WO2021228322A1 - Antifouling-garn und antifouling-garn-herstellungsverfahren sowie verwendung - Google Patents

Antifouling-garn und antifouling-garn-herstellungsverfahren sowie verwendung Download PDF

Info

Publication number
WO2021228322A1
WO2021228322A1 PCT/DE2021/100408 DE2021100408W WO2021228322A1 WO 2021228322 A1 WO2021228322 A1 WO 2021228322A1 DE 2021100408 W DE2021100408 W DE 2021100408W WO 2021228322 A1 WO2021228322 A1 WO 2021228322A1
Authority
WO
WIPO (PCT)
Prior art keywords
yarn
antifouling
solution
tetrapodal
zno
Prior art date
Application number
PCT/DE2021/100408
Other languages
English (en)
French (fr)
Inventor
Anna Gapeeva
Haoyi Qiu
Martina Baum
Rainer Adelung
Original Assignee
Christian-Albrechts-Universität Zu Kiel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Christian-Albrechts-Universität Zu Kiel filed Critical Christian-Albrechts-Universität Zu Kiel
Priority to EP21726318.5A priority Critical patent/EP4149260A1/de
Publication of WO2021228322A1 publication Critical patent/WO2021228322A1/de

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N55/00Biocides, pest repellants or attractants, or plant growth regulators, containing organic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen and sulfur
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D11/00Other features of manufacture
    • D01D11/06Coating with spinning solutions or melts
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/44Oxides or hydroxides of elements of Groups 2 or 12 of the Periodic Table; Zincates; Cadmates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/10Processes in which the treating agent is dissolved or dispersed in organic solvents; Processes for the recovery of organic solvents thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/76Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products

Definitions

  • the invention relates to a yarn with antifouling properties which is suitable for use under water, in particular when rearing aquatic organisms (aquaculture).
  • antifouling coatings are used to prevent undesirable fouling.
  • biocides such as the salts of pyrithione in this case, accumulate in the aquatic environment and are thus also absorbed by the breeding animals.
  • SFRC Silicone Fouling Release Coatings
  • a multicomponent fiber comprising starch and polymers as well as special configurations of the fibers is known, the fibers described therein being used to produce nonwoven webs and disposable articles, specifically a multicomponent fiber with a diameter of less than 100 ⁇ m is disclosed, comprising a destructured starch with a molecular weight in the range from 3000 g / mol to 2,000,000 g / mol and a thermoplastic polymer with a molecular weight of less than 500,000 g / mol, which is essentially compatible with the destructured starch, wherein the fiber has a configuration selected from the group consisting of core / sheath, matrix / fibrils, ribbon, segmented pie, side-by-side, and combinations thereof, and wherein each component of the multicomponent fiber comprises at least one of the destructured starch and / or the thermoplastic polymer .
  • EP 2 972255 B1 describes the approach of overcoming the problem by means of a release-free siloxane-urethane antifouling coating for maritime objects. Due to its stiffness, the coating is not well suited to coating difficult and flexible surfaces such as yarns or nets.
  • Another way of solving the problem of insufficient mechanical stability is to apply the fouling release coating based on siloxanes in a relatively thick (> 300 ⁇ m) spray process to an epoxy-coated substrate (US 2010/0069531 A1).
  • the problems in the prior art are essentially that the proposed antifouling coatings are in part not free of release and thus release accumulated biocides into the aquatic environment, especially during prolonged use, and on the other hand do not have the optimal durability, elasticity and abrasion resistance.
  • the durability, elasticity and abrasion resistance of an antifouling coating of yarns and nets represents a challenge that has not yet been optimally solved, because here a) the ratio of surface to volume of the coated body is particularly large compared to other maritime objects, b) it through frequent contact with the seabed, aquatic organisms or objects can result in abrasion, and c) furthermore, deformations of the yarn can occur as a result of pulling movements under water.
  • the present invention is based on the object of providing a new yarn with improved antifouling properties.
  • Another object of the invention is to provide a new yarn with improved antifouling properties that does not release any substances into the environment.
  • This object or objects is achieved with an antifouling yarn according to the main claim and an antifouling yarn production method for the yarn according to the independent claim and, in an extended manner, with the use of the antifouling yarn as a net yarn according to the further independent claim.
  • the antifouling yarn according to the invention comprises a core running along the running direction and a corona surrounding it, the corona containing poly- and oligo-siloxanes [SiR 2 0] n and tetrapodal zinc oxide (t-ZnO) and the core being composed of fibers and a
  • the matrix consists and the fibers are made up of organic polymers and the matrix also contains poly- and oligosiloxanes [SiR 2 0] n .
  • the mass fraction of tetrapodal zinc oxide (t-ZnO) on the corona is between 0.1 and 10%, preferably between 0.2 and 7.5%, particularly preferably between 0.3 and 5%.
  • the matrix also contains tetrapodal zinc oxide (t-ZnO) or fragments of tetrapodal zinc oxide.
  • t-ZnO tetrapodal zinc oxide
  • the organic polymers from which the fibers are built up are selected from the group of polyethylenes, polyesters and / or polyamides.
