WO2021229840A1 - 透光性高靭化ジルコニア焼結体 - Google Patents

透光性高靭化ジルコニア焼結体 Download PDF

Info

Publication number
WO2021229840A1
WO2021229840A1 PCT/JP2020/039387 JP2020039387W WO2021229840A1 WO 2021229840 A1 WO2021229840 A1 WO 2021229840A1 JP 2020039387 W JP2020039387 W JP 2020039387W WO 2021229840 A1 WO2021229840 A1 WO 2021229840A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
zirconia sintered
sample
oxide
zirconia
Prior art date
Application number
PCT/JP2020/039387
Other languages
English (en)
French (fr)
Inventor
清治 伴
勤 杉山
裕太 安岡
Original Assignee
共立マテリアル株式会社
清治 伴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 共立マテリアル株式会社, 清治 伴 filed Critical 共立マテリアル株式会社
Priority to JP2022522500A priority Critical patent/JP7367207B2/ja
Publication of WO2021229840A1 publication Critical patent/WO2021229840A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/083Porcelain or ceramic teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C5/00Filling or capping teeth
    • A61C5/70Tooth crowns; Making thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites

Definitions

  • the present invention relates to a zirconia sintered body, and more particularly to a translucent and highly toughened zirconia sintered body that can be advantageously used as a dental restoration material.
  • zirconia sintered bodies (partially stabilized zirconia sintered bodies) in which a small amount of rare earth oxides such as yttrium oxide (Y 2 O 3) are solid-dissolved as a stabilizer have high strength and high toughness. Therefore, it is used in various industrial products such as structural materials in various machines such as cutting tools, bearings and crushers, and biological materials such as dental restoration materials.
  • rare earth oxides such as yttrium oxide (Y 2 O 3)
  • Y 2 O 3 yttrium oxide
  • the partially stabilized zirconia sintered body when used as a dental restoration material, the partially stabilized zirconia sintered body has not only mechanical properties such as high strength and high toughness, but also a color tone from an aesthetic point of view. Optical characteristics such as yttria-stabil and translucency are also required. As a method for increasing the translucency of the partially stabilized zirconia sintered body, it is conceivable to increase the content of a stabilizer such as yttria oxide.
  • the partially stabilized zirconia sintered body is only partially stabilized, there is a problem that long-term stability is particularly difficult in a hydrothermal environment.
  • a partially stabilized zirconia sintered body undergoes a phase transition from tetragonal to monoclinic when heated in the presence of moisture.
  • the strength of the sintered body decreases due to the growth of microcracks caused by the volume expansion of about 4% accompanying this phase transition. Therefore, in order to use the partially stabilized zirconia sintered body in an industrial product, it is necessary to use a sintered body in which the progress of the phase transition is sufficiently suppressed according to the application of the industrial product, the environment in which it is used, and the like.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2012-412319
  • the partially stabilized zirconia is contained as a matrix phase
  • the phosphorus (P) element and the boron (B) element are contained in the zirconia sintered body.
  • zirconia sintered bodies each of which is contained in a predetermined ratio with respect to the mass.
  • the progress of the phase transition is suppressed without deteriorating the mechanical properties of the sintered body by introducing the phosphorus (P) element and the boron (B) element.
  • the translucency required as a dental restoration material cannot be fully exhibited due to the increase in the interface due to the different phase such as the glass phase and the residual pores.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2015-143178
  • yttrium oxide exceeding 4.0 mol% and 6.5 mol% or less and alumina of less than 0.1 wt% are contained, and the relative density is 99.82. % Or more
  • the total light transmittance for light having a wavelength of 600 nm at a thickness of 1.0 mm is 37% or more and less than 40%
  • the bending strength is 500 MPa or more.
  • the translucent zirconia sintered body disclosed in the same document does not have sufficient mechanical properties, and for example, when used as a dental restoration material, it is used for anterior teeth. It can only be used for some products such as crown restorations, and when used, the sintered body used so that the product exhibits sufficient mechanical properties. It is necessary to make the thickness above a certain level.
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2014-185078
  • it is composed of zirconia containing 2 to 4 mol% yttrium oxide and less than 0.1 wt% alumina as an additive, and has a relative density of 99.8% or more.
  • a translucent zirconia sintered body characterized by having a total light transmittance of 35% or more and a crystal grain size of 0.20 to 0.45 ⁇ m at a thickness of 1.0 mm.
  • the translucent zirconia sintered body disclosed in the same document was used as a crown restoration for molar teeth. Although it was a sintered body having sufficient translucency, it was found that it did not have sufficient translucency for use as a crown restoration for anterior teeth.
  • Patent Document 4 Japanese Unexamined Patent Publication No. 1-108162 is formed by mixing zirconia with at least 0.3 to 25% by weight of niobium and one or more niobium-based substances.
  • Zirconia ceramics sintered body characterized by the above are disclosed.
  • the sintered body disclosed in the same document exhibits high bending strength and excellent fracture toughness, since the niobium compound particles are present between the zirconia particles, the light generated by the niobium compound particles which are different components Due to the influence of refraction, scattering, etc., there is a risk that translucency will be insufficient for use as a constituent material for crown restorations.
  • sintered bodies that can be particularly suitably used as dental restoration materials, specifically, have high fracture toughness. It is desired to develop a zirconia sintered body having excellent translucency and also excellent water heat deterioration resistance.
  • the present invention has been made in the background of such circumstances, and the problem to be solved thereof is that it has excellent fracture toughness, exhibits excellent translucency, and exhibits excellent translucency. It is an object of the present invention to provide a zirconia sintered body having excellent water heat resistance deterioration characteristics.
  • the present invention contains yttrium oxide and / or ytterbium oxide as a stabilizer in a proportion of 3.5 to 5.0 mol%, and also contains niobium oxide and / or tantalum oxide at 0. It is composed of zirconia contained in a ratio of 3 to 1.5 mol%, has a fracture toughness value of 4.5 MPa ⁇ m or more, and has an capacity of 80.0% or less at a thickness of 1.5 mm. The gist of this is the zirconia sintered body.
  • the present invention also has a gist of a dental restoration material made of the zirconia sintered body of the above-described embodiment.
  • the zirconia sintered body according to the present invention has excellent mechanical properties that can be sufficiently used as a dental restoration material because 1) the fracture toughness value is 4.5 MPa ⁇ m or more. 2) Since the opacity at a thickness of 1.5 mm is 80.0% or less, it exhibits excellent translucency to the extent that it can be suitably used as a dental restoration material. Further, the zirconia sintered body of the present invention is excellent as described above because it contains yttrium oxide and / or ytterbium oxide and niobium oxide and / or tantalum oxide in a predetermined ratio, respectively. In addition to exhibiting mechanical properties and translucency, it also exhibits excellent water and heat resistance deterioration characteristics.
  • the zirconia sintered body according to the present invention having such excellent properties can be used particularly advantageously as a dental restoration material, and the thickness of the sintered body can be reduced. Not only can it be used as a constituent material for a crown restoration for molar teeth, but it can also be sufficiently used as a constituent material for a crown restoration for anterior teeth.
