플레이트(140)의 중심부에는 관통공(미도시)이 형성된다. 상기 관통공(미도시)에는 샤프트(440)가 상하 방향으로 이동 가능하게 관통 결합된다.
따라서, 가동 코어(320)가 고정 코어(310)를 향하는 방향 또는 고정 코어(310)에서 이격되는 방향으로 이동될 경우, 샤프트(440) 및 샤프트(440)에 연결된 가동 접촉자(430) 또한 같은 방향으로 함께 이동될 수 있다.
(2) 개폐부(200)의 설명
개폐부(200)는 코어부(300)의 동작에 따라 전류의 통전을 허용하거나 차단하도록 구성된다. 구체적으로, 개폐부(200)는 고정 접촉자(220) 및 가동 접촉자(430)가 접촉되거나 이격되어 전류의 통전을 허용하거나 차단할 수 있다.
개폐부(200)는 상부 프레임(110)의 내부 공간에 수용된다. 개폐부(200)는 절연 플레이트(130) 및 지지 플레이트(140)에 의해 코어부(300)와 전기적 및 물리적으로 이격될 수 있다.
개폐부(200)는 아크 챔버(210), 고정 접촉자(220) 및 씰링(sealing) 부재(230)를 포함한다.
또한, 아크 챔버(210)의 외측에는 아크 경로 형성부(500, 600, 700, 800)가 구비될 수 있다. 아크 경로 형성부(500, 600, 700, 800)는 아크 챔버(210) 내부에서 발생된 아크의 경로(A.P)를 형성하기 위한 자기장을 형성할 수 있다. 이에 대한 상세한 설명은 후술하기로 한다.
아크 챔버(210)는 고정 접촉자(220) 및 가동 접촉자(430)가 이격되어 발생되는 아크(arc)를 내부 공간에서 소호(extinguish)하도록 구성된다. 이에, 아크 챔버(210)는 "아크 소호부"로 지칭될 수도 있을 것이다.
아크 챔버(210)는 고정 접촉자(220)와 가동 접촉자(430)를 밀폐 수용하도록 구성된다. 즉, 고정 접촉자(220)와 가동 접촉자(430)는 아크 챔버(210) 내부에 수용된다. 따라서, 고정 접촉자(220)와 가동 접촉자(430)가 이격되어 발생되는 아크는 외부로 임의 유출되지 않게 된다.
아크 챔버(210) 내부에는 소호용 가스가 충전될 수 있다. 소호용 가스는 발생된 아크가 소호되며 기 설정된 경로를 통해 직류 릴레이(10)의 외부로 배출될 수 있게 한다. 이를 위해, 아크 챔버(210)의 내부 공간을 둘러싸는 벽체에는 연통공(미도시)이 관통 형성될 수 있다.
아크 챔버(210)는 절연성 소재로 형성될 수 있다. 또한, 아크 챔버(210)는 높은 내압성 및 높은 내열성을 갖는 소재로 형성될 수 있다. 이는, 발생되는 아크가 고온 고압의 전자의 흐름임에 기인한다. 일 실시 예에서, 아크 챔버(210)는 세라믹(ceramic) 소재로 형성될 수 있다.
아크 챔버(210)의 상측에는 복수 개의 관통공이 형성될 수 있다. 상기 관통공 각각에는 고정 접촉자(220)가 관통 결합된다.
도시된 실시 예에서, 고정 접촉자(220)는 제1 고정 접촉자(220a) 및 제2 고정 접촉자(220b)를 포함하여 두 개로 구비된다. 이에 따라, 아크 챔버(210)의 상측에 형성되는 관통공 또한 두 개로 형성될 수 있다.
상기 관통공에 고정 접촉자(220)가 관통 결합되면, 상기 관통공은 밀폐된다. 즉, 고정 접촉자(220)는 상기 관통공에 밀폐 결합된다. 이에 따라, 발생된 아크는 상기 관통공을 통해 외부로 배출되지 않는다.
아크 챔버(210)의 하측은 개방될 수 있다. 아크 챔버(210)의 하측에는 절연 플레이트(130) 및 씰링 부재(230)가 접촉된다. 즉, 아크 챔버(210)의 하측은 절연 플레이트(130) 및 씰링 부재(230)에 의해 밀폐된다.
이에 따라, 아크 챔버(210)는 상부 프레임(110)의 외측 공간과 전기적, 물리적으로 이격될 수 있다.
아크 챔버(210)에서 소호된 아크는 기 설정된 경로를 통해 직류 릴레이(10)의 외부로 배출된다. 일 실시 예에서, 소호된 아크는 상기 연통공(미도시)을 통해 아크 챔버(210)의 외부로 배출될 수 있다.
고정 접촉자(220)는 가동 접촉자(430)와 접촉되거나 이격되어, 직류 릴레이(10)의 내부와 외부의 통전을 인가하거나 차단하도록 구성된다.
구체적으로, 고정 접촉자(220)가 가동 접촉자(430)와 접촉되면, 직류 릴레이(10)의 내부와 외부가 통전될 수 있다. 반면, 고정 접촉자(220)가 가동 접촉자(430)와 이격되면, 직류 릴레이(10)의 내부와 외부의 통전이 차단된다.
명칭에서 알 수 있듯이, 고정 접촉자(220)는 이동되지 않는다. 즉, 고정 접촉자(220)는 상부 프레임(110) 및 아크 챔버(210)에 고정 결합된다. 따라서, 고정 접촉자(220)와 가동 접촉자(430)의 접촉 및 이격은 가동 접촉자(430)의 이동에 의해 달성된다.
고정 접촉자(220)의 일측 단부, 도시된 실시 예에서 상측 단부는 상부 프레임(110)의 외측으로 노출된다. 상기 일측 단부에는 전원 또는 부하가 각각 통전 가능하게 연결된다.
고정 접촉자(220)는 복수 개로 구비될 수 있다. 도시된 실시 예에서, 고정 접촉자(220)는 좌측의 제1 고정 접촉자(220a) 및 우측의 제2 고정 접촉자(220b)를 포함하여, 총 두 개로 구비된다.
제1 고정 접촉자(220a)는 가동 접촉자(430)의 길이 방향의 중심으로부터 일측, 도시된 실시 예에서 좌측으로 치우치게 위치된다. 또한, 제2 고정 접촉자(220b)는 가동 접촉자(430)의 길이 방향의 중심으로부터 타측, 도시된 실시 예에서 우측으로 치우치게 위치된다.
제1 고정 접촉자(220a) 및 제2 고정 접촉자(220b) 중 어느 하나에는 전원이 통전 가능하게 연결될 수 있다. 또한, 제1 고정 접촉자(220a) 및 제2 고정 접촉자(220b) 중 다른 하나에는 부하가 통전 가능하게 연결될 수 있다.
본 발명의 실시 예에 따른 직류 릴레이(10)는, 고정 접촉자(220)에 연결되는 전원 또는 부하의 방향과 무관하게 아크의 경로(A.P)를 형성할 수 있다. 이는 아크 경로 형성부(500, 600, 700, 800)에 의해 달성되는데, 이에 대한 상세한 설명은 후술하기로 한다.
고정 접촉자(220)의 타측 단부, 도시된 실시 예에서 하측 단부는 가동 접촉자(430)를 향해 연장된다.
가동 접촉자(430)가 고정 접촉자(220)를 향하는 방향, 도시된 실시 예에서 상측으로 이동되면, 상기 하측 단부는 가동 접촉자(430)와 접촉된다. 이에 따라, 직류 릴레이(10)의 외부와 내부가 통전될 수 있다.
고정 접촉자(220)의 상기 하측 단부는 아크 챔버(210) 내부에 위치된다.
제어 전원이 차단될 경우, 가동 접촉자(430)는 복귀 스프링(360)의 탄성력에 의해 고정 접촉자(220)에서 이격된다.
이때, 고정 접촉자(220)와 가동 접촉자(430)가 이격됨에 따라, 고정 접촉자(220)와 가동 접촉자(430) 사이에는 아크가 발생된다. 발생된 아크는 아크 챔버(210) 내부의 소호용 가스에 소호되고, 아크 경로 형성부(500, 600, 700, 800)에 의해 형성된 경로를 따라 외부로 배출될 수 있다.
씰링 부재(230)는 아크 챔버(210)와 상부 프레임(110) 내부의 공간의 임의 연통을 차단하도록 구성된다. 씰링 부재(230)는 절연 플레이트(130) 및 지지 플레이트(140)와 함께 아크 챔버(210)의 하측을 밀폐한다.
구체적으로, 씰링 부재(230)의 상측은 아크 챔버(210)의 하측과 결합된다. 또한, 씰링 부재(230)의 방사상 내측은 절연 플레이트(130)의 외주와 결합되며, 씰링 부재(230)의 하측은 지지 플레이트(140)에 결합된다.
이에 따라, 아크 챔버(210)에서 발생된 아크 및 소호용 가스에 의해 소호된 아크는 상부 프레임(110)의 내부 공간으로 입의 유출되지 않게 된다.
또한, 씰링 부재(230)는 실린더(370)의 내부 공간과 프레임부(100)의 내부 공간의 임의 연통을 차단하도록 구성될 수 있다.
(3) 코어부(300)의 설명
코어부(300)는 제어 전원의 인가에 따라 가동 접촉자부(400)를 상측으로 이동시키도록 구성된다. 또한, 제어 전원의 인가가 해제될 경우, 코어부(300)는 가동 접촉자부(400)를 다시 하측으로 이동시키도록 구성된다.
코어부(300)는 외부의 제어 전원(미도시)과 통전 가능하게 연결되어, 제어 전원을 인가받을 수 있다.
코어부(300)는 개폐부(200)의 하측에 위치된다. 또한, 코어부(300)는 하부 프레임(120)의 내부에 수용된다. 코어부(300)와 개폐부(200)는 절연 플레이트(130) 및 지지 플레이트(140)에 의해 전기적, 물리적으로 이격될 수 있다.
코어부(300)와 개폐부(200) 사이에는 가동 접촉자부(400)가 위치된다. 코어부(300)가 인가하는 구동력에 의해 가동 접촉자부(400)가 이동될 수 있다. 이에 따라, 가동 접촉자(430)와 고정 접촉자(220)가 접촉되어 직류 릴레이(10)가 통전될 수 있다.
코어부(300)는 고정 코어(310), 가동 코어(320), 요크(330), 보빈(340), 코일(350), 복귀 스프링(360) 및 실린더(370)를 포함한다.
고정 코어(310)는 코일(350)에서 발생되는 자기장에 의해 자화(magnetize)되어 전자기적 인력을 발생시킨다. 상기 전자기적 인력에 의해, 가동 코어(320)가 고정 코어(310)를 향해 이동된다(도 3에서 상측 방향).
고정 코어(310)는 이동되지 않는다. 즉, 고정 코어(310)는 지지 플레이트(140) 및 실린더(370)에 고정 결합된다.
고정 코어(310)는 자기장에 의해 자화되어 전자기력을 발생시킬 수 있는 임의의 형태로 구비될 수 있다. 일 실시 예에서, 고정 코어(310)는 영구 자석 또는 전자석 등으로 구비될 수 있다.
고정 코어(310)는 실린더(370) 내부의 상측 공간에 부분적으로 수용된다. 또한, 고정 코어(310)의 외주는 실린더(370)의 내주에 접촉되도록 구성된다.
고정 코어(310)는 지지 플레이트(140)와 가동 코어(320) 사이에 위치된다.
고정 코어(310)의 중심부에는 관통공(미도시)이 형성된다. 상기 관통공(미도시)에는 샤프트(440)가 상하 이동 가능하게 관통 결합된다.
고정 코어(310)는 가동 코어(320)와 소정 거리만큼 이격되도록 위치된다. 따라서, 가동 코어(320)가 고정 코어(310)를 향해 이동될 수 있는 거리는 상기 소정 거리로 제한될 수 있다. 이에, 상기 소정 거리는 "가동 코어(320)의 이동 거리"로 정의될 수 있을 것이다.
고정 코어(310)의 하측에는 복귀 스프링(360)의 일측 단부, 도시된 실시 예에서 상측 단부가 접촉된다. 고정 코어(310)가 자화되어 가동 코어(320)가 상측으로 이동되면, 복귀 스프링(360)이 압축되며 복원력이 저장된다.
이에 따라, 제어 전원의 인가가 해제되어 고정 코어(310)의 자화가 종료되면, 가동 코어(320)가 상기 복원력에 의해 다시 하측으로 복귀될 수 있다.
가동 코어(320)는 제어 전원이 인가되면 고정 코어(310)가 생성하는 전자기적 인력에 의해 고정 코어(310)를 향해 이동되도록 구성된다.
가동 코어(320)의 이동에 따라, 가동 코어(320)에 결합된 샤프트(440)가 고정 코어(310)를 향하는 방향, 도시된 실시 예에서 상측으로 이동된다. 또한, 샤프트(440)가 이동됨에 따라, 샤프트(440)에 결합된 가동 접촉자부(400)가 상측으로 이동된다.
이에 따라, 고정 접촉자(220)와 가동 접촉자(430)가 접촉되어 직류 릴레이(10)가 외부의 전원 또는 부하와 통전될 수 있다.
가동 코어(320)는 전자기력에 의한 인력을 받을 수 있는 임의의 형태로 구비될 수 있다. 일 실시 예에서, 가동 코어(320)는 자성체 소재로 형성되거나, 영구 자석 또는 전자석 등으로 구비될 수 있다.
가동 코어(320)는 실린더(370)의 내부에 수용된다. 또한, 가동 코어(320)는 실린더(370) 내부에서 실린더(370)의 길이 방향, 도시된 실시 예에서 상하 방향으로 이동될 수 있다.
구체적으로, 가동 코어(320)는 고정 코어(310)를 향하는 방향 및 고정 코어(310)에서 멀어지는 방향으로 이동될 수 있다.
가동 코어(320)는 샤프트(440)와 결합된다. 가동 코어(320)는 샤프트(440)와 일체로 이동될 수 있다. 가동 코어(320)가 상측 또는 하측으로 이동되면, 샤프트(440) 또한 상측 또는 하측으로 이동된다. 이에 따라, 가동 접촉자(430) 또한 상측 또는 하측으로 이동된다.
가동 코어(320)는 고정 코어(310)의 하측에 위치된다. 가동 코어(320)는 고정 코어(310)와 소정 거리만큼 이격된다. 상기 소정 거리는 가동 코어(320)가 상하 방향으로 이동될 수 있는 거리임은 상술한 바와 같다.
가동 코어(320)는 길이 방향으로 연장 형성된다. 가동 코어(320)의 내부에는 길이 방향으로 연장되는 중공부가 소정 거리만큼 함몰 형성된다. 상기 중공부에는 복귀 스프링(360) 및 복귀 스프링(360)에 관통 결합된 샤프트(440)의 하측이 부분적으로 수용된다.
상기 중공부의 하측에는 관통공이 길이 방향으로 관통 형성된다. 상기 중공부와 상기 관통공은 연통된다. 상기 중공부에 삽입된 샤프트(440)의 하측 단부는 상기 관통공을 향해 진행될 수 있다.
가동 코어(320)의 하측 단부에는 공간부가 소정 거리만큼 함몰 형성된다. 상기 공간부는 상기 관통공과 연통된다. 상기 공간부에는 샤프트(440)의 하측 헤드부가 위치된다.
요크(330)는 제어 전원이 인가됨에 따라 자로(magnetic circuit)를 형성한다. 요크(330)가 형성하는 자로는 코일(350)이 형성하는 자기장의 방향을 조절하도록 구성될 수 있다.
이에 따라, 제어 전원이 인가되면 코일(350)은 가동 코어(320)가 고정 코어(310)를 향해 이동되는 방향으로 자기장을 생성할 수 있다. 요크(330)는 통전 가능한 전도성 소재로 형성될 수 있다.
요크(330)는 하부 프레임(120)의 내부에 수용된다. 요크(330)는 코일(350)을 둘러싸도록 구성된다. 코일(350)은 요크(330)의 내주면과 소정 거리만큼 이격되도록 요크(330)의 내부에 수용될 수 있다.
요크(330)의 내부에는 보빈(340)이 수용된다. 즉, 하부 프레임(120)의 외주로부터 방사상 내측을 향하는 방향으로 요크(330), 코일(350) 및 코일(350)이 권취되는 보빈(340)이 순서대로 배치된다.
요크(330)의 상측은 지지 플레이트(140)에 접촉된다. 또한, 요크(330)의 외주는 하부 프레임(120)의 내주에 접촉되거나, 하부 프레임(120)의 내주로부터 소정 거리만큼 이격되도록 위치될 수 있다.
보빈(340)에는 코일(350)이 권취된다. 보빈(340)은 요크(330) 내부에 수용된다.
보빈(340)은 평판형의 상부 및 하부와, 길이 방향으로 연장 형성되어 상기 상부와 하부를 연결하는 원통형의 기둥부를 포함할 수 있다. 즉, 보빈(340)은 실패(bobbin) 형상이다.
보빈(340)의 상부는 지지 플레이트(140)의 하측과 접촉된다. 보빈(340)의 기둥부에는 코일(350)이 권취된다. 코일(350)이 권취되는 두께는 보빈(340)의 상부 및 하부의 직경과 같거나 더 작게 구성될 수 있다.
보빈(340)의 기둥부에는 길이 방향으로 연장되는 중공부가 관통 형성된다. 상기 중공부에는 실린더(370)가 수용될 수 있다. 보빈(340)의 기둥부는 고정 코어(310), 가동 코어(320) 및 샤프트(440)와 같은 중심축을 갖도록 배치될 수 있다.
코일(350)은 인가된 제어 전원에 의해 자기장을 발생시킨다. 코일(350)이 발생시키는 자기장에 의해 고정 코어(310)가 자화되어, 가동 코어(320)에 전자기적 인력이 인가될 수 있다.
코일(350)은 보빈(340)에 권취된다. 구체적으로, 코일(350)은 보빈(340)의 기둥부에 권취되어, 상기 기둥부의 방사상 외측으로 적층된다. 코일(350)은 요크(330)의 내부에 수용된다.
제어 전원이 인가되면, 코일(350)은 자기장을 생성한다. 이때, 요크(330)에 의해 코일(350)이 생성하는 자기장의 세기 또는 방향 등이 제어될 수 있다. 코일(350)이 생성한 자기장에 의해 고정 코어(310)가 자화된다.
고정 코어(310)가 자화되면, 가동 코어(320)는 고정 코어(310)를 향하는 방향으로의 전자기력, 즉 인력을 받게 된다. 이에 따라, 가동 코어(320)는 고정 코어(310)를 향하는 방향, 도시된 실시 예에서 상측으로 이동된다.
복귀 스프링(360)은 가동 코어(320)가 고정 코어(310)를 향해 이동된 후 제어 전원의 인가가 해제되면, 가동 코어(320)가 원래 위치로 복귀되기 위한 복원력을 제공한다.
복귀 스프링(360)은 가동 코어(320)가 고정 코어(310)를 향해 이동됨에 따라 압축되며 복원력을 저장한다. 이때, 저장되는 복원력은 고정 코어(310)가 자화되어 가동 코어(320)에 미치는 전자기적 인력보다 작은 것이 바람직하다. 제어 전원이 인가되는 동안에는 가동 코어(320)가 복귀 스프링(360)에 의해 임의로 원위치에 복귀되는 것을 방지하기 위함이다.
제어 전원의 인가가 해제되면, 가동 코어(320)는 복귀 스프링(360)에 의한 복원력을 받게 된다. 물론, 가동 코어(320)의 자중(empty weight)에 의한 중력 또한 가동 코어(320)에 작용될 수 있다. 이에 따라, 가동 코어(320)는 고정 코어(310)로부터 멀어지는 방향으로 이동되어 원 위치로 복귀될 수 있다.
복귀 스프링(360)은 형상이 변형되어 복원력을 저장하고, 원래 형상으로 복귀되며 복원력을 외부에 전달할 수 있는 임의의 형태로 구비될 수 있다. 일 실시 예에서, 복귀 스프링(360)은 코일 스프링(coil spring)으로 구비될 수 있다.
복귀 스프링(360)에는 샤프트(440)가 관통 결합된다. 샤프트(440)는 복귀 스프링(360)이 결합된 상태에서 복귀 스프링(360)의 형상 변형과 무관하게 상하 방향으로 이동될 수 있다.
복귀 스프링(360)은 가동 코어(320)의 상측에 함몰 형성된 중공부에 수용된다. 또한, 고정 코어(310)를 향하는 복귀 스프링(360)의 일측 단부, 도시된 실시 예에서 상측 단부는 고정 코어(310)의 하측에 함몰 형성된 중공부에 수용된다.
실린더(370)는 고정 코어(310), 가동 코어(320), 복귀 스프링(360) 및 샤프트(440)를 수용한다. 가동 코어(320) 및 샤프트(440)는 실린더(370) 내부에서 상측 및 하측 방향으로 이동될 수 있다.
