WO2021230355A1 - 液体クロマトグラフィー用カラム充填剤及びその製造方法 - Google Patents

液体クロマトグラフィー用カラム充填剤及びその製造方法 Download PDF

Info

Publication number
WO2021230355A1
WO2021230355A1 PCT/JP2021/018442 JP2021018442W WO2021230355A1 WO 2021230355 A1 WO2021230355 A1 WO 2021230355A1 JP 2021018442 W JP2021018442 W JP 2021018442W WO 2021230355 A1 WO2021230355 A1 WO 2021230355A1
Authority
WO
WIPO (PCT)
Prior art keywords
eggshell
acid
treatment
column
calcium
Prior art date
Application number
PCT/JP2021/018442
Other languages
English (en)
French (fr)
Inventor
勇樹 蛭田
麻衣 持田
宏明 今井
智夏 吉井
Original Assignee
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾 filed Critical 学校法人慶應義塾
Priority to JP2022522219A priority Critical patent/JPWO2021230355A1/ja
Publication of WO2021230355A1 publication Critical patent/WO2021230355A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/20Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the conditioning of the sorbent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/283Porous sorbents based on silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • B01J20/287Non-polar phases; Reversed phases

Definitions

  • the present invention relates to a column packing material for liquid chromatography and a method for producing the same, and more particularly to an alkaline resistant column packing material for liquid chromatography and a method for producing the same, which can use an alkaline mobile phase.
  • silica gel-based filler has a drawback that the silica gel is dissolved and the chemical modification is removed under an alkaline aqueous solution, and a mobile phase having a high pH cannot be used.
  • various chemicals and the like are alkaline and good separation can be obtained, it is desired to use an alkaline mobile phase, and therefore, an alkali-resistant filler is required.
  • Non-Patent Document 1 a porous spherical calcium carbonate-based high performance liquid chromatography (HPLC) filler as an alkali-resistant filler.
  • This filler is a highly alkali-resistant reverse-phase HPLC filler in which the surface of artificially synthesized vaterite-type porous calcium carbonate crystal particles is coated with a hydrophobic group-containing polymer to impart a function of hydrophobic interaction. ..
  • Non-Patent Document 2 It is also known to use crushed shells as a column packing material for liquid chromatography (Non-Patent Document 2). However, the separation performance cannot always be satisfied.
  • the above calcium carbonate-based HPLC filler has 20 nm mesopores on the surface as voids, can be used stably even under alkaline conditions, and has sufficient resolution and pressure resistance, and is excellent. Has good performance.
  • mass production of vaterite-type calcium carbonate crystals is difficult, and the amount that can be synthesized while maintaining a uniform particle size and shape is currently about 7 g. That is, known batterite-type calcium carbonate crystals are produced by a method in which a solution of calcium chloride is rapidly added to a place where an aqueous solution containing sodium carbonate and PSS is being stirred. It becomes difficult to control a uniform solution, the solution becomes non-uniform, and the size of the particles varies. For this reason, it is difficult to manufacture on a commercial scale.
  • an object of the present invention is a novel column packing material for liquid chromatography, which is alkali resistant, has separability and pressure resistance required as a column packing material for liquid chromatography, and can be mass-produced on a commercial basis. It is to provide the manufacturing method.
  • Eggshells are waste generated in large quantities in the food manufacturing industry, homes, restaurants, etc., and can be obtained in large quantities at low cost. Since it was considered necessary to remove the residual biopolymer from the crushed eggshell, the biopolymer was removed by treatment with sodium hypochlorite and coated with a hydrophobic group-containing polymer as in Non-Patent Document 1. However, the desired separation performance could not be achieved. As a result of further diligent studies to solve this problem, it was found that the desired separation performance could be achieved by further adding a step of washing the eggshell with EDTA, which is a calcium chelating agent, and the present invention was completed. bottom.
  • EDTA which is a calcium chelating agent
  • the present invention provides the following.
  • a column packing material for liquid chromatography composed of eggshells or shells that have been crushed and treated with a calcium removing agent and a biopolymer removing treatment.
  • the filler according to (1) which consists of eggshell.
  • the calcium removing agent is a calcium chelating agent, and the calcium chelating agent is ethylenediaminetetraacetic acid or a salt thereof, glycol ether diaminetetraacetic acid or a salt thereof, and (1,2-bis (o-aminophenoxide) ethane).
  • the filler according to (3) which is at least one selected from the group consisting of N, N, N', N'-tetraacetic acid) or a salt thereof.
  • the biopolymer removal treatment is an oxidant treatment, and the oxidant is at least one selected from the group consisting of hypochlorous acid or a salt thereof, oxygen, ozone, and hydrogen peroxide. 6)
  • the filler described which is at least one selected from the group consisting of N, N, N', N'-tetraacetic acid) or a salt thereof.
  • the calcium chelating agent is ethylenediaminetetraacetic acid or a salt thereof.
  • the biopolymer removal treatment is an oxidizing agent treatment or
  • the filler according to (11), wherein the hydrophobic group is an alkyl group having 1 to 30 carbon atoms.
  • the 2 ⁇ peak value of X-ray diffraction coincides with the 2 ⁇ peak of calcite X-ray diffraction except for the 2 ⁇ peak value of 26.5 °, in any one of (1) to (12).
  • the 2 ⁇ peak value exists at 26.5 ° in the X-ray diffraction, and the 2 ⁇ peak value matches the 2 ⁇ peak value in the X-ray diffraction of calcite except for the 2 ⁇ peak value of 26.5 °, which is 5 ° C.
  • the weight loss from 200 ° C. to 585 ° C. when the temperature is raised at / min is 1% by weight or less, and the integrated pore volume of pores having a diameter of less than 500 nm measured by the mercury intrusion method is 0.05 mL / g or more.
  • Column packing material for liquid chromatography 17.
  • the method for producing a column packing material for liquid chromatography according to (1) which comprises treating the crushed eggshell or shell with a calcium removing agent and a biopolymer removing treatment.
  • the method according to (17) comprising treating the crushed eggshell or shell with a calcium removing agent and then an oxidizing agent.
  • the method according to (17) or (18) further comprising attaching an organic group to the surface of an eggshell or shell.
  • Liquid chromatography comprising placing a sample on a column packed with the column packing material for liquid chromatography according to any one of (1) to (16).
  • a novel column packing material for liquid chromatography which is alkali resistant, has the separability and pressure resistance required for a column packing material for liquid chromatography, and can be mass-produced on a commercial basis, and its production. The method was provided.
  • FIG. 5 is a column prepared in the following example, and the distribution ratio of logk (hydrophobic field of stationary phase and mobile phase) in various mobile phase mixing ratios when two kinds of basic psychotropic drugs are analyzed.
  • the retention coefficient representing), the figure on the right shows the chromatogram.
  • It is a scanning electron microscope image of the commercially available crushed eggshell purchased in the following Example. It is a scanning electron microscope image of the crushed eggshell after EDTA treatment and sodium hypochlorite treatment obtained in the following Example. In the following examples, it is a scanning electron microscope image of a commercially available pulverized eggshell before the acid treatment as a calcium removing agent treatment.
  • it is a scanning electron microscope image of the crushed eggshell after treatment with the ammonium acetate buffer of a different concentration.
  • it is a scanning electron microscope image of the crushed eggshell after different time treatment with 900 mM ammonium acetate buffer (pH 3.7).
  • it is an X-ray diffraction pattern (XRD) of the crushed eggshell after treatment with 900 mM ammonium acetate buffer (pH 3.7).
  • XRD X-ray diffraction pattern
  • it is a scanning electron microscope image of a crushed eggshell after treatment with NaClO.
  • it is a figure which shows the mass loss after heating the crushed eggshell after various treatments at various temperatures.
  • the eggshell used in the present invention is not particularly limited as long as it is a bird's egg shell, but a chicken eggshell that is produced in large quantities and can be obtained in large quantities at low cost is preferable. It is preferable to remove the eggshell membrane from the eggshell, dry it, and then grind it.
  • the eggshell can be crushed mechanically using a mill or the like.
  • the particle size of the crushed eggshell can be appropriately set according to the purpose of column chromatography, but usually, the number average particle size (diameter) is preferably about 5 ⁇ m to 20 ⁇ m.
  • the calcium removing agent may be any as long as it can dissolve fine particles of calcium carbonate, and preferred examples thereof include a calcium chelating agent and an acid.
  • the calcium chelating agent is not particularly limited, but preferred examples include ethylenediaminetetraacetic acid or a salt thereof, glycol etherdiaminetetraacetic acid or a salt thereof, and (1,2-bis (o-aminophenoxide) ethane-N, N, At least one selected from the group consisting of N', N'-tetraacetic acid) or a salt thereof can be mentioned, and among these, EDTA or a salt thereof is preferable.
  • the calcium chelating agent is preferably used as an aqueous solution (which may be an aqueous buffer solution).
  • the concentration of the calcium chelating agent in the aqueous solution can be appropriately set, but is about 10 mM to 1000 mM, preferably about 200 mM to 300 mM.
  • the calcium chelating agent and the crushed eggshell can be sufficiently contacted. Can be done.
  • the amount of the calcium chelating agent aqueous solution to be added is usually about 2 to 100 times, preferably about 10 to 20 times the weight of the crushed eggshell.
  • the treatment temperature is not particularly limited and can be more than 0 ° C. to less than 100 ° C., but since it can be carried out at room temperature, it is preferably carried out at room temperature.
  • the processing time is usually about 1 hour to 5 hours. After the calcium chelating agent treatment, it is preferable to collect the crushed eggshell by suction filtration or the like and wash it thoroughly with water.
  • an acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid, or water (H 3 O + ) can also be used.
  • a condition of the acid treatment a condition is selected in which the calcium carbonate fine particles in the pores are dissolved, but the calcium carbonate forming the porous structure is not dissolved so much and the porous structure is maintained.
  • Such conditions differ depending on whether the acid used is a strong acid or a weak acid, but it is preferable to use a weak acid such as acetic acid or phosphoric acid because it is easy to control. In the case of a strong acid, it is preferable to use a dilute acid.
  • the acid treatment can be carried out by adding an acidic aqueous solution to the crushed eggshell, ultrasonically treating it, and then stirring it.
  • the pH of the acid in the aqueous solution can be appropriately set, but is preferably pH 1 to 7, preferably about pH 3 to 6, and more preferably pH 3 to 5.
  • a weak base may be added to the acid to prepare an acidic buffer solution.
  • a preferred example is an acidic buffer containing acetic acid and ammonium acetate.
  • the pH of the reaction system can be maintained by the buffering capacity and reproducibility can be easily obtained.
  • the concentration of the salt of the weak acid in the buffer solution is preferably about 700 mM to 8 M.
  • the amount of the acidic aqueous solution to be added is usually about 2 to 100 times, preferably about 10 to 20 times the weight of the crushed eggshell.
  • the treatment temperature is not particularly limited and can be more than 0 ° C. to less than 100 ° C., but since it can be carried out at room temperature, it is preferably carried out at room temperature.
  • the processing time is usually about 30 minutes to 5 hours. After the acid treatment, it is preferable to collect the crushed eggshell by suction filtration or the like and wash it thoroughly with water.
  • the biopolymer removal treatment is performed by an oxidizing agent treatment.
  • the oxidizing agent include, but are not limited to, at least one selected from the group consisting of hypochlorous acid or a salt thereof, oxygen, ozone, and hydrogen peroxide.
  • hypochlorous acid or a salt thereof is preferable.
  • oxygen is used as the oxidizing agent, it is preferable to heat it to 400 ° C. to 500 ° C.
  • ultraviolet irradiation can also be used in combination.
  • the oxidizing agent is preferably used as an aqueous solution (may be an aqueous buffer solution).
  • concentration of the oxidizing agent in the aqueous solution can be appropriately set, but is usually about 1% by mass to 20% by mass, preferably about 2% by mass to 10% by mass.
  • the treatment with an oxidizing agent is preferably carried out by adopting a method in which the oxidizing agent and the crushed eggshell can be sufficiently contacted.
  • the treatment can be carried out by adding an aqueous oxidizing agent solution to the crushed eggshell, ultrasonically treating the eggshell, and then stirring the eggshell.
  • the amount of the oxidant aqueous solution to be added is usually about 2 to 100 times, preferably about 10 to 40 times the weight of the crushed eggshell.
  • the treatment temperature is not particularly limited and can be more than 0 ° C. to less than 100 ° C., but since it can be carried out at room temperature, it is preferably carried out at room temperature.
  • the treatment time is usually about 12 hours to 96 hours, preferably about 24 hours to 72 hours. After the calcium chelating agent treatment, it is preferable to collect the crushed eggshell by suction filtration or the like and wash it thoroughly with water.
  • the biopolymer removal treatment can also be performed by heating.
  • the heating can be performed under vacuum or in an inert gas, but since it can be performed in the atmosphere, it is preferable to perform the heating in the atmosphere at low cost. In this case, since oxygen is present, it can be considered as an oxidant treatment with oxygen.
  • the temperature at the time of heating is a temperature at which the biopolymer is decomposed, which is lower than the temperature at which calcium carbonate is thermally decomposed, and is preferably about 400 ° C. to 500 ° C. as described above.
  • the biopolymer removal treatment was performed after the calcium remover treatment, but the order may be reversed or simultaneous, but as described above, the biopolymer removal treatment is performed after the calcium remover treatment. It is preferable to do.
  • the 2 ⁇ peak value of the X-ray diffraction of the eggshell-derived calcium carbonate particles is one with the 2 ⁇ peak value of the X-ray diffraction of calcite except for the 2 ⁇ peak value of 26.5 °. I am doing it.
  • the 2 ⁇ peak value of 26.5 ° is not seen in the X-ray diffraction of calcite, and is considered to be the peak value caused by the eggshell.
  • the eggshell-derived calcium carbonate particles have a 2 ⁇ peak at about 32 °, which is difficult to see in FIG. 29 and the like, but is also present in calcite. Further, the weight loss from 200 ° C. to 585 ° C. when the temperature is raised at 5 ° C./min is 1% by weight or less, preferably 0.5% by weight or less.
  • the integrated pore volume of pores having a diameter of less than 500 nm measured by the mercury intrusion method is 0.05 mL / g or more, and is usually 0.05 mL / g to 0.10 mL / g.
  • a calcium chelating agent such as EDTA and an oxidizing agent such as sodium hypochlorite When treated with a calcium chelating agent such as EDTA and an oxidizing agent such as sodium hypochlorite, it is usually 0.06 mL / g or more and less than 0.07 mL / g, an acid such as acetic acid + ammonium acetate buffer. Or, when treated with an acidic buffer solution and an oxidizing agent such as sodium hypochlorite, it is usually 0.07 mL / g or more and 0.08 mL / g or less, but if it is 0.05 mL / g or more, these It is not limited to the range.