  • the zirconia sintered body according to the present invention contains yttrium oxide and / or ytterbium oxide [ytterbium oxide (III)] as a stabilizer as a first essential component in a proportion of 3.5 to 5.0 mol%, and the first
  • the second essential component is zirconia containing niobium oxide and / or tantalum oxide in a proportion of 0.3 to 1.5 mol%.
  • the zirconia sintered body may be simply referred to as a sintered body.
  • the content ratio of the first essential component is less than 3.5 mol%
  • fracture toughness is achieved even if niobium oxide and / or tantalum oxide is contained at the ratio of the present invention.
  • the value is excellent, there is a possibility that a sintered body exhibiting sufficient translucency (in other words, a sintered body having an capacity of 80.0% or less at a thickness of 1.5 mm) cannot be obtained. ..
  • the ratio exceeds 5.0 mol%, even if niobium oxide and / or tantalum oxide is contained at the ratio of the present invention, at least one of fracture toughness and translucency is not sufficient.
  • the content ratio of the total amount of the first essential component is within the range of 3.5 to 5.0 mol%. Needless to say, it is done.
  • the content ratio of the second essential component is less than 0.3 mol%, even if yttrium oxide and / or ytterbium oxide is contained at the ratio of the present invention, sintering is performed. The body may not be able to exert sufficient fracture toughness. On the other hand, if the ratio exceeds 1.5 mol%, the sintered body may not exhibit sufficient translucency even if niobium oxide and / or tantalum oxide is contained at the ratio of the present invention. be.
  • the content ratio of the total amount of the second essential component is 0.3 to 1.5 mol%, as in the case of the first essential component described above. It is considered to be within the range.
  • the zirconia sintered body having an capacity of 80.0% or less at 1.5 mm is the zirconia sintered body according to the present invention.
  • the fracture toughness value (unit: MPa ⁇ m) in the present specification and claims is the IF specified in JIS R 1607: 2015 "Room temperature fracture toughness test method for fine ceramics”. It is measured according to the law.
  • Opacity is also referred to as opacity among those skilled in the art of ceramics.
  • the outline of the opacity is shown in FIG. Where light is indicated by an arrow in FIG. 1, the opacity in the present specification and claims is 1) one in a zirconia sintered body having a thickness of 1.5 mm (hereinafter referred to as a sample in this paragraph).
  • Reflectance measured when a white body with a reflectance close to 100% is applied to the surface of the sample (backed state): R 0
  • R 0 Reflectance measured when a white body with a reflectance close to 100% is applied to the surface of the sample (backed state): R 0
  • R 0 Reflectance measured when a white body with a reflectance close to 100% is applied to the surface of the sample (backed state)
  • R 0 Reflectance measured when a white body with a reflectance close to 100% is applied to the surface of the sample (backed state)
  • R 0 a state in which a black body is applied to one surface of
  • the opacity is 100%, indicating that the sample is a completely opaque material, while if the reflectance: R 1 is 0, the opacity is 0. %, which indicates that the sample is completely transparent.
  • yttrium oxide and / or ytterbium oxide and niobium oxide and / or tantalum oxide are each contained in a predetermined ratio, so 1)
  • the fracture toughness value is 4.5 MPa ⁇ m or more and exhibits excellent mechanical properties, and 2) the capacity at a thickness of 1.5 mm is 80.0% or less, and also exhibits excellent translucency. In addition, 3) it also exhibits excellent water and heat resistance deterioration characteristics.
  • the zirconia sintered body of the present invention may contain components other than the above-mentioned two essential components within a quantitative range as long as the object of the present invention is not impaired.
  • the content ratio of alumina Al 2 O 3
  • alumina may precipitate between the zirconia particles and the translucency may be deteriorated. Therefore, the content ratio of alumina is 0.05% by mass. The following is preferable.
  • the zirconia sintered body according to the present invention described above can be advantageously produced, for example, according to the production method described in detail below.
  • a zirconia sintered body containing only yttrium oxide as the first essential component First, a zirconia powder containing yttrium oxide and a second essential component (niobium oxide and / or tantalum oxide) are prepared. 1) After mixing them with a mixer, 2) add a binder such as PVA, and 3) spray dry. 4) The dried mixture is molded to obtain a molded product, and 5) the obtained molded product is calcined by firing under normal pressure to obtain the desired yttrium oxide and niobium oxide and / or tantalum oxide. The contained zirconia sintered body can be obtained.
  • a zirconia sintered body containing yttrium oxide and / or ytterbium oxide as a first essential component zirconia sol, yttrium compound providing yttrium oxide during sintering body after sintering (e.g., YCl 3), ytterbium compound providing ytterbium oxide during sintering body after sintering (e.g., YbCl 3), as well as the Prepare the second essential component (niobium oxide and / or tantalum oxide).
  • the dried product is crushed in a milk pot or the like, 11) the obtained crushed product is molded to obtain a molded product, and 12) the obtained molded product is fired under normal pressure and sintered to obtain ytterbium oxide. And / or a zirconia sintered body containing ytterbium oxide and niobium oxide and / or tantalum oxide can be obtained.
  • niobium pentoxide as niobium oxide (Nb 2 O 5), but also tantalum pentoxide as tantalum oxide (Ta 2 O 5) is advantageously
  • the form of the oxide or the like when mixed with the first essential component is not particularly limited, and a powdery substance, a sol-like substance or the like can be appropriately used, and the particle size is advantageous. Small (fine) powders and sol-like substances with a small (average particle size) are used.
  • the zirconia sintered body according to the present invention is not limited to those produced by the above-mentioned first and second production methods, and can also be produced by combining various conventionally known methods. be.
  • the zirconia sintered body manufactured as described above has excellent fracture toughness, exhibits excellent translucency, and also has excellent water and heat deterioration resistance.
  • zirconia sintered bodies (Sample Nos. 1-44) were produced by appropriately using the following raw materials.
  • the firing of the molded body when producing the zirconia sintered body (sample) was carried out under the conditions of 1500 ° C. (heat retention time: 2 hours) under normal pressure for all the zirconia sintered bodies (sample).
  • Example No. 1 Manufacture of 1- A binder was added to the 2.0Y-ZrO 2 powder, spray-dried, and then the dried mixture was filled in a mold ( ⁇ 20 mm). After applying a pressure of 0.78 MPa to the mold, a disk-shaped molded product was taken out from the mold, and CIP molding was performed on the molded product at a pressure of 196 MPa. A zirconia sintered body (Sample No. 1) was produced by firing the molded body after CIP molding.
  • Example No. 2 Manufacture of 2- Except for using 3.0Y-ZrO 2 powder instead of 2.0Y-ZrO 2 powder Sample No. A molded product was produced according to the same method as in No. 1, and the zirconia sintered body (Sample No. 2) was produced by firing the molded product.
  • Example No. 4 Manufacturing of 4- Sample No. except that a predetermined amount of Ta 2 O 5 powder was used instead of the predetermined amount of Nb 2 O 5 powder.
  • a molded product was produced according to the same method as in No. 3, and a zirconia sintered body (Sample No. 4) was produced by firing the molded product.
  • the dried product was crushed in a mortar, and the obtained crushed product was filled in a mold ( ⁇ 20 mm). After applying a pressure of 0.78 MPa to the mold, a disk-shaped molded product was taken out from the mold, and CIP molding was performed on the molded product at a pressure of 196 MPa.