실린더(370)는 보빈(340)의 기둥부에 형성된 중공부에 위치된다. 실린더(370)의 상측 단부는 지지 플레이트(140)의 하측 면에 접촉된다.
실린더(370)의 측면은 보빈(340)의 기둥부의 내주면에 접촉된다. 실린더(370)의 상측 개구부는 고정 코어(310)에 의해 밀폐될 수 있다. 실린더(370)의 하측 면은 하부 프레임(120)의 내면에 접촉될 수 있다.
(4) 가동 접촉자부(400)의 설명
가동 접촉자부(400)는 가동 접촉자(430) 및 가동 접촉자(430)를 이동시키기 위한 구성을 포함한다. 가동 접촉자부(400)에 의해, 직류 릴레이(10)는 외부의 전원 또는 부하와 통전될 수 있다.
가동 접촉자부(400)는 상부 프레임(110)의 내부 공간에 수용된다. 또한, 가동 접촉자부(400)는 아크 챔버(210)의 내부에 상하 이동 가능하게 수용된다.
가동 접촉자부(400)의 상측에는 고정 접촉자(220)가 위치된다. 가동 접촉자부(400)는 고정 접촉자(220)를 향하는 방향 및 고정 접촉자(220)에서 멀어지는 방향으로 이동 가능하게 아크 챔버(210)의 내부에 수용된다.
가동 접촉자부(400)의 하측에는 코어부(300)가 위치된다. 가동 접촉자부(400)의 상기 이동은 가동 코어(320)의 이동에 의해 달성될 수 있다.
가동 접촉자부(400)는 하우징(410), 커버(420), 가동 접촉자(430), 샤프트(440) 및 탄성부(450)를 포함한다.
하우징(410)은 가동 접촉자(430) 및 가동 접촉자(430)를 탄성 지지하는 탄성부(450)를 수용한다.
도시된 실시 예에서, 하우징(410)은 일측 및 그에 대향하는 타측이 개방된다(도 5 참조). 상기 개방된 부분에는 가동 접촉자(430)가 관통 삽입될 수 있다.
하우징(410)의 개방되지 않은 측면은, 수용된 가동 접촉자(430)를 감싸도록 구성될 수 있다.
하우징(410)의 상측에는 커버(420)가 구비된다. 커버(420)는 하우징(410)에 수용된 가동 접촉자(430)의 상측 면을 덮도록 구성된다.
하우징(410) 및 커버(420)는 의도치 않은 통전이 방지되도록 절연성 소재로 형성되는 것이 바람직하다. 일 실시 예에서, 하우징(410) 및 커버(420)는 합성 수지 등으로 형성될 수 있다.
하우징(410)의 하측은 샤프트(440)와 연결된다. 샤프트(440)와 연결된 가동 코어(320)가 상측 또는 하측으로 이동되면, 하우징(410) 및 이에 수용된 가동 접촉자(430) 또한 상측 또는 하측으로 이동될 수 있다.
하우징(410)과 커버(420)는 임의의 부재에 의해 결합될 수 있다. 일 실시 예에서, 하우징(410)과 커버(420)는 볼트, 너트 등의 체결 부재(미도시)에 의해 결합될 수 있다.
가동 접촉자(430)는 제어 전원의 인가에 따라 고정 접촉자(220)와 접촉되어, 직류 릴레이(10)가 외부의 전원 및 부하와 통전되도록 한다. 또한, 가동 접촉자(430)는 제어 전원의 인가가 해제될 경우 고정 접촉자(220)와 이격되어, 직류 릴레이(10)가 외부의 전원 및 부하와 통전되지 않도록 한다.
가동 접촉자(430)는 고정 접촉자(220)에 인접하게 위치된다.
가동 접촉자(430)의 상측은 커버(420)에 의해 부분적으로 덮여진다. 일 실시 예에서, 가동 접촉자(430)의 상측 면의 일부는 커버(420)의 하측 면과 접촉될 수 있다.
가동 접촉자(430)의 하측은 탄성부(450)에 의해 탄성 지지된다. 가동 접촉자(430)가 하측으로 임의 이동되지 않도록, 탄성부(450)는 소정 거리만큼 압축된 상태에서 가동 접촉자(430)를 탄성 지지할 수 있다.
가동 접촉자(430)는 길이 방향, 도시된 실시 예에서 좌우 방향으로 연장 형성된다. 즉, 가동 접촉자(430)의 길이는 폭보다 길게 형성된다. 따라서, 하우징(410)에 수용된 가동 접촉자(430)의 길이 방향의 양측 단부는 하우징(410)의 외측으로 노출된다.
상기 양측 단부에는 상측으로 소정 거리만큼 돌출 형성된 접촉 돌출부가 형성될 수 있다. 상기 접촉 돌출부에는 고정 접촉자(220)가 접촉된다.
상기 접촉 돌출부는 각 고정 접촉자(220a, 220b)에 대응되는 위치에 형성될 수 있다. 이에 따라, 가동 접촉자(430)의 이동 거리가 감소되고, 고정 접촉자(220)와 가동 접촉자(430)의 접촉 신뢰성이 향상될 수 있다.
가동 접촉자(430)의 폭은 하우징(410)의 각 측면이 서로 이격되는 거리와 동일할 수 있다. 즉, 가동 접촉자(430)가 하우징(410)에 수용되면, 가동 접촉자(430)의 폭 방향 양 측면은 하우징(410)의 각 측면의 내면에 접촉될 수 있다.
이에 따라, 가동 접촉자(430)가 하우징(410)에 수용된 상태가 안정적으로 유지될 수 있다.
샤프트(440)는 코어부(300)가 작동됨에 따라 발생되는 구동력을 가동 접촉자부(400)에 전달한다. 구체적으로, 샤프트(440)는 가동 코어(320) 및 가동 접촉자(430)와 연결된다. 가동 코어(320)가 상측 또는 하측으로 이동될 경우 샤프트(440)에 의해 가동 접촉자(430) 또한 상측 또는 하측으로 이동될 수 있다.
샤프트(440)는 길이 방향, 도시된 실시 예에서 상하 방향으로 연장 형성된다.
샤프트(440)의 하측 단부는 가동 코어(320)에 삽입 결합된다. 가동 코어(320)가 상하 방향으로 이동되면, 샤프트(440)는 가동 코어(320)와 함께 상하 방향으로 이동될 수 있다.
샤프트(440)의 몸체부는 고정 코어(310)에 상하 이동 가능하게 관통 결합된다. 샤프트(440)의 몸체부에는 복귀 스프링(360)이 관통 결합된다.
샤프트(440)의 상측 단부는 하우징(410)에 결합된다. 가동 코어(320)가 이동되면, 샤프트(440) 및 하우징(410)이 함께 이동될 수 있다.
샤프트(440)의 상측 단부 및 하측 단부는 샤프트의 몸체부에 비해 큰 직경을 갖도록 형성될 수 있다. 이에 따라, 샤프트(440)가 하우징(410) 및 가동 코어(320)와 안정적으로 결합 상태를 유지할 수 있다.
탄성부(450)는 가동 접촉자(430)를 탄성 지지한다. 가동 접촉자(430)가 고정 접촉자(220)와 접촉될 경우, 전자기적 반발력에 의해 가동 접촉자(430)는 고정 접촉자(220)에서 이격되려는 경향을 갖게 된다.
이때, 탄성부(450)는 가동 접촉자(430)를 탄성 지지하여, 가동 접촉자(430)가 고정 접촉자(220)에서 임의 이격되는 것을 방지하도록 구성된다.
탄성부(450)는 형상의 변형에 의해 복원력을 저장하고, 저장된 복원력을 다른 부재에 제공할 수 있는 임의의 형태로 구비될 수 있다. 일 실시 예에서, 탄성부(450)는 코일 스프링으로 구비될 수 있다.
가동 접촉자(430)를 향하는 탄성부(450)의 일측 단부는 가동 접촉자(430)의 하측에 접촉된다. 또한, 상기 일측 단부에 대향하는 타측 단부는 하우징(410)의 상측에 접촉된다.
탄성부(450)는 소정 거리만큼 압축되어 복원력을 저장한 상태로 가동 접촉자(430)를 탄성 지지할 수 있다. 이에 따라, 가동 접촉자(430)와 고정 접촉자(220) 사이에서 전자기적 반발력이 발생되더라도, 가동 접촉자(430)가 임의로 이동되지 않게 된다.
탄성부(450)의 안정적인 결합을 위해, 가동 접촉자(430)의 하측에는 탄성부(450)에 삽입되는 돌출부(미도시)가 돌출 형성될 수 있다. 마찬가지로, 하우징(410)의 상측에도 탄성부(450)에 삽입되는 돌출부(미도시)가 돌출 형성될 수 있다.
3. 본 발명의 실시 예에 따른 아크 경로 형성부(500, 600, 700, 800)의 설명
본 발명의 실시 예에 따른 직류 릴레이(10)는 아크 경로 형성부(500, 600, 700, 800)를 포함한다. 아크 경로 형성부(500, 600, 700, 800)는 아크 챔버(210) 내부에서 고정 접촉자(220) 및 가동 접촉자(430)가 이격되어 발생되는 아크가 배출되기 위한 경로를 형성하도록 구성된다.
이하, 도 4 내지 도 13을 참조하여, 각 실시 예에 따른 아크 경로 형성부(500, 600, 700, 800)를 상세하게 설명한다.
도 4 및 도 5에 도시된 실시 예에서, 아크 경로 형성부(500, 600, 700, 800)는 아크 챔버(210)의 외측에 위치된다. 아크 경로 형성부(500, 600, 700, 800)는 아크 챔버(210)를 둘러싸도록 구성된다. 도 6 내지 도 13에 도시된 실시 예에서, 아크 챔버(210)의 도시는 생략되었음이 이해될 것이다.
아크 경로 형성부(500, 600, 700, 800)는 아크 챔버(210)의 내부에 자로를 형성할 수 있다. 상기 자로에 의해, 아크의 경로(A.P)가 형성된다.
(1) 본 발명의 일 실시 예에 따른 아크 경로 형성부(500)의 설명
이하, 도 6 및 도 7을 참조하여 본 발명의 일 실시 예에 따른 아크 경로 형성부(500)를 상세하게 설명한다.
도시된 실시 예에서, 아크 경로 형성부(500)는 자석 프레임(510) 및 자석부(520)를 포함한다.
자석 프레임(510)은 아크 경로 형성부(500)의 골격을 형성한다. 자석 프레임(510)에는 자석부(520)가 배치된다. 일 실시 예에서, 자석부(520)는 자석 프레임(510)에 결합될 수 있다.
자석 프레임(510)은 길이 방향, 도시된 실시 예에서 좌우 방향으로 연장 형성된 직사각형의 단면을 갖는다. 자석 프레임(510)의 형상은 상부 프레임(110) 및 아크 챔버(210)의 형상에 따라 변경될 수 있다.
자석 프레임(510)은 제1 면(511), 제2 면(512), 제3 면(513), 제4 면(514), 아크 배출공(515) 및 공간부(516)를 포함한다.
제1 면(511), 제2 면(512), 제3 면(513) 및 제4 면(514)은 자석 프레임(510)의 외주면을 형성한다. 즉, 제1 면(511), 제2 면(512), 제3 면(513) 및 제4 면(514)은 자석 프레임(510)의 벽으로 기능된다.
제1 면(511), 제2 면(512), 제3 면(513) 및 제4 면(514)의 외측은 상부 프레임(110)의 내면에 접촉 또는 고정 결합될 수 있다. 또한, 제1 면(511), 제2 면(512), 제3 면(513) 및 제4 면(514)의 내측에는 자석부(520)가 위치될 수 있다.
도시된 실시 예에서, 제1 면(511)은 후방 측 면을 형성한다. 제2 면(512)은 전방 측 면을 형성하며, 제1 면(511)에 대향한다.
또한, 제3 면(513)은 좌측 면을 형성한다. 제4 면(514)은 우측 면을 형성하며, 제3 면(513)에 대향한다.
제1 면(511)은 제3 면(513) 및 제4 면(514)과 연속된다. 제1 면(511)은 제3 면(513) 및 제4 면(514)과 소정의 각도를 이루며 결합될 수 있다. 일 실시 예에서, 상기 소정의 각도는 직각일 수 있다.
제2 면(512)은 제3 면(513)과 제4 면(514)과 연속된다. 제2 면(512)은 제3 면(513) 및 제4 면(514)과 소정의 각도를 이루며 결합될 수 있다. 일 실시 예에서, 상기 소정의 각도는 직각일 수 있다.
제1 면(511) 내지 제4 면(514)이 서로 연결되는 각 모서리는 모따기(taper)될 수 있다.
제1 면(511)의 내측, 즉 제2 면(512)을 향하는 제1 면(511)의 일측에는 제1 자석부(521)가 결합될 수 있다. 또한, 제2 면(512)의 내측, 즉 제1 면(511)을 향하는 제2 면(512)의 일측에는 제3 자석부(523)가 결합될 수 있다.
또한, 제3 면(513)의 내측, 즉 제4 면(514)을 향하는 제3 면(513)의 일측 또는 제4 면(514)의 내측, 즉 제3 면(513)을 향하는 제4 면(514)의 일측에는 제3 자석부(523)가 결합될 수 있다.
각 면(511, 512, 513, 514)과 자석부(520)의 결합을 위해, 체결 부재(미도시)가 구비될 수 있다.
제1 면(511) 및 제2 면(512) 중 어느 하나 이상에는 아크 배출공(515)이 관통 형성된다.
아크 배출공(515)은 아크 챔버(210)에서 소호되어 배출된 아크가 상부 프레임(110)의 내부 공간으로 배출되는 통로이다. 아크 배출공(515)은 자석 프레임(510)의 공간부(516)와 상부 프레임(110)의 공간을 연통한다.
도시된 실시 예에서, 아크 배출공(515)은 제1 면(511) 및 제2 면(512)에 각각 형성된다. 또한, 아크 배출공(515)은 제1 면(511) 및 제2 면(512)의 길이 방향의 중간 부분에 형성될 수 있다.
제1 면(511) 내지 제4 면(514)에 의해 둘러싸이는 공간은 공간부(516)로 정의될 수 있다.
공간부(516)에는 고정 접촉자(220) 및 가동 접촉자(430)가 수용된다. 또한, 도 4에 도시된 바와 같이, 공간부(516)에는 아크 챔버(210)가 수용된다.
공간부(516)에서, 가동 접촉자(430)는 고정 접촉자(220)를 향하는 방향 또는 고정 접촉자(220)에서 멀어지는 방향으로 이동될 수 있다.
또한, 공간부(516)에는 아크 챔버(210)에서 발생된 아크의 경로(A.P)가 형성된다. 이는, 자석부(520)가 형성하는 자기장에 의해 달성된다.
공간부(516)의 중앙 부분은 중심부(C)로 정의될 수 있다. 제1 면 내지 제4 면(511, 512, 513, 514)이 서로 연결되는 각 모서리에서 중심부(C)까지의 직선 거리는 동일하게 형성될 수 있다.
중심부(C)는 제1 고정 접촉자(220a) 및 제2 고정 접촉자(220b) 사이에 위치된다. 또한, 중심부(C)의 수직 하방에는 가동 접촉자부(400)의 중심 부분이 위치된다. 즉, 중심부(C)의 수직 하방에는 하우징(410), 커버(420), 가동 접촉자(430), 샤프트(440) 및 탄성부(450) 등의 중심 부분이 위치된다.
따라서, 발생된 아크가 중심부(C)를 향해 이동될 경우, 상기 구성들의 손상이 발생될 수 있다. 이를 방지하기 위해, 본 실시 예에 따른 아크 경로 형성부(500)는 자석부(520)를 포함한다.
자석부(520)는 공간부(516) 내부에 자기장을 형성한다. 자석부(520)가 형성하는 자기장은 고정 접촉자(220) 및 가동 접촉자(430)를 따라 흐르는 전류와 함께 전자기력을 생성한다. 이에 따라, 아크의 경로(A.P)가 전자기력의 방향으로 형성될 수 있다.
자석부(520)는 서로 이웃하는 자석부(520) 간에 자기장을 형성하거나, 각 자석부(520)가 자체적으로 자기장을 형성할 수 있다.
자석부(520)는 자체로 자성을 띠거나, 전류의 인가 등에 의해 자성을 띨 수 있는 임의의 형태로 구비될 수 있다. 일 실시 예에서, 자석부(520)는 영구 자석 또는 전자석 등으로 구비될 수 있다.
자석부(520)는 자석 프레임(510)에 결합된다. 자석부(520)와 자석 프레임(510)의 결합을 위해, 체결 부재(미도시)가 구비될 수 있다.
도시된 실시 예에서, 자석부(520)는 길이 방향으로 연장되고, 직사각형의 단면을 갖는 직육면체 형상이다. 자석부(520)는 자기장의 형성이 가능한 임의의 형상으로 구비될 수 있다.
자석부(520)는 복수 개 구비될 수 있다. 도시된 실시 예에서, 자석부(520)는 세 개로 구비되나, 그 개수는 변경될 수 있다.
자석부(520)는 제1 자석부(521), 제2 자석부(522) 및 제3 자석부(523)를 포함한다.
제1 자석부(521)는 제2 자석부(522) 및 제3 자석부(523)와 함께 자기장을 형성한다. 또한, 제1 자석부(521)는 자체적으로도 자기장을 형성할 수 있다.
도 6에 도시된 실시 예에서, 제1 자석부(521)는 제1 면(511)의 내측에 위치된다. 또한, 제1 자석부(521)는 제1 면(511)의 중간 부분에 위치된다.
또한, 도 7에 도시된 실시 예에서, 제1 자석부(521)는 제2 면(512)의 내측에 위치된다. 또한, 제1 자석부(521)는 제2 면(512)의 중간 부분에 위치된다.
제1 자석부(521)는 길이 방향, 도시된 실시 예에서 좌우 방향으로 소정 길이만큼 연장 형성된다. 제1 자석부(521)는 그 연장 길이가 제2 자석부(522)의 연장 길이 및 제3 자석부(523)의 연장 길이보다 길게 형성될 수 있다.
제1 자석부(521)는 제2 자석부(522)에 대해 수직하도록 배치된다. 구체적으로, 제1 자석부(521)는 길이 방향으로 연장한 가상의 선이, 제2 자석부(522)를 길이 방향으로 연장한 가상의 선과 직교되도록 배치된다.
제1 자석부(521)는 제3 자석부(523)를 마주하도록 배치된다. 구체적으로, 제1 자석부(521)는 공간부(516)를 사이에 두고 대각선 방향으로 제3 자석부(523)를 마주하도록 구성된다.
제1 자석부(521)와 제3 자석부(523)는 전후 방향에서 부분적으로 중첩될 수 있다. 즉, 제1 자석부(521)의 일측, 도시된 실시 예에서 좌측 단부는 전후 방향으로 제3 자석부(523) 상에 위치될 수 있다. 마찬가지로, 제3 자석부(523)의 일측, 도시된 실시 예에서 우측 단부는 전후 방향으로 제1 자석부(521) 상에 위치될 수 있다.
제1 자석부(521)는 제1 대향 면(521a) 및 제1 반대 면(521b)을 포함한다.
제1 대향 면(521a)은 공간부(516)를 향하는 제1 자석부(521)의 일측 면으로 정의된다. 달리 표현하면, 제1 대향 면(521a)은 제3 자석부(523)를 향하는 제1 자석부(521)의 일측 면으로 정의될 수 있다.
제1 반대 면(521b)은 제1 면(511) 또는 제2 면(512)을 향하는 제1 자석부(521)의 타측 면으로 정의된다. 달리 표현하면, 제1 반대 면(521b)은 제1 대향 면(521a)에 대향하는 제1 자석부(521)의 일측 면으로 정의될 수 있다.
제1 대향 면(521a)과 제1 반대 면(521b)은 서로 다른 극성을 띠도록 구성된다. 즉, 제1 대향 면(521a)은 N극과 S극 중 어느 하나로 자화되고, 제1 반대 면(521b)은 N극과 S극 중 다른 하나로 자화될 수 있다.
이에 따라, 제1 대향 면(521a) 및 제1 반대 면(521b) 중 어느 하나에서 다른 하나로 진행되는 자기장이 제1 자석부(521) 자체에 의해 형성된다.
도시된 실시 예에서, 제1 대향 면(521a)의 극성은 제2 자석부(522)의 제2 대향 면(522a) 및 제3 자석부(523)의 제3 대향 면(523a)의 극성과 다르도록 구성될 수 있다.