  • the calcium carbonate particles can be used as they are as a normal phase chromatography column packing material, but usually, the surface of the particles is organic having an affinity for a desired organic group such as a functional group, an ionic group, or any substance. It can be used as a liquid chromatography column packing material by binding groups and the like. That is, a column packing material for reverse phase or hydrophobic chromatography by binding a hydrophobic group, a column packing material for ion exchange chromatography by binding an ionic group, and a column packing material for hydrophilic interaction chromatography by binding a hydrophilic group.
  • the hydrophobic group is preferably an alkyl group having 1 to 30 carbon atoms, and particularly preferably an alkyl group having 4 to 18 carbon atoms.
  • a phenyl group or the like can be mentioned as the hydrophobic group.
  • examples of the ionic organic group include sulfonic acid, carboxylic acid, phosphoric acid, amino and amine groups.
  • examples of the hydrophilic group include diol, amide, amino and cyano groups.
  • examples of the organic group having a specific binding ability to any ligand include various antigens, haptens, antibodies, receptors, enzymes, protein A, protein G and the like.
  • Non-Patent Document 1 The method itself for binding a desired organic group to the surface of calcium carbonate particles is known as described in Non-Patent Document 1, for example, binding a desired group to a polymer of a compound having a pair of carboxyl groups capable of chelating calcium.
  • a desired group can be bonded to the surface of the calcium carbonate particles.
  • calcium carbonate particles are treated with poly (maleic acid-alt-1 octadecene) (PMAcO), which is a polymaleic acid derivative obtained by polymerizing a maleic acid derivative having an octadecyl group, and two carboxylic acids of maleic acid are treated.
  • PMAcO poly (maleic acid-alt-1 octadecene)
  • the molecular weight of the polymer is not limited in any way, and it may be produced using easily available raw materials.
  • a poly (maleic anhydride-alt-1 octadecene) (PMAO) having a number average molecular weight of 30,000 to 50,000 is commercially available, and this can be hydrolyzed and used.
  • a method for binding a calcium chelated polymer such as PMAcO to the surface of eggshell-derived calcium carbonate particles a method of treating eggshell-derived calcium carbonate particles with a polymer solution can be preferably adopted.
  • the solvent of the polymer solution is not particularly limited as long as it can dissolve the polymer, but for example, a water-soluble organic solvent such as acetone is preferable.
  • the concentration of the polymer in the solution can be appropriately set, but is usually about 0.02w / v% to 20w / v%, preferably about 0.5w / v% to 5w / v%.
  • the treatment is performed by adding a polymer solution to the calcium carbonate particles derived from the eggshell, ultrasonically treating the particles, and then stirring the particles. Can be done.
  • the amount of the polymer solution to be added is usually about 2 to 80 times, preferably about 8 to 30 times the weight of the eggshell-derived calcium carbonate particles.
  • the treatment temperature is not particularly limited and can be in a temperature range higher than the melting point of the solvent and lower than the boiling point, but since it can be carried out at room temperature, it is preferably carried out at room temperature.
  • the treatment time is usually about 6 hours to 96 hours, preferably about 12 hours to 48 hours. After the polymer treatment, it is preferable to collect the eggshell-derived calcium carbonate particles by suction filtration or the like while washing with a solvent of the polymer solution and dry them.
  • crushed eggshell was used as a raw material, but crushed shells can also be used instead of crushed eggshells.
  • the shells are preferably edible shells that are discarded as waste, and examples of edible shells include scallops, clams, clams, oysters, sazae, and clams, but are limited to these. It's not something. Even when a shell is used, each of the above-mentioned treatments for the eggshell can be performed in the same manner. It should be noted that eggshells are easier to crush than shells, and crushed products having a uniform particle size are more likely to be obtained, and it is preferable to use eggshells as a raw material.
  • the column packing material for liquid chromatography of the present invention is a waste and is made from eggshells or shells that are supplied in large quantities at low cost, mass production is possible. Therefore, it can be preferably used not only as a column packing material for chromatography for analysis but also as a packing material for a preparative column. Further, as specifically shown in the following examples, it can be used stably under alkaline conditions, and has sufficient separation ability and pressure resistance.
  • Example 1 1.
  • Preparation of crushed eggshell As the crushed eggshell, "Kalhope” (registered trademark) manufactured by Kewpie Tamago Co., Ltd. was purchased. A part of the osmium was vacuum-deposited for 10 seconds and observed with a scanning electron microscope (SEM). As a result, it was confirmed that a porous structure having a diameter of about 100 nm to 500 nm was present on the particle surface. When the particle size distribution was measured with a particle size distribution meter, it was about 5 ⁇ m to 30 ⁇ m, and the number average particle size was 10.2 ⁇ m. An image taken with the scanning electron microscope (SEM) is shown in FIG.
  • SEM scanning electron microscope
  • crushed eggshell was taken in a 1 L flask treated with EDTA, and 500 mL of a 250 mM EDTA aqueous solution was added. Sonication was performed for 1 minute to sufficiently disperse the crushed eggshell, and in this state, the crushed eggshell was stirred using a shaker at room temperature for 2 hours at 125 rpm so that the crushed eggshell did not precipitate. Then, suction filtration was performed while washing with a sufficient amount of water, and the mixture was dried at 60 ° C. overnight.
  • FIG. 1 shows the analysis results by X-ray diffraction.
  • Calcite is the result for calcite (calcite)
  • Eggshell is the result for crushed eggshell
  • Bare (NaClO)” omits the EDTA treatment in 2 above and performs the NaClO treatment in 3.
  • Bare (EDTA NaClO) was obtained in 3 above
  • Eggshell-PMAcO was obtained in 5 above. The results for particles are shown.
  • the back pressure is proportional to the flow velocity of the mobile phase, and this back pressure is a value that is not much different from the back pressure of a commercially available semi-prepared ODS column of the same size, and is sufficiently pressure resistant for practical use. It was confirmed to have sex. Further, as shown in FIG. 4, in the water / acetonitrile mobile phase, a convex curve is formed so that the maximum mixing ratio of water is 80%, which is when water / acetonitrile is simply mixed. Consistent with the viscosity ratio of. From the fact that such a stable back pressure was obtained, it was clarified that the preparative column prepared in 7 was practical.
  • the preparative column prepared in 5 above showed reverse phase retention behavior even in the retention of the basic antipsychotic under alkaline conditions of pH 13.
  • the separation degree Rs becomes 1.5 or more when the mixing ratio of the sodium hydroxide aqueous solution / the acetonitrile mobile phase is 60% or more.
  • the two basic psychiatric drugs could be completely separated.
  • reaction solution After 2 hours, 4 hours or 24 hours, transfer the reaction solution to a 1 L beaker, decant for about 3 minutes, discard the solution part, wash with a sufficient amount of water and suction filter the precipitated eggshell powder. After drying overnight at 60 ° C, the surface shape of the particles was observed by SEM.
  • the eggshell surface treatment was performed in three batches with the same conditions of pH, concentration and reaction time, and the surface structure, particle size, and particle size of the eggshell powder were adjusted. And the recovery rates were compared.
  • the horizontal axis is the injection amount of tert-butylbenzene and the vertical axis is the peak of the chromatogram.
  • the area was taken and a calibration curve was created.
  • the two types of basic compounds were separated by changing the mixing ratio of the TEA aqueous solution and methanol in the mobile phase, and the degree of separation of the chromatogram obtained under each condition was determined.
  • a plot was created by taking the ratio of the TEA aqueous solution in the mobile phase on the horizontal axis and the retention coefficient obtained from the obtained chromatogram on the vertical axis, and confirming the retention behavior of the column.
  • FIG. 13 show the results of measuring the content of organic matter by thermogravimetric analysis.
  • the calorific value analysis shown in FIG. 13 shows the result of raising the temperature at 5 ° C./min.
  • the particles before PMAcO modification were dispersed in both water and methanol, but after PMAcO modification, they were no longer dispersed in water, confirming that the particle surface became hydrophobic. Further, from FIG. 14, after PMAcO modification, a remarkable weight loss was observed at around 300 ° C. The weight loss of 200 ° C to 350 ° C after PMAcO modification was 0.53%, but the weight loss of 200 ° C to 350 ° C before PMAcO modification was 0.13%, so the modification amount of PMAcO was 0.53% and 0.13%. It is judged that the difference is 0.40%.
  • the retention coefficient hardly increases even if the water ratio in the mobile phase is increased, and the linear relationship is not established between the water ratio in the mobile phase and the retention coefficient. No retention behavior was observed. Therefore, it was shown that the reverse phase retention behavior exhibited by the above-mentioned three types of Eggshell-PMAcO columns was due to the modification of PMAcO.
  • the water ratio in the mobile phase was 20%
  • the retention coefficient of the No PMAcO column was larger than that of the reverse phase Eggshell-PMAcO column because of the adsorption action between the filler surface and the sample. Is thought to be the cause. It is considered that the reverse phase column holds the sample by the distribution equilibrium between the stationary phase and the mobile phase, whereas the adsorption equilibrium occurs on the surface of the stationary phase of the NoPMAcO column instead of the distribution equilibrium.
  • the holding behavior of the opposite phase was confirmed because the linear relationship was established between the water ratio in the mobile phase and the retention coefficient, and the ODS column was compared under the same conditions for the water ratio in the mobile phase. Obtained a larger retention factor than the reverse phase Eggshell-PMAcO column.
  • the retention factor of the ODS column when the water ratio in the mobile phase is 15% is similar to the retention factor of the Eggshell-PMAcO column when the water ratio in the mobile phase is 50%. By increasing the water ratio, it can be said that Eggshell-PMAcO can hold the sample for about the same time as the ODS column.
  • FIG. 17 shows a chromatogram obtained by increasing the injection amount to 100 ⁇ L, which is the maximum injection amount of the injector.
  • FIG. 19 shows a calibration curve prepared by plotting the sample injection amount on the horizontal axis and the peak area of the chromatogram on the vertical axis.
  • the Acetic acid column is a column that can be used for quantitative analysis.
  • FIG. 21 shows the chromatogram obtained by separating the two basic compounds, Imipramine and Clomipramine, by changing the mixing ratio of TEA aqueous solution and methanol in the mobile phase. Shown in. Table 2 shows the degree of separation of each peak obtained from the chromatogram of FIG. Further, FIG. 22 shows the relationship between the ratio of the TEA aqueous solution and the retention coefficient obtained from the chromatogram of FIG.
  • the degree of separation obtained from the chromatogram shown in FIG. 21 was 1.5 or more when the ratio of the TEA aqueous solution was 50% or more, and complete separation was achieved. Further, from FIG. 22, since a linear relationship is established between the ratio of the TEA aqueous solution in the mobile phase and the retention coefficient, even in the retention of the basic compound under alkaline conditions, the hydrophobic compound under neutral conditions Similar to retention, reverse phase retention behavior was shown.
  • FIGS. 23 and 24 The chromatograms obtained when the TEA aqueous solution ratio was 50% and 60% are shown in FIGS. 23 and 24, respectively.
  • Table 3 shows the degree of separation obtained from the chromatograms of FIGS. 23 and 24.
  • the peak increases in descending order of concentration.
  • Eggshell-PMAcO can separate up to 5.0 mg of each basic compound, which is 500 times higher than that of Example 1, which only achieves a separation of 0.01 mg each. Complete separation of weight basic compounds was achieved.
  • the peak of clomipramine is large tailing and it takes 60 minutes to elute, but by performing gradient elution to increase the ratio of methanol in the mobile phase during the analysis. There is a possibility that the peak shape can be improved and high-speed separation can be performed in a shorter time.
  • Example 3 Various physical characteristics As a result of measuring the particle size distribution by EDTA and acid treatment method with a particle size distribution meter, 6.0 ⁇ 3.0 ⁇ m (RSD: 51%) for untreated eggshell and 8.4 ⁇ 3.5 for EDTA treatment. When treated with ⁇ m (RSD: 41%) and ammonium acetate, it was 8.7 ⁇ 3.5 ⁇ m (RSD: 40%).
  • the treatment conditions with EDTA are the same as in "2.
  • EDTA treatment” of Example 1 and the treatment conditions with acetic acid buffer are the same as in "2-1-2. Change of pH" of Example 2. there were. The results are shown in FIGS. 25 and 26.
  • the particle size was increased and the distribution was narrowed by the EDTA treatment or the acid treatment. It is considered that this result was that the eggshell with a very small particle size was dissolved by the treatment, so that the particle size became larger as an average value and the distribution became narrower because the number of small particles decreased. Since the column has a higher separation ability when the particle size is uniform, it can be expected that the performance as a filler will be improved by EDTA and acid treatment.
  • each SEM image is shown in FIG. 27.
  • the particle size distribution was evaluated by ImageJ from the SEM image of FIG. 27. It was 3.2 ⁇ 3.5 ⁇ m (RSD: 109%) untreated, 8.8 ⁇ 5.2 ⁇ m (RSD: 59%) when treated with EDTA, and 9.2 ⁇ 5.2 ⁇ m (RSD: 56%) when treated with ammonium acetate. (Table 4). When untreated, the largest number of particles has a particle size of about 1 to 2 ⁇ m, and many particles have a size of 1 ⁇ m or less. On the other hand, by treating with EDTA or ammonium acetate, the particle size became larger and the distribution became narrower because the eggshell with a very small particle size was dissolved, as in the measurement result with the particle size distribution meter.
  • the surface area, pore volume, and pore diameter by the EDTA and acid treatment methods were measured by the mercury intrusion method. The results are shown in Table 5 and FIG. 28 below.
  • the mercury intrusion method can measure pores larger than the nitrogen adsorption method. Pore with a size of about 1 ⁇ m is the most common, which is due to the gap between eggshell particles. Those with a size of 500 nm or more are due to gaps and have nothing to do with macropores of eggshell. Therefore, focusing only on the size of 1 nm-500 nm, it can be confirmed that the volume of the EDTA and acid-treated ones is larger than that of the untreated and NaClO-only ones.
  • the acid treatment has more dilated pores than the EDTA treatment. It is also slightly expanded by NaClO treatment. When only NaClO is treated, slight expansion can be confirmed below 100 nm. This is an expansion in pore size different from EDTA and acid treatment, and is considered to be due to the removal of organic substances. That is, in EDTA and acid, macropores are expanded by dissolving calcium carbonate, and in NaClO, mesopores are expanded by removing organic substances.
  • EDTA and acid treatment can expand pores of less than 500 nm and dissolve fine eggshell powder, and improve the performance as a filler.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