  • the manufacturing method according to the invention for the yarn according to the invention comprises the following steps: i. Providing a solution of a poly- and / or oligo-dialkylsiloxane, a silane crosslinker and tetrapodal zinc oxide (t-ZnO) in a non-polar or slightly non-polar solvent as solution A; ii. Dipping conventional yarn in solution A; iii. Mechanical fulling of the yarn in solution A; iv. Allowing solution A to rest with the kneaded yarn; v. Removing the impregnated yarn from solution A; vi. Drying of the impregnated yarn.
  • t-ZnO tetrapodal zinc oxide
  • the poly- and / or oligo-dialkylsiloxanes are poly- and / or oligo-dimethylsiloxanes.
  • the non-polar or slightly non-polar solvent is a constitutional isomer of hexane.
  • the solvents can also be selected from: acyclic and cyclic hydrocarbons (pentane, hexane, heptane, cyclohexane), aromatic hydrocarbons (xylenes, toluene, benzene), halogenated compounds (chloroform, trichlorethylene) and ethers (diethyl ether, dimethoxyethane, tetrahydrofuran), where these solvents tend to be non-polar or only to be weak / slightly non-polar or polar.
  • Hexane is a preferred solvent because it has a lower evaporation rate compared to, for example, pentane.
  • the non-polar or slightly non-polar solvent is n-hexane.
  • the antifouling yarn according to the invention comprises a core running along the running direction and a corona surrounding it.
  • the corona contains poly- and oligo-siloxanes [SiR 2 0] n and tetrapodal zinc oxide (t-ZnO).
  • Tetrapodal zinc oxide is from Xin Jin et al. “Joining the Un-Joinable: Adhesion Between Low Surface Energy Polymers Using Tetrapodal ZnO Linkers”, Adv. Mat. 24, 42, pp. 5676-5680, 2012 and DE 102014 110 505 A1.
  • the mass fraction of the tetrapodal zinc oxide (t-ZnO) in the corona is in particular between 0.1 and 10%, preferably between 0.2 and 7.5%, particularly preferably between 0.3 and 5%.
  • the fibers consist of organic polymers, preferably of polyethylene, polyesters and / or polyamides. It is advantageous to use fibers that are commercially available as yarns and nets for maritime use (e.g. KREMMIN NETS & ROPES Mechanische Netzfabrik Walter Kremmin GmbH & Co KG.). With such commercially available nets and yarns, it is common practice to bundle the fibers into filaments. For protective nets that are used in aquaculture, because of their higher quality, knotted nets made of filaments (usually three) that are twisted together are used.
  • the matrix consists essentially of poly- and oligo-siloxanes [SiR 2 0] n. And can also contain tetrapodal zinc oxide (t-ZnO) or fragments of tetrapodal zinc oxide.
  • t-ZnO tetrapodal zinc oxide
  • the yarn itself is not changed, but rather penetrated and coated with the antifouling or fouling-release polymer, thus creating a toxin-free / biocide-free fouling-release or antifouling yarn.
  • the antifouling yarn according to the invention can be used as a yarn for an aquaculture net. Of course, other uses under water are possible and useful.
  • the invention is illustrated below with reference to the accompanying figures in FIG.
  • FIG. 1 Schematic representation of the cross section through an antifouling yarn according to the invention
  • Fig. 2 SEM images of an antifouling yarn according to the invention (cross section and top view);
  • Fig. 4 SEM image and X-ray dispersion analysis (EDX) of the cross section of an antifouling yarn according to the invention
  • Fig.5 SEM image and X-ray dispersion analysis (EDX) (element mapping of Si, C and Zn) of the cross-section of an antifouling yarn according to the invention and a smaller section of the image and
  • EDX X-ray dispersion analysis
  • Fig.6 Net made of yarn according to the invention and conventional yarn, after 21 weeks in natural water.
  • FIG. 1 shows a schematic representation of a cross section through an antifouling yarn according to the invention. It shows the corona (2) surrounding the core (1) made of fiber (4) and matrix (5). The tetrapodal zinc oxide particles (t-ZnO) (3) as part of the corona are shown.
  • t-ZnO tetrapodal zinc oxide particles
  • Fig. 2 shows the scanning electron microscope images of a yarn according to the invention. The recordings were made with a Zeiss Ultra Plus scanning electron microscope.
  • ® shows the corona, ⁇ the core, in ⁇ the top view of the corona can be seen.
  • the roughness (Ra) of the corona results in a value between 0.5 pm and 2 pm, preferably between 0.7 pm and 1.8 pm, particularly preferably between 1 pm and 1.5 pm.
  • the surface roughness of an untreated filament is between 8 pm and 10 pm.
  • Fig. 4 shows an SEM image and the X-ray dispersion analysis (EDX) with the aid of which the determined distribution of the elements in a material cross-section of the antifouling yarn according to the invention is shown.
  • the recordings were made with the EDX unit of the Zeiss Ultra Plus scanning electron microscope.