이에 따라, 제1 자석부(521)와 제2 자석부(522) 또는 제1 자석부(521)와 제3 자석부(523) 사이에는 어느 하나의 자석부에서 다른 하나의 자석부로 향하는 방향의 자기장이 형성된다.
제2 자석부(522)는 제1 자석부(521)와 함께 자기장을 형성한다. 또한, 제2 자석부(522)는 자체적으로도 자기장을 형성할 수 있다.
제2 자석부(522)는 길이 방향, 도시된 실시 예에서 전후 방향으로 소정 길이만큼 연장 형성된다. 제2 자석부(522)는 그 연장 길이가 제1 자석부(521)의 연장 길이보다 짧게 형성될 수 있다.
도시된 실시 예에서, 제2 자석부(522)는 제4 면(514)의 내측에 위치된다. 제2 자석부(522)는 제4 면(514)의 길이 방향의 중심 부분에 위치될 수 있다.
대안적으로, 제2 자석부(522)는 제3 면(513)의 내측에 위치될 수 있다.
제2 자석부(522)는 제1 자석부(521)와 소정 거리(D1) 이격되어 위치된다. 또한, 제2 자석부(522)는 제3 자석부(523)와 소정 거리(D3) 이격되어 위치된다. 제2 자석부(522)와 제3 자석부(523) 사이의 이격 거리(D3)는 제2 자석부(522)와 제1 자석부(521) 사이의 이격 거리(D1)보다 길게 형성될 수 있다.
제2 자석부(522)는 제2 대향 면(522a) 및 제2 반대 면(522b)을 포함한다.
제2 대향 면(522a)은 공간부(516)를 향하는 제2 자석부(522)의 일측 면으로 정의된다. 달리 표현하면, 제2 대향 면(522a)은 제1 자석부(521)를 향하는 제2 자석부(522)의 일측 면으로 정의될 수 있다.
제2 반대 면(522b)은 제4 면(514)을 향하는 제2 자석부(522)의 타측 면으로 정의된다. 달리 표현하면, 제2 반대 면(522b)은 제2 대향 면(522a)에 대향하는 제2 자석부(522)의 일측 면으로 정의될 수 있다.
제2 대향 면(522a)과 제2 반대 면(522b)은 서로 다른 극성을 띠도록 구성된다. 즉, 제2 대향 면(522a)은 N극과 S극 중 어느 하나로 자화되고, 제2 반대 면(522b)은 N극과 S극 중 다른 하나로 자화될 수 있다.
이에 따라, 제2 대향 면(522a) 및 제2 반대 면(522b) 중 어느 하나에서 다른 하나로 진행되는 자기장이 제2 자석부(522) 자체에 의해 형성된다.
도시된 실시 예에서, 제2 대향 면(522a)의 극성은 제1 자석부(521)의 제1 대향 면(521a)의 극성과 다르도록 구성될 수 있다.
이에 따라, 제1 자석부(521)와 제2 자석부(522) 사이에는 어느 하나의 자석부에서 다른 하나의 자석부로 향하는 방향의 자기장이 형성된다.
또한, 제2 대향 면(522a)의 극성은 제3 자석부(523)의 제3 대향 면(523a)의 극성과 같도록 형성될 수 있다.
이에 따라, 제2 대향 면(522a)과 제3 대향 면(523a) 사이에는 서로 밀어내는 방향의 자기장이 형성된다.
제3 자석부(523)는 제1 자석부(521)와 함께 자기장을 형성한다. 또한, 제3 자석부(523)는 자체적으로도 자기장을 형성할 수 있다.
도 6에 도시된 실시 예에서, 제3 자석부(523)는 제2 면(512)의 내측에 좌측으로 치우쳐져 위치된다. 즉, 제3 자석부(523)는 아크 배출공(515)보다 더 좌측에 위치된다.
도 7에 도시된 실시 예에서, 제3 자석부(523)는 제1 면(511)의 내측에 좌측으로 치우쳐져 위치된다. 즉, 제3 자석부(523)는 아크 배출공(515)보다 더 좌측에 위치된다.
즉, 제3 자석부(523)는 제2 자석부(522)와 이격된 거리(D3)가 최대가 되도록, 제2 자석부(522)가 배치되는 제4 면(514)에 대향하는 제3 면(513)에 인접하게 배치된다.
제3 자석부(523)는 길이 방향, 도시된 실시 예에서 좌우 방향으로 소정 길이만큼 연장 형성된다. 제3 자석부(523)는 그 연장 길이가 제1 자석부(521)의 연장 길이보다 짧게 형성될 수 있다. 일 실시 예에서, 제3 자석부(523)의 연장 길이는 제2 자석부(522)의 연장 길이와 같게 형성될 수 있다.
제3 자석부(523)는 제1 자석부(521)를 마주하도록 배치된다. 구체적으로, 제3 자석부(523)는 공간부(516)를 사이에 두고 좌측의 향하는 대각선 방향으로 제1 자석부(521)를 마주하도록 구성된다.
제3 자석부(523)는 제2 자석부(522)와 소정 거리(D3) 이격되어 위치된다. 또한, 제3 자석부(523)는 제1 자석부(521)와 소정 거리(D2) 이격되어 위치된다.
제3 자석부(523)는 제3 대향 면(523a) 및 제3 반대 면(523b)을 포함한다.
제3 대향 면(523a)은 공간부(516)를 향하는 제3 자석부(523)의 일측 면으로 정의된다. 달리 표현하면, 제3 대향 면(523a)은 제1 자석부(521)를 향하는 제3 자석부(523)의 일측 면으로 정의될 수 있다.
제3 반대 면(523b)은 제1 면(511) 또는 제2 면(512)을 향하는 제3 자석부(523)의 타측 면으로 정의된다. 달리 표현하면, 제3 반대 면(523b)은 제3 대향 면(523a)에 대향하는 제3 자석부(523)의 일측 면으로 정의될 수 있다.
제3 대향 면(523a)과 제3 반대 면(523b)은 서로 다른 극성을 띠도록 구성된다. 즉, 제3 대향 면(523a)은 N극과 S극 중 어느 하나로 자화되고, 제3 반대 면(523b)은 N극과 S극 중 다른 하나로 자화될 수 있다.
이에 따라, 제3 대향 면(523a) 및 제3 반대 면(523b) 중 어느 하나에서 다른 하나로 진행되는 자기장이 제3 자석부(523) 자체에 의해 형성된다.
도시된 실시 예에서, 제3 대향 면(523a)의 극성은 제1 자석부(521)의 제1 대향 면(521a)의 극성과 다르도록 구성될 수 있다.
이에 따라, 제1 자석부(521)와 제3 자석부(523) 사이에는 어느 하나의 자석부에서 다른 하나의 자석부로 향하는 방향의 자기장이 형성된다.
또한, 제3 대향 면(523a)의 극성은 제2 자석부(522)의 제2 대향 면(522a)의 극성과 같도록 형성될 수 있다.
이에 따라, 제2 대향 면(522a)과 제3 대향 면(523a) 사이에는 서로 밀어내는 방향의 자기장이 형성된다.
본 실시 예에서, 제1 자석부(521)는 제2 자석부(522) 및 제3 자석부(523)보다 길게 연장 형성된다. 또한, 제2 자석부(522) 및 제3 자석부(523)는 소정 거리(D3)만큼 이격되도록 배치된다.
제2 자석부(522)와 제3 자석부(523)의 이격 거리(D3)는 제1 자석부(521)와 제2 자석부(522)의 이격 거리(D1) 또는 제1 자석부(521)와 제3 자석부(523)의 이격 거리(D2)보다 길게 형성될 수 있다.
즉, 제2 자석부(522)와 제3 자석부(523)는 그 이격 거리(D3)가 최대가 되도록 배치된다.
이에 따라, 제1 고정 접촉자(220a) 및 제2 고정 접촉자(220b) 부근에서 형성되는 자기장은, 제1 고정 접촉자(220a) 및 제2 고정 접촉자(220b)에 대해 더 큰 경사를 갖도록 형성된다.
그 결과, 상기 자기장에 의해 각 고정 접촉자(220a, 220b) 부근에서 발생되는 전자기력은, 중심부(C)에서 멀어지는 방향으로 형성된다. 이에 따라, 중심부(C)에서 배치되는 구성 요소의 손상이 방지될 수 있다.
(2) 본 발명의 다른 실시 예에 따른 아크 경로 형성부(600)의 설명
이하, 도 8 및 도 9를 참조하여 본 발명의 다른 실시 예에 따른 아크 경로 형성부(600)를 상세하게 설명한다.
도시된 실시 예에서, 아크 경로 형성부(600)는 자석 프레임(610) 및 자석부(620)를 포함한다.
본 실시 예에 따른 자석 프레임(610)은, 상술한 실시 예의 자석 프레임(510)과 구조 및 기능이 동일하다. 이에, 자석 프레임(610)에 대한 설명은 상술한 자석 프레임(510)에 대한 설명으로 갈음하기로 한다.
본 실시 예에 따른 자석부(620)는, 상술한 실시 예의 자석부(520)와 구조 및 기능이 대부분 동일하다. 다만, 본 실시 예에 따른 자석부(620)는, 상술한 실시 예의 자석부(520)와 배치 방식에 있어 차이가 있다.
이에 이하의 설명에서는 본 실시 예에 따른 자석부(620)와 상술한 실시 예에 따른 자석부(520)의 차이를 중심으로 설명한다.
자석부(620)는 제1 자석부(621), 제2 자석부(622) 및 제3 자석부(623)를 포함한다.
제1 자석부(621)는 제2 자석부(622) 및 제3 자석부(623)와 함께 자기장을 형성한다. 또한, 제1 자석부(621)는 자체적으로도 자기장을 형성할 수 있다.
제2 자석부(622)는 제1 자석부(621)와 함께 자기장을 형성한다. 또한, 제2 자석부(622)는 자체적으로도 자기장을 형성할 수 있다.
제2 자석부(622)는 제3 면(613)의 내측에 배치된다. 제2 자석부(622)는 제3 면(613)의 중간 부분에 위치된다.
제3 자석부(623)는 제1 자석부(621)와 함께 자기장을 형성한다. 또한, 제3 자석부(623)는 자체적으로도 자기장을 형성할 수 있다.
제3 자석부(623)는 제2 면(612)의 내측에 배치된다. 제3 자석부(623)는 제2 면(612)의 우측에 치우쳐져 위치된다. 즉, 제3 자석부(623)는 제2 자석부(622)와 이격된 거리(D3)가 최대가 되도록, 제2 자석부(622)가 배치되는 제3 면(613)에 대향하는 제4 면(614)에 인접하게 배치된다.
본 실시 예에서, 제1 자석부(621)는 제2 자석부(622) 및 제3 자석부(623)보다 길게 연장 형성된다. 또한, 제2 자석부(622) 및 제3 자석부(623)는 소정 거리(D3)만큼 이격되도록 배치된다.
제2 자석부(622)와 제3 자석부(623)의 이격 거리(D3)는 제1 자석부(621)와 제2 자석부(622)의 이격 거리(D1) 또는 제1 자석부(621)와 제3 자석부(623)의 이격 거리(D2)보다 길게 형성될 수 있다.
즉, 제2 자석부(622)와 제3 자석부(623)는 그 이격 거리(D3)가 최대가 되도록 배치된다.
이에 따라, 제1 고정 접촉자(220a) 및 제2 고정 접촉자(220b) 부근에서 형성되는 자기장은, 제1 고정 접촉자(220a) 및 제2 고정 접촉자(220b)에 대해 더 큰 경사를 갖도록 형성된다.
그 결과, 상기 자기장에 의해 각 고정 접촉자(220a, 220b) 부근에서 발생되는 전자기력은, 중심부(C)에서 멀어지는 방향으로 형성된다. 이에 따라, 중심부(C)에서 배치되는 구성 요소의 손상이 방지될 수 있다.
(3) 본 발명의 또다른 실시 예에 따른 아크 경로 형성부(700)의 설명
이하, 도 10 및 도 11을 참조하여 본 발명의 또다른 실시 예에 따른 아크 경로 형성부(700)를 상세하게 설명한다.
도시된 실시 예에서, 아크 경로 형성부(700)는 자석 프레임(710) 및 자석부(720)를 포함한다.
본 실시 예에 따른 자석 프레임(710)은, 상술한 실시 예들의 자석 프레임(510, 610)과 구조 및 기능이 동일하다. 이에, 자석 프레임(710)에 대한 설명은 상술한 자석 프레임(510, 610)에 대한 설명으로 갈음하기로 한다.
본 실시 예에 따른 자석부(720)는, 상술한 실시 예들의 자석부(520, 620)와 구조 및 기능이 대부분 동일하다.
이에 이하의 설명에서는 본 실시 예에 따른 자석부(720)와 상술한 실시 예들에 따른 자석부(520, 620)의 차이를 중심으로 설명한다.
자석부(720)는 제1 자석부(721), 제2 자석부(722) 및 제3 자석부(723)를 포함한다.
제1 자석부(721)는 제2 자석부(722) 또는 제3 자석부(723)와 함께 자기장을 형성한다. 또한, 제1 자석부(721)는 자체적으로도 자기장을 형성할 수 있다.
제1 자석부(721)는 상술한 실시 예의 제1 자석부(521, 621)와 구조 및 기능이 동일하다.
다만, 제1 대향 면(721a)은 제2 자석부(722)의 제2 대향 면(722a)과 같은 극성을 띠도록 구성된다. 또한, 제1 대향 면(721a)은 제3 자석부(723)의 제3 대향 면(723a)과 다른 극성을 띠도록 구성된다.
이에 따라, 제1 자석부(721)와 제2 자석부(722) 사이에는 서로 밀어내는 방향의 자기장이 형성된다. 또한, 제1 자석부(721)와 제3 자석부(723) 사이에는 어느 하나의 자석부에서 다른 하나의 자석부를 향하는 방향의 자기장이 형성된다.
제2 자석부(722)는 제1 자석부(721) 또는 제3 자석부(723)와 함께 자기장을 형성한다. 또한, 제2 자석부(722)는 자체적으로도 자기장을 형성할 수 있다.
본 실시 예에서, 제2 자석부(722)는 제3 면(713)의 내측에 배치된다. 제2 자석부(722)는 제3 면(713)의 중간 부분에 위치될 수 있다.
제2 자석부(722)는 제3 자석부(723)와의 이격 거리(D3)가 최대가 되도록 배치된다.
제2 자석부(722)는 상술한 실시 예의 제2 자석부(522, 622)와 구조 및 기능이 동일하다.
다만, 제2 대향 면(722a)은 제1 자석부(721)의 제1 대향 면(721a)과 같은 극성을 띠도록 구성된다. 또한, 제2 대향 면(722a)은 제3 자석부(723)의 제3 대향 면(723a)과 다른 극성을 띠도록 구성된다.
이에 따라, 제2 자석부(722)와 제1 자석부(721) 사이에는 서로 밀어내는 방향의 자기장이 형성된다. 또한, 제2 자석부(722)와 제3 자석부(723) 사이에는 어느 하나의 자석부에서 다른 하나의 자석부를 향하는 방향의 자기장이 형성된다.
제3 자석부(723)는 제1 자석부(721) 또는 제2 자석부(722)와 함께 자기장을 형성한다. 또한, 제3 자석부(723)는 자체적으로도 자기장을 형성할 수 있다.
본 실시 예에서, 제3 자석부(723)는 제4 면(714)의 내측에 배치된다. 제3 자석부(723)는 제4 면(714)의 중간 부분에 위치될 수 있다.
제3 자석부(723)는 제2 자석부(722)와의 이격 거리(D3)가 최대가 되도록 배치된다. 즉, 제2 자석부(722)가 제3 면(723)에 배치된 바, 제3 자석부(723)는 그 이격 거리(D3)가 최대가 될 수 있는 제4 면(724)에 배치된다.
제3 자석부(723)는 상술한 실시 예의 제3 자석부(523, 623)와 구조 및 기능이 동일하다.
다만, 제3 대향 면(723a)은 제1 자석부(721)의 제1 대향 면(721a) 및 제2 자석부(722)의 제2 대향 면(722a)과 다른 극성을 띠도록 구성된다.
이에 따라, 제3 자석부(723)와 제1 자석부(721) 사이 및 제3 자석부(723)와 제2 자석부(722) 사이에는 어느 하나의 자석부에서 다른 하나의 자석부를 향하는 방향의 자기장이 형성된다.
본 실시 예에서, 제1 자석부(721)는 제2 자석부(722) 및 제3 자석부(723)보다 길게 연장 형성된다. 또한, 제2 자석부(722) 및 제3 자석부(723)는 소정 거리(D3)만큼 이격되도록 배치된다.
제2 자석부(722)와 제3 자석부(723)의 이격 거리(D3)는 제1 자석부(721)와 제2 자석부(722)의 이격 거리(D1) 또는 제1 자석부(721)와 제3 자석부(723)의 이격 거리(D2)보다 길게 형성될 수 있다.
또한, 제1 자석부(721)와 제2 자석부(722)의 이격 거리(D1)와 제1 자석부(721)와 제3 자석부(723)의 이격 거리(D2)는 같을 수 있다.
즉, 제2 자석부(722)와 제3 자석부(723)는 그 이격 거리(D3)가 최대가 되도록 배치된다.
또한, 제3 대향 면(723a)은 제1 대향 면(721a) 및 제2 대향 면(722a)과 다른 극성을 띠도록 구성된다. 이에 따라, 자기장은 제1 자석부(721) 및 제2 자석부(722)에서 제3 자석부(723)를 향하는 방향 또는 그 반대 방향으로 형성된다.
이에 따라, 제1 고정 접촉자(220a) 및 제2 고정 접촉자(220b) 부근에서 형성되는 자기장은, 좌우 방향 또는 좌우의 대각선 방향으로 형성된다.
그 결과, 상기 자기장에 의해 각 고정 접촉자(220a, 220b) 부근에서 발생되는 전자기력은, 중심부(C)에서 멀어지는 방향으로 형성된다. 이에 따라, 중심부(C)에서 배치되는 구성 요소의 손상이 방지될 수 있다.
(4) 본 발명의 또다른 실시 예에 따른 아크 경로 형성부(800)의 설명
이하, 도 12 및 도 13을 참조하여 본 발명의 또다른 실시 예에 따른 아크 경로 형성부(800)를 상세하게 설명한다.
도시된 실시 예에서, 아크 경로 형성부(800)는 자석 프레임(810) 및 자석부(820)를 포함한다.
본 실시 예에 따른 자석 프레임(810)은, 상술한 실시 예들의 자석 프레임(510, 610, 710)과 구조 및 기능이 동일하다. 이에, 자석 프레임(810)에 대한 설명은 상술한 자석 프레임(510, 610, 710)에 대한 설명으로 갈음하기로 한다.
본 실시 예에 따른 자석부(820)는, 상술한 실시 예들의 자석부(520, 620, 720)와 구조 및 기능이 대부분 동일하다.
이에 이하의 설명에서는 본 실시 예에 따른 자석부(820)와 상술한 실시 예들에 따른 자석부(520, 620, 720)의 차이를 중심으로 설명한다.
자석부(820)는 제1 자석부(821), 제2 자석부(822) 및 제3 자석부(823)를 포함한다.
제1 자석부(821)는 제2 자석부(822) 또는 제3 자석부(823)와 함께 자기장을 형성한다. 또한, 제1 자석부(821)는 자체적으로도 자기장을 형성할 수 있다.
제1 자석부(821)는 상술한 실시 예의 제1 자석부(521, 621, 721)와 구조 및 기능이 동일하다.
다만, 제1 대향 면(821a)은 제2 자석부(822)의 제2 대향 면(822a) 및 제3 자석부(823)의 제3 대향 면(823a)과 다른 극성을 띠도록 구성된다.
이에 따라, 제1 자석부(821)와 제2 자석부(822) 사이 및 제1 자석부(821)와 제3 자석부(823) 사이에는 어느 하나의 자석부에서 다른 하나의 자석부를 향하는 방향의 자기장이 형성된다.
제2 자석부(822)는 제1 자석부(821) 또는 제3 자석부(823)와 함께 자기장을 형성한다. 또한, 제2 자석부(822)는 자체적으로도 자기장을 형성할 수 있다.
제2 자석부(822)는 상술한 실시 예의 제2 자석부(522, 622, 722)와 구조 및 기능이 동일하다. 또한, 제2 자석부(822)는 상술한 실시 예의 제2 자석부(722)와 배치 방식이 동일하다.