  • a zirconia sintered body (Sample No. 5) was produced by firing the molded body after CIP molding.
  • the dried product was crushed in a mortar, and the obtained crushed product was filled in a mold ( ⁇ 20 mm). After applying a pressure of 0.78 MPa to the mold, a disk-shaped molded product was taken out from the mold, and CIP molding was performed on the molded product at a pressure of 196 MPa.
  • a zirconia sintered body (Sample Nos. 6 to 10) was produced by firing the molded body after CIP molding.
  • Example No. 11 Manufacturing of 11- Except for using 4.2Y-ZrO 2 powder instead of 2.0Y-ZrO 2 powder Sample No. A molded product was produced according to the same method as in No. 1, and the zirconia sintered body (Sample No. 11) was produced by firing the molded product.
  • a molded product was produced according to the same method as in 12 to 18, and the zirconia sintered body (Sample Nos. 19 and 20) was produced by firing the molded product.
  • Example No. Manufacture of 21-23- Instead of Nb 2 O 5 powder of a predetermined amount, Nb 2 O 5 powder and Ta 2 O 5 powder was used instead of the prescribed amounts of sample No.
  • a molded product was produced according to the same method as in 12 to 18, and the zirconia sintered body (Sample Nos. 21 to 23) was produced by firing the molded product.
  • the dried product was crushed in a mortar, and the obtained crushed product was filled in a mold ( ⁇ 20 mm). After applying a pressure of 0.78 MPa to the mold, a disk-shaped molded product was taken out from the mold, and CIP molding was performed on the molded product at a pressure of 196 MPa.
  • a zirconia sintered body (Sample No. 24) was produced by firing the molded body after CIP molding.
  • the dried product was crushed in a mortar, and the obtained crushed product was filled in a mold ( ⁇ 20 mm). After applying a pressure of 0.78 MPa to the mold, a disk-shaped molded product was taken out from the mold, and CIP molding was performed on the molded product at a pressure of 196 MPa.
  • a zirconia sintered body (Sample Nos. 25 to 27) was produced by firing the molded body after CIP molding.
  • Example No. 28 Manufacture of 28- ZrO 2 sol, except for changing the amount of YCl 3 and YbCl 3
  • Sample No. A molded product was produced according to the same method as in No. 5, and a zirconia sintered body (Sample No. 28) was produced by firing the molded product.
  • Example No. 29 Manufacture of 29- ZrO 2 sol, except for changing each amount of YCl 3, YbCl 3 and Nb 2 O 5 powder sample No.
  • a molded product was produced according to the same method as in 6 to 10, and the zirconia sintered body (Sample No. 29) was produced by firing the molded product.
  • a molded product was produced according to the same method as in 6 to 10, and the zirconia sintered body (Sample Nos. 31 to 33) was produced by firing the molded product.
  • Example No. Manufacture of 37, 38- Sample No. except that a predetermined amount of Ta 2 O 5 powder was used instead of the predetermined amount of Nb 2 O 5 powder.
  • a molded product was produced according to the same method as in 34 to 36, and the zirconia sintered body (Sample Nos. 37, 38) was produced by firing the molded product.
  • Example No. 39 Manufacture of 39- Except for using 5.6Y-ZrO 2 powder instead of 2.0Y-ZrO 2 powder Sample No. A molded product was produced according to the same method as in No. 1, and the zirconia sintered body (Sample No. 39) was produced by firing the molded product.
  • Example No. Manufacture of 40, 41- Each predetermined amount of 5.6Y-ZrO 2 powder and Nb 2 O 5 powder was put into a pot mill (crushing ball: zirconia ball ⁇ 1 mm), and crushed and mixed in the pot mill for 1 hour. Then, a binder was added to the mixture, and the mixture was spray-dried, and then the dried mixture was filled in a mold ( ⁇ 20 mm). After applying a pressure of 0.78 MPa to the mold, a disk-shaped molded product was taken out from the mold, and CIP molding was performed on the molded product at a pressure of 196 MPa. A zirconia sintered body (Sample No. 40, 41) was produced by firing the molded body after CIP molding.
  • Example No. 42 Manufacture- Sample No. except that the amounts of ZrO 2 sol and YbCl 3 used were changed.
  • a molded product was produced according to the same method as in No. 5, and a zirconia sintered body (Sample No. 42) was produced by firing the molded product.
  • a molded product was produced according to the same method as in 6 to 10, and the zirconia sintered body (Sample Nos. 43, 44) was produced by firing the molded product.
  • the fracture toughness value was measured according to the method shown below, and the opacity at a thickness of 1.5 mm was determined.
  • a spectrophotometer (product name: CM-3700d) manufactured by Konica Minolta Co., Ltd., a disk-shaped test piece with a thickness of 1.5 mm cut out from each sample was tested with a white body backed.
  • the reflectance (R 0 ) of the body and the reflectance (R 1 ) of the test body with the black body backed were measured.
  • the spectrophotometer used is configured to automatically calculate the opacity from the measurement results, and when measuring the reflectance, a white calibration plate (product name: CM-A90, product name: CM-A90, as a white body) is used as a white body.
  • a zero calibration box (product name: CM-A94, standard accessory of CM-3700d) was used as a black body (standard accessory of CM-3700d).
  • “reflection” is used for the item “reflection / transmission”
  • “SCI method” is used for the item “specular reflected light processing”
  • “MAV (8 mm)” is used for the item “measurement diameter”. ) ”,“ 100% Full ”for the item“ UV condition ”,“ 10 ° ”for the item“ visual field ”, and“ D65 ”for the item“ main light source ”.
  • sample No. For each zirconia sintered body according to 11, 15 to 17, the monoclinic phase ratio (%) after hydrothermal treatment was measured according to the method shown below. Specifically, the surface of each sample (sintered body) is mirror-polished with diamond abrasive grains (particle size: 3 ⁇ m), and the polished sample is subjected to an autoclave (device name: SN200, Yamato Kagaku Co., Ltd.). Water heat deterioration treatment at 134 ° C (steam pressure: 0.22 MPa) x 5 hours, 134 ° C (steam pressure: 0.22 MPa) x 15 hours, 134 ° C (steam pressure: 0.22 MPa) x 30 hours.
  • the X-ray diffraction pattern of the polished surface of the sample after each treatment time has elapsed is measured with an X-ray diffractometer (device name: Ultima IV, manufactured by Rigaku Co., Ltd.). Then, using the measurement result, the monoclinic phase ratio (%) was obtained from the following formula. As can be understood from the following equation, the monoclinic phase ratio corresponds to the X-ray diffraction peak intensity [Im (111)] corresponding to the monoclinic phase (111) plane and the monoclinic phase (11-1) plane.
  • X-ray detector D / tex Ultra (accessory device) ⁇ Scan speed: 2.0 ° / min ⁇ Sampling width: 0.02 ° ⁇ Divergence slit: 1.0 mm ⁇ Divergent vertical slit: 10 mm ⁇ Scattering slit: 8 mm ⁇ Light receiving slit: open ⁇ Voltage: 40kV ⁇ Current: 40mA ⁇ Measurement area: 26-38 °
  • the zirconia sintered body according to the present invention As is clear from Tables 1 and 2, and the zirconia sintered body according to the present invention (Sample Nos. 6 to 10, 13 to 23, 25 to 27, 29, 31 to 38), the zirconia sintered body is excellent. It is recognized that it has fracture toughness, exhibits excellent translucency, and is also excellent in water heat deterioration resistance. On the other hand, in the case of a zirconia sintered body having a stabilizer (yttrium oxide and / or ytterbium oxide) content of less than 3.5 mol%, the addition of niobium oxide and / or tantalum oxide can improve the fracture toughness value. Although it is recognized, it is inferior in translucency and is not suitable as a dental restoration material (Sample Nos.
  • the zirconia sintered body having a stabilizer (yttrium oxide and / or ytterbium oxide) content of more than 5.0 mol% has a low fracture toughness value even when niobium oxide is added, and is inferior in mechanical properties. It is not suitable as a dental restoration material (Sample Nos. 39 to 44).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dentistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Composite Materials (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