  • Fig. 5 shows a section of the picture.
  • Si silicon
  • C carbon
  • Zn zinc
  • Figure 6 shows a net made of conventional yarn (7) and yarn (6) according to the invention after being taken from a natural body of water.
  • the nets had previously been in natural water for 21 weeks. It shows biological growth which can be removed very easily from the yarn (6) according to the invention (fouling release).
  • the nets did not have to be cleaned because the growth was detached by the shear forces in the water or by the weight of the organisms.
  • the manufacturing method according to the invention for the yarn according to the invention comprises the following steps: i. Providing a solution of a poly- and / or oligo-dialkylsiloxane, a silane crosslinker and tetrapodal zinc oxide (t-ZnO) in a non-polar or slightly non-polar solvent as solution A; ii. Dipping conventional yarn in solution A; iii. Mechanical fulling of the yarn in solution A; iv. Allowing solution A to rest with the kneaded yarn; v. Removing the impregnated yarn from solution A; vi. Drying of the impregnated yarn.
  • the poly- and / or oligo-dialkylsiloxanes are preferably poly- and / or oligo-dimethylsiloxanes.
  • silane crosslinker is known to the person skilled in the art, for example from Ullmann's Encyclopedia of Industrial Chemistry, 5th edition, Volume A 24, p. 72.
  • silane crosslinker denotes silanes which have functional groups (X) capable of entering into a crosslinking reaction, for example acetate or amine.
  • the silane crosslinkers preferably have the general formula (R n SiX 4-n ), where R is selected from the group H, methyl, ethyl, propyl and X acetate (OCOCH3) and / or amine (NHR) is particularly preferred is triacetoxymethylsilane CH3S1 ( OOCCH3) 3. It is also possible to use mixtures of different silane crosslinkers.
  • Non-polar or slightly non-polar solvents are known to the person skilled in the art. They can be selected from the group of alkanes, alkenes, alkynes, aromatics, carboxylic acid esters,
  • the non-polar aprotic solvent is preferably selected from the group of the alkanes; it is particularly preferably a constitutional isomer of hexane, very particularly preferably n-hexane.
  • fillers or further auxiliaries can also be added to the solution in step i.
  • Such fillers and auxiliaries are generally known, for example additives from the group consisting of silicone plasticizers, adhesives, additives such as dyes, emulsifiers, stabilizers and catalysts.
  • Process steps i to v are preferably carried out at room temperature.
  • Drying vi can take place in air at temperatures between room temperature and approx. 80 ° C. If the product is dried at an elevated temperature, it should be stored for 5-10 minutes at room temperature in order to allow the solvent to evaporate initially.
  • n-hexane and Elastosil E43 are mixed together in a mass ratio of 1: 1 and a mass fraction of 1% t-ZnO is quickly added.
  • the mesh is completely immersed in the solution and should remain there for 1 to 5 minutes.
  • the solution is then mechanically drummed through with the mesh.
  • the meshed mesh then remains in the solution for 1 minute.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Agronomy & Crop Science (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dentistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

Die Erfindung betrifft ein Antifouling-Garn umfassend einen entlang der Laufrichtung verlaufenden Kern (1) und eine diesen umgebene Korona (2), wobei die Korona Poly- und Oligo-Siloxane [SiR2O]n und tetrapodales Zinkoxid (t-ZnO) (3) enthält und der Kern (1) aus Fasern (4) und einer Matrix (5) besteht und die Fasern aus organischen Polymeren aufgebaut sind und die Matrix ebenfalls Poly- und Oligo-Siloxane [SiR2O]n enthält. Ferner betrifft die Erfindung ein Antifouling-Garn-Herstellungsverfahren sowie eine Verwendung des Antifouling-Garns.

Description

ANTIFOULING-GARN UND ANTIFOULING-GARN-HERSTELLUNGSVERFAHREN SOWIE
VERWENDUNG
Die Erfindung betrifft ein Garn mit Antifouling-Eigenschaften, das für einen Einsatz unter Wasser insbesondere bei der Aufzucht von aquatischen Lebewesen (Aquakultur) geeignet ist.
Bei der als Aquakultur bezeichneten Aufzucht von aquatischen Lebewesen, wie z.B. Fischen, Krebsen, Muscheln oder Algen kommen Garne und aus diesen gefertigte Netze zum Einsatz. Diese Garne und Netze müssen dabei, abhängig von den Zeiten, welche die aquatischen Lebewesen benötigen, um die gewünschte Reife zu erreichen, einen längeren Zeitraum unter Wasser verbleiben. Während dieser Zeit kann es zu unerwünschtem biologischem Bewuchs (Fouling) kommen, welcher die Handhabung und Funktion als auch die gesamte Integrität der Garne und Netze beeinträchtigt.
Sogenannte Antifouling-Beschichtungen haben den Zweck unerwünschtes Fouling zu verhindern.
Die Druckschrift US 9828524 B2 offenbart Poly- und Oligosiloxan-basierte Antifouling- Beschichtungen für maritime Gegenstände, welche als Biozid Salze des Pyrithions enthalten.