다만, 제2 대향 면(822a)은 제1 자석부(821)의 제1 대향 면(821a)과 다른 극성을 띠도록 구성된다. 또한, 제2 대향 면(822a)은 제3 자석부(823)의 제3 대향 면(823a)과 같은 극성을 띠도록 구성된다.
이에 따라, 제2 자석부(822)와 제1 자석부(821) 사이에는 어느 하나의 자석부에서 다른 하나의 자석부를 향하는 방향의 자기장이 형성된다. 또한, 제2 자석부(822)와 제3 자석부(823) 사이에는 서로 밀어내는 방향의 자기장이 형성된다.
제3 자석부(823)는 제1 자석부(821) 또는 제2 자석부(822)와 함께 자기장을 형성한다. 또한, 제3 자석부(823)는 자체적으로도 자기장을 형성할 수 있다.
제3 자석부(823)는 상술한 실시 예의 제3 자석부(523, 623, 723)와 구조 및 기능이 동일하다. 또한, 제3 자석부(823)는 상술한 실시 예의 제3 자석부(723)와 배치 방식이 동일하다.
다만, 제3 대향 면(823a)은 제1 자석부(821)의 제1 대향 면(821a)과 다른 극성을 띠도록 구성된다. 또한, 제3 대향 면(823a)은 제2 자석부(822)의 제2 대향 면(823a)과 같은 극성을 띠도록 구성된다.
이에 따라, 제3 자석부(823)와 제1 자석부(821) 사이에는 어느 하나의 자석부에서 다른 하나의 자석부를 향하는 방향의 자기장이 형성된다. 또한, 제3 자석부(823)와 제2 자석부(822) 사이에는 서로 밀어내는 방향의 자기장이 형성된다.
본 실시 예에서, 제1 자석부(821)는 제2 자석부(822) 및 제3 자석부(823)보다 길게 연장 형성된다. 또한, 제2 자석부(822) 및 제3 자석부(823)는 소정 거리(D3)만큼 이격되도록 배치된다.
제2 자석부(822)와 제3 자석부(823)의 이격 거리(D3)는 제1 자석부(821)와 제2 자석부(822)의 이격 거리(D1) 또는 제1 자석부(821)와 제3 자석부(823)의 이격 거리(D2)보다 길게 형성될 수 있다.
또한, 제1 자석부(821)와 제2 자석부(822)의 이격 거리(D1)와 제1 자석부(821)와 제3 자석부(823)의 이격 거리(D2)는 같을 수 있다.
즉, 제2 자석부(822)와 제3 자석부(823)는 그 이격 거리(D3)가 최대가 되도록 배치된다.
또한, 제1 대향 면(821a)은 제2 대향 면(822a) 및 제3 대향 면(823a)과 다른 극성을 띠도록 구성된다. 이에 따라, 자기장은 제1 자석부(821)에서 제2 자석부(822) 및 제3 자석부(823)를 향하는 방향 또는 그 반대 방향으로 형성된다.
이에 따라, 제1 고정 접촉자(220a) 및 제2 고정 접촉자(220b) 부근에서 형성되는 자기장은, 좌우의 대각선 방향으로 형성된다.
그 결과, 상기 자기장에 의해 각 고정 접촉자(220a, 220b) 부근에서 발생되는 전자기력은, 중심부(C)에서 멀어지는 방향으로 형성된다. 이에 따라, 중심부(C)에서 배치되는 구성 요소의 손상이 방지될 수 있다.
4. 본 발명의 실시 예에 따른 아크 경로 형성부(500, 600, 700, 800)에 의해 형성되는 아크의 경로(A.P)의 설명
본 발명의 실시 예에 따른 직류 릴레이(10)는 아크 경로 형성부(500, 600, 700, 800)를 포함한다. 아크 경로 형성부(500, 600, 700, 800)는 아크 챔버(210) 내부에 자기장을 형성한다.
상기 자기장이 형성된 상태에서 고정 접촉자(220)와 가동 접촉자(430)가 접촉되어 전류가 통전되면, 플레밍의 왼손 법칙(Fleming's left hand rule)에 따라 전자기력이 발생된다.
상기 전자기력에 의해, 고정 접촉자(220)와 가동 접촉자(430)가 이격되어 발생되는 아크가 이동되는 아크의 경로(A.P)가 형성될 수 있다.
이하, 도 14 내지 도 29를 참조하여, 본 발명의 실시 예에 따른 직류 릴레이(10)에서 아크의 경로(A.P)가 형성되는 과정을 상세하게 설명한다.
이하의 설명에서는, 고정 접촉자(220)와 가동 접촉자(430)가 이격된 직후, 고정 접촉자(220)와 가동 접촉자(430)가 접촉되었던 부분에서 아크가 발생됨을 전제한다.
또한, 이하의 설명에서, 서로 다른 자석부(520, 620, 720, 820)끼리 영향을 미치는 자기장을 "주 자기장(M.M.F, Main Magnetic Field)", 각 자석부(520, 620, 720, 820) 자체에 의해 형성되는 자기장을 "부 자기장(S.M.F, Sub Magnetic Field)"라 한다.
(1) 본 발명의 일 실시 예에 따른 아크 경로 형성부(500)에 의해 형성되는 아크의 경로(A.P)의 설명
도 14 내지 도 17을 참조하면, 본 발명의 일 실시 예에 따른 아크 경로 형성부(500)에서 아크의 경로(A.P)가 형성된 상태가 도시된다.
도 14의 (a), 도 15의 (a), 도 16의 (a) 및 도 17의 (a)에서의 전류의 통전 방향은, 전류가 제2 고정 접촉자(220b)로 유입되어 가동 접촉자(430)를 지난 후, 제1 고정 접촉자(220a)를 통해 나가는 방향이다.
또한, 도 14의 (b), 도 15의 (b), 도 16의 (b) 및 도 17의 (b)에서의 전류의 통전 방향은, 전류가 제1 고정 접촉자(220a)로 유입되어 가동 접촉자(430)를 지난 후, 제2 고정 접촉자(220b)를 통해 나가는 방향이다.
도 14를 참조하면, 제1 대향 면(521a)이 N극으로 자화된다. 또한, 제2 대향 면(522a) 및 제3 대향 면(523a)은 S극으로 자화된다.
알려진 바와 같이, 자기장은 N극에서 발산되어 S극으로 수렴되는 방향으로 형성된다.
따라서, 제1 자석부(521)와 제2 자석부(522) 사이에서 형성되는 주 자기장(M.M.F)은 제1 대향 면(521a)에서 제2 대향 면(522a)을 향하는 방향으로 형성된다.
이때, 제1 자석부(521)는 제1 대향 면(521a)에서 제1 반대 면(521b)을 향하는 방향의 부 자기장(S.M.F)을 형성한다. 또한, 제2 자석부(522)는 제2 반대 면(522b)에서 제2 대향 면(522a)을 향하는 방향의 부 자기장(S.M.F)을 형성한다.
상기 부 자기장(S.M.F)은 제1 자석부(521)와 제2 자석부(522) 사이에서 형성되는 주 자기장(M.M.F)과 같은 방향으로 형성된다. 이에 따라, 제1 자석부(521)와 제2 자석부(522) 사이에서 형성되는 주 자기장(M.M.F)의 세기가 강화될 수 있다.
이에 따라, 도 14의 (a)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 전방 측의 우측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측의 우측을 향하도록 형성된다.
유사하게, 도 14의 (b)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 후방 측의 좌측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측의 좌측을 향하도록 형성된다.
또한, 제1 자석부(521)와 제3 자석부(523) 사이에서 형성되는 주 자기장(M.M.F)은 제1 대향 면(521a)에서 제3 대향 면(523a)을 향하는 방향으로 형성된다.
이때, 제1 자석부(521)는 제1 대향 면(521a)에서 제1 반대 면(521b)을 향하는 방향의 부 자기장(S.M.F)을 형성한다. 또한, 제3 자석부(523)는 제3 반대 면(523b)에서 제3 대향 면(523a)을 향하는 방향의 부 자기장(S.M.F)을 형성한다.
상기 부 자기장(S.M.F)은 제1 자석부(521)와 제3 자석부(523) 사이에서 형성되는 주 자기장(M.M.F)과 같은 방향으로 형성된다. 이에 따라, 제1 자석부(521)와 제2 자석부(522) 사이에서 형성되는 주 자기장(M.M.F)의 세기가 강화될 수 있다.
이에 따라, 도 14의 (a)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 전방 측의 좌측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측의 좌측을 향하도록 형성된다.
유사하게, 도 14의 (b)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 후방 측의 우측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측의 우측을 향하도록 형성된다.
이에 따라, 발생된 아크의 경로(A.P)는 중심부(C)를 향하지 않게 된다. 그 결과, 중심부(C)에 배치되는 구성 요소의 손상이 방지될 수 있다.
도 15를 참조하면, 제1 대향 면(521a)이 S극으로 자화된다. 또한, 제2 대향 면(522a) 및 제3 대향 면(523a)은 N극으로 자화된다.
따라서, 제1 자석부(521)와 제2 자석부(522) 사이에서 형성되는 주 자기장(M.M.F)은 제2 대향 면(522a)에서 제1 대향 면(521a)을 향하는 방향으로 형성된다.
이때, 제1 자석부(521)는 제1 반대 면(521b)에서 제1 대향 면(521a)을 향하는 방향의 부 자기장(S.M.F)을 형성한다. 또한, 제2 자석부(522)는 제2 대향 면(522a)에서 제2 반대 면(522b)을 향하는 방향의 부 자기장(S.M.F)을 형성한다.
상기 부 자기장(S.M.F)은 제1 자석부(521)와 제2 자석부(522) 사이에서 형성되는 주 자기장(M.M.F)과 같은 방향으로 형성된다. 이에 따라, 제1 자석부(521)와 제2 자석부(522) 사이에서 형성되는 주 자기장(M.M.F)의 세기가 강화될 수 있다.
이에 따라, 도 15의 (a)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 후방 측의 좌측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측의 좌측을 향하도록 형성된다.
유사하게, 도 15의 (b)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 전방 측의 우측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측의 우측을 향하도록 형성된다.
마찬가지로, 제1 자석부(521)와 제3 자석부(523) 사이에서 형성되는 주 자기장(M.M.F)은 제3 대향 면(523a)에서 제1 대향 면(521a)을 향하는 방향으로 형성된다.
이때, 제1 자석부(521)는 제1 반대 면(521b)에서 제1 대향 면(521a)을 향하는 방향의 부 자기장(S.M.F)을 형성한다. 또한, 제3 자석부(523)는 제3 대향 면(523a)에서 제3 반대 면(523b)을 향하는 방향의 부 자기장(S.M.F)을 형성한다.
상기 부 자기장(S.M.F)은 제1 자석부(521)와 제3 자석부(523) 사이에서 형성되는 주 자기장(M.M.F)과 같은 방향으로 형성된다. 이에 따라, 제1 자석부(521)와 제2 자석부(522) 사이에서 형성되는 주 자기장(M.M.F)의 세기가 강화될 수 있다.
이에 따라, 도 15의 (a)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 후방 측의 우측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측의 우측을 향하도록 형성된다.
유사하게, 도 15의 (b)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 전방 측의 좌측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측의 좌측을 향하도록 형성된다.
이에 따라, 발생된 아크의 경로(A.P)는 중심부(C)를 향하지 않게 된다. 그 결과, 중심부(C)에 배치되는 구성 요소의 손상이 방지될 수 있다.
도 16을 참조하면, 제1 대향 면(521a)이 N극으로 자화된다. 또한, 제2 대향 면(522a) 및 제3 대향 면(523a)은 S극으로 자화된다.
따라서, 제1 자석부(521)와 제2 자석부(522) 사이에서 형성되는 주 자기장(M.M.F)은 제1 대향 면(521a)에서 제2 대향 면(522a)을 향하는 방향으로 형성된다.
이때, 제1 자석부(521)는 제1 대향 면(521a)에서 제1 반대 면(521b)을 향하는 방향의 부 자기장(S.M.F)을 형성한다. 또한, 제2 자석부(522)는 제2 반대 면(522b)에서 제2 대향 면(522a)을 향하는 방향의 부 자기장(S.M.F)을 형성한다.
상기 부 자기장(S.M.F)은 제1 자석부(521)와 제2 자석부(522) 사이에서 형성되는 주 자기장(M.M.F)과 같은 방향으로 형성된다. 이에 따라, 제1 자석부(521)와 제2 자석부(522) 사이에서 형성되는 주 자기장(M.M.F)의 세기가 강화될 수 있다.
이에 따라, 도 16의 (a)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 전방 측의 좌측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측의 좌측을 향하도록 형성된다.
유사하게, 도 16의 (b)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 후방 측의 우측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측의 우측을 향하도록 형성된다.
또한, 제1 자석부(521)와 제3 자석부(523) 사이에서 형성되는 주 자기장(M.M.F)은 제1 대향 면(521a)에서 제3 대향 면(523a)을 향하는 방향으로 형성된다.
이때, 제1 자석부(521)는 제1 대향 면(521a)에서 제1 반대 면(521b)을 향하는 방향의 부 자기장(S.M.F)을 형성한다. 또한, 제3 자석부(523)는 제3 반대 면(523b)에서 제3 대향 면(523a)을 향하는 방향의 부 자기장(S.M.F)을 형성한다.
상기 부 자기장(S.M.F)은 제1 자석부(521)와 제3 자석부(523) 사이에서 형성되는 주 자기장(M.M.F)과 같은 방향으로 형성된다. 이에 따라, 제1 자석부(521)와 제2 자석부(522) 사이에서 형성되는 주 자기장(M.M.F)의 세기가 강화될 수 있다.
이에 따라, 도 16의 (a)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 전방 측의 우측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측의 우측을 향하도록 형성된다.
유사하게, 도 16의 (b)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 후방 측의 좌측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측의 좌측을 향하도록 형성된다.
이에 따라, 발생된 아크의 경로(A.P)는 중심부(C)를 향하지 않게 된다. 그 결과, 중심부(C)에 배치되는 구성 요소의 손상이 방지될 수 있다.
도 17을 참조하면, 제1 대향 면(521a)이 S극으로 자화된다. 또한, 제2 대향 면(522a) 및 제3 대향 면(523a)은 N극으로 자화된다.
따라서, 제1 자석부(521)와 제2 자석부(522) 사이에서 형성되는 주 자기장(M.M.F)은 제2 대향 면(522a)에서 제1 대향 면(521a)을 향하는 방향으로 형성된다.
이때, 제1 자석부(521)는 제1 반대 면(521b)에서 제1 대향 면(521a)을 향하는 방향의 부 자기장(S.M.F)을 형성한다. 또한, 제2 자석부(522)는 제2 대향 면(522a)에서 제2 반대 면(522b)을 향하는 방향의 부 자기장(S.M.F)을 형성한다.
상기 부 자기장(S.M.F)은 제1 자석부(521)와 제2 자석부(522) 사이에서 형성되는 주 자기장(M.M.F)과 같은 방향으로 형성된다. 이에 따라, 제1 자석부(521)와 제2 자석부(522) 사이에서 형성되는 주 자기장(M.M.F)의 세기가 강화될 수 있다.
이에 따라, 도 17의 (a)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 후방 측의 우측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측의 우측을 향하도록 형성된다.
유사하게, 도 17의 (b)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 전방 측의 좌측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측의 좌측을 향하도록 형성된다.
마찬가지로, 제1 자석부(521)와 제3 자석부(523) 사이에서 형성되는 주 자기장(M.M.F)은 제3 대향 면(523a)에서 제1 대향 면(521a)을 향하는 방향으로 형성된다.
이때, 제1 자석부(521)는 제1 반대 면(521b)에서 제1 대향 면(521a)을 향하는 방향의 부 자기장(S.M.F)을 형성한다. 또한, 제3 자석부(523)는 제3 대향 면(523a)에서 제3 반대 면(523b)을 향하는 방향의 부 자기장(S.M.F)을 형성한다.
상기 부 자기장(S.M.F)은 제1 자석부(521)와 제3 자석부(523) 사이에서 형성되는 주 자기장(M.M.F)과 같은 방향으로 형성된다. 이에 따라, 제1 자석부(521)와 제2 자석부(522) 사이에서 형성되는 주 자기장(M.M.F)의 세기가 강화될 수 있다.
이에 따라, 도 17의 (a)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 후방 측의 좌측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측의 좌측을 향하도록 형성된다.
유사하게, 도 17의 (b)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 전방 측의 우측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측의 우측을 향하도록 형성된다.
이에 따라, 발생된 아크의 경로(A.P)는 중심부(C)를 향하지 않게 된다. 그 결과, 중심부(C)에 배치되는 구성 요소의 손상이 방지될 수 있다.