優れた破壊靭性を有し、また優れた透光性を発揮すると共に、耐水熱劣化特性も優れているジルコニア焼結体を提供すること。 安定化剤としての酸化イットリウム及び/又は酸化イッテルビウムを3.5~5.0mol%の割合において含むと共に、酸化ニオブ及び/又は酸化タンタルを0.3~1.5mol%の割合において含むジルコニアからなり、破壊靭性値が4.5MPa√m以上、且つ、厚さ1.5mmでのオパシティが80.0%以下となるようにジルコニア焼結体を構成する。

Description

透光性高靭化ジルコニア焼結体
 本発明はジルコニア焼結体に係り、特に、歯科修復材料として有利に用いられ得る透光性高靭化ジルコニア焼結体に関するものである。
 従来より、酸化イットリウム(Y23)等の希土類酸化物が安定化剤として少量、固溶せしめられているジルコニア焼結体(部分安定化ジルコニア焼結体)は、高強度及び高靱性であることから、切断工具、ベアリング、粉砕機等の各種機械における構造用材料や、歯科修復材料等の生体材料といった様々な産業製品において利用されている。
 ここで、部分安定化ジルコニア焼結体を歯科修復材料として用いる場合、部分安定化ジルコニア焼結体に対しては、高強度、高靱性等の機械的特性のみならず、審美的観点より、色調や透光性等の光学的特性も要求される。部分安定化ジルコニア焼結体の透光性を高める手法としては、酸化イットリウム等の安定化剤の含有量を増やすことが考えられる。
 また、部分安定化ジルコニア焼結体は部分的に安定されているに過ぎないものであるため、特に水熱環境下における長期安定性に難点があるという問題を有している。例えば、部分安定化ジルコニア焼結体は、水分の存在下に加熱されると、正方晶から単斜晶への相転移が生じる。この相転移に伴う約4%の体積膨張によって生じた微小亀裂の進展により、焼結体の強度が低下するという問題を内在しているのである。従って、部分安定化ジルコニア焼結体を産業製品において利用するためには、産業製品の用途や使用環境等に応じて、相転移の進行が十分に抑制された焼結体を用いる必要がある。
 水熱環境下における部分安定化ジルコニア焼結体の相転移の進行を抑制するためには、酸化イットリウム等の安定化剤の含有量を高めることが考えられる。しかしながら、安定化剤の含有量を高めると、焼結体の強度、靭性等の機械的特性が悪化する恐れがあり、安定化剤の含有量を低減させると、機械的特性の悪化は避けられるものの、焼結体における相転移の進行を十分に抑制することが出来ない恐れがある。
 このような状況の下、従来より、様々な(部分安定化)ジルコニア焼結体が提案されている。
 例えば、特許文献1(特開2012-41239号公報)の請求項8においては、部分安定化ジルコニアをマトリックス相として有し、リン(P)元素及びホウ素(B)元素を、ジルコニア焼結体の質量に対して、各々、所定割合にて含有することを特徴とするジルコニア焼結体が開示されている。同文献に開示のジルコニア焼結体は、リン(P)元素及びホウ素(B)元素の導入により、焼結体の機械的特性を低下させることなく相転移の進行が抑制されるものではあるが、ガラス相等の異相による界面増加や残留気孔によって、歯科修復材料として要求される透光性を十分に発揮し得ない恐れがある。
 また、特許文献2(特開2015-143178号公報)においては、4.0mol%を超え6.5mol%以下の酸化イットリウムと、0.1wt%未満のアルミナを含有し、相対密度が99.82%以上であり、厚さ1.0mmにおける600nm波長の光に対する全光線透過率が37%以上40%未満であり、かつ曲げ強度が500MPa以上であることを特徴とする透光性ジルコニア焼結体が開示されている。しかしながら、本発明者等が確認したところ、同文献に開示の透光性ジルコニア焼結体にあっては、機械的特性が十分なものではなく、例えば歯科修復材料として用いる場合には、前歯用歯冠修復物等の一部の製品にしか使用することが出来ないものであり、また、その使用の際には、製品が十分な機械的特性を発揮するように、使用する焼結体の厚みを一定以上にする必要がある。
 さらに、特許文献3(特開2014-185078号公報)においては、2~4mol%の酸化イットリウムを含み、添加剤としてアルミナを0.1wt%未満含むジルコニアからなり、相対密度が99.8%以上、かつ厚さが1.0mmでの全光線透過率が35%以上であり、結晶粒径が0.20~0.45μmであることを特徴とする透光性ジルコニア焼結体が開示されている。しかしながら、本発明者等が同文献に開示の透光性ジルコニア焼結体について確認実験を行ったところ、同文献に開示の透光性ジルコニア焼結体は、臼歯用歯冠修復物としての使用には十分な透光性を有する焼結体ではあるものの、前歯用歯冠修復物として使用するには十分な透光性を有していないものであることが判明した。
 加えて、特許文献4(特開平1-108162号公報)には、ジルコニアに少なくとも重量比で0.3~25%のニオブおよびニオブ系物質の一種、若しくは複数種が混入されて形成されたことを特徴とするジルコニアセラミックス(焼結体)が開示されている。同文献に開示の焼結体は、高い曲げ強度及び優れた破壊靭性を発揮するものであるものの、ニオブ化合物粒子がジルコニアの粒子間に存在しているため、異種成分であるニオブ化合物粒子による光の屈折や散乱等の影響により、歯冠修復物の構成材料として使用するには透光性が不足する恐れがある。
 このように、従来より様々な態様の部分安定化ジルコニア焼結体が提案されているものの、特に歯科修復材料として好適に用いられ得る焼結体、具体的には、高い破壊靭性を有し、透光性に優れ、更には耐水熱劣化特性においても優れているジルコニア焼結体の開発が、望まれているのである。
特開2012-41239号公報 特開2015-143178号公報 特開2014-185078号公報 特開平1-108162号公報
 ここにおいて、本発明は、かかる事情を背景にして為されたものであって、その解決すべき課題とするところは、優れた破壊靭性を有し、また優れた透光性を発揮すると共に、耐水熱劣化特性も優れているジルコニア焼結体を提供することにある。
 そして、本発明は、かかる課題を解決するために、安定化剤としての酸化イットリウム及び/又は酸化イッテルビウムを3.5~5.0mol%の割合において含むと共に、酸化ニオブ及び/又は酸化タンタルを0.3~1.5mol%の割合において含むジルコニアからなり、破壊靭性値が4.5MPa√m以上であり、且つ厚さ1.5mmでのオパシティが80.0%以下である、ことを特徴とするジルコニア焼結体を、その要旨とするものである。
 また、本発明は、上記した態様のジルコニア焼結体からなる歯科修復材料をも、その要旨とするものである。
 このように、本発明に従うジルコニア焼結体にあっては、1)破壊靭性値が4.5MPa√m以上であることから、歯科修復材料として十分に使用可能な優れた機械的特性を有しており、2)厚さ1.5mmでのオパシティが80.0%以下であることから、歯科修復材料として好適に用いられ得る程度の優れた透光性を発揮するものである。また、本発明のジルコニア焼結体は、酸化イットリウム及び/又は酸化イッテルビウムと、酸化ニオブ及び/又は酸化タンタルとが、各々、所定の割合にて含有せしめられているところから、上述の如き優れた機械的特性及び透光性を発揮すると共に、優れた耐水熱劣化特性をも発揮するのである。このような優れた特性を有する、本発明に係るジルコニア焼結体は、歯科修復材料として特に有利に用いられ得るのであり、また、焼結体の厚みを薄肉することも可能であることから、臼歯用歯冠修復物の構成材料として用いられ得ることは勿論のこと、前歯用歯冠修復物の構成材料としても十分に使用可能なものである。