要約 耐アルカリ性であり、液体クロマトグラフィー用カラム充填剤として必要な分離能及び耐圧性を有し、商業ベースで量産が可能な、新規な液体クロマトグラフィー用カラム充填剤及びその製造方法が開示されている。液体クロマトグラフィー用カラム充填剤は、粉砕され、カルシウム除去剤処理及び生体高分子除去処理された卵殻又は貝殻から成る。液体クロマトグラフィー用カラム充填剤の製造方法は、粉砕された卵殻又は貝殻を、カルシウム除去剤処理及び生体高分子除去処理することを含む。

Description

液体クロマトグラフィー用カラム充填剤及びその製造方法
 本発明は、液体クロマトグラフィー用カラム充填剤及びその製造方法に関し、特に、アルカリ性の移動相が使用可能な、耐アルカリ性の液体クロマトグラフィー用カラム充填剤及びその製造方法に関する。
 従来より、液体クロマトグラフィー用カラム充填剤として、オクタデシルシリカ(ODSシリカ)等の化学修飾型シリカゲルが広く用いられている。しかしながら、シリカゲル系の充填剤は、アルカリ水溶液下でシリカゲルの溶解及び化学修飾の離脱が生じるという欠点があり、高pHの移動相を用いることができない。一方、種々の薬剤等は、アルカリ性で良好な分離が得られるため、アルカリ性の移動相を用いることが望まれ、このため、耐アルカリ性の充填剤が求められている。
 本願発明者らは、先に、耐アルカリ性充填剤として、多孔性球状炭酸カルシウムベースの高速液体クロマトグラフィー(HPLC)充填剤を開発した(非特許文献1)。この充填剤は、人工的に合成したバテライト型多孔性炭酸カルシウム結晶粒子の表面を、疎水性基含有ポリマーで被覆して疎水性相互作用の機能を付与した高アルカリ耐性逆相HPLC充填剤である。
 また、粉砕した貝殻を液体クロマトグラフィー用カラム充填剤として用いることも公知である(非特許文献2)。しかしながら、必ずしもその分離性能に満足することができない。
M. Mochida et al., J. Mater. Chem. B, 2019, 7, 4771-4777 Kousuke Sato et al., Chemistry A European Journal, Volume 21, Issue 13, March 23, 2015, pages 5034-5040
 上記の炭酸カルシウムベースのHPLC充填剤は、空隙として表面の20nmのメソ細孔を有しており、アルカリ性下においても安定して使用することができ、分離能も耐圧性も十分であり、優れた性能を有している。しかしながら、バテライト型炭酸カルシウム結晶は、量産が困難であり、均一に粒径及び形状を維持しながら合成することが可能な量は現状、7g程度である。すなわち、公知のバテライト型炭酸カルシウム結晶は、炭酸ナトリウムとPSSの入った水溶液を攪拌しているところに塩化カルシウムの溶液を急激に加えるという方法で粒子を作製しているが、スケールアップすれば、均一な溶液を制御することが難しくなり、溶液が不均一になり、粒子の大きさにばらつきが出る。このため、商業スケールで製造することは困難である。
 したがって、本発明の目的は、耐アルカリ性であり、液体クロマトグラフィー用カラム充填剤として必要な分離能及び耐圧性を有し、商業ベースで量産が可能な、新規な液体クロマトグラフィー用カラム充填剤及びその製造方法を提供することである。
 本願発明者らは、炭酸カルシウム粒子として、卵殻を利用することを考えた。卵殻は、食品製造業や家庭及び飲食店等において、大量に生じる廃棄物であり、安価に大量に入手可能である。卵殻の粉砕物から、残留する生体高分子を除去する必要があると考えられたため、次亜塩素酸ナトリウム処理により生体高分子を除去し、非特許文献1と同様に疎水性基含有ポリマーで被覆してカラム充填剤として用いる試験を行ったが、所望の分離性能を達成することができなかった。この問題を解決すべくさらに鋭意検討を行ったところ、カルシウムキレート剤であるEDTAで卵殻を洗浄する工程をさらに付加することにより、所望の分離性能を達成可能であることを見出し、本発明を完成した。
 すなわち、本発明は以下のものを提供する。
(1) 粉砕され、カルシウム除去剤処理及び生体高分子除去処理された卵殻又は貝殻から成る液体クロマトグラフィー用カラム充填剤。
(2) 卵殻から成る(1)記載の充填剤。
(3) 前記カルシウム除去剤が、カルシウムキレート剤又は酸である(1)又は(2)記載の充填剤。
(4) 前記カルシウム除去剤が、カルシウムキレート剤であり、該カルシウムキレート剤がエチレンジアミン四酢酸又はその塩、グリコールエーテルジアミン四酢酸又はその塩、及び(1,2-ビス(o-アミノフェノキシド)エタン-N,N,N',N'-テトラ酢酸)又はその塩から成る群より選ばれる少なくとも1種である、(3)記載の充填剤。
(5) 前記カルシウムキレート剤がエチレンジアミン四酢酸又はその塩である(4)記載の充填剤。
(6) 前記生体高分子除去処理が、酸化剤処理又は加熱処理である、(1)~(5)のいずれか1項に記載の充填剤。
(7) 前記生体高分子除去処理が、酸化剤処理であり、該酸化剤が、次亜塩素酸又はその塩、酸素、オゾン、過酸化水素から成る群より選ばれる少なくとも1種である、(6)記載の充填剤。
(8) 前記酸化剤が、次亜塩素酸又はその塩である(7)記載の充填剤。
(9) 前記卵殻又は貝殻の数平均粒子径が1μm~1000μmである(1)~(8)のいずれか1項に記載の充填剤。
(10) 表面に有機基を有する(1)~(9)のいずれか1項に記載の充填剤。
(11) 前記有機基が疎水性基であり、前記クロマトグラフィーが逆相クロマトグラフィーである、(10)記載の充填剤。
(12) 前記疎水性基が炭素数1~30のアルキル基である(11)記載の充填剤。
(13)   X線回析の2θピーク値が、26.5°の2θピーク値以外ではカルサイトのX線回析の2θピークと一致している、(1)~(12)のいずれか1項に記載の充填剤。
(14) 前記カルシウム除去剤が弱酸、又は弱酸と塩を含む弱酸緩衝液である、(1)記載の充填剤。
(15) 前記弱酸が酢酸である(14)記載の充填剤。
(16) X線回析において2θピーク値が26.5°に存在し、この26.5°の2θピーク値以外では2θピーク値がカルサイトのX線回析の2θピーク値と一致しており、5℃/minで昇温した際の200℃~585℃の重量減少が1重量%以下であり、水銀圧入法で測定した、直径500nm未満の細孔の積算細孔容積が0.05mL/g以上である、液体クロマトグラフィー用カラム充填剤。
(17) 粉砕された卵殻又は貝殻を、カルシウム除去剤処理及び生体高分子除去処理することを含む、(1)記載の液体クロマトグラフィー用カラム充填剤の製造方法。
(18) 粉砕された卵殻又は貝殻を、カルシウム除去剤で処理し、次いで、酸化剤で処理することを含む、(17)記載の方法。
(19) 卵殻又は貝殻の表面に有機基を結合することをさらに含む、(17)又は(18)記載の方法。
(20) 前記有機基を複数個有するポリマーを卵殻又は貝殻表面に結合させることにより、前記有機基を卵殻又は貝殻の表面に結合することを含む、(19)記載の方法。
(21) 前記有機基が疎水性基であり、前記クロマトグラフィーが逆相クロマトグラフィーである、(19)又は(20)記載の方法。
(22) 前記疎水性基が炭素数1~30のアルキル基である(21)記載の方法。
(23) (1)~(16)のいずれか1項に記載されている卵殻又は貝殻の、液体クロマトグラフィー用カラム充填剤としての使用。
(24) (1)~(16)のいずれか1項中に記述されている卵殻又は貝殻の、液体クロマトグラフィー用カラム充填剤の製造のための使用。
(25) (1)~(16)のいずれか1項に記載に記載の液体クロマトグラフィー用カラム充填剤が充填されたカラムに試料をかけることを含む、液体クロマトグラフィー。
 本発明によれば、耐アルカリ性であり、液体クロマトグラフィー用カラム充填剤として必要な分離能及び耐圧性を有し、商業ベースで量産が可能な、新規な液体クロマトグラフィー用カラム充填剤及びその製造方法が提供された。
下記実施例で作製した粒子のX線回折による解析結果を示す図である。 下記実施例で作製した粒子のフーリエ変換赤外分光法(FT-IR)による解析結果を示す図である。 下記実施例で作製したカラムに、水/アセトニトリル(=50/50, v/v)移動相を異なる流速で送液したときの背圧を示す図である。 下記実施例で作製したカラムに、流速3.0 ml/分で移動相を流した際の、移動相混合比率を変化させたときの背圧を示す図である。 図5の左図は、下記実施例で作製したカラムで、2種類の塩基性向精神薬を分析した際の、各種移動相混合比率におけるlog k(固定相の疎水場と移動相との分配比を表す保持係数)、右図はクロマトグラムを示す。 下記実施例において購入した市販の粉砕卵殻の走査電子顕微鏡像である。 下記実施例において得られた、EDTA処理及び次亜塩素酸ナトリウム処理後の粉砕卵殻の走査電子顕微鏡像である。 下記実施例において、カルシウム除去剤処理としての酸処理を施す前の、市販の粉砕卵殻の走査電子顕微鏡像である。 下記実施例において、異なる濃度の酢酸アンモニウムバッファーで処理した後の粉砕卵殻の走査電子顕微鏡像である。 下記実施例において、900mM酢酸アンモニウムバッファー(pH3.7)で、異なる時間処理した後の粉砕卵殻の走査電子顕微鏡像である。 下記実施例において、900mM酢酸アンモニウムバッファー(pH3.7)で処理した後の粉砕卵殻のX線回折図(XRD)である。 下記実施例において、NaClOで処理した後の粉砕卵殻の走査電子顕微鏡像である。 下記実施例において、各種処理後の粉砕卵殻を各種温度で加熱した後の質量減少を示す図である。 下記実施例において、ポリ(マレイン酸-alt-1オクタデセン)(PMAcO)で処理する前後の粉砕卵殻を各種温度で加熱した後の質量減少を示す図である。 下記実施例において作製した各カラムの保持挙動を示す図である。 下記実施例において作製したAcetic acidカラムとNo acidカラムの分離能をvan Deemterプロットで比較した結果を示す図である。 下記実施例において作製したAcetic acidカラムの保持容量を示す図である。 下記実施例において作製したカラムに、種々の注入量で試料を注入した際のクロマトグラムである。 下記実施例において作製したカラムの検量線である。 下記実施例において作製したカラムの再現性を示すクロマトグラムである。 下記実施例において作製したカラムを用いて2種類の塩基性化合物を分離したクロマトグラムである。 下記実施例において作製したカラムを用いて2種類の塩基性化合物を分離した際の、トリエチルアミン(TEA)水溶液の比率と図21のクロマトグラムから求めた保持係数の関係を示す図である。 下記実施例において作製したカラムを用いて、TEA水溶液比率が50%の場合に得られたクロマトグラムである。 下記実施例において作製したカラムを用いて、TEA水溶液比率が60%の場合に得られたクロマトグラムである。 下記実施例において得られた卵殻粒子の数平均粒子径分布を示す図である(横軸が線形スケール)。 下記実施例において得られた卵殻粒子の数平均粒子径分布を示す図である(横軸が対数スケール)。 下記実施例において得られた、未処理又は各種処理後の粉砕卵殻の走査電子顕微鏡像である。 下記実施例において得られた、未処理又は各種処理後の粉砕卵殻の、水銀圧入法で測定した細孔径と500nm未満の積算細孔容積との関係を示す図である。 下記実施例において得られた、未処理又は各種処理後の粉砕卵殻のX線回折図である(縦軸は任意単位)。 下記実施例において得られた、未処理又は各種処理後の粉砕卵殻のX線回折図である(縦軸は任意単位)。 下記実施例において得られた、未処理又は各種処理後の粉砕卵殻のX線回折図である。
 本発明で用いる卵殻は、鳥類の卵の殻であれば特に限定されないが、生産量が多く、安価に大量に入手可能なニワトリの卵殻が好ましい。卵殻から卵殻膜を除去し、乾燥した後、粉砕することが好ましい。卵殻の粉砕は、ミル等を用いて機械的に行うことができる。粉砕された卵殻の粒子径は、カラムクロマトグラフィーの目的に応じて適宜設定できるが、通常、数平均粒子径(直径)が5μm~20μm程度が好ましい。なお、卵殻膜を除去、乾燥後に粉砕された卵殻は市販されている(例えば、キューピータマゴ株式会社製「カルホープ」(登録商標)(直径約10μm))ので、市販の粉砕卵殻を好ましく用いることができる。
 次に粉砕卵殻を、カルシウム除去剤で処理する。カルシウム除去剤は、炭酸カルシウムの微粒子を溶解できるものであればよく、好ましい例としてカルシウムキレート剤及び酸を挙げることができる。カルシウム除去剤で処理し、次いで洗浄することにより、粉砕卵殻の多孔中に含まれる微小な炭酸カルシウム結晶を除去することができる。
 カルシウムキレート剤としては、特に限定されないが、好ましい例として、エチレンジアミン四酢酸又はその塩、グリコールエーテルジアミン四酢酸又はその塩、及び(1,2-ビス(o-アミノフェノキシド)エタン-N,N,N',N'-テトラ酢酸)又はその塩から成る群より選ばれる少なくとも1種を挙げることができ、これらの中でもEDTA又はその塩が好ましい。カルシウムキレート剤は、水溶液(水性緩衝液でもよい)として用いることが好ましい。水溶液中のカルシウムキレート剤の濃度は、適宜設定可能であるが、10mM~1000mM、好ましくは200mM~300mM程度である。カルシウムキレート剤による処理は、カルシウムキレート剤と粉砕卵殻が十分に接触できる方法を採用することが好ましく、例えば、粉砕卵殻に、カルシウムキレート剤水溶液を加え、超音波処理後、かくはんすることにより行うことができる。この際、添加するカルシウムキレート剤水溶液の量は、通常、粉砕卵殻の重量の2倍~100倍程度、好ましくは10倍~20倍程度である。処理温度は、特に限定されず、0℃超~100℃未満で可能であるが、室温下で行うことができるので、室温で行うことが好ましい。処理時間は、通常、1時間~5時間程度でよい。カルシウムキレート剤処理の後、吸引ろ過等により粉砕卵殻を集め、十分に水洗することが好ましい。