본 실시 예에서, 제1 자석부(521)는 제2 자석부(522) 및 제3 자석부(523)보다 길게 연장 형성된다. 또한, 제2 자석부(522) 및 제3 자석부(523)는 소정 거리(D3)만큼 이격되도록 배치된다.
제2 자석부(522)와 제3 자석부(523)의 이격 거리(D3)는 제1 자석부(521)와 제2 자석부(522)의 이격 거리(D1) 또는 제1 자석부(521)와 제3 자석부(523)의 이격 거리(D2)보다 길게 형성될 수 있다.
즉, 제2 자석부(522)와 제3 자석부(523)는 그 이격 거리(D3)가 최대가 되도록 배치된다.
이에 따라, 제1 고정 접촉자(220a) 및 제2 고정 접촉자(220b) 부근에서 형성되는 자기장은, 제1 고정 접촉자(220a) 및 제2 고정 접촉자(220b)에 대해 더 큰 경사를 갖도록 형성된다.
그 결과, 상기 자기장에 의해 각 고정 접촉자(220a, 220b) 부근에서 발생되는 전자기력은, 중심부(C)에서 멀어지는 방향으로 형성된다. 이에 따라, 중심부(C)에서 배치되는 구성 요소의 손상이 방지될 수 있다.
(2) 본 발명의 다른 실시 예에 따른 아크 경로 형성부(600)에 의해 형성되는 아크의 경로(A.P)의 설명
도 18 내지 도 21을 참조하면, 본 발명의 다른 실시 예에 따른 아크 경로 형성부(600)에서 아크의 경로(A.P)가 형성된 상태가 도시된다.
도 18의 (a), 도 19의 (a), 도 20의 (a) 및 도 21의 (a)에서의 전류의 통전 방향은, 전류가 제2 고정 접촉자(220b)로 유입되어 가동 접촉자(430)를 지난 후, 제1 고정 접촉자(220a)를 통해 나가는 방향이다.
또한, 도 18의 (b), 도 19의 (b), 도 20의 (b) 및 도 21의 (b)에서의 전류의 통전 방향은, 전류가 제1 고정 접촉자(220a)로 유입되어 가동 접촉자(430)를 지난 후, 제2 고정 접촉자(220b)를 통해 나가는 방향이다.
도 18을 참조하면, 제1 대향 면(621a)이 N극으로 자화된다. 또한, 제2 대향 면(622a) 및 제3 대향 면(623a)은 S극으로 자화된다.
제1 자석부(621) 및 제2 자석부(622)에 의해 주 자기장(M.M.F) 및 부 자기장(S.M.F)이 형성되는 과정 및 방향은 상술한 도 14의 실시 예와 같다.
이에 따라, 도 18의 (a)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 전방 측의 우측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측의 우측을 향하도록 형성된다.
유사하게, 도 18의 (b)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 후방 측의 좌측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측의 좌측을 향하도록 형성된다.
제1 자석부(621) 및 제3 자석부(623)에 의해 주 자기장(M.M.F) 및 부 자기장(S.M.F)이 형성되는 과정 및 방향은 상술한 도 14의 실시 예와 같다.
이에 따라, 도 18의 (a)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 전방 측의 좌측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측의 좌측을 향하도록 형성된다.
유사하게, 도 18의 (b)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 후방 측의 우측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측의 우측을 향하도록 형성된다.
도 19를 참조하면, 제1 대향 면(621a)이 S극으로 자화된다. 또한, 제2 대향 면(622a) 및 제3 대향 면(623a)은 N극으로 자화된다.
제1 자석부(621) 및 제2 자석부(622)에 의해 주 자기장(M.M.F) 및 부 자기장(S.M.F)이 형성되는 과정 및 방향은 상술한 도 15의 실시 예와 같다.
이에 따라, 도 19의 (a)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 후방 측의 좌측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측의 좌측을 향하도록 형성된다.
유사하게, 도 19의 (b)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 전방 측의 우측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측의 우측을 향하도록 형성된다.
제1 자석부(621) 및 제3 자석부(623)에 의해 주 자기장(M.M.F) 및 부 자기장(S.M.F)이 형성되는 과정 및 방향은 상술한 도 15의 실시 예와 같다.
이에 따라, 도 19의 (a)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 후방 측의 우측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측의 우측을 향하도록 형성된다.
유사하게, 도 19의 (b)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 전방 측의 좌측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측의 좌측을 향하도록 형성된다.
이에 따라, 발생된 아크의 경로(A.P)는 중심부(C)를 향하지 않게 된다. 그 결과, 중심부(C)에 배치되는 구성 요소의 손상이 방지될 수 있다.
도 20을 참조하면, 제1 대향 면(621a)이 N극으로 자화된다. 또한, 제2 대향 면(622a) 및 제3 대향 면(623a)은 S극으로 자화된다.
제1 자석부(621) 및 제2 자석부(622)에 의해 주 자기장(M.M.F) 및 부 자기장(S.M.F)이 형성되는 과정 및 방향은 상술한 도 16의 실시 예와 같다.
이에 따라, 도 20의 (a)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 전방 측의 좌측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측의 좌측을 향하도록 형성된다.
유사하게, 도 20의 (b)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 후방 측의 우측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측의 우측을 향하도록 형성된다.
제1 자석부(621) 및 제3 자석부(623)에 의해 주 자기장(M.M.F) 및 부 자기장(S.M.F)이 형성되는 과정 및 방향은 상술한 도 16의 실시 예와 같다.
이에 따라, 도 20의 (a)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 전방 측의 우측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측의 우측을 향하도록 형성된다.
유사하게, 도 20의 (b)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 후방 측의 좌측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측의 좌측을 향하도록 형성된다.
이에 따라, 발생된 아크의 경로(A.P)는 중심부(C)를 향하지 않게 된다. 그 결과, 중심부(C)에 배치되는 구성 요소의 손상이 방지될 수 있다.
도 21을 참조하면, 제1 대향 면(621a)이 S극으로 자화된다. 또한, 제2 대향 면(622a) 및 제3 대향 면(623a)은 N극으로 자화된다.
제1 자석부(621) 및 제2 자석부(622)에 의해 주 자기장(M.M.F) 및 부 자기장(S.M.F)이 형성되는 과정 및 방향은 상술한 도 17의 실시 예와 같다.
이에 따라, 도 21의 (a)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 후방 측의 우측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측의 우측을 향하도록 형성된다.
유사하게, 도 21의 (b)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 전방 측의 좌측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측의 좌측을 향하도록 형성된다.
제1 자석부(621) 및 제3 자석부(623)에 의해 주 자기장(M.M.F) 및 부 자기장(S.M.F)이 형성되는 과정 및 방향은 상술한 도 17의 실시 예와 같다.
이에 따라, 도 21의 (a)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 후방 측의 좌측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측의 좌측을 향하도록 형성된다.
유사하게, 도 21의 (b)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 전방 측의 우측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측의 우측을 향하도록 형성된다.
이에 따라, 발생된 아크의 경로(A.P)는 중심부(C)를 향하지 않게 된다. 그 결과, 중심부(C)에 배치되는 구성 요소의 손상이 방지될 수 있다.
본 실시 예에서, 제1 자석부(621)는 제2 자석부(622) 및 제3 자석부(623)보다 길게 연장 형성된다. 또한, 제2 자석부(622) 및 제3 자석부(623)는 소정 거리(D3)만큼 이격되도록 배치된다.
제2 자석부(622)와 제3 자석부(623)의 이격 거리(D3)는 제1 자석부(621)와 제2 자석부(622)의 이격 거리(D1) 또는 제1 자석부(621)와 제3 자석부(623)의 이격 거리(D2)보다 길게 형성될 수 있다.
즉, 제2 자석부(622)와 제3 자석부(623)는 그 이격 거리(D3)가 최대가 되도록 배치된다.
이에 따라, 제1 고정 접촉자(220a) 및 제2 고정 접촉자(220b) 부근에서 형성되는 자기장은, 제1 고정 접촉자(220a) 및 제2 고정 접촉자(220b)에 대해 더 큰 경사를 갖도록 형성된다.
그 결과, 상기 자기장에 의해 각 고정 접촉자(220a, 220b) 부근에서 발생되는 전자기력은, 중심부(C)에서 멀어지는 방향으로 형성된다. 이에 따라, 중심부(C)에서 배치되는 구성 요소의 손상이 방지될 수 있다.
(3) 본 발명의 또다른 실시 예에 따른 아크 경로 형성부(700)에 의해 형성되는 아크의 경로(A.P)의 설명
도 22 내지 도 25를 참조하면, 본 발명의 또다른 실시 예에 따른 아크 경로 형성부(700)에서 아크의 경로(A.P)가 형성된 상태가 도시된다.
도 22의 (a), 도 23의 (a), 도 24의 (a) 및 도 25의 (a)에서의 전류의 통전 방향은, 전류가 제2 고정 접촉자(220b)로 유입되어 가동 접촉자(430)를 지난 후, 제1 고정 접촉자(220a)를 통해 나가는 방향이다.
또한, 도 22의 (b), 도 23의 (b), 도 24의 (b) 및 도 25의 (b)에서의 전류의 통전 방향은, 전류가 제1 고정 접촉자(220a)로 유입되어 가동 접촉자(430)를 지난 후, 제2 고정 접촉자(220b)를 통해 나가는 방향이다.
도 22를 참조하면, 제1 대향 면(721a) 및 제2 대향 면(722a)이 N극으로 자화된다. 또한, 제2 대향 면(722a) 및 제3 대향 면(723a)은 S극으로 자화된다.
따라서, 제1 자석부(721)와 제2 자석부(722) 사이에서 형성되는 주 자기장(M.M.F)은 서로 밀어내는 방향으로 형성된다.
즉, 제1 대향 면(721a)에서 발산되는 주 자기장(M.M.F)은 제2 대향 면(722a)에서 멀어지는 방향으로 형성된다. 또한, 제2 대향 면(722a)에서 발산되는 주 자기장(M.M.F) 역시 제1 대향 면(721a)에서 멀어지는 방향으로 형성된다.
동시에, 제1 자석부(721)와 제3 자석부(723) 사이에서 형성되는 주 자기장(M.M.F)은 제1 대향 면(721a)에서 제3 대향 면(723a)을 향하는 방향으로 형성된다.
마찬가지로, 제2 자석부(722)와 제3 자석부(723) 사이에서 형성되는 주 자기장(M.M.F)은 제2 대향 면(722a)에서 제3 대향 면(723a)을 향하는 방향으로 형성된다.
이때, 제1 자석부(721)는 제1 대향 면(721a)에서 제1 반대 면(721b)을 향하는 방향의 부 자기장(S.M.F)을 형성한다. 또한, 제2 자석부(722)는 제2 대향 면(722a)에서 제2 반대 면(722b)을 향하는 방향의 부 자기장(S.M.F)을 형성한다. 마찬가지로, 제3 자석부(723)는 제3 반대 면(723b)에서 제3 대향 면(723b)을 향하는 방향의 부 자기장(S.M.F)을 형성한다.
상기 부 자기장(S.M.F)은 제1 자석부(721), 제2 자석부(722) 및 제3 자석부(723) 사이에서 형성되는 각 주 자기장(M.M.F)과 같은 방향으로 형성된다. 이에 따라, 제1 자석부(721), 제2 자석부(722) 및 제3 자석부(723) 사이에서 형성되는 주 자기장(M.M.F)의 세기가 강화될 수 있다.
이에 따라, 도 22의 (a)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 후방 측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측을 향하도록 형성된다.
유사하게, 도 22의 (b)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 전방 측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측을 향하도록 형성된다.
마찬가지로, 도 22의 (a)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 전방 측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측을 향하도록 형성된다.
유사하게, 도 22의 (b)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 후방 측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측을 향하도록 형성된다.
이에 따라, 발생된 아크의 경로(A.P)는 중심부(C)를 향하지 않게 된다. 그 결과, 중심부(C)에 배치되는 구성 요소의 손상이 방지될 수 있다.
도 23을 참조하면, 제1 대향 면(721a) 및 제2 대향 면(722a)이 S극으로 자화된다. 또한, 제3 대향 면(723a)은 N극으로 자화된다.
따라서, 제1 자석부(721)와 제2 자석부(722) 사이에서 형성되는 주 자기장(M.M.F)은 서로 밀어내는 방향으로 형성된다.
즉, 제1 대향 면(721a)에서 발산되는 주 자기장(M.M.F)은 제2 대향 면(722a)에서 멀어지는 방향으로 형성된다. 또한, 제2 대향 면(722a)에서 발산되는 주 자기장(M.M.F) 역시 제1 대향 면(721a)에서 멀어지는 방향으로 형성된다.
동시에, 제1 자석부(721)와 제3 자석부(723) 사이에서 형성되는 주 자기장(M.M.F)은 제3 대향 면(723a)에서 제1 대향 면(721a)을 향하는 방향으로 형성된다.
마찬가지로, 제2 자석부(722)와 제3 자석부(723) 사이에서 형성되는 주 자기장(M.M.F)은 제3 대향 면(723a)에서 제2 대향 면(722a)을 향하는 방향으로 형성된다.
이때, 제1 자석부(721)는 제1 반대 면(721b)에서 제1 대향 면(721a)을 향하는 방향의 부 자기장(S.M.F)을 형성한다. 또한, 제2 자석부(722)는 제2 반대 면(722b)에서 제2 대향 면(722a)을 향하는 방향의 부 자기장(S.M.F)을 형성한다. 마찬가지로, 제3 자석부(723)는 제3 대향 면(723a)에서 제3 반대 면(723a)을 향하는 방향의 부 자기장(S.M.F)을 형성한다.
상기 부 자기장(S.M.F)은 제1 자석부(721), 제2 자석부(722) 및 제3 자석부(723) 사이에서 형성되는 각 주 자기장(M.M.F)과 같은 방향으로 형성된다. 이에 따라, 제1 자석부(721), 제2 자석부(722) 및 제3 자석부(723) 사이에서 형성되는 주 자기장(M.M.F)의 세기가 강화될 수 있다.
이에 따라, 도 23의 (a)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 전방 측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측을 향하도록 형성된다.
유사하게, 도 23의 (b)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 후방 측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측을 향하도록 형성된다.
마찬가지로, 도 23의 (a)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 후방 측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측을 향하도록 형성된다.
유사하게, 도 23의 (b)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 전방 측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측을 향하도록 형성된다.
이에 따라, 발생된 아크의 경로(A.P)는 중심부(C)를 향하지 않게 된다. 그 결과, 중심부(C)에 배치되는 구성 요소의 손상이 방지될 수 있다.
도 24를 참조하면, 제1 대향 면(721a) 및 제2 대향 면(722a)이 N극으로 자화된다. 또한, 제2 대향 면(722a) 및 제3 대향 면(723a)은 S극으로 자화된다.
제1 자석부(721), 제2 자석부(722) 및 제3 자석부(723)에 의해 주 자기장(M.M.F) 및 부 자기장(S.M.F)이 형성되는 과정 및 방향은 상술한 도 22의 실시 예와 같다.
이에 따라, 도 24의 (a)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 후방 측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측을 향하도록 형성된다.