オパシティの概要を示す説明図である。 ジルコニア焼結体の水熱処理後の単斜晶相率を示すグラフである。
 本発明に従うジルコニア焼結体は、第一の必須成分として、安定化剤たる酸化イットリウム及び/又は酸化イッテルビウム[酸化イッテルビウム(III )]を3.5~5.0mol%の割合において含むと共に、第二の必須成分として、酸化ニオブ及び/又は酸化タンタルを0.3~1.5mol%の割合において含むジルコニアよりなるものである。なお、以下において、ジルコニア焼結体を単に焼結体と表記する場合もある。
 先ず、第一の必須成分(酸化イットリウム及び/又は酸化イッテルビウム)の含有割合に関して、3.5mol%未満とすると、本発明の割合にて酸化ニオブ及び/又は酸化タンタルを含有せしめても、破壊靭性値は優れているものの、十分な透光性を発揮する焼結体(換言すれば、厚さ1.5mmでのオパシティが80.0%以下である焼結体)が得られない恐れがある。一方、5.0mol%を超える割合とした場合、本発明の割合にて酸化ニオブ及び/又は酸化タンタルを含有せしめても、破壊靭性及び透光性のうちの少なくとも何れかにおいて十分なものとならない恐れがある。なお、本発明において、第一の必須成分として酸化イットリウムと酸化イッテルビウムとを同時に含有せしめる場合には、それら第一の必須成分の総量の含有割合が3.5~5.0mol%の範囲内とされることは、言うまでもないところである。
 また、第二の必須成分(酸化ニオブ及び/又は酸化タンタル)の含有割合に関して、0.3mol%未満とすると、本発明の割合にて酸化イットリウム及び/又は酸化イッテルビウムを含有せしめても、焼結体が十分な破壊靭性を発揮し得ない恐れがある。その一方で、1.5mol%を超える割合とした場合、本発明の割合にて酸化ニオブ及び/又は酸化タンタルを含有せしめても、焼結体が十分な透光性を発揮し得ない恐れがある。なお、第二の必須成分として酸化ニオブ及び酸化タンタルを同時に含有せしめる場合、上述した第一の必須成分と同様に、第二の必須成分の総量の含有割合が0.3~1.5mol%の範囲内とされる。
 上述したように、酸化イットリウム及び/又は酸化イッテルビウムと、酸化ニオブ及び/又は酸化タンタルとを、各々、所定割合で含有するジルコニアからなり、破壊靭性値が4.5MPa√m以上であり、且つ厚さ1.5mmでのオパシティが80.0%以下であるジルコニア焼結体が、本発明に係るジルコニア焼結体である。
 ここで、本明細書及び特許請求の範囲における破壊靭性値(単位:MPa√m)とは、JIS R 1607:2015「ファインセラミックスの室温破壊じん(靭)性試験方法」に規定されているIF法に従って測定されるものである。
 また、オパシティ(Opacity )とは、セラミックスを取り扱う当業者間において不透明度とも称されているものである。オパシティの概要を図1に示す。図1において光は矢印で示されているところ、本明細書及び特許請求の範囲におけるオパシティは、1)厚さが1.5mmのジルコニア焼結体(以下、本段落においては試料という)における一方の面に、反射率が100%に近い白色体を当てた状態(裏当てした状態)で測定される反射率:R0 と、2)試料における一方の面に黒色体を当てた状態(裏当てした状態)で測定される反射率:R1 とを用いて、図1中に示されている式:(R1 /R0 )×100より算出されるものである。反射率:R0 と反射率:R1 が同値であれば、オパシティは100%となり、試料は完全な不透明体であることを示す一方、反射率:R1 が0であれば、オパシティは0%となり、試料は完全な透明体であることを示すのである。
 そして、本発明に従うジルコニア焼結体にあっては、酸化イットリウム及び/又は酸化イッテルビウムと、酸化ニオブ及び/又は酸化タンタルとが、各々、所定の割合にて含有せしめられているところから、1)破壊靭性値が4.5MPa√m以上であり、優れた機械的特性を発揮すると共に、2)厚さ1.5mmでのオパシティが80.0%以下であり、優れた透光性をも発揮し、更には3)優れた耐水熱劣化特性をも発揮するのである。
 なお、本発明のジルコニア焼結体は、本発明の目的を阻害しない限りの量的範囲において、上述した二種の必須成分以外の成分を含むものであっても良い。但し、本発明において、アルミナ(Al23)の含有割合を多くすると、ジルコニア粒子間にアルミナが析出し、透光性を悪化させる恐れがあるため、アルミナの含有割合は0.05質量%以下とすることが好ましい。
 上述してきた本発明に従うジルコニア焼結体は、例えば、以下に詳述する製法に従って有利に製造することが出来る。
-第一の製法-
 本製法によれば、第一の必須成分として酸化イットリウムのみを含有するジルコニア焼結体を製造することが可能である。先ず、酸化イットリウムを含有するジルコニア粉末と、第二の必須成分(酸化ニオブ及び/又は酸化タンタル)を準備する。1)それらを混合機にて混合した後、2)PVA等のバインダーを添加し、3)噴霧乾燥させる。4)乾燥後の混合物を成形して成形体を得、5)得られた成形体を常圧下で焼成して焼結せしめることにより、目的とする、酸化イットリウムと酸化ニオブ及び/又は酸化タンタルを含有するジルコニア焼結体が得られるのである。
-第二の製法-
 本製法によれば、第一の必須成分として酸化イットリウム及び/又は酸化イッテルビウムを含有するジルコニア焼結体を製造することが可能である。先ず、ジルコニアゾル、焼結後に焼結体中に酸化イットリウムを与えるイットリウム化合物(例えば、YCl3 )、焼結後に焼結体中に酸化イッテルビウムを与えるイッテルビウム化合物(例えば、YbCl3 )、並びに、第二の必須成分(酸化ニオブ及び/又は酸化タンタル)を準備する。1)ジルコニアゾルにイットリウム化合物及び/又はイッテルビウム化合物を添加して中和、脱水、乾燥させた後、2)乾燥物を解砕する。3)得られた解砕物を仮焼して固溶体を得、4)かかる固溶体を湿式粉砕した後、5)脱水乾燥する。6)得られた乾燥物を再度、解砕し、7)解砕物に対して第二の必須成分(酸化ニオブ及び/又は酸化タンタル)を添加し、混合する。8)その混合物に対して凝集剤を添加して凝集させた後、9)その凝集物を乾燥させる。10)乾燥物を乳鉢等で解砕し、11)得られた解砕物を成形して成形体を得、12)得られた成形体を常圧下で焼成し、焼結せしめることによって、酸化イットリウム及び/又は酸化イッテルビウムと、酸化ニオブ及び/又は酸化タンタルとを含有するジルコニア焼結体が得られるのである。
 なお、上記した第一の製法及び第二の製法においては、一般に、酸化ニオブとしては五酸化ニオブ(Nb2 O5 )が、また酸化タンタルとしては五酸化タンタル(Ta25)が有利に用いられるが、これら酸化物に限定されるものでなく、例えば、塩化物を加水分解したものを添加する等の手法を採用することも可能である。また、第一の必須成分に混合せしめられる際の酸化物等の形態は、特に限定されるものではなく、粉状物やゾル状物等を適宜に使用可能であり、有利には、粒径(平均粒径)が小さい(細かい)粉状物やゾル状物が用いられる。更に、本発明に従うジルコニア焼結体は、上記した第一、第二の製法によって製造されたものに限定されるものではなく、従来より公知の各種手法を組み合わせることによっても製造することが可能である。
 以上の如くして製造されるジルコニア焼結体にあっては、優れた破壊靭性を有し、優れた透光性を発揮すると共に、耐水熱劣化特性も優れたものとなるのである。
 以下に、本発明の実施例を幾つか示し、本発明を更に具体的に明らかにすることとするが、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。また、本発明には、以下の実施例の他にも、更には上記した具体的記述以外にも、本発明の趣旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々なる変更、修正、改良等を加え得るものであることが、理解されるべきである。