 上記したカルシウムキレート剤に代えて、塩酸、硫酸、硝酸、リン酸、酢酸、水(H3O+)などの酸を用いることもできる。酸処理の条件としては、細孔中の炭酸カルシウム微粒子を溶解するが、多孔構造を形成している炭酸カルシウムはあまり溶解せずに多孔構造が維持される条件を選択する。このような条件は、用いる酸が強酸か弱酸かにより異なるが、酢酸やリン酸のような弱酸を用いることが制御容易で好ましい。強酸の場合には希酸を用いることが好ましい。酸処理の条件としては、酸と粉砕卵殻が十分に接触できる方法を採用することが好ましく、例えば、粉砕卵殻に、酸性水溶液を加え、超音波処理後、かくはんすることにより行うことができる。水溶液中の酸のpHは、適宜設定可能であるが、pH 1~7、好ましくはpH 3~6程度、さらに好ましくはpH3~5である。また、酸に弱塩基を加えて酸性緩衝液としても良い。好ましい例として、酢酸と酢酸アンモニウムとを含む酸性緩衝液を挙げることができる。酢酸のような弱酸に、酢酸アンモニウム塩のような弱酸の塩を加えてバッファーとすることで、緩衝能によって反応系のpHを保つことができ再現性が得られやすいことや、弱酸と塩の混合比率を変化させるとpHの制御が可能であるなどの利点がある。この場合、緩衝液中の弱酸の塩の濃度は、700mM~8M程度が好ましい。この際、添加する酸性水溶液の量は、通常、粉砕卵殻の重量の2倍~100倍程度、好ましくは10倍~20倍程度である。処理温度は、特に限定されず、0℃超~100℃未満で可能であるが、室温下で行うことができるので、室温で行うことが好ましい。処理時間は、通常、30分~5時間程度でよい。酸処理の後、吸引ろ過等により粉砕卵殻を集め、十分に水洗することが好ましい。
 次いで、水洗後の粉砕卵殻を乾燥後、生体高分子除去処理を行う。生体高分子除去は、粉砕卵殻の多孔構造中に残留している生体高分子を除去するために行う。生体高分子除去処理は、酸化剤処理により行うことができる。酸化剤としては、次亜塩素酸又はその塩、酸素、オゾン、過酸化水素から成る群より選ばれる少なくとも1種を挙げることができるがこれらに限定されるものではない。これらの中でも次亜塩素酸又はその塩が好ましい。なお、酸化剤として酸素を用いる場合には、400℃~500℃に加熱することが好ましい。また、過酸化水素を用いる場合には、紫外線照射を併用することもできる。
 酸化剤は、水溶液(水性緩衝液でもよい)として用いることが好ましい。水溶液中の酸化剤の濃度は、適宜設定可能であるが、通常、1質量%~20質量%程度、好ましくは2質量%~10質量%程度である。酸化剤による処理は、酸化剤と粉砕卵殻が十分に接触できる方法を採用することが好ましく、例えば、粉砕卵殻に、酸化剤水溶液を加え、超音波処理後、かくはんすることにより行うことができる。この際、添加する酸化剤水溶液の量は、通常、粉砕卵殻の重量の2倍~100倍程度、好ましくは10倍~40倍程度である。処理温度は、特に限定されず、0℃超~100℃未満で可能であるが、室温下で行うことができるので、室温で行うことが好ましい。処理時間は、通常、12時間~96時間程度、好ましくは24時間~72時間程度である。カルシウムキレート剤処理の後、吸引ろ過等により粉砕卵殻を集め、十分に水洗することが好ましい。
 また、生体高分子除去処理は、加熱により行うこともできる。加熱は、真空下や不活性ガス中でも行うことが可能であるが、大気中で行うことができるので、大気中で行うことが簡便、低コストで好ましい。この場合には、酸素が存在するので、酸素による酸化剤処理と考えることもできる。加熱時の温度は、生体高分子が分解する温度であって、炭酸カルシウムが熱分解する温度よりも低い温度であり、好ましくは、上記のとおり、400℃~500℃程度である。
 なお、上記の説明では、カルシウム除去剤処理後に生体高分子除去処理を行ったが、順序は逆でもよく、また同時でも可能であるが、上記のとおり、カルシウム除去剤処理後に生体高分子除去処理を行うことが好ましい。
 酸化剤処理又は加熱処理後の粉末を洗浄することにより、孔径が100nm~500nm程度の多孔質構造を有する、化学修飾のない、卵殻由来炭酸カルシウム粒子が得られる。下記実施例において具体的に示されるように、この卵殻由来炭酸カルシウム粒子のX線回析の2θピーク値が、26.5°の2θピーク値以外ではカルサイトのX線回析の2θピーク値と一致している。26.5°の2θピーク値は、カルサイトのX線回析では見られず、卵殻に起因するピーク値であると考えられる。なお、卵殻由来炭酸カルシウム粒子には、約32°にも2θピークがあるが、このピークは、図29等では見にくくなっているが、カルサイトにも存在するピークである。また、5℃/minで昇温した際の200℃~585℃の重量減少が1重量%以下、好ましくは、0.5重量%以下である。また、水銀圧入法で測定した、直径500nm未満の細孔の積算細孔容積は、0.05mL/g以上であり、通常、0.05mL/g~0.10mL/gである。EDTAのようなカルシウムキレート剤と、次亜塩素酸ナトリウムのような酸化剤とで処理した場合には、通常、0.06mL/g以上0.07mL/g未満、酢酸+酢酸アンモニウム緩衝液のような酸又は酸性緩衝液と次亜塩素酸ナトリウムのような酸化剤とで処理した場合には、通常、0.07mL/g以上0.08mL/g以下であるが、0.05mL/g以上であれば、これらの範囲に限定されるものではない。
 この炭酸カルシウム粒子は、そのままでも順相クロマトグラフィーカラム充填剤として利用可能であるが、通常、粒子の表面に所望の有機基、例えば、官能基、イオン性基、何らかの物質に親和性を有する有機基等を結合させて、液体クロマトグラフィーカラム充填剤として用いることができる。すなわち、疎水性基を結合して逆相もしくは疎水クロマトグラフィー用カラム充填剤,イオン性基を結合してイオン交換クロマトグラフィー用カラム充填剤、親水性基を結合して親水性相互作用クロマトグラフィー用充填剤、キラルセレクターを結合してキラルクロマトグラフィー用充填剤、何らかのリガンドとの特異的結合能を有する有機基を結合させてアフィニティクロマトグラフィー用カラム充填剤として用いることができる。より具体的には、逆相クロマトグラフィー用カラム充填剤の場合には、疎水性基としては、炭素数1~30のアルキル基が好ましく、特に炭素数4~18のアルキル基が好ましい。疎水クロマトグラフィー用カラム充填剤の場合には、疎水性基としてフェニル基等を挙げることができる。イオン交換クロマトグラフィー用カラム充填剤の場合には、イオン性有機基として、スルホン酸、カルボン酸、リン酸、アミノ、アミン基等を挙げることができる。親水性相互作用クロマトグラフィーの場合には、親水性基として、ジオール、アミド、アミノ、シアノ基等を挙げることができる。キラルクロマトグラフィーの場合には、多糖誘導体、タンパク質、キニン誘導体、らせん状ビニルポリマー等を挙げることができる。また、何らかのリガンドとの特異的結合能を有する有機基としては、各種抗原、ハプテン、抗体、レセプター、酵素、プロテインA、プロテインG等を挙げることができる。
 炭酸カルシウム粒子表面に所望の有機基を結合する方法自体は上記非特許文献1に記載されるとおり公知であり、例えば、カルシウムをキレートできる一対のカルボキシル基を持つ化合物のポリマーに所望の基を結合させ、このポリマーで炭酸カルシウム粒子を処理することにより、炭酸カルシウム粒子表面に所望の基を結合させることができる。例えば、下記実施例では、オクタデシル基を持つマレイン酸誘導体を重合したポリマレイン酸誘導体であるポリ(マレイン酸-alt-1オクタデセン)(PMAcO)で炭酸カルシウム粒子を処理し、マレイン酸の2個のカルボン酸イオンでカルシウムイオンをキレートさせてポリマーを炭酸カルシウム粒子表面に結合させ、それによってオクタデシル基を炭酸カルシウム粒子表面に結合させて逆相クロマトグラフィー用カラム充填剤を得ている。ポリマーの分子量は何ら限定されるものではなく、入手しやすい原料を用いて製造すればよい。例えば、数平均分子量が3万~5万のポリ(無水マレイン酸-alt-1オクタデセン)(PMAO)が市販されているので、これを加水分解して用いることができる。
 PMAcO等のカルシウムキレート化ポリマーを卵殻由来炭酸カルシウム粒子表面に結合する方法としては、卵殻由来炭酸カルシウム粒子を、ポリマー溶液で処理する方法を好ましく採用することができる。ポリマー溶液の溶媒としては、ポリマーを溶解できるものであれば特に限定されないが、例えば、アセトン等の水溶性の有機溶媒が好ましい。溶液中のポリマーの濃度は、適宜設定可能であるが、通常、0.02w/v%~20w/v%、好ましくは0.5w/v%~5w/v%程度である。ポリマーによる処理は、ポリマーと卵殻由来炭酸カルシウム粒子が十分に接触できる方法を採用することが好ましく、例えば、卵殻由来炭酸カルシウム粒子に、ポリマー溶液を加え、超音波処理後、かくはんすることにより行うことができる。この際、添加するポリマー溶液の量は、通常、卵殻由来炭酸カルシウム粒子の重量の2倍~80倍程度、好ましくは8倍~30倍程度である。処理温度は、特に限定されず、溶媒の融点よりも高く沸点よりも低い温度範囲で可能であるが、室温下で行うことができるので、室温で行うことが好ましい。処理時間は、通常、6時間~96時間程度、好ましくは12時間~48時間程度である。ポリマー処理の後、ポリマー溶液の溶媒で洗浄しながら吸引ろ過等により卵殻由来炭酸カルシウム粒子を集め、乾燥することが好ましい。
 なお、上記説明では、原料として粉砕卵殻を用いたが、粉砕卵殻に代えて粉砕貝殻を用いることもできる。貝殻としては、廃棄物として廃棄されている、食用の貝の貝殻が好ましく、食用の貝としては、ホタテ貝、ハマグリ、アサリ、カキ、サザエ、シジミ貝等を挙げることができるがこれらに限定されるものではない。貝殻を用いた場合でも、卵殻について上記した各処理を同様に行うことができる。なお、貝殻よりも卵殻の方が粉砕しやすく、均一な粒径の粉砕物が得られやすく、原料としては卵殻を用いることが好ましい。
 本発明の液体クロマトグラフィー用カラム充填剤は、廃棄物であり、安価に大量に供給される卵殻又は貝殻を原料としているため、大量生産が可能である。このため、分析用のクロマトグラフィー用カラム充填剤としてだけではなく、分取用カラムの充填剤としても好ましく利用することができる。さらに、下記実施例に具体的に示されるように、アルカリ条件下で安定して用いることができ、また、十分な分離能と耐圧性を有している。
 以下、本発明を実施例に基づき具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。
実施例1
1. 粉砕卵殻の準備
 粉砕卵殻として、キューピータマゴ株式会社製「カルホープ」(登録商標)を購入した。一部をとり、オスミウムを10秒間真空蒸着して、走査電子顕微鏡(SEM)で観察したところ、粒子表面に直径100nm~500nm程度の多孔構造が存在することが確認された。また、粒度分布計で粒度分布を測定したところ、5μm~30μm程度であり、数平均粒子径は10.2μmであった。なお、上記走査電子顕微鏡(SEM)で撮影した像を図6に示す。
2. EDTA処理
 1Lフラスコに粉砕卵殻30gを取り、250mM EDTA水溶液500mLを加えた。超音波処理を1分間行って粉砕卵殻を十分に分散させ、この状態でシェーカーを用いて、室温下、2時間、125rpmで粉砕卵殻が沈殿しないようにかくはんした。その後、十分な量の水で洗浄しながら吸引ろ過を行い、60℃で一夜乾燥させた。
3. 次亜塩素酸ナトリウム(NaClO)処理
 上記処理後の粉砕卵殻に、5質量% NaClO水溶液500mLを添加し、3分間超音波処理を行って粉砕卵殻を十分に分散させ、この状態でシェーカーを用いて、室温下、48時間、125rpmで粉砕卵殻が沈殿しないようにかくはんした。その後、十分な量の水で洗浄しながら吸引ろ過を行い、60℃で一夜乾燥させた。上記処理後の卵殻のSEM像を図7に示す。
4. PMAcOの合成
 100mLナスフラスコに、市販のPMAO(分子量3万~5万)(Sigma-Aldrich社製)3.0gをアセトン27 mlに完全に溶解させた。これに水3 mlを加え、室温で一晩、激しく撹拌することで加水分解反応を行った。アセトンおよび水をエバポレーターにより蒸発させたのち、10 mlのアセトンに溶解し、水500 mlに氷冷しながら滴下する再沈殿精製を3回に分けて行った。このとき、白色透明なポリマー結晶が得られた。得られたポリマーを吸引ろ過した後、真空条件で溶媒を蒸発させ、目的物であるPMAcOを得た。
5. PMAcOによる卵殻由来炭酸カルシウム粒子の修飾
 1 LナスフラスコにPMAcO 500 mgをはかりとり、アセトン500 mlに完全に溶解させた。3で得られた卵殻由来炭酸カルシウム粒子25.0 gを加え、ナスフラスコを振った後、スラリーを3分間超音波にかけることで粒子が完全に溶媒に濡れるようにした。このスラリーを、シェイカーを用いて室温で24 時間、125 rpmで粒子が沈殿しないように撹拌させた。その後、アセトンで洗浄しながら吸引ろ過を行い、60℃、一夜乾燥させ、PMAcOで修飾された卵殻由来炭酸カルシウム粒子を得た。