유사하게, 도 24의 (b)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 전방 측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측을 향하도록 형성된다.
마찬가지로, 도 24의 (a)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 전방 측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측을 향하도록 형성된다.
유사하게, 도 24의 (b)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 후방 측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측을 향하도록 형성된다.
이에 따라, 발생된 아크의 경로(A.P)는 중심부(C)를 향하지 않게 된다. 그 결과, 중심부(C)에 배치되는 구성 요소의 손상이 방지될 수 있다.
도 25를 참조하면, 제1 대향 면(721a) 및 제2 대향 면(722a)이 S극으로 자화된다. 또한, 제3 대향 면(723a)은 N극으로 자화된다.
제1 자석부(721), 제2 자석부(722) 및 제3 자석부(723)에 의해 주 자기장(M.M.F) 및 부 자기장(S.M.F)이 형성되는 과정 및 방향은 상술한 도 23의 실시 예와 같다.
이에 따라, 도 25의 (a)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 전방 측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측을 향하도록 형성된다.
유사하게, 도 25의 (b)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 후방 측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측을 향하도록 형성된다.
마찬가지로, 도 25의 (a)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 후방 측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측을 향하도록 형성된다.
유사하게, 도 25의 (b)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 전방 측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측을 향하도록 형성된다.
이에 따라, 발생된 아크의 경로(A.P)는 중심부(C)를 향하지 않게 된다. 그 결과, 중심부(C)에 배치되는 구성 요소의 손상이 방지될 수 있다.
본 실시 예에서, 제1 자석부(721)는 제2 자석부(722) 및 제3 자석부(723)보다 길게 연장 형성된다. 또한, 제2 자석부(722) 및 제3 자석부(723)는 소정 거리(D3)만큼 이격되도록 배치된다.
제2 자석부(722)와 제3 자석부(723)의 이격 거리(D3)는 제1 자석부(721)와 제2 자석부(722)의 이격 거리(D1) 또는 제1 자석부(721)와 제3 자석부(723)의 이격 거리(D2)보다 길게 형성될 수 있다.
또한, 제1 자석부(721)와 제2 자석부(722)의 이격 거리(D1)와 제1 자석부(721)와 제3 자석부(723)의 이격 거리(D2)는 같을 수 있다.
즉, 제2 자석부(722)와 제3 자석부(723)는 그 이격 거리(D3)가 최대가 되도록 배치된다.
또한, 제3 대향 면(723a)은 제1 대향 면(721a) 및 제2 대향 면(722a)과 다른 극성을 띠도록 구성된다. 이에 따라, 자기장은 제1 자석부(721) 및 제2 자석부(722)에서 제3 자석부(723)를 향하는 방향 또는 그 반대 방향으로 형성된다.
이에 따라, 제1 고정 접촉자(220a) 및 제2 고정 접촉자(220b) 부근에서 형성되는 자기장은, 좌우 방향 또는 좌우의 대각선 방향으로 형성된다.
그 결과, 상기 자기장에 의해 각 고정 접촉자(220a, 220b) 부근에서 발생되는 전자기력은, 중심부(C)에서 멀어지는 방향으로 형성된다. 이에 따라, 중심부(C)에서 배치되는 구성 요소의 손상이 방지될 수 있다.
(4) 본 발명의 또다른 실시 예에 따른 아크 경로 형성부(800)에 의해 형성되는 아크의 경로(A.P)의 설명
도 26 내지 도 29를 참조하면, 본 발명의 또다른 실시 예에 따른 아크 경로 형성부(800)에서 아크의 경로(A.P)가 형성된 상태가 도시된다.
도 26의 (a), 도 27의 (a), 도 28의 (a) 및 도 29의 (a)에서의 전류의 통전 방향은, 전류가 제2 고정 접촉자(220b)로 유입되어 가동 접촉자(430)를 지난 후, 제1 고정 접촉자(220a)를 통해 나가는 방향이다.
또한, 도 26의 (b), 도 27의 (b), 도 28의 (b) 및 도 29의 (b)에서의 전류의 통전 방향은, 전류가 제1 고정 접촉자(220a)로 유입되어 가동 접촉자(430)를 지난 후, 제2 고정 접촉자(220b)를 통해 나가는 방향이다.
도 26을 참조하면, 제1 대향 면(821a)이 N극으로 자화된다. 또한, 제2 대향 면(822a) 및 제3 대향 면(823a)은 S극으로 자화된다.
제1 자석부(821) 및 제2 자석부(822)에 의해 주 자기장(M.M.F) 및 부 자기장(S.M.F)이 형성되는 과정 및 방향은 상술한 도 14의 실시 예와 같다.
이에 따라, 도 26의 (a)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 전방 측의 우측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측의 우측을 향하도록 형성된다.
유사하게, 도 26의 (b)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 후방 측의 좌측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측의 좌측을 향하도록 형성된다.
제1 자석부(821) 및 제3 자석부(823)에 의해 주 자기장(M.M.F) 및 부 자기장(S.M.F)이 형성되는 과정 및 방향은 상술한 도 14의 실시 예와 같다.
이에 따라, 도 26의 (a)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 전방 측의 좌측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측의 좌측을 향하도록 형성된다.
유사하게, 도 26의 (b)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 후방 측의 우측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측의 우측을 향하도록 형성된다.
이에 따라, 발생된 아크의 경로(A.P)는 중심부(C)를 향하지 않게 된다. 그 결과, 중심부(C)에 배치되는 구성 요소의 손상이 방지될 수 있다.
도 27을 참조하면, 제1 대향 면(821a)이 S극으로 자화된다. 또한, 제2 대향 면(822a) 및 제3 대향 면(823a)은 N극으로 자화된다.
제1 자석부(821) 및 제2 자석부(822)에 의해 주 자기장(M.M.F) 및 부 자기장(S.M.F)이 형성되는 과정 및 방향은 상술한 도 15의 실시 예와 같다.
이에 따라, 도 27의 (a)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 후방 측의 좌측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측의 좌측을 향하도록 형성된다.
유사하게, 도 27의 (b)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 전방 측의 우측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측의 우측을 향하도록 형성된다.
제1 자석부(821) 및 제3 자석부(823)에 의해 주 자기장(M.M.F) 및 부 자기장(S.M.F)이 형성되는 과정 및 방향은 상술한 도 15의 실시 예와 같다.
이에 따라, 도 27의 (a)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 후방 측의 우측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측의 우측을 향하도록 형성된다.
유사하게, 도 27의 (b)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 전방 측의 좌측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측의 좌측을 향하도록 형성된다.
이에 따라, 발생된 아크의 경로(A.P)는 중심부(C)를 향하지 않게 된다. 그 결과, 중심부(C)에 배치되는 구성 요소의 손상이 방지될 수 있다.
도 28을 참조하면, 제1 대향 면(821a)이 N극으로 자화된다. 또한, 제2 대향 면(822a) 및 제3 대향 면(823a)은 S극으로 자화된다.
제1 자석부(821) 및 제2 자석부(822)에 의해 주 자기장(M.M.F) 및 부 자기장(S.M.F)이 형성되는 과정 및 방향은 상술한 도 16의 실시 예와 같다.
이에 따라, 도 28의 (a)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 전방 측의 좌측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측의 좌측을 향하도록 형성된다.
유사하게, 도 28의 (b)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 후방 측의 우측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측의 우측을 향하도록 형성된다.
제1 자석부(821) 및 제3 자석부(823)에 의해 주 자기장(M.M.F) 및 부 자기장(S.M.F)이 형성되는 과정 및 방향은 상술한 도 16의 실시 예와 같다.
이에 따라, 도 28의 (a)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 전방 측의 우측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측의 우측을 향하도록 형성된다.
유사하게, 도 28의 (b)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 후방 측의 좌측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측의 좌측을 향하도록 형성된다.
이에 따라, 발생된 아크의 경로(A.P)는 중심부(C)를 향하지 않게 된다. 그 결과, 중심부(C)에 배치되는 구성 요소의 손상이 방지될 수 있다.
도 29를 참조하면, 제1 대향 면(821a)이 S극으로 자화된다. 또한, 제2 대향 면(822a) 및 제3 대향 면(823a)은 N극으로 자화된다.
제1 자석부(821) 및 제2 자석부(822)에 의해 주 자기장(M.M.F) 및 부 자기장(S.M.F)이 형성되는 과정 및 방향은 상술한 도 17의 실시 예와 같다.
이에 따라, 도 29의 (a)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 후방 측의 우측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측의 우측을 향하도록 형성된다.
유사하게, 도 29의 (b)에 도시된 실시 예에서, 제1 고정 접촉자(220a) 부근에 전방 측의 좌측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측의 좌측을 향하도록 형성된다.
제1 자석부(821) 및 제3 자석부(823)에 의해 주 자기장(M.M.F) 및 부 자기장(S.M.F)이 형성되는 과정 및 방향은 상술한 도 17의 실시 예와 같다.
이에 따라, 도 29의 (a)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 후방 측의 좌측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 후방 측의 좌측을 향하도록 형성된다.
유사하게, 도 29의 (b)에 도시된 실시 예에서, 제2 고정 접촉자(220b) 부근에 전방 측의 우측을 향하는 방향의 전자기력이 발생된다. 아크의 경로(A.P)는 상기 전자기력의 방향을 따라 전방 측의 우측을 향하도록 형성된다.
이에 따라, 발생된 아크의 경로(A.P)는 중심부(C)를 향하지 않게 된다. 그 결과, 중심부(C)에 배치되는 구성 요소의 손상이 방지될 수 있다.
본 실시 예에서, 제1 자석부(821)는 제2 자석부(822) 및 제3 자석부(823)보다 길게 연장 형성된다. 또한, 제2 자석부(822) 및 제3 자석부(823)는 소정 거리(D3)만큼 이격되도록 배치된다.
제2 자석부(822)와 제3 자석부(823)의 이격 거리(D3)는 제1 자석부(821)와 제2 자석부(822)의 이격 거리(D1) 또는 제1 자석부(821)와 제3 자석부(823)의 이격 거리(D2)보다 길게 형성될 수 있다.
또한, 제1 자석부(821)와 제2 자석부(822)의 이격 거리(D1)와 제1 자석부(821)와 제3 자석부(823)의 이격 거리(D2)는 같을 수 있다.
즉, 제2 자석부(822)와 제3 자석부(823)는 그 이격 거리(D3)가 최대가 되도록 배치된다.
또한, 제1 대향 면(821a)은 제2 대향 면(822a) 및 제3 대향 면(823a)과 다른 극성을 띠도록 구성된다. 이에 따라, 자기장은 제1 자석부(821)에서 제2 자석부(822) 및 제3 자석부(823)를 향하는 방향 또는 그 반대 방향으로 형성된다.
이에 따라, 제1 고정 접촉자(220a) 및 제2 고정 접촉자(220b) 부근에서 형성되는 자기장은, 좌우의 대각선 방향으로 형성된다.
그 결과, 상기 자기장에 의해 각 고정 접촉자(220a, 220b) 부근에서 발생되는 전자기력은, 중심부(C)에서 멀어지는 방향으로 형성된다. 이에 따라, 중심부(C)에서 배치되는 구성 요소의 손상이 방지될 수 있다.
이상 설명한 본 발명의 각 실시 예에 따른 아크 경로 형성부(500, 600, 700, 800)는 자기장을 형성한다. 상기 자기장에 의해, 전자기력은 중심부(C)에서 멀어지는 방향을 갖도록 형성된다.
고정 접촉자(220)와 가동 접촉자(430)가 이격되어 발생된 아크는 상기 전자기력을 따라 형성되는 아크의 경로(A.P)를 따라 이동된다. 따라서, 발생된 아크는 중심부(C)에서 멀어지는 방향으로 이동된다.
이에 따라, 중심부(C)에 배치되는 직류 릴레이(10)의 다양한 구성 요소들이 발생된 아크에 의해 손상되지 않게 된다.
이상 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 당 업계에서 통상의 지식을 가진 자라면 이하의 청구범위에 기재된 본 발명의 사상 및 영역을 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
10: 직류 릴레이
100: 프레임부
110: 상부 프레임
120: 하부 프레임
130: 절연 플레이트
140: 지지 플레이트
200: 개폐부
210: 아크 챔버
220: 고정 접촉자
220a: 제1 고정 접촉자
220b: 제2 고정 접촉자
230: 씰링 부재
300: 코어부
310: 고정 코어
320: 가동 코어
330: 요크
340: 보빈
350: 코일
360: 복귀 스프링
370: 실린더
400: 가동 접촉자부
410: 하우징
420: 커버
430: 가동 접촉자
440: 샤프트
450: 탄성부
500: 본 발명의 일 실시 예에 따른 아크 경로 형성부
510: 자석 프레임
511: 제1 면
512: 제2 면
513: 제3 면
514: 제4 면
515: 아크 배출공
516: 공간부
520: 자석부
521: 제1 자석부
521a: 제1 대향 면
521b: 제1 반대 면
522: 제2 자석부
522a: 제2 대향 면
522b: 제2 반대 면
523: 제3 자석부
523a: 제3 메인 대향 면
523b: 제3 메인 반대 면
600: 본 발명의 다른 실시 예에 따른 아크 경로 형성부
610: 자석 프레임
611: 제1 면
612: 제2 면
613: 제3 면
614: 제4 면
615: 아크 배출공
616: 공간부
620: 자석부
621: 제1 자석부
621a: 제1 대향 면
621b: 제1 반대 면
622: 제2 자석부
622a: 제2 대향 면
622b: 제2 반대 면
623: 제3 자석부
623a: 제3 메인 대향 면
623b: 제3 메인 반대 면
700: 본 발명의 또다른 실시 예에 따른 아크 경로 형성부
710: 자석 프레임
711: 제1 면
712: 제2 면
713: 제3 면
714: 제4 면
715: 아크 배출공
716: 공간부
720: 자석부
721: 제1 자석부
721a: 제1 대향 면
721b: 제1 반대 면
722: 제2 자석부
722a: 제2 대향 면
722b: 제2 반대 면
723: 제3 자석부
723a: 제3 메인 대향 면
723b: 제3 메인 반대 면
800: 본 발명의 또다른 실시 예에 따른 아크 경로 형성부
810: 자석 프레임
811: 제1 면
812: 제2 면
813: 제3 면
814: 제4 면
815: 아크 배출공
816: 공간부
820: 자석부
821: 제1 자석부
821a: 제1 대향 면
821b: 제1 반대 면
822: 제2 자석부
822a: 제2 대향 면
822b: 제2 반대 면
823: 제3 자석부
823a: 제3 메인 대향 면
823b: 제3 메인 반대 면
1000: 종래 기술에 따른 직류 릴레이
1100: 종래 기술에 따른 고정 접점
1200: 종래 기술에 따른 가동 접점
1300: 종래 기술에 따른 영구 자석
1310: 종래 기술에 따른 제1 영구 자석
1320: 종래 기술에 따른 제2 영구 자석
C: 공간부(516, 616, 716, 816)의 중심부
M.M.F: 주 자기장
S.M.F: 부 자기장
A.P: 아크의 경로
D1: 제1 자석부와 제2 자석부 사이의 최단 거리
D2: 제1 자석부와 제3 자석부 사이의 최단 거리
D3: 제2 자석부와 제3 자석부 사이의 최단 거리