 先ず、以下の原料を適宜に用いて、ジルコニア焼結体(試料No.1~44)を製造した。
  ・ZrO2 ゾル
  ・2.0Y-ZrO2 粉末:2.0mol%のY23を含有する
   ZrO2 粉末(共立マテリアル株式会社製)
  ・3.0Y-ZrO2 粉末:3.0mol%のY23を含有する
   ZrO2 粉末(共立マテリアル株式会社製)
  ・4.2Y-ZrO2 粉末:4.2mol%のY23を含有する
   ZrO2 粉末(共立マテリアル株式会社製)
  ・5.0Y-ZrO2 粉末:5.0mol%のY23を含有する
   ZrO2 粉末(共立マテリアル株式会社製)
  ・5.6Y-ZrO2 粉末:5.6mol%のY23を含有する
   ZrO2 粉末(共立マテリアル株式会社製)
  ・Nb25粉末
  ・Ta25粉末
  ・YCl3
  ・YbCl3
 なお、ジルコニア焼結体(試料)を製造する際の成形体の焼成は、全てのジルコニア焼結体(試料)において、常圧下、1500℃(保温時間:2時間)の条件で実施した。
-試料No.1の製造-
 2.0Y-ZrO2 粉末に対してバインダーを添加し、噴霧乾燥させた後、乾燥後の混合物を金型(φ20mm)内に充填した。金型に0.78MPaの圧力を加えた後、金型内より円盤状の成形体を取り出し、かかる成形体に対して、196MPaの圧力にてCIP成形を実施した。CIP成形後の成形体を焼成することにより、ジルコニア焼結体(試料No.1)を製造した。
-試料No.2の製造-
 2.0Y-ZrO2 粉末に代えて3.0Y-ZrO2 粉末を用いたこと以外は試料No.1と同様の手法に従い、成形体を作製し、かかる成形体を焼成することによってジルコニア焼結体(試料No.2)を製造した。
-試料No.3の製造-
 3.0Y-ZrO2 粉末及びNb25粉末の各所定量をポットミル(粉砕用ボール:ジルコニアボールφ1mm)に投入し、1時間、ポットミル内で粉砕、混合した。次いで、混合物に対してバインダーを添加し、噴霧乾燥させた後、乾燥後の混合物を金型(φ20mm)内に充填した。金型に0.78MPaの圧力を加えた後、金型内より円盤状の成形体を取り出し、かかる成形体に対して、196MPaの圧力にてCIP成形を実施した。CIP成形後の成形体を焼成することにより、ジルコニア焼結体(試料No.3)を製造した。
-試料No.4の製造-
 所定量のNb25粉末に代えて、所定量のTa25粉末を用いたこと以外は試料No.3と同様の手法に従い、成形体を作製し、かかる成形体を焼成することによってジルコニア焼結体(試料No.4)を製造した。
-試料No.5の製造-
 ZrO2 ゾル、YCl3 及びYbCl3 の各所定量を混合し、中和、脱水、乾燥させた後、乾燥物を解砕した。得られた解砕物を仮焼して固溶体を得、かかる固溶体をビーズミルにて湿式粉砕した後、脱水し、乾燥させた。得られた乾燥物を再度、解砕し、解砕物をポットミル(粉砕用ボール:ジルコニアボールφ1mm)に投入し、1時間、ポットミル内で粉砕、混合した。その後、混合物に対して凝集剤を添加して凝集させ、その凝集物を乾燥させた。乾燥物を乳鉢で解砕し、得られた解砕物を金型(φ20mm)内に充填した。金型に0.78MPaの圧力を加えた後、金型内より円盤状の成形体を取り出し、かかる成形体に対して、196MPaの圧力にてCIP成形を実施した。CIP成形後の成形体を焼成することにより、ジルコニア焼結体(試料No.5)を製造した。
-試料No.6~10の製造-
 ZrO2 ゾル、YCl3 及びYbCl3 の各所定量を混合し、中和、脱水、乾燥させた後、乾燥物を解砕した。得られた解砕物を仮焼して固溶体を得、かかる固溶体をビーズミルにて湿式粉砕した後、脱水し、乾燥させた。得られた乾燥物を再度、解砕し、解砕物を、各試料に応じた量のNb25粉末と共にポットミル(粉砕用ボール:ジルコニアボールφ1mm)に投入し、1時間、ポットミル内で粉砕、混合した。その後、混合物に対して凝集剤を添加して凝集させ、その凝集物を乾燥させた。乾燥物を乳鉢で解砕し、得られた解砕物を金型(φ20mm)内に充填した。金型に0.78MPaの圧力を加えた後、金型内より円盤状の成形体を取り出し、かかる成形体に対して、196MPaの圧力にてCIP成形を実施した。CIP成形後の成形体を焼成することにより、ジルコニア焼結体(試料No.6~10)を製造した。
-試料No.11の製造-
 2.0Y-ZrO2 粉末に代えて4.2Y-ZrO2 粉末を用いたこと以外は試料No.1と同様の手法に従い、成形体を作製し、かかる成形体を焼成することによってジルコニア焼結体(試料No.11)を製造した。
-試料No.12~18の製造-
 4.2Y-ZrO2 粉末及びNb25粉末の各所定量をポットミル(粉砕用ボール:ジルコニアボールφ1mm)に投入し、1時間、ポットミル内で粉砕、混合した。次いで、混合物に対してバインダーを添加し、噴霧乾燥させた後、乾燥後の混合物を金型(φ20mm)内に充填した。金型に0.78MPaの圧力を加えた後、金型内より円盤状の成形体を取り出し、かかる成形体に対して、196MPaの圧力にてCIP成形を実施した。CIP成形後の成形体を焼成することにより、ジルコニア焼結体(試料No.12~18)を製造した。
-試料No.19、20の製造-
 所定量のNb25粉末に代えて、所定量のTa25粉末を用いたこと以外は試料No.12~18と同様の手法に従い、成形体を作製し、かかる成形体を焼成することによってジルコニア焼結体(試料No.19、20)を製造した。
-試料No.21~23の製造-
 所定量のNb25粉末に代えて、Nb25粉末及びTa25粉末の各所定量を用いたこと以外は試料No.12~18と同様の手法に従い、成形体を作製し、かかる成形体を焼成することによってジルコニア焼結体(試料No.21~23)を製造した。
-試料No.24の製造-
 ZrO2 ゾル及びYbCl3 の各所定量を混合し、中和、脱水、乾燥させた後、乾燥物を解砕した。得られた解砕物を仮焼して固溶体を得、かかる固溶体をビーズミルにて湿式粉砕した後、脱水し、乾燥させた。得られた乾燥物を再度、解砕し、解砕物をポットミル(粉砕用ボール:ジルコニアボールφ1mm)に投入し、1時間、ポットミル内で粉砕、混合した。その後、混合物に対して凝集剤を添加して凝集させ、その凝集物を乾燥させた。乾燥物を乳鉢で解砕し、得られた解砕物を金型(φ20mm)内に充填した。金型に0.78MPaの圧力を加えた後、金型内より円盤状の成形体を取り出し、かかる成形体に対して、196MPaの圧力にてCIP成形を実施した。CIP成形後の成形体を焼成することにより、ジルコニア焼結体(試料No.24)を製造した。
-試料No.25~27の製造-
 ZrO2 ゾル及びYbCl3 の各所定量を混合し、中和、脱水、乾燥させた後、乾燥物を解砕した。得られた解砕物を仮焼して固溶体を得、かかる固溶体をビーズミルにて湿式粉砕した後、脱水し、乾燥させた。得られた乾燥物を再度、解砕し、解砕物を、各試料に応じた量のNb25粉末と共にポットミル(粉砕用ボール:ジルコニアボールφ1mm)に投入し、1時間、ポットミル内で粉砕、混合した。その後、混合物に対して凝集剤を添加して凝集させ、その凝集物を乾燥させた。乾燥物を乳鉢で解砕し、得られた解砕物を金型(φ20mm)内に充填した。金型に0.78MPaの圧力を加えた後、金型内より円盤状の成形体を取り出し、かかる成形体に対して、196MPaの圧力にてCIP成形を実施した。CIP成形後の成形体を焼成することにより、ジルコニア焼結体(試料No.25~27)を製造した。