6. 物性評価
(1) X線回折装置(XRD)による測定
 X線回折による解析結果を図1に示す。図1中、「Calcite」はカルサイト(方解石)についての結果、「Eggshell」は、粉砕卵殻についての結果、「Bare (NaClO)」は、上記2のEDTA処理を省略して3のNaClO処理を行った、PMAcO処理前の粒子についての結果、「Bare (EDTA NaClO)」は、上記3で得られた、PMAcO処理前の粒子についての結果、「Eggshell-PMAcO」は、上記5で得られた粒子についての結果を示す。
 図1に示されるように、最終的に得られたPMAcO修飾粒子においても各ピークはカルサイトのピークと一致しており、カルサイト構造が維持されていることが明らかになった。
(2) 分散性試験
 上記5で得られた粒子の分散性テストを行った。水およびメタノールに粒子を入れ、超音波にかけた後、分散性を確認した。粒子は水に分散せず、有機溶媒であるメタノールには分散した。したがって、PMAcOの修飾によって粒子表面が疎水性になっていることが確認された。
(3) フーリエ変換赤外分光法(FT-IR)による解析
 FT-IRによってPMAcOの修飾を評価した。結果を図2に示す。なお、図2中、「PMAcO's CH2」はPMAcOについての結果、「Eggshell-PMAcO」は、上記5で得られた粒子についての結果、「Bare (EDTA+NaClO)」は、上記3で得られた、PMAcO処理前の粒子についての結果、「Eggshell」は、粉砕卵殻についての結果を示す。
 PMAcO修飾後にPMAcO由来の2924 cm-1のアルキルのピークが出現していることより、PMAcOの修飾を確認することができた。
7. カラムの作製
 上記5で得られた粒子を、湿式充填法を用いてセミ分取カラム(内径10 mm x 長さ150 mm)に充填した。これは具体的には次のようにして行った。上記5で得られた粒子25 gをクロロホルム125 mLに懸濁させ、超音波をかけてスラリーとした。スラリーを分取用カラムパッカーに注入し、ポンプを用いて定圧22 MPaでメタノールを60 分間送液した。その後、水/メタノール(=50/50, v/v)を30分間流し、カラム内の溶媒を置換した。充填後、ミクロスパーテルで余分な粒子を削り取った後、カラムにふたをして、室温保存した。
8. カラムの背圧評価
 上記7で作製したカラムの背圧を測定した。水/アセトニトリル(=50/50, v/v)移動相を異なる流速で送液したときの背圧を図3に、移動相流速を3.0 ml/分としたときに移動相混合比率を変化させたときの背圧を図4に示す。
 図3に示されるように、背圧が移動相の流速に比例し、この背圧は市販される同サイズのセミ分取ODSカラムの背圧と大差ない値であり、実用上、十分な耐圧性を有することが確認された。また、図4に示されるように、水/アセトニトリル移動相においては水の混合比率が80%の時が最大となるような凸型の曲線となり、これは水/アセトニトリルを単純に混合させたときの粘度の比と一致した。このように安定した背圧が得られたことから、7で作製された分取カラムは、実用可能であることが明らかになった。
9. アルカリ性移動相を用いた塩基性医薬品の分析
 上記7で作製したカラムを用いて、2種類の塩基性向精神薬、イミプラミン(Imipramine)およびクロミプラミン(Clomipramine)の混合サンプルの分離分析を行った。移動相としては、0.1M水酸化ナトリウム水溶液/アセトニトリル混合物を用いた。移動相中の0.1M水酸化ナトリウム水溶液の割合は40%(v/v)~70%(v/v)まで10%刻みで変化させた。0.1M水酸化ナトリウム水溶液の割合が70%の場合、pHは約13である。各種移動相混合比率におけるlog k(固定相の疎水場と移動相との分配比を表す保持係数)を図5の左図に、クロマトグラムを図5の右図に示す。
 図5に示されるように、pH13のアルカリ条件下での塩基性向精神薬の保持においても、上記5で作製した分取用カラムが逆相保持挙動を示すことが確認された。図5右図に示すように、各10μgの注入量の場合には、水酸化ナトリウム水溶液/アセトニトリル移動相中の水酸化ナトリウム水溶液の混合比が60%以上の時に分離度Rsが1.5以上となり、2種の塩基性向精神薬を完全分離することができた。
実施例2
1. 方法
1-1. 卵殻の表面処理
 酢酸と酢酸アンモニウム塩を1:1で混合し、超純水で希釈することで、3 M、6 Mの酢酸アンモニウムバッファー(pH = 4.7)を500 mLずつ調製した。酢酸のpKaは4.7であるため、pH=4.7という条件は最も緩衝能が大きい条件である。5 Lポリバケツに卵殻粉末50 gを量りとり、調製した酢酸アンモニウムバッファー500 mLを加えて、スターラーと撹拌子を用いて室温で600 rpmで撹拌した。2時間・4時間または24時間経過後、1 Lビーカーに反応溶液を移して3分間程度デカンテーションを行い、溶液部分を捨て、十分な量の水で洗浄しながら沈殿した卵殻粉末を吸引ろ過し、60 ℃で一晩乾燥させた後に走査電子顕微鏡(SEM)で粒子の表面形状を観察した。
 次に、酢酸と酢酸アンモニウム塩の混合比率を1:1から10:1に変更することでpH = 3.7とし、超純水で希釈することで、300 mM、600 mM、900 mMの酢酸アンモニウムバッファー(pH = 3.7)を500 mLずつ調製した。pH=4.7の場合と同様、5 Lポリバケツに卵殻粉末50 gを量りとり、調製した酢酸アンモニウムバッファー500 mLを加えて、スターラーと撹拌子を用いて室温で600 rpmで撹拌した。2時間・4時間または24時間経過後、1 Lビーカーに反応溶液を移して3分間程度デカンテーションを行い、溶液部分を捨て、十分な量の水で洗浄しながら沈殿した卵殻粉末を吸引ろ過し、60℃で一晩乾燥させた後にSEMで粒子の表面形状を観察した。
 加えて、酢酸アンモニウムバッファーによる表面処理方法の再現性を確かめるために、pH、濃度および反応時間を同様の条件とした3つのバッチで卵殻の表面処理を行い、卵殻粉末の表面構造、粒子径、および回収率を比較した。
1-2  NaClOによる有機物の除去
 5 wt%のNaClO水溶液500 mLの入った1 L三角フラスコに、900 mMの酢酸アンモニウムバッファー(pH = 3.7)で2時間酸処理を行った卵殻粉末27 gを加え、シェイカーを用いて100 rpmで48時間、室温で振とうした。吸引ろ過を行い、60 ℃で一晩乾燥させた後、SEMによる粒子の表面形状の観察、および熱重量分析による有機物含有量の測定を行った。
1-3 PMAcOの修飾
 PMAOを加水分解してPMAcOを合成した。100 mLナスフラスコにPMAO 3 gを量りとり、アセトン27 mLに完全に溶解させた後、純水3 mLを加えた。室温で一晩、激しく撹拌して加水分解反応を行った後、溶媒をエバポレーターによって蒸発させた。10 mLのアセトンに溶解させ、純水500 mLに氷冷しながら滴下する再沈殿精製を行うと、白色透明なポリマー結晶が得られた。得られたポリマーを吸引ろ過した後、真空条件で溶媒を蒸発させ、目的物であるPMAcOを得た。
 次に、1 L三角フラスコに得られたPMAcOを0.5 g量りとり、アセトン500 mLに溶解させた。NaClO処理後の卵殻26 gを加え、3分間超音波にかけることで粒子が完全に溶媒に濡れるようにし、シェイカーを用いて100 rpmで24時間、室温で振とうした。その後、アセトンで洗浄しながら吸引ろ過を行い、60 ℃で一晩乾燥させ、PMAcOで修飾された卵殻、Eggshell-PMAcO粒子を得た。PMAcOの修飾前後の粒子について、水とメタノールに対する分散性の評価、および熱重量分析によるPMAcO修飾量の測定を行った。
1-4 卵殻-PMAcOの基礎評価
1-4-1  セミ分取カラムの作製
 酢酸アンモニウムバッファーで酸処理を行い、NaClO処理およびPMAcOの修飾を行って作製された卵殻(Eggshell)-PMAcOを湿式充填法によってセミ分取カラム(内径10mm×150 mm)に充填した。Eggshell-PMAcO粒子25 gをクロロホルム180 mLに懸濁させ、分取用カラムパッカーに注入し、流速を20 mL/minで一定に保ち、メタノールを5分間送液した。続いて、圧力を30 MPaで一定に保ち、メタノールを60分間送液した。その後、水/メタノール(50/50, v/v)を30分間送液し、カラム内の溶媒を置換した。充填後、カラムにふたをして室温保存した。また、比較対象として、酸処理を行っていない粒子・PMAcO修飾を行っていない粒子・平均粒子径10 μmの市販の破砕状ODS粒子を同様の方法で同様のサイズのカラムに充填した。なお、実施例1でEDTAを用いて作製されたカラムおよび本実施例で作製した各カラムの名称は表1のように定め、以降の検討では表1に示した名称を使用した。
Figure JPOXMLDOC01-appb-T000001
1-4-2. 保持挙動の比較
 表1に示した5種類のカラムの保持挙動を確認した。サンプルには疎水性化合物であるtert-ブチルベンゼンを使用した。まず、tert-ブチルベンゼンをスクリュー管に量りとり、メタノールを加えて溶解させることで10 mg/mLのサンプルを調製した。そして、横軸に移動相中の水の比率、縦軸に得られたクロマトグラムから求めた保持係数をとってプロットを作成し、カラムの保持力の大きさ、およびカラムが逆相の保持挙動を示すか否かを確認した。なお、以降の検討では、移動相は水とメタノールの混合溶媒、カラム温度は25℃、クロマトグラムの検出波長は254 nmとした。
1-4-3. van Deemterプロットの比較
 1-4-2.の検討で逆相の保持挙動を示したカラムに対し、0.5 mL/min、1 mL/min、1.5 mL/min、2 mL/min、2.5 mL、3 mL/min、4 mL/min、および5 mL/minの8種類の流速でサンプルを注入し、得られた各クロマトグラムから理論段高さを得た。そして、横軸に移動相線速度、縦軸に理論段高さをとったvan Deemterプロットを作成し、分離能の比較を行った。サンプルには、4.3.2.で調製した10 mg/mLのtert-ブチルベンゼンを使用した。
1-4-4. 定量分析
 酢酸アンモニウムバッファーによる酸処理を行って作製したカラムについて、保持容量、すなわちカラムが一度に保持できるサンプルの最大注入量を調査した。サンプルには、メタノールに溶解させた20 mg/mL、30 mg/mL、40 mg/mLおよび50 mg/mLのtert-ブチルベンゼンを使用し、カラムへのサンプル注入量を増加させて得られたクロマトグラムの形状を比較することで、ピークの形状が崩れない最大注入量を保持容量とした。
 次に、カラムに対し、保持容量以内の量のサンプルを注入した際に得られる分析結果の定量性を確認するために、横軸にtert-ブチルベンゼンの注入量、縦軸にクロマトグラムのピーク面積をとり、検量線を作成した。
 また、カラムに対し、保持容量を超えない量のサンプルを注入した際に得られる分析結果の再現性を確認するために、同量のtert-ブチルベンゼンを連続して6回注入し、得られたクロマトグラムから保持時間および理論段高さの相対標準偏差を算出した。
1-5. 塩基性化合物の分離
1-5-1.  塩基性化合物の保持挙動
 アルカリ性条件下における2種類の塩基性化合物の分離を行った。ImipramineとClomipramineを各100 mg/mLの濃度となるように純水に溶解させたものをサンプルとした。また、移動相に水酸化ナトリウムのような不揮発性の化合物が含まれていると、サンプルを分取した後に移動相を除去する際、脱塩などの煩雑な操作が必要となるため分取条件として望ましくないと考え、移動相の水1 Lに対して揮発性のトリエチルアミン(TEA)を1 mL加えることで、pH = 11.5のアルカリ性の移動相を作製した。そして、移動相中のTEA水溶液とメタノールの混合比率を変化させて2種類の塩基性化合物の分離を行い、それぞれの条件で得られたクロマトグラムの分離度を求めた。加えて、横軸に移動相中のTEA水溶液の比率、縦軸に得られたクロマトグラムから求めた保持係数をとってプロットを作成し、カラムの保持挙動を確認した。
1-5-2. 塩基性化合物の保持容量
 移動相中のTEA水溶液の比率が50%および60%の条件において、Eggshell-PMAcOの保持容量を調査した。サンプルには、4.4.1.で調製した各100 mg/mLのImipramineとClomipramineの混合サンプルを使用した。カラムへのサンプル注入量を増加させて得られたクロマトグラムから、2つの成分のピークの分離度を算出し、完全分離、すなわち分離度が1.5以上となるサンプルの最大注入量を保持容量とした。
2. 結果
2-1.  卵殻の表面処理
 酸処理前の卵殻のSEM像を図8に示す。また、2種類の濃度の酢酸アンモニウムバッファー(pH = 4.7)で2時間、酸処理を行った後の卵殻のSEM像を図9に示す。
 図9に示すように、酢酸アンモニウム塩の濃度が3M又は6Mの場合、卵殻表面全体に均一な細かい多孔質構造が現れ、酸処理前と比較すると明らかに表面積が拡張している。以上より、3 Mおよび6 Mの酢酸アンモニウムバッファー(pH = 4.7)を用いた表面積の拡張に成功した。
2-1-2. pHの変更
 酢酸アンモニウムバッファーのpHを低くする、すなわち酢酸アンモニウムバッファーをより強い酸にすることで、より薄い濃度でも卵殻表面を十分に溶解させることができると予想し、900 mMの酢酸アンモニウムバッファー(pH = 3.7)で2時間、酸処理を行った後の卵殻のSEM像を図10に示す。