Claims (15)

  1. 내부에 공간이 형성되며, 상기 공간을 둘러싸는 복수 개의 면을 포함하는 자석 프레임; 및
    상기 복수 개의 면에 결합되어 상기 공간에 자기장을 형성하도록 구성되는 자석부를 포함하며,
    상기 복수 개의 면은,
    일 방향으로 연장 형성되는 제1 면;
    상기 제1 면을 마주하도록 배치되고, 상기 일 방향으로 연장 형성되는 제2 면; 및
    상기 제1 면 및 상기 제2 면의 상기 연장 방향의 각 일측 단부 및 각 타측 단부 사이에서 각각 상기 제1 면 및 상기 제2 면과 소정의 각도를 이루며 연장되며, 서로 마주하도록 배치되는 제3 면 및 제4 면을 포함하며,
    상기 자석부는,
    상기 제1 면 및 상기 제2 면 중 어느 하나의 면에 위치되는 제1 자석부;
    상기 제3 면 및 상기 제4 면 중 어느 하나의 면에 위치되는 제2 자석부; 및
    상기 제1 면 내지 상기 제2 면 중 다른 하나의 면 또는 상기 제3 면 및 상기 제4 면 중 다른 하나의 면에 위치되는 제3 자석부를 포함하며,
    상기 제1 면 및 상기 제2 면 중 상기 다른 하나의 면을 향하는 상기 제1 자석부의 제1 대향 면은,
    상기 제1 면 및 상기 제2 면 중 상기 어느 하나의 면을 향하는 상기 제2 자석부의 제2 대향 면 및 상기 제3 자석부의 제3 대향 면 중 어느 하나 이상의 면과 다른 극성(polarity)을 띠도록 구성되는,
    아크 경로 형성부.
  2. 제1항에 있어서,
    상기 제1 자석부, 상기 제2 자석부 및 상기 제3 자석부는 각각 일 방향으로 연장 형성되고,
    상기 제1 자석부의 상기 연장 길이는, 상기 제2 자석부 및 상기 제3 자석부의 연장 길이보다 길게 형성되는,
    아크 경로 형성부.
  3. 제2항에 있어서,
    상기 제2 자석부와 상기 제3 자석부 사이의 최단 거리는,
    상기 제1 자석부와 상기 제2 자석부 사이의 최단 거리 및 상기 제1 자석부와 상기 제3 자석부 사이의 최단 거리보다 길게 형성되는,
    아크 경로 형성부.
  4. 제2항에 있어서,
    상기 제1 자석부는 상기 제1 면에 배치되고,
    상기 제2 자석부는 상기 제3 면 및 상기 제4 면 중 어느 하나의 면에 배치되며,
    상기 제3 자석부는 상기 제2 면에 배치되는,
    아크 경로 형성부.
  5. 제4항에 있어서,
    상기 제2 자석부는 상기 제3 면에 배치되고,
    상기 제3 자석부는 상기 제4 면에 인접하게 배치되며,
    상기 제1 자석부의 상기 제1 대향 면은 N극을 띠도록 구성되고,
    상기 제2 자석부의 상기 제2 대향 면 및 상기 제3 자석부의 상기 제3 대향 면은 S극을 띠도록 구성되는,
    아크 경로 형성부.
  6. 제4항에 있어서,
    상기 제2 자석부는 상기 제4 면에 배치되고,
    상기 제3 자석부는 상기 제3 면에 인접하게 배치되며,
    상기 제1 자석부의 상기 제1 대향 면은 N극을 띠도록 구성되고,
    상기 제2 자석부의 상기 제2 대향 면 및 상기 제3 자석부의 상기 제3 대향 면은 S극을 띠도록 구성되는,
    아크 경로 형성부.
  7. 제2항에 있어서,
    상기 제1 자석부는 상기 제1 면에 배치되고,
    상기 제2 자석부는 상기 제3 면 및 상기 제4 면 중 어느 하나의 면에 배치되며,
    상기 제3 자석부는 상기 제3 면 및 상기 제4 면 중 다른 하나의 면에 배치되는,
    아크 경로 형성부.
  8. 제7항에 있어서,
    상기 제1 자석부의 상기 제1 대향 면은 N극을 띠도록 구성되고,
    상기 제2 자석부의 상기 제2 대향 면 및 상기 제3 자석부의 제3 대향 면 중 어느 하나는 N극을 띠고, 다른 하나는 S극을 띠도록 구성되는,
    아크 경로 형성부.
  9. 제7항에 있어서,
    상기 제1 자석부의 상기 제1 대향 면은 N극을 띠도록 구성되고,
    상기 제2 자석부의 상기 제2 대향 면 및 상기 제3 자석부의 제3 대향 면은 S극을 띠도록 구성되는,
    아크 경로 형성부.
  10. 일 방향으로 연장 형성되는 고정 접촉자;
    상기 고정 접촉자에 접촉되거나 상기 고정 접촉자와 이격되도록 구성되는 가동 접촉자;
    내부에 상기 고정 접촉자 및 상기 가동 접촉자가 수용되는 공간이 형성되며, 상기 고정 접촉자 및 상기 가동 접촉자가 이격되어 발생되는 아크의 배출 경로를 형성하도록, 상기 공간에 자기장을 형성하게 구성되는 아크 경로 형성부를 포함하며,
    상기 아크 경로 형성부는,
    내부에 공간이 형성되며, 상기 공간을 둘러싸는 복수 개의 면을 포함하는 자석 프레임; 및
    상기 복수 개의 면에 결합되어 상기 공간에 자기장을 형성하도록 구성되는 자석부를 포함하며,
    상기 복수 개의 면은,
    일 방향으로 연장 형성되는 제1 면;
    상기 제1 면을 마주하도록 배치되고, 상기 일 방향으로 연장 형성되는 제2 면; 및
    상기 제1 면 및 상기 제2 면의 상기 연장 방향의 각 일측 단부 및 각 타측 단부 사이에서 각각 상기 제1 면 및 상기 제2 면과 소정의 각도를 이루며 연장되며, 서로 마주하는 제3 면 및 제4 면을 포함하며,
    상기 자석부는,
    상기 제1 면 및 상기 제2 면 중 어느 하나의 면에 위치되는 제1 자석부;
    상기 제3 면 및 상기 제4 면 중 어느 하나의 면에 위치되는 제2 자석부; 및
    상기 제1 면 내지 상기 제2 면 중 다른 하나의 면 또는 상기 제3 면 및 상기 제4 면 중 다른 하나의 면에 위치되는 제3 자석부를 포함하며,
    상기 제1 면 및 상기 제2 면 중 상기 다른 하나의 면을 향하는 상기 제1 자석부의 제1 대향 면은,
    상기 제1 면 및 상기 제2 면 중 상기 어느 하나의 면을 향하는 상기 제2 자석부의 제2 대향 면 및 상기 제3 자석부의 제3 대향 면 중 어느 하나 이상의 면과 다른 극성(polarity)을 띠도록 구성되는,
    직류 릴레이.
  11. 제10항에 있어서,
    상기 제1 자석부, 상기 제2 자석부 및 상기 제3 자석부는 각각 일 방향으로 연장 형성되고,
    상기 제1 자석부의 상기 연장 길이는, 상기 제2 자석부 및 상기 제3 자석부의 연장 길이보다 길게 형성되며,
    상기 제2 자석부와 상기 제3 자석부 사이의 최단 거리는,
    상기 제1 자석부와 상기 제2 자석부 사이의 최단 거리 및 상기 제1 자석부와 상기 제3 자석부 사이의 최단 거리보다 길게 형성되는,
    직류 릴레이.
  12. 제11항에 있어서,
    상기 제1 자석부는 상기 제1 면에 배치되며,
    상기 제2 자석부는 상기 제3 면에 배치되고,
    상기 제3 자석부는 상기 제4 면에 인접하게 배치되며,
    상기 제1 자석부의 상기 제1 대향 면은 N극을 띠도록 구성되고,
    상기 제2 자석부의 상기 제2 대향 면 및 상기 제3 자석부의 상기 제3 대향 면은 S극을 띠도록 구성되는,
    직류 릴레이.
  13. 제12항에 있어서,
    상기 제1 자석부는 상기 제1 면에 배치되며,
    상기 제2 자석부는 상기 제4 면에 배치되고,
    상기 제3 자석부는 상기 제3 면에 인접하게 배치되며,
    상기 제1 자석부의 상기 제1 대향 면은 N극을 띠도록 구성되고,
    상기 제2 자석부의 상기 제2 대향 면 및 상기 제3 자석부의 상기 제3 대향 면은 S극을 띠도록 구성되는,
    직류 릴레이.
  14. 제12항에 있어서,
    상기 제1 자석부는 상기 제1 면에 배치되고,
    상기 제2 자석부는 상기 제3 면 및 상기 제4 면 중 어느 하나의 면에 배치되며,
    상기 제3 자석부는 상기 제3 면 및 상기 제4 면 중 다른 하나의 면에 배치되고,
    상기 제1 자석부의 상기 제1 대향 면은 N극을 띠도록 구성되며,
    상기 제2 자석부의 상기 제2 대향 면 및 상기 제3 자석부의 제3 대향 면 중 어느 하나는 N극을 띠고, 다른 하나는 S극을 띠도록 구성되는,
  15. 제12항에 있어서,
    상기 제1 자석부는 상기 제1 면에 배치되고,
    상기 제2 자석부는 상기 제3 면 및 상기 제4 면 중 어느 하나의 면에 배치되며,
    상기 제3 자석부는 상기 제3 면 및 상기 제4 면 중 다른 하나의 면에 배치되고,
    상기 제1 자석부의 상기 제1 대향 면은 N극을 띠도록 구성되며,
    상기 제2 자석부의 상기 제2 대향 면 및 상기 제3 자석부의 제3 대향 면은 S극을 띠도록 구성되는,
    직류 릴레이.
PCT/KR2020/004654 2019-08-28 2020-04-07 아크 경로 형성부 및 이를 포함하는 직류 릴레이 WO2021040175A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022513514A JP7464699B2 (ja) 2019-08-28 2020-04-07 アーク経路形成部及びそれを含む直流リレー
CN202080062111.9A CN114342032A (zh) 2019-08-28 2020-04-07 电弧路径形成部及包括其的直流继电器
EP20859517.3A EP4024429A4 (en) 2019-08-28 2020-04-07 ARC PATH AND DIRECT CURRENT RELAY TRAINING UNIT INCLUDING THE SAME
US17/639,099 US11842870B2 (en) 2019-08-28 2020-04-07 Arc path formation unit and direct current relay including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190106066A KR20210025962A (ko) 2019-08-28 2019-08-28 아크 경로 형성부 및 이를 포함하는 직류 릴레이
KR10-2019-0106066 2019-08-28