-試料No.28の製造-
 ZrO2 ゾル、YCl3 及びYbCl3 の使用量を変更したこと以外は試料No.5と同様の手法に従い、成形体を作製し、かかる成形体を焼成することによってジルコニア焼結体(試料No.28)を製造した。
-試料No.29の製造-
 ZrO2 ゾル、YCl3 、YbCl3 及びNb25粉末の各使用量を変更したこと以外は試料No.6~10と同様の手法に従い、成形体を作製し、かかる成形体を焼成することによってジルコニア焼結体(試料No.29)を製造した。
-試料No.30の製造-
 ZrO2 ゾル及びYbCl3 の使用量を変更したこと以外は試料No.5と同様の手法に従い、成形体を作製し、かかる成形体を焼成することによってジルコニア焼結体(試料No.30)を製造した。
-試料No.31~33の製造-
 ZrO2 ゾル、YbCl3 及びNb25粉末の各使用量を変更したこと以外は試料No.6~10と同様の手法に従い、成形体を作製し、かかる成形体を焼成することによってジルコニア焼結体(試料No.31~33)を製造した。
-試料No.34~36の製造-
 5.0Y-ZrO2 粉末及びNb25粉末の各所定量をポットミル(粉砕用ボール:ジルコニアボールφ1mm)に投入し、1時間、ポットミル内で粉砕、混合した。次いで、混合物に対してバインダーを添加し、噴霧乾燥させた後、乾燥後の混合物を金型(φ20mm)内に充填した。金型に0.78MPaの圧力を加えた後、金型内より円盤状の成形体を取り出し、かかる成形体に対して、196MPaの圧力にてCIP成形を実施した。CIP成形後の成形体を焼成することにより、ジルコニア焼結体(試料No.34~36)を製造した。
-試料No.37、38の製造-
 所定量のNb25粉末に代えて、所定量のTa25粉末を用いたこと以外は試料No.34~36と同様の手法に従い、成形体を作製し、かかる成形体を焼成することによってジルコニア焼結体(試料No.37、38)を製造した。
-試料No.39の製造-
 2.0Y-ZrO2 粉末に代えて5.6Y-ZrO2 粉末を用いたこと以外は試料No.1と同様の手法に従い、成形体を作製し、かかる成形体を焼成することによってジルコニア焼結体(試料No.39)を製造した。
-試料No.40、41の製造-
 5.6Y-ZrO2 粉末及びNb25粉末の各所定量をポットミル(粉砕用ボール:ジルコニアボールφ1mm)に投入し、1時間、ポットミル内で粉砕、混合した。次いで、混合物に対してバインダーを添加し、噴霧乾燥させた後、乾燥後の混合物を金型(φ20mm)内に充填した。金型に0.78MPaの圧力を加えた後、金型内より円盤状の成形体を取り出し、かかる成形体に対して、196MPaの圧力にてCIP成形を実施した。CIP成形後の成形体を焼成することにより、ジルコニア焼結体(試料No.40、41)を製造した。
-試料No.42の製造-
 ZrO2 ゾル及びYbCl3 の使用量を変更したこと以外は試料No.5と同様の手法に従い、成形体を作製し、かかる成形体を焼成することによってジルコニア焼結体(試料No.42)を製造した。
-試料No.43、44の製造-
 ZrO2 ゾル、YbCl3 及びNb25粉末の各使用量を変更したこと以外は試料No.6~10と同様の手法に従い、成形体を作製し、かかる成形体を焼成することによってジルコニア焼結体(試料No.43、44)を製造した。
 以上の如くして製造されたジルコニア焼結体(試料)の各々について、以下に示す手法に従い、破壊靭性値を測定し、厚さ1.5mmでのオパシティを求めた。
-破壊靭性値の測定-
 JIS R 1607:2015「ファインセラミックスの室温破壊じん(靭)性試験方法」に規定されているIF法に従い、測定した。
-オパシティの測定-
 コニカミノルタ株式会社製の分光測色計(製品名:CM-3700d)を用いて、各試料より切り出した、厚さが1.5mmの円盤状試験体について、白色体を裏当てした状態の試験体の反射率(R0) 及び黒色体を裏当てした状態の試験体の反射率(R1 )を測定した。なお、用いた分光測色計は、測定結果より自動的にオパシティが算出されるように構成されており、反射率測定の際には、白色体として白色校正板(製品名:CM-A90、CM-3700dの標準付属品)を、黒色体としてゼロ校正ボックス(製品名:CM-A94、CM-3700dの標準付属品)を、それぞれ用いた。また、分光測色計の設定としては、項目「反射/透過」については「反射」を、項目「正反射光処理」については「SCI方式」を、項目「測定径」については「MAV(8mm)」を、項目「UV条件」については「100%Full」を、項目「視野」については「10°」を、項目「主光源」については「D65」を、それぞれ選択した。
 以上の如くして得られた破壊靭性値及びオパシティを、各試料における必須成分の含有割合と共に、下記表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 また、試料No.11、15~17に係る各ジルコニア焼結体については、以下に示す手法に従い、水熱処理後の単斜晶相率(%)を測定した。具体的には、各試料(焼結体)の表面をダイヤモンド砥粒(粒径:3μm)にて鏡面研磨し、かかる研磨後の試料に対して、オートクレーブ(装置名:SN200、ヤマト科学株式会社製)にて134℃(水蒸気圧:0.22MPa)×5時間、134℃(水蒸気圧:0.22MPa)×15時間、134℃(水蒸気圧:0.22MPa)×30時間の水熱劣化処理を施し、各処理時間経過後の試料における研磨面のX線回折パターンをX線回折装置(装置名:UltimaIV、株式会社リガク製)で測定する。そして、その測定結果を用いて、下記式より単斜晶相率(%)を求めた。下記式より理解されるように、単斜晶相率は、単斜晶相(111)面に相当するX線回折ピーク強度[Im(111)]、単車晶相(11-1)面に相当するX線回折ピーク強度[Im(11-1)]、及び、正方晶相(111)面と立方晶相(111)面に相当するX線回折ピーク強度[It+c (111)]より、算出することが可能である。その結果を、図2に示す。
 [単斜晶相率(%)]
    ={Im(111)+Im(11-1)}
     /{Im(111)+Im(11-1)+It+c(111) }
     ×100
なお、X線回折装置の各条件は、以下の通りである。
  ・X線検出器:D/tex Ultra(付属装置)
  ・スキャンスピード:2.0°/min
  ・サンプリング幅:0.02°
  ・発散スリット:1.0mm
  ・発散縦スリット:10mm
  ・散乱スリット:8mm
  ・受光スリット:開放
  ・電圧:40kV
  ・電流:40mA
  ・測定領域:26~38°
 表1及び表2、並びに図2より明らかなように、本発明に従うジルコニア焼結体(試料No.6~10、13~23、25~27、29、31~38)にあっては、優れた破壊靭性を有し、また優れた透光性を発揮すると共に、耐水熱劣化特性においても優れていることが認められる。その一方、安定化剤(酸化イットリウム及び/又は酸化イッテルビウム)の含有量が3.5mol%未満のジルコニア焼結体にあっては、酸化ニオブ及び/又は酸化タンタルの添加により破壊靭性値の向上は認められるものの、透光性に劣るものであり、歯科修復材料として好適なものではない(試料No.2~4)。また、安定化剤(酸化イットリウム及び/又は酸化イッテルビウム)の含有量が5.0mol%を超えるジルコニア焼結体は、酸化ニオブの添加によっても破壊靭性値は低く止まり、機械的特性に劣るため、歯科修復材料として好適なものではない(試料No.39~44)。