 図8と比較すると、図10に示した900 mMの場合は、卵殻表面全体に均一な細かい多孔質構造が現れ、明らかに表面積が拡張していることが確認された。以上より、2時間、4時間、24時間の反応時間において、900 mMの酢酸アンモニウムバッファー(pH = 3.7)を用いた表面積の拡張に成功した。ただし、反応時間を延ばしても表面構造に大きな変化は見られないため、反応時間は2時間で十分であると判断した。
 900 mMの酢酸アンモニウムバッファー(pH = 3.7)で2時間反応させた粒子の結晶構造をX線回折法(XRD)で測定した結果を図11に示す。
 図11より、酢酸アンモニウムバッファーで酸処理した粒子は炭酸カルシウムのカルサイトの結晶構造をとっており、酢酸アンモニウム・酢酸カルシウムなどの酢酸由来の結晶は析出していないことが確認された。
2-1-3. NaClOによる生体高分子の除去
 900 mM、pH=3.7の酢酸アンモニウムバッファーによる酸処理を行った後、5 wt%のNaClO水溶液500 mLによって有機物の分解を行った卵殻のSEM像を図12、熱重量分析によって有機物の含有量を測定した結果を図13に示す。なお、図13に示す熱量分析は、5℃/minで昇温した結果を示す。
 図12より、NaClO処理後も、酸処理によって得られた均一な多孔質構造は失われずに保たれていることが確認された。また、図13については、200 ℃までが粒子に含まれる水分、200 ℃~585 ℃が有機物、585 ℃以降がCaCO3の燃焼による重量減少であると判断した。原料の卵殻粉末には2.13%の有機物が含まれていたが、酸処理後には2.75%に増加していた。これは、卵殻表面に付着した酢酸アンモニウム塩が原因であると推測される。一方、酸処理後の卵殻にNaClO処理を施すと300 ℃付近の大きな重量減少が見られなくなり、有機物含有量は0.67%まで減少したことから、NaClOによる有機物の除去に成功したことが確認された。
2-1-4. PMAcOの修飾
 PMAOの加水分解で得られたPMAcOを卵殻に修飾することで作製されたEggshell-PMAcO粒子について、水とメタノールに対する分散性を観察した。また、PMAcOの修飾前後のTGの測定結果を図14に示す。
 PMAcO修飾前の粒子は水にもメタノールにも分散したが、PMAcOの修飾後は水に分散しなくなったことから、粒子表面が疎水性になったことが確認された。また、図14より、PMAcO修飾後には、300 ℃付近において顕著な重量減少が見られた。PMAcO修飾後の200 ℃~350 ℃の重量減少は0.53%であったが、PMAcO修飾前の200 ℃~350 ℃の重量減少は0.13%であるため、PMAcOの修飾量は0.53%と0.13%の差分である0.40%であると判断される。
2-2. Eggshell-PMAcOの基礎評価
2-2-1.  保持挙動の比較
 上記表1に示した5種類のカラムの保持挙動を確認するため、横軸に移動相中の水の比率、縦軸に得られたクロマトグラムから求めた保持係数をとってプロットした結果を図15に示す。
 図15より、EDTAカラム・Acetic acidカラム・No acidカラムについては、移動相中の水比率と保持係数の間に線形関係が成り立っていることから逆相の保持挙動が確認された。また、これら3種類のEggshell-PMAcOカラムの保持係数がほぼ一致していることから、酸処理の有無や、酸処理に用いる試薬は、Eggshell-PMAcOカラムの保持力に影響を与えないことが示された。
 一方、No PMAcOカラムは、移動相中の水比率を増加させても保持係数はほとんど増加せず、移動相中の水比率と保持係数の間に線形関係が成り立っていないことから、逆相の保持挙動は見られなかった。したがって、前述した3種類のEggshell-PMAcOカラムが示した逆相の保持挙動は、PMAcOの修飾によるものであることが示された。なお、移動相中の水比率が20%の場合に、逆相Eggshell-PMAcOカラムよりもNo PMAcOカラムの方が大きな保持係数が得られたのは、充填剤表面とサンプルとの間の吸着作用が原因であると考えられる。逆相カラムは固定相と移動相の間の分配平衡によってサンプルを保持するのに対し、No PMAcOカラムの固定相表面では分配平衡ではなく吸着平衡が起こっていたと考えられる。
 また、ODSカラムについては、移動相中の水比率と保持係数の間に線形関係が成り立っていることから逆相の保持挙動が確認され、移動相中の水比率が同じ条件で比較するとODSカラムの方が逆相Eggshell-PMAcOカラムよりも大きな保持係数が得られた。しかし、例えば移動相中の水比率が15%の際のODSカラムの保持係数と、50%の際のEggshell-PMAcOカラムの保持係数が同程度であるように、ODSカラムよりも移動相中の水比率を増加させることで、Eggshell-PMAcOはODSカラムと同程度の時間、サンプルを保持できると言える。
2-2-2. van Deemterプロットの比較
2-2-2-1. 酸処理の有無
 Acetic acidカラムとNo acidカラムの分離能をvan Deemterプロットで比較した結果を図16に示す。
 図16より、測定したすべての移動相線速度において、Acetic acidカラムの理論段高さの値はNo acidカラムよりも小さかったことから、Acetic acidカラムの方が分離能の高いカラムであることが確認された。
 これらの結果から、酸処理にはカラムの分離能を大幅に向上させる効果があることが示された。酸処理を行うと、粒子表面が均一な多孔質構造となり、PMAcOの均一な表面修飾が行われた結果、充填の際のクロロホルムスラリーへの分散性が向上し、充填状態が改善したのだと推測される。また、酸処理によって粒子サイズがより均一になったことで、理論段高さの値を構成する要素のうち多流路拡散に起因するA項が小さくなったのだと考えられる。
2-2-3. 定量分析
2-2-3-1.  保持容量
  本実施例で作製したAcetic acidカラムの保持容量、すなわちカラムが一度に保持できるサンプルの最大注入量を調査するために、サンプル濃度を20 mg/mLに固定しインジェクターの最大注入量である100μLまで注入量を増加させて得られたクロマトグラムを図17に示す。
 図17より、サンプル注入量が2 mgまでは、ピーク形状が崩れることなくサンプルが保持されていることが確認されたため、保持容量を決定するためにはさらに多量のサンプルを注入する必要があると判断した。そこで、サンプル注入量をインジェクターの最大注入量である100μLで固定し、サンプル濃度を20 mg/mLから50 mg/mLまで増加させた。得られたクロマトグラムを図18に示す。なお、図18中、サンプル濃度が低いほど、ピークが低くなっている。
 図17に示した注入量2.0 mgまでのクロマトグラムでは、ピークのテーリングは見られず、測定開始から6分間程度以内に注入したサンプルすべてが溶出していた。一方、図18に示したクロマトグラムでは、注入量が3.0 mg以上になると顕著なピークのテーリングが見られ、測定開始から8分間経っても注入したサンプルの一部がカラム内に残っていることから、疎水性相互作用による分配平衡の崩れが確認された。したがって、分配平衡が崩れることなく、ピーク形状を維持したままサンプルを保持している2.0 mgをAcetic acidカラムの保持容量であると判断した。
2-2-3-2. 定量性
 Acetic acidカラムに対し、保持容量2.0 mg以内の量のサンプルを注入した際に得られる分析結果の定量性を確認した。横軸にサンプル注入量、縦軸にクロマトグラムのピーク面積をとり作成した検量線を図19に示す。
 図19より、サンプル注入量とピーク面積に間に線形関係が成り立っていることから、注入量2.0 mg以内の分析結果に定量性があることが確認された。
2-2-3-3. 再現性
 Acetic acidカラムに対し、保持容量を超えない量のサンプルを注入した際に得られる分析結果の再現性を確認した。同量のサンプルを連続して6回注入し、得られたクロマトグラムを図20に示す。
 図20より、サンプルを6回連続注入して得られたクロマトグラムの保持時間および形状には、大きな違いが見られなかった。6つのクロマトグラムから求めた保持時間のRSDは0.118%、理論段高さのRSDは0.489%であったことから、Acetic-Acidカラムの分析結果の再現性が示された。
 以上のとおり、Acetic acidカラムの分析結果には定量性および再現性があることから、Acetic acidカラムが定量分析に使用可能なカラムであることが確認された。
2-3. 塩基性化合物の分離
2-3-1. 塩基性化合物の保持挙動
 移動相中のTEA水溶液とメタノールの混合比率を変化させ、2種類の塩基性化合物、ImipramineおよびClomipramineの分離を行って得られたクロマトグラムを図21に示す。また、図21のクロマトグラムから求めたそれぞれのピークの分離度を表2に示す。さらに、TEA水溶液の比率と図21のクロマトグラムから求めた保持係数の関係を図22に示す。
Figure JPOXMLDOC01-appb-T000002
 表24に示したように、図21に示したクロマトグラムから求めた分離度は、TEA水溶液の比率が50%以上の時に1.5以上となり、完全分離が達成された。また、図22より、移動相中のTEA水溶液の比率と保持係数の間に線形関係が成り立っていることから、アルカリ性条件下における塩基性化合物の保持においても、中性条件下における疎水性化合物の保持と同様、逆相の保持挙動が示された。
2-3-2. 塩基性化合物の保持容量
 2-3-1.の保持挙動の検討により、移動相中のTEA水溶液の比率が50%以上の場合に2種類の塩基性化合物の完全分離が達成されること、およびTEA水溶液の比率を増加させることで2つのピークの分離度が大きくなることが確認された。したがって、最も鋭いピークが得られ短時間での分離が可能なTEA水溶液比率が50%の場合、および溶出時間はかかるもののより2つのピークの溶出時間が離れる条件であるTEA水溶液比率60%の場合について、それぞれ保持容量を検討した。TEA水溶液比率が50%および60%の場合に得られたクロマトグラムをそれぞれ図23、図24に示す。また、図23、図24のクロマトグラムから求めた分離度を表3に示す。なお、図23及び図24において、濃度が高い順にピークが高くなっている。
Figure JPOXMLDOC01-appb-T000003
 表3より、TEA水溶液の比率が50%の場合は、Fig. 4-27に緑色の太線で示した各2.5 mgまでの注入においては分離度が1.5以上であり完全分離が達成されたものの、各5.0 mg以上となると2つのピークが重なり、分離度は1.5未満となった。一方、TEA水溶液の比率が60%の場合は溶出に60分間と長時間を要したが、図24に太線で示した各5.0 mgまでの注入において分離度が1.5以上であり完全分離が達成された。
 以上のように、Eggshell-PMAcOによって、最大で各5.0 mgの塩基性化合物の分離が可能であることが示され、各0.01 mgの分離を達成するにとどまる実施例1と比較して500倍もの重量の塩基性化合物の完全分離を達成した。
 なお、特にTEA水溶液の比率が60%の場合のクロミプラミンのピークは大きくテーリングしており溶出に60分間かかっているが、分析の途中で移動相中のメタノール比率を増加させるグラジエント溶出を行うことで、ピーク形状の改善やより短時間での高速分離ができる可能性がある。
実施例3 各種物性
 EDTAおよび酸処理方法による粒子径分布を粒度分布計で測定した結果、処理をしていない卵殻では、6.0 ± 3.0 μm(RSD: 51%)、EDTA処理した場合、8.4 ± 3.5 μm (RSD: 41 %)、酢酸アンモニウムで処理した場合、8.7 ± 3.5 μm (RSD: 40% )であった。なお、EDTAによる処理条件は、実施例1の「2. EDTA処理」と同様の方法、酢酸バッファーによる処理条件は、実施例2の「2-1-2. pHの変更」と同様の方法であった。結果を図25及び図26に示す。
 図25及び図26に示すように、EDTA処理又は酸処理をすることで、粒子径が大きくなり、分布は狭くなった。この結果は、処理することで粒子径が非常に小さい卵殻が溶解したことにより、粒子径が平均値として大きくなり、かつ小さな粒子が少なくなったことにより分布が狭くなったと考えられる。粒子径が均一な方がカラムの分離能が高くなるため、EDTAおよび酸処理により充填剤としての性能の向上が期待できる。
 また、各SEM像を図27に示す。図27のSEM像からImageJによって、粒度分布を評価した。未処理では3.2 ± 3.5 μm(RSD: 109%)、EDTA処理した場合、8.8 ± 5.2 μm (RSD: 59 %)、酢酸アンモニウムで処理した場合、9.2 ± 5.2 μm (RSD: 56%)であった(表4)。未処理の場合1 - 2μm程度の粒子サイズが最も多く存在し、1μm以下の粒子も多く存在する。それに対して、EDTAや酢酸アンモニウムで処理することで、粒度分布計での測定結果と同様に、粒子径が非常に小さい卵殻が溶解したため粒子径が大きくなり、分布は狭くなった。
 以上のとおり、粒度分布計、SEM像どちらからもEDTAおよび酸処理することで、粒子径が大きくなり、分布が狭くなることを確認できた。
Figure JPOXMLDOC01-appb-T000004
                  