Ein Nachteil dieser Beschichtungen ist es, dass bei Anwendung über einen längeren Zeitraum akkumuliert Biozide, wie in diesem Fall die Salze des Pyrithions, in die aquatische Umgebung freigesetzt und so auch von den Zuchttieren aufgenommen werden.
Biozidfreie Antifouling-Beschichtungen auf Basis von Silikonen sind unter dem englischen Namen Silicone Fouling Release Coatings (SFRC) bekannt. Ein allgemeines Problem der SFRC ist ihre Anfälligkeit gegenüber mechanischen Belastungen.
Aus der Druckschrift DE 60221 830 T3 ist eine Mehrkomponentenfasern, die Stärke und Polymere umfassen, sowie spezielle Konfigurationen der Fasern bekannt, wobei die darin beschriebenen Fasern verwendet werden, um Vliesbahnen und Einwegartikel herzustellen, wobei konkret eine Mehrkomponentenfaser mit einem Durchmesser von weniger als 100 pm offenbart ist, umfassend eine destrukturierte Stärke mit einem Molekulargewicht im Bereich von 3000 g/mol bis 2.000.000 g/mol und ein thermoplastisches Polymer mit einem Molekulargewicht von weniger als 500.000 g/mol, das mit der destrukturierten Stärke im Wesentlichen kompatibel ist, wobei die Faser eine Konfiguration aufweist, die ausgewählt ist aus der Gruppe bestehend aus Kern/Mantel, Matrix/Fibrillen, Band, Segmented Pie, Seite an Seite und Kombinationen davon und wobei jeder Bestandteil der Mehrkomponentenfaser mindestens die destrukturierte Stärke und/oder das thermoplastische Polymer umfasst. In der Druckschrift EP 2 972255 B1 ist der Ansatz beschrieben, dem Problem beizukommen durch eine freisetzungsfreie Siloxan-Urethan Antifouling-Beschichtung für maritime Gegenstände. Die Beschichtung ist aufgrund ihrer Steifigkeit nicht gut geeignet, um diffizile und flexible Oberflächen wie Garne oder Netze sie aufweisen, zu beschichten.
Weiter ist aus der Veröffentlichung QUI H. et al. “Development and Characterization of Mechanically Durable Silicone-Polythiourethane Composites Modified with Tetrapodal Shaped ZnO Particles for the Potential Application as Fouling-Release Coating in the Marine Sector” in Materials (2018) 11, 2413 ff eine Alternative zu biozidhaltigen Antifouling-Farben als Fouling- Release-Beschichtungen bekannt, die ungiftig sind und aufgrund ihrer geringen Oberflächenenergie eine dauerhafte Anhaftung von Meeresorganismen an der Oberfläche verhindern. Diese Beschichtungen leiden jedoch unter unzureichenden mechanischen Eigenschaften, die sie für mechanisch beanspruchte Oberflächen auf Schiffsrümpfen ungeeignet machen. Um diese Hindernisse zu überwinden, wurden Polydimethylsiloxan (PDMS)-Polythiourethan (PTU)-Verbundwerkstoffe, die mit tetrapodal geformten Mikro-Nano- ZnO-Partikeln (t-ZnO) modifiziert wurden, hergestellt.
Ein anderer Weg zur Lösung des Problems der nicht ausreichenden mechanischen Stabilität ist es, die Fouling Release Beschichtung auf Basis von Siloxanen in einem Sprühvorgang relativ dick (>300 pm) auf ein Epoxid-beschichtetes Substrat aufzutragen (US 2010/0069531 A1).
Die Probleme im Stand der Technik sind im Wesentlichen, dass die vorgeschlagenen Antifouling-Beschichtungen zum Teil nicht freisetzungsfrei sind und somit insbesondere bei längerem Einsatz akkumuliert Biozide in die aquatische Umwelt abgeben, zum anderen nicht über die optimale Haltbarkeit, Elastizität und Abriebfestigkeit verfügen.
Die Haltbarkeit, Elastizität und Abriebfestigkeit einer Antifouling-Beschichtung von Garnen und Netzen stellt eine bisher nicht optimal gelöste Herausforderung dar, da hier a) das Verhältnis von Oberfläche zu Volumen des beschichteten Körpers im Vergleich zu anderen maritimen Gegenständen besonders groß ist, b) es durch häufigen Kontakt mit dem Meeresboden, aquatischen Lebewesen oder Gegenständen zur Abrasion kommen kann, und c) darüber hinaus durch Zug-Bewegungen unter Wasser Verformungen des Garns auftreten können.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein neues Garn mit verbesserten Antifouling-Eigenschaften zur Verfügung zu stellen.
Des Weiteren ist es Aufgabe der Erfindung ein neues Garn mit verbesserten Antifouling- Eigenschaften zur Verfügung zu stellen, welches keine Substanzen in die Umgebung abgibt.