Publications (1)

Publication Number Publication Date
WO2021040175A1 true WO2021040175A1 (ko) 2021-03-04

Family

ID=74685998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/004654 WO2021040175A1 (ko) 2019-08-28 2020-04-07 아크 경로 형성부 및 이를 포함하는 직류 릴레이

Country Status (6)

Country Link
US (1) US11842870B2 (ko)
EP (1) EP4024429A4 (ko)
JP (1) JP7464699B2 (ko)
KR (1) KR20210025962A (ko)
CN (1) CN114342032A (ko)
WO (1) WO2021040175A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD988274S1 (en) * 2021-06-21 2023-06-06 Ls Electric Co., Ltd. Relay for electric automobile

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102324517B1 (ko) * 2019-07-11 2021-11-10 엘에스일렉트릭 (주) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
KR20210025964A (ko) * 2019-08-28 2021-03-10 엘에스일렉트릭(주) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
KR20210025960A (ko) * 2019-08-28 2021-03-10 엘에스일렉트릭(주) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
KR20210025961A (ko) * 2019-08-28 2021-03-10 엘에스일렉트릭(주) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2024035415A1 (en) * 2022-08-11 2024-02-15 Sensata Technologies Inc. Dynamic adjustable magnetic yoke assembly for electromechanical switching devices

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101216824B1 (ko) 2011-12-30 2012-12-28 엘에스산전 주식회사 직류 릴레이
JP2016072020A (ja) * 2014-09-29 2016-05-09 パナソニックIpマネジメント株式会社 接点装置
KR101696952B1 (ko) 2012-01-02 2017-01-16 엘에스산전 주식회사 직류 릴레이
CN207731876U (zh) * 2017-11-02 2018-08-14 苏州安来强电子科技有限公司 一种直流接触器灭弧结构
JP2019036431A (ja) * 2017-08-10 2019-03-07 オムロン株式会社 電磁継電器
CN208903932U (zh) * 2018-09-10 2019-05-24 上海良信电器股份有限公司 一种直流接触器灭弧结构
KR20190094018A (ko) * 2018-02-02 2019-08-12 엘에스산전 주식회사 영구자석 하우징을 갖는 직류 릴레이

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2197009B1 (en) * 2008-12-12 2013-11-20 Tyco Electronics AMP GmbH Contact bridge with blow magnets
WO2011117696A1 (ja) * 2010-03-25 2011-09-29 パナソニック電工株式会社 接点装置
US8653691B2 (en) * 2011-01-13 2014-02-18 GM Global Technology Operations LLC Dual bipolar magnetic field for linear high-voltage contactor in automotive lithium-ion battery systems
JP5806562B2 (ja) * 2011-01-12 2015-11-10 富士電機株式会社 電磁接触器
JP5918424B2 (ja) 2011-01-12 2016-05-18 富士電機株式会社 電磁接触器
JP6081787B2 (ja) 2012-11-30 2017-02-15 富士電機株式会社 接点装置及びこれを使用した電磁開閉器
CN203325803U (zh) * 2013-07-05 2013-12-04 厦门宏发电力电器有限公司 一种继电器的框架部分
JP6375745B2 (ja) 2014-07-16 2018-08-22 富士電機機器制御株式会社 接点機構及びこれを使用した電磁接触器
JP2016072021A (ja) 2014-09-29 2016-05-09 パナソニックIpマネジメント株式会社 接点装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101216824B1 (ko) 2011-12-30 2012-12-28 엘에스산전 주식회사 직류 릴레이
KR101696952B1 (ko) 2012-01-02 2017-01-16 엘에스산전 주식회사 직류 릴레이
JP2016072020A (ja) * 2014-09-29 2016-05-09 パナソニックIpマネジメント株式会社 接点装置
JP2019036431A (ja) * 2017-08-10 2019-03-07 オムロン株式会社 電磁継電器
CN207731876U (zh) * 2017-11-02 2018-08-14 苏州安来强电子科技有限公司 一种直流接触器灭弧结构
KR20190094018A (ko) * 2018-02-02 2019-08-12 엘에스산전 주식회사 영구자석 하우징을 갖는 직류 릴레이
CN208903932U (zh) * 2018-09-10 2019-05-24 上海良信电器股份有限公司 一种直流接触器灭弧结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024429A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD988274S1 (en) * 2021-06-21 2023-06-06 Ls Electric Co., Ltd. Relay for electric automobile

Also Published As

Publication number Publication date
EP4024429A4 (en) 2023-09-13
JP7464699B2 (ja) 2024-04-09
EP4024429A1 (en) 2022-07-06
KR20210025962A (ko) 2021-03-10
JP2022546084A (ja) 2022-11-02
US11842870B2 (en) 2023-12-12
US20220336177A1 (en) 2022-10-20
CN114342032A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2021040175A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2021040172A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2021006414A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2021006415A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2020256263A1 (ko) 직류 릴레이
WO2021182788A2 (ko) 기중 차단기
WO2020241969A1 (ko) 직류 릴레이 및 그 제작 방법
WO2021040174A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2021040176A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2021182786A1 (ko) 아크 소호부 및 이를 포함하는 기중 차단기
WO2020241968A1 (ko) 직류 릴레이
WO2021040177A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2022098032A2 (ko) 가동 접촉자부 및 이를 포함하는 직류 릴레이
WO2022005077A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2021112343A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2021230515A1 (ko) 가동 코어부 및 이를 포함하는 직류 릴레이
WO2021182789A2 (ko) 기중 차단기
WO2021040173A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2020241970A1 (ko) 직류 릴레이
WO2023090795A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2022092808A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2023090790A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2021225302A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2022005021A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2023090791A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022513514

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020859517

Country of ref document: EP

Effective date: 20220328