 EDTAおよび酸処理方法による表面積、細孔容積、細孔径を水銀圧入法により測定した。結果を下記表5及び図28に示す。水銀圧入法では、窒素吸着法よりも大きな細孔を測定することができる。1μm程度の大きさなポアが最も多くなっているが、これは卵殻粒子間の間隙によるものである。500 nm以上のサイズのものは、間隙によるものであり、卵殻のマクロポアとは関係ないものである。そこで、1 nm - 500 nmのサイズのみに注目すると、未処理、NaClOのみの場合と比べて、EDTA、酸処理をしたものは容積が大きくなっていることが確認できる。
 酸処理、EDTA処理をすることによって、500 nm未満のポアにおいて拡張したと言える。クロマトグラフィーでは、nmオーダーの細孔が分離能に影響をおよぼすため、充填剤としての性能の向上に影響すると考えられる。
Figure JPOXMLDOC01-appb-T000005
 表5及び図28からわかるように、500 nm未満の細孔においては、EDTA処理よりも酸処理の方がより細孔の拡張していることがわかる。また、NaClO処理することによって、わずかに拡張している。NaClOのみの処理をすると、100 nm以下でわずかな拡張が確認できる。これはEDTAや酸処理と違った細孔サイズにおける拡張であり、有機物の除去によるものと考えられる。すなわち、EDTAおよび酸では炭酸カルシウムの溶解によるマクロポアの拡張、NaClOでは有機物の除去によるメソポアの拡張をしている。
 これらの結果より、EDTAおよび酸処理することによって、500 nm未満の細孔の拡張と微細な卵殻粉末を溶解させることができ、充填剤としての性能を向上できると期待できる。
XRD
 X線回折装置(XRD)により卵殻粉末の処理前後における結晶構造を評価した。結果を図29に示す。卵殻粉末がカルサイトの結晶構造を有すること、NaClO処理、EDTA処理、酸処理、PMAcO修飾反応後においてもカルサイトの結晶構造に変化がないことが確認された。したがって、すべての処理が結晶構造に影響を与えないことが確認された。また、以下の数値においてピークが得られている。
23.1, 26.5, 29.4, 31.5, 36.0, 39.4, 43.2, 47.3, 47.5, 48.6, 56.8, 57.4, 58.4 2θ/degree
 FT-IRによってPMAcOの修飾を評価した。結果を図30及び図31に示す。
 図30及び図31に示されるように、PMAcOの修飾後にPMAcOのアルキル由来の2924cm-1のピークが確認できたため、PMAcOの修飾を確認できた。