Darüber hinaus ist es Aufgabe der Erfindung ein neues Garn mit verbesserten Antifouling- Eigenschaften zur Verfügung zu stellen, welches keine Substanzen in die Umgebung abgibt und die Antifouling-Eigenschaften auch bei einem längeren Einsatz unter Wasser behält. Gelöst wird diese Aufgabe bzw. Aufgaben mit einem Antifouling-Garn gemäß Hauptanspruch und einem Antifouling-Garn-Herstellungsverfahren für das Garn gemäß nebengeordnetem Anspruch sowie erweitert gelöst mit einer Verwendung des Antifouling-Garns als Netzgarn gemäß dem weiteren nebengeordneten Anspruch.
Das erfindungsgemäße Antifouling-Garn umfasst einen entlang der Laufrichtung verlaufenden Kern und eine diesen umgebene Korona, wobei die Korona Poly- und Oligo-Siloxane [SiR20]n und tetrapodales Zinkoxid (t-ZnO) enthält und wobei der Kern aus Fasern und einer Matrix besteht und wobei die Fasern aus organischen Polymeren aufgebaut sind und wobei die Matrix ebenfalls Poly- und Oligo-Siloxane [SiR20]n enthält.
In einer besonderen Ausführungsform des erfindungsgemäßen Garns beträgt der Massenanteil des tetrapodalen Zinkoxids (t-ZnO) an der Korona zwischen 0,1 und 10 %, bevorzugt zwischen 0,2 und 7,5 %, besonders bevorzugt zwischen 0,3 und 5 %.
In einerweiteren bevorzugten Ausführungsform enthält die Matrix ebenfalls tetrapodales Zinkoxid (t-ZnO) oder Bruchstücke von tetrapodalem Zinkoxid.
In einer Ausführungsform sind die organischen Polymere aus denen die Fasern aufgebaut sind ausgewählt aus der Gruppe der Polyethylene, Polyester und/oder Polyamide.
Das erfindungsgemäße Herstellungsverfahren für das erfindungsgemäße Garn umfasst die folgenden Schritte: i. Bereitstellen einer Lösung eines Poly- und/oder Oligo-Dialkylsiloxans, eines Silanvernetzers und tetrapodalem Zinkoxid (t-ZnO) in einem unpolaren oder leicht unpolaren Lösungsmittel als Lösung A; ii. Eintauchen eines herkömmlichen Garns in die Lösung A; iii. Mechanisches Durchwalken des Garns in der Lösung A; iv. Ruhenlassen der Lösung A mit dem durchgewalkten Garn; v. Entnahme des imprägnierten Garns aus der Lösung A; vi. Trocknung des imprägnierten Garns.
In einer besonderen Ausführungsform des erfindungsgemäßen Verfahrens handelt es sich bei den Poly- und/oder Oligo-Dialkylsiloxanen um Poly- und/oder Oligo-Dimethylsiloxane.
In einer besonderen Ausführungsform des erfindungsgemäßen Verfahrens ist das unpolare oder leicht unpolare Lösungsmittel ein Konstitutionsisomer des Hexans. Ferner können die Lösungsmittel ausgewählt werden aus: azyklische und zyklische Kohlenwasserstoffe (Pentan, Hexan, Heptan, Cyclohexan), aromatische Kohlenwasserstoffe (Xylole, Toluol, Benzol), halogenierte Verbindungen (Chloroform, Trichlorethylen) und Ether (Diethylether, Dimethoxyethan, Tetrahydrofuran), wobei diese Lösungsmittel dazu neigen, unpolar oder nur schwach/leicht unpolar bzw. polar zu sein. Hexan ist ein bevorzugtes Lösungsmittel da es eine geringere Verdampfungsrate im Vergleich zu bspw. Pentan hat.
In einerweiteren besonderen Ausführungsform des erfindungsgemäßen Verfahrens ist das unpolar oder leicht unpolare Lösungsmittel n-Hexan.
Das erfindungsgemäße Antifouling-Garn umfasst einen entlang der Laufrichtung verlaufenden Kern und eine diesen umgebende Korona.
Die Korona enthält Poly- und Oligo-Siloxane [SiR20]n und tetrapodales Zinkoxid (t-ZnO).
Tetrapodales Zinkoxid (t-ZnO) ist unter anderem aus Xin Jin et al. „Joining the Un-Joinable: Adhesion Between Low Surface Energy Polymers Using Tetrapodal ZnO Linkers”, Adv. Mat. 24, 42, S. 5676-5680, 2012 und der DE 102014 110 505 A1 bekannt.
Der Massenanteil des tetrapodalen Zinkoxids (t-ZnO) an der Korona liegt insbesondere zwischen 0,1 und 10%, bevorzugt zwischen 0,2 und 7,5 %, besonders bevorzugt zwischen 0,3 und 5 %.