Claims (2)

  1.  安定化剤としての酸化イットリウム及び/又は酸化イッテルビウムを3.5~5.0mol%の割合において含むと共に、酸化ニオブ及び/又は酸化タンタルを0.3~1.5mol%の割合において含むジルコニアからなり、破壊靭性値が4.5MPa√m以上であり、且つ厚さ1.5mmでのオパシティが80.0%以下である、ことを特徴とするジルコニア焼結体。
  2.  請求項1に記載のジルコニア焼結体からなる歯科修復材料。
                                                                                    
PCT/JP2020/039387 2020-05-12 2020-10-20 透光性高靭化ジルコニア焼結体 WO2021229840A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022522500A JP7367207B2 (ja) 2020-05-12 2020-10-20 透光性高靭化ジルコニア焼結体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-083698 2020-05-12
JP2020083698 2020-05-12

Publications (1)

Publication Number Publication Date
WO2021229840A1 true WO2021229840A1 (ja) 2021-11-18

Family

ID=78525609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039387 WO2021229840A1 (ja) 2020-05-12 2020-10-20 透光性高靭化ジルコニア焼結体

Country Status (2)

Country Link
JP (1) JP7367207B2 (ja)
WO (1) WO2021229840A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029228A1 (ja) * 2022-08-04 2024-02-08 共立マテリアル株式会社 ジルコニア焼結体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242956A (ja) * 1985-04-11 1986-10-29 コ−ニング グラス ワ−クス 高靭性のセラミツク合金
JPH01108162A (ja) * 1987-10-20 1989-04-25 Kurasawa Opt Ind Co Ltd ジルコニアセラミックス
WO2009001739A1 (ja) * 2007-06-22 2008-12-31 Murata Manufacturing Co., Ltd. 高温構造材料と固体電解質形燃料電池用セパレータ
JP2010514665A (ja) * 2006-12-29 2010-05-06 スリーエム イノベイティブ プロパティズ カンパニー ジルコニア体及び方法
JP2015127294A (ja) * 2013-12-27 2015-07-09 アキュセラ インコーポレイテッド 加工性ジルコニア及び加工性ジルコニアの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230052915A1 (en) 2019-12-26 2023-02-16 Kuraray Noritake Dental Inc. Production method for machinable zirconia composite sintered body, raw material composition for machinable zirconia composite sintered body, and machinable zirconia composite pre-sintered body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242956A (ja) * 1985-04-11 1986-10-29 コ−ニング グラス ワ−クス 高靭性のセラミツク合金
JPH01108162A (ja) * 1987-10-20 1989-04-25 Kurasawa Opt Ind Co Ltd ジルコニアセラミックス
JP2010514665A (ja) * 2006-12-29 2010-05-06 スリーエム イノベイティブ プロパティズ カンパニー ジルコニア体及び方法
WO2009001739A1 (ja) * 2007-06-22 2008-12-31 Murata Manufacturing Co., Ltd. 高温構造材料と固体電解質形燃料電池用セパレータ
JP2015127294A (ja) * 2013-12-27 2015-07-09 アキュセラ インコーポレイテッド 加工性ジルコニア及び加工性ジルコニアの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAE-JOON KIM,HYUNG-JIN JUNG,JOO-WUNG JANG,HONG-LIM LEE: "Fracture Toughness, Ionic Conductivity, and Low-Temperature Phase Stability of Tetragonal Zirconia Cooped with Yttria and Niobium Oxide", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 81, no. 9, 1 September 1998 (1998-09-01), US, pages 2309 - 2314, XP055872771, ISSN: 0002-7820, DOI: 10.1111/j.1151-2916.1998.tb02626.x *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029228A1 (ja) * 2022-08-04 2024-02-08 共立マテリアル株式会社 ジルコニア焼結体
JP7568234B2 (ja) 2022-08-04 2024-10-16 共立マテリアル株式会社 ジルコニア焼結体

Also Published As

Publication number Publication date
JP7367207B2 (ja) 2023-10-23
JPWO2021229840A1 (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
US10555795B2 (en) Colored translucent zirconia sintered body and powder, and use thereof
JP6760443B2 (ja) 透光性ジルコニア焼結体及びジルコニア粉末、並びにその用途
JP6679687B2 (ja) ナノ結晶ジルコニアおよびその加工方法
US9428422B2 (en) Colored translucent zirconia sintered body and its use
US20240099941A1 (en) High Strength and Translucency Dental Ceramic Materials, Devices, and Methods
KR101906628B1 (ko) 착색 투광성 지르코니아 소결체 및 그의 용도
JP5396691B2 (ja) 透光性イットリア含有ジルコニア焼結体及びその製造方法並びにその用途
EP0908425B1 (en) Zirconia sintered body, process for production thereof, and application thereof
CA2719340C (en) Translucent zirconia sintered body, process for producing the same, and use of the same
US9321688B2 (en) Method for preparing polycrystalline aluminum oxynitride having enhanced transparency
JP2023138969A (ja) ジルコニア焼結体及びその製造方法
JP2024138111A (ja) 焼結体、粉末及びその製造方法
Roitero et al. Ultra-fine Yttria-Stabilized Zirconia for dental applications: A step forward in the quest towards strong, translucent and aging resistant dental restorations
WO2021229840A1 (ja) 透光性高靭化ジルコニア焼結体
KR101575561B1 (ko) 투명도가 향상된 다결정 산질화알루미늄의 제조방법
KR102641166B1 (ko) 지르코니아 소결체 및 이의 제조 방법
JP6464713B2 (ja) 白色ジルコニア焼結体及びその製造方法並びにその用途
RU2744546C1 (ru) Керамический материал и способ его получения
KR101308887B1 (ko) 투광성 알루미나 복합체의 제조방법
Ban et al. Enhanced Fracture Toughness of Dental Zirconia through Nb Incorporation into the Surface
Santanna et al. Microstructure and properties of ZrO2-ZrSiO4 ceramic composites obtained by reactive sintering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935165

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022522500

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935165

Country of ref document: EP

Kind code of ref document: A1