Claims (25)

  1.  粉砕され、カルシウム除去剤処理及び生体高分子除去処理された卵殻又は貝殻から成る液体クロマトグラフィー用カラム充填剤。
  2.  卵殻から成る請求項1記載の充填剤。
  3.  前記カルシウム除去剤が、カルシウムキレート剤又は酸である請求項1又は2記載の充填剤。
  4.  前記カルシウム除去剤が、カルシウムキレート剤であり、該カルシウムキレート剤がエチレンジアミン四酢酸又はその塩、グリコールエーテルジアミン四酢酸又はその塩、及び(1,2-ビス(o-アミノフェノキシド)エタン-N,N,N',N'-テトラ酢酸)又はその塩から成る群より選ばれる少なくとも1種である、請求項3記載の充填剤。
  5.  前記カルシウムキレート剤がエチレンジアミン四酢酸又はその塩である請求項4記載の充填剤。
  6.  前記生体高分子除去処理が、酸化剤処理又は加熱処理である、請求項1~5のいずれか1項に記載の充填剤。
  7.  前記生体高分子除去処理が、酸化剤処理であり、該酸化剤が、次亜塩素酸又はその塩、酸素、オゾン、過酸化水素から成る群より選ばれる少なくとも1種である、請求項6記載の充填剤。
  8.  前記酸化剤が、次亜塩素酸又はその塩である請求項7記載の充填剤。
  9.  前記卵殻又は貝殻の数平均粒子径が1μm~200μmである請求項1~8のいずれか1項に記載の充填剤。
  10.  表面に有機基を有する請求項1~9のいずれか1項に記載の充填剤。
  11.  前記有機基が疎水性基であり、前記クロマトグラフィーが逆相クロマトグラフィーである、請求項10記載の充填剤。
  12.  前記疎水性基が炭素数1~30のアルキル基である請求項11記載の充填剤。
  13.  X線回析の2θピーク値が、26.5°の2θピーク値以外ではカルサイトのX線回析の2θピークと一致している、請求項1~12のいずれか1項に記載の充填剤。
  14.  前記カルシウム除去剤が弱酸、又は弱酸と塩を含む弱酸緩衝液である、請求項1記載の充填剤。
  15.  前記弱酸が酢酸である請求項14記載の充填剤。
  16.  X線回析において2θピーク値が26.5°に存在し、この26.5°の2θピーク値以外では2θピーク値がカルサイトのX線回析の2θピーク値と一致しており、5℃/minで昇温した際の200℃~585℃の重量減少が1重量%以下であり、水銀圧入法で測定した、直径500nm未満の細孔の積算細孔容積が0.05mL/g以上である、液体クロマトグラフィー用カラム充填剤。
  17.  粉砕された卵殻又は貝殻を、カルシウム除去剤処理及び生体高分子除去処理することを含む、請求項1記載の液体クロマトグラフィー用カラム充填剤の製造方法。
  18.  粉砕された卵殻又は貝殻を、カルシウム除去剤で処理し、次いで、酸化剤で処理することを含む、請求項17記載の方法。
  19.  卵殻又は貝殻の表面に有機基を結合することをさらに含む、請求項17又は18記載の方法。
  20.  前記有機基を複数個有するポリマーを卵殻又は貝殻表面に結合させることにより、前記有機基を卵殻又は貝殻の表面に結合することを含む、請求項19記載の方法。
  21.  前記有機基が疎水性基であり、前記クロマトグラフィーが逆相クロマトグラフィーである、請求項19又は20記載の方法。
  22.  前記疎水性基が炭素数1~30のアルキル基である請求項21記載の方法。
  23.  請求項1~16のいずれか1項に記載されている卵殻又は貝殻の、液体クロマトグラフィー用カラム充填剤としての使用。
  24.  請求項1~16のいずれか1項中に記述されている卵殻又は貝殻の、液体クロマトグラフィー用カラム充填剤の製造のための使用。
  25.  請求項1~16のいずれか1項に記載に記載の液体クロマトグラフィー用カラム充填剤が充填されたカラムに試料をかけることを含む、液体クロマトグラフィー。
PCT/JP2021/018442 2020-05-14 2021-05-14 液体クロマトグラフィー用カラム充填剤及びその製造方法 WO2021230355A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022522219A JPWO2021230355A1 (ja) 2020-05-14 2021-05-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-084901 2020-05-14
JP2020084901 2020-05-14

Publications (1)

Publication Number Publication Date
WO2021230355A1 true WO2021230355A1 (ja) 2021-11-18

Family

ID=78524550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018442 WO2021230355A1 (ja) 2020-05-14 2021-05-14 液体クロマトグラフィー用カラム充填剤及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2021230355A1 (ja)
WO (1) WO2021230355A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285635A (ja) * 1990-03-30 1991-12-16 Shokuhin Kankyo Kaihatsu Kk 殻付卵の卵殻の洗浄・殺菌方法
JPH09117661A (ja) * 1995-10-27 1997-05-06 Takazo Suyama 金属吸着方法
JP2009120449A (ja) * 2007-11-16 2009-06-04 Amino Up Chemical Co Ltd バイオアパタイトの製造方法及び生物学的な活性を有する物質の分離方法
JP2011162469A (ja) * 2010-02-08 2011-08-25 Mikimoto Pharmaceut Co Ltd 皮膚角化促進剤
JP2017001005A (ja) * 2015-06-04 2017-01-05 株式会社ガイアテクノロジー カルシウムを用いた環境浄化材
JP2017018890A (ja) * 2015-07-10 2017-01-26 株式会社実践環境研究所 セシウム除去方法、及びこれに用いるセシウム吸着材、並びに吸着材のセシウム吸着能分析方法
JP2019090809A (ja) * 2017-11-15 2019-06-13 Jcrファーマ株式会社 酸性基を有する糖鎖の分析法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285635A (ja) * 1990-03-30 1991-12-16 Shokuhin Kankyo Kaihatsu Kk 殻付卵の卵殻の洗浄・殺菌方法
JPH09117661A (ja) * 1995-10-27 1997-05-06 Takazo Suyama 金属吸着方法
JP2009120449A (ja) * 2007-11-16 2009-06-04 Amino Up Chemical Co Ltd バイオアパタイトの製造方法及び生物学的な活性を有する物質の分離方法
JP2011162469A (ja) * 2010-02-08 2011-08-25 Mikimoto Pharmaceut Co Ltd 皮膚角化促進剤
JP2017001005A (ja) * 2015-06-04 2017-01-05 株式会社ガイアテクノロジー カルシウムを用いた環境浄化材
JP2017018890A (ja) * 2015-07-10 2017-01-26 株式会社実践環境研究所 セシウム除去方法、及びこれに用いるセシウム吸着材、並びに吸着材のセシウム吸着能分析方法
JP2019090809A (ja) * 2017-11-15 2019-06-13 Jcrファーマ株式会社 酸性基を有する糖鎖の分析法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SATO KOSUKE, OAKI YUYA, TAKAHASHI DAISUKE, TOSHIMA KAZUNOBU, IMAI HIROAKI: "Hierarchical CaCO 3 Chromatography: A Stationary Phase Based on Biominerals", CHEMISTRY - A EUROPEAN JOURNAL, JOHN WILEY & SONS, INC, DE, vol. 21, no. 13, 23 March 2015 (2015-03-23), DE, pages 5034 - 5040, XP055872321, ISSN: 0947-6539, DOI: 10.1002/chem.201405724 *

Also Published As

Publication number Publication date
JPWO2021230355A1 (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
Zarghami et al. Design of a new integrated chitosan-PAMAM dendrimer biosorbent for heavy metals removing and study of its adsorption kinetics and thermodynamics
FI65444C (fi) Foerfarande foer framstaellning av cyklodextrin/polyvinylalkohol-polymerer vilka bildar inklusionskomplex
JP6231032B2 (ja) セルロース多孔質粒子の製造方法及びセルロース多孔質粒子
WO2016013568A1 (ja) 多孔質セルロース媒体の製造方法
Zargar et al. Zein bio-nanoparticles: a novel green nanopolymer as a dispersive solid-phase extraction adsorbent for separating and determining trace amounts of azorubine in different foodstuffs
Song et al. Thermo-responsive adsorption and separation of amino acid enantiomers using smart polymer-brush-modified magnetic nanoparticles
WO2016159334A1 (ja) 多孔質セルロース媒体の製造方法
SU1088649A3 (ru) Способ получени сферического углеродного биоадсорбента
Rahmati et al. A biocompatible high surface area ZnO-based molecularly imprinted polymer for the determination of meloxicam in water media and plasma
JP3601229B2 (ja) 多孔性球状セルロース粒子
WO2021230355A1 (ja) 液体クロマトグラフィー用カラム充填剤及びその製造方法
Dinc et al. Inhibitor-assisted synthesis of silica-core microbeads with pepsin-imprinted nanoshells
Hu et al. Hierarchically porous MOFs self-supporting copolymers for ultrafast transport and precise recognition of flavonoids: A triple interfacial crosslinking strategy based on microreactors
Acet et al. Assessment of a new dual effective combo polymer structure for separation of lysozyme from hen egg white
US20070255042A1 (en) Production of chiral materials using crystallization inhibitors
Vo et al. Hydrophobically modified chitosan sponge preparation and its application for anionic dye removal
Tachibana et al. Selective lithium recovery from seawater using crown ether resins
Akkaya Porous and spherical hydroxyapatite microcomposites for immunoglobulin G adsorption
Zaini et al. Selective determination of acidic drugs in water samples using online solid phase extraction liquid chromatography with alginate incorporated multi-walled carbon nanotubes as extraction sorbent
JP2008095072A (ja) 貴金属イオン捕集剤として有用なポリマー
JP2525308B2 (ja) 多孔質セルロ―ス球状粒子の製造方法
Abdulsahib et al. Removal of bentonite from raw water by novel coagulant based on chitosan and tannin
RU2144006C1 (ru) Способ брикетирования стекольной шихты
CN110678206B (zh) 医药原料药载体及其制造方法
Millour Comportement et eevenir des nanoparticules d'argent durant une transition estuarienne

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21805314

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2022522219

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21805314

Country of ref document: EP

Kind code of ref document: A1