Die Fasern bestehen aus organischen Polymeren bevorzugt aus Polyethylen, Polyestern und/oder Polyamiden. Es ist vorteilhaft solche Fasern zu verwenden, die kommerziell für den maritimen Gebrauch als Garne und Netze angeboten werden (z.B. KREMMIN NETS & ROPES Mechanische Netzfabrik Walter Kremmin GmbH & Co KG.). Bei solchen kommerziell erhältlichen Netzen und Garnen ist es üblich, die Fasern zu Filamenten zu bündeln. Für Schutznetze, welche in der Aquakultur Verwendung finden, werden aufgrund der höheren Qualität, häufig geknotete Netze aus Filamenten (zumeist drei), die miteinander verdrillt sind, verwendet.
Die Matrix besteht insbesondere im Wesentlichen aus Poly- und Oligo-Siloxanen [SiR20]n. und kann ebenfalls tetrapodales Zinkoxid (t-ZnO ) oder Bruchstücke von tetrapodalem Zinkoxid enthalten.
Das Garn an sich wird nicht verändert, sondern mit dem Antifouling bzw. Fouling-Release- Polymer durchdrungen und beschichtet und so ein toxinfreies / biozidfreies Fouling-Release- bzw. Antifouling-Garn realisiert.
Ferner hat sich gezeigt, dass ein entsprechendes toxinfreies / biozidfreies Fouling-Release- bzw. Antifouling-Garn UV-absorbierende Eigenschaften aufweist, die für dieses Produkt und dessen Langzeitbeständigkeit positiv sind.
Das erfindungsgemäße Antifouling-Garn kann als Garn für ein Aquakulturnetz verwendet werden. Selbstverständlich sind weitere Anwendungsmöglichkeiten unter Wasser möglich und sinnvoll. Nachfolgend wird die Erfindung anhand der beiliegenden Abbildungen in der
Abbildungsbeschreibung beschrieben, wobei diese die Erfindung erläutern sollen und nicht beschränkend zu werten sind.
Es zeigen:
Abb. 1 Schematische Darstellung des Querschnitts durch ein erfindungsgemäßes Antifouling- Garn;
Abb. 2 REM-Aufnahmen eines erfindungsgemäßen Antifouling-Garns (Querschnitt und Draufsicht);
Abb. 3 RAMAN-Spektren der in Abbildung 2 definierten Bereiche;
Abb. 4 REM-Aufnahme und Röntgendispersionsanalyse (EDX) des Querschnitts eines erfindungsgemäßen Antifouling-Garns;
Abb.5 REM-Aufnahme und Röntgendispersionsanalyse (EDX) (Elementkartierung von Si, C und Zn) des Querschnitts eines erfindungsgemäßen Antifouling-Garns und ein kleinerer Ausschnitt des Bildes und
Abb.6 Netz aus erfindungsgemäßem Garn und herkömmlichen Garn, nach 21 Wochen im natürlichen Gewässer.
In Abb. 1 ist eine schematische Darstellung eines Querschnitts durch ein erfindungsgemäßes Antifouling-Garn zu sehen. Es zeigt die den Kern (1) aus Faser (4) und Matrix (5) umgebene Korona (2). Die Tetrapodalen Zinkoxidpartikel (t-ZnO) (3) als Teil der Korona sind dargestellt.
In Abbildung 1 a) ist ein einzelnes Faser-Bündel (Filament) zu sehen und in Abbildung 1 b) sind drei Filamente verdrillt.
Abb. 2 zeigt die rasterelektronmikroskopischen Aufnahmen eines erfindungsgemäßen Garns. Die Aufnahmen wurden mit einem Zeiss Ultra Plus Raster Elektronen Mikroskop gemacht.
® zeigt die Korona, © den Kern, in © ist die Draufsicht auf die Korona zu sehen.
In Abb. 3 sind die RAMAN-Spektren der Bereiche ®, © und © im Vergleich zu reinem Polysiloxan [SiR20]n zu sehen. Es ist deutlich zu erkennen, dass Polysiloxan [SiR20]n sich sowohl in der Korona wie auch im Kern befindet. Die Aufnahmen wurden mit einem Raman Spektrometer des Typs Witec Alpha 300RA gemacht.
Damit ist gezeigt, dass es sich hier nicht um eine herkömmliche Silikonhaltige FR-Beschichtung der Oberfläche eines Garns, sondern um ein neuartiges Antifouling-Garn handelt. Die Oberflächenrauheit des erfindungsgemäßen Garns ist gegenüber nicht erfindungsgemäßen kommerziellen Garnen deutlich verringert. Die Oberflächenrauheit (Ra) wurde dabei mit Hilfe eines 3D Laser Scanning Confocal Microscope VK-X (Keyence Corporation, Osaka, Japan) bei einer Vergrößerung von 500x bestimmt.
Es ergibt sich für die Rauheit (Ra) der Korona ein Wert zwischen 0,5 pm und 2 pm, bevorzugt zwischen 0,7 pm und 1,8 pm, besonders bevorzugt zwischen 1 pm und 1,5 pm. Die Oberflächenrauheit eines unbehandelten Filaments liegt zwischen 8 pm und 10 pm.
Abb. 4 zeigt eine REM-Aufnahme und die Röntgendispersionsanalyse (EDX) mit deren Hilfe die ermittelte Verteilung der Elemente in einem Materialquerschnitt des erfindungsgemäßen Antifouling-Garns dargestellt wird. Die Aufnahmen wurden mit der EDX-Einheit des Zeiss Ultra Plus Raster Elektronen Mikroskop gemacht.
Abb. 5 zeigt einen Ausschnitt des Bildes. Es wird die Präsenz von Silizium (Si), assoziiert mit der Präsenz von [SiR20]n, Kohlenstoff (C ), assoziiert mit den organischen Polymeren der Faser und Zink (Zn), assoziiert mit t-ZnO-Partikeln hell dargestellt. Es ist deutlich zu erkennen, dass Silizium sich sowohl in der Korona wie auch in der Matrix befindet, also auch im Kern vorliegt, während die Faser kein Silizium oder Zink enthält. Das t-ZnO, bzw. Bruchstücke davon befindet sich vorwiegend in der Korona, vereinzelt auch in der Matrix.
Abb.6 zeigt ein Netz aus herkömmlichem Garn (7) und erfindungsgemäßem Garn (6) nach Entnahme aus einem natürlichen Gewässer. Die Netze waren zuvor für 21 Wochen im natürlichen Gewässer. Es zeigt sich biologischer Bewuchs, der vom erfindungsgemäßen Garn (6) sehr leicht zu entfernen ist (Fouling-Release). Die Netzte mussten nicht gereinigt werden, da der Bewuchs durch die Scherkräfte im Wasser bzw. durch das Eigengewicht der Organismen abgelöst wurde.
Nachfolgend wird anhand eines ausführlichen konkreten, jedoch nicht den Schutzbereich beschränkenden Beispiels die Erfindung weiter erläutert:
Das erfindungsgemäße Herstellungsverfahren für das erfindungsgemäße Garn umfasst die folgenden Schritte: i. Bereitstellen einer Lösung eines Poly- und/oder Oligo-Dialkylsiloxans, eines Silanvernetzers und tetrapodalem Zinkoxid (t-ZnO) in einem unpolaren oder leicht unpolaren Lösungsmittel als Lösung A; ii. Eintauchen eines herkömmlichen Garns in die Lösung A; iii. Mechanisches Durchwalken des Garns in der Lösung A; iv. Ruhenlassen der Lösung A mit dem durchgewalkten Garn; v. Entnahme des imprägnierten Garns aus der Lösung A; vi. Trocknung des imprägnierten Garns. Bei den Poly- und/oder Oligo-Dialkylsiloxanen handelt es sich bevorzugt um Poly- und/oder Oligo- Dimethylsiloxane.
Der Begriff Silanvernetzer ist dem Fachmann z.B. aus Ullmann's Encyclopedia of Industrial Chemistry, 5. Auflage, Band A 24, S. 72 bekannt. Der Begriff Silanvernetzer bezeichnet Silane, die zum Eingehen einer Vernetzungsreaktion fähige funktionelle Gruppen (X), beispielsweise Acetat oder Amin, aufweisen. Bevorzugt haben die Silanvernetzer die allgemeine Formel (RnSiX4-n), wobei R ausgewählt ist aus der Gruppe H, Methyl, Ethyl, Propyl und X Acetat (OCOCH3) und/oder Amin (NHR) ist besonders bevorzugt ist Triacetoxymethylsilan CH3S1 (OOCCH3)3. ES ist möglich auch Mischungen verschiedener Silanvernetzer einzusetzen.
Unpolare oder leicht unpolare Lösungsmittel sind dem Fachmann bekannt. Sie können ausgewählt sein aus der Gruppe der Alkane, Alkene, Alkine, Aromaten, Carbonsäureester,
Ether, Tetrachlorkohlenstoff, Methylenchlorid und/oder Tetramethysilan. Bevorzugt ist das unpolar aprotische Lösungsmittel ausgewählt aus der Gruppe der Alkane, besonders bevorzugt handelt es sich um ein Konstitutionsisomer des Hexans, ganz besonders bevorzugt um n- Hexan.
Optional können in Schritt i der Lösung noch Füllstoffe oder weitere Hilfsstoffe zugegeben werden. Solche Füllstoffe und Hilfsstoffe sind allgemein bekannt es kann sich beispielsweise um Zusätze aus der Gruppe Silikonweichmacher, Haftmittel, Additive wie Farbstoffe, Emulgatoren, Stabilisatoren und Katalysatoren handeln.
Die Verfahrensschritte i bis v werden dabei vorzugsweise bei Raumtemperatur durchgeführt.
Die Trocknung vi kann bei Temperaturen zwischen Raumtemperatur und ca. 80°C an der Luft erfolgen. Bei einer Trocknung bei erhöhter Temperatur soll das Produkt zuvor 5-10 min bei Raumtemperatur gelagert werden, um die initiale Verdampfung des Lösungsmittels zu ermöglichen.
Im Folgenden wird anhand eines Ausführungsbeispiels, die Allgemeinheit der Lehre jedoch nicht einschränkend, die Herstellung eines erfindungsgemäßen Garns beschrieben:
Es wird ein kommerziell erhältliches geknotetes Netz der Firma KREMMIN NETS & ROPES Mechanische Netzfabrik Walter Kremmin GmbH & Co K.-G. bei dem drei Filamente aus Polyamidfasern miteinander verdrillt sind der gewünschten Größe gewählt. Das benötigte Volumen der Lösung A wird an die Netzgröße angepasst, sodass sichergestellt ist, dass das Netz vollständig in die Lösung eingetaucht werden kann, dabei ist es natürlich vorteilhaft, das Volumen möglichst gering zu halten, um eventuelle Materialverluste und Kosten zu minimieren.
Zur Bereitstellung der Lösung A wird das kommerziell erhältliche Produkt Elastosil® E43 (Wacker), ein kondensationsvernetzendes Einkomponentensilikon, welches Polydimethylsiloxan, Füllstoff, Hilfsstoff und als Vernetzer Triacetoxymethylsilan enthält, verwendet.
Zunächst werden n-Hexan und Elastosil E43 im Massenverhältnis 1 : 1 miteinander vermengt und rasch ein Massenanteil von 1 % t-ZnO zugegeben. Das Netz wird in die Lösung vollständig eingetaucht und sollte dort 1 bis 5 Minuten verbleiben.
Anschließend wird die Lösung mit dem Netz mechanisch durchgewalkt.
Das durchgewalkte Netz verbleibt anschließend für 1 Minute in der Lösung.
Das Netz wird aus der Lösung entnommen und für ca. 2 Stunden bei Raumtemperatur und einer relativen Luftfeuchtigkeit von mindestens 50% an der Luft getrocknet. Bezugszeichenliste
1 Kern
2 Korona
3 t-ZnO
4 Faser
5 Matrix
6 Erfindungsgemäßes Garn
7 Herkömmliches Garn

Claims

A N S P R Ü C H E
1. Antifouling-Garn umfassend einen entlang der Laufrichtung verlaufenden Kern (1) und eine diesen umgebene Korona (2), wobei
- die Korona Poly- und Oligo-Siloxane [SiR20]n und tetrapodales Zinkoxid (t-ZnO) (3) enthält und
- der Kern (1) aus Fasern (4) und einer Matrix (5) besteht und
- die Fasern aus organischen Polymeren aufgebaut sind und
- die Matrix ebenfalls Poly- und Oligo-Siloxane [SiR20]n enthält.
2. Antifouling-Garn nach Anspruch 1, dadurch gekennzeichnet, dass der Massenanteil des tetrapodalen Zinkoxids (t-ZnO) an der Korona zwischen 0,1 und 10 %, bevorzugt zwischen 0,2 und 7,5 %, besonders bevorzugt zwischen 0,3 und 5 % liegt.
3. Antifouling-Garn nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Matrix ebenfalls tetrapodales Zinkoxid (t-ZnO) oder Bruchstücke von tetrapodalem Zinkoxid enthält.
4. Antifouling-Garn nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass die organischen Polymere, aus denen die Fasern aufgebaut sind, ausgewählt sind aus der Gruppe der Polyethylene, Polyester und/oder Polyamide.
5. Antifouling-Garn-Herstellungsverfahren umfassend die Schritte: a. Bereitstellen einer Lösung eines Poly- und/oder Oligo-Dialkylsiloxans, eines Silanvernetzers und tetrapodalem Zinkoxid (t-ZnO) in einem unpolaren oder leicht unpolaren Lösungsmittel als Lösung A; b. Eintauchen eines herkömmlichen Garns in die Lösung A; c. Mechanisches Durchwalken des Garns in der Lösung A; d. Ruhenlassen der Lösung A mit dem durchgewalkten Garn; e. Entnahme des imprägnierten Garns aus der Lösung A; f. Trocknung des imprägnierten Garns.
6. Antifouling-Garn-Herstellungsverfahren nach Anspruch 5, dadurch gekennzeichnet, dass als Poly- und/oder Oligo-Dialkylsiloxanen um Poly- und/oder Oligo-Dimethylsiloxane verwendet werden.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass als das unpolare oder leicht unpolare Lösungsmittel ein Konstitutionsisomer des Hexans oder als unpolares oder leicht unpolares Lösungsmittel n-Hexan verwendet wird.
8. Verfahren nach Anspruch 5, 6 oder 7, dadurch gekennzeichnet, dass das / die Lösungsmittel ausgewählt werden aus oder aus einer Kombination aus:
- azyklische und zyklische Kohlenwasserstoffe: Pentan, Hexan, Heptan, Cyclohexan,
- aromatische Kohlenwasserstoffe: Xylole, Toluol, Benzol,
- halogenierte Verbindungen: Chloroform, Trichlorethylen
- Ether: Diethylether, Dimethoxyethan, Tetrahydrofuran.
9. Verwendung des Antifouling-Garns nach einem der Ansprüche 1 bis 4 oder hergestellt nach einem der Ansprüche 5 bis 8 als Garn für ein Aquakulturnetz.
PCT/DE2021/100408 2020-05-11 2021-05-05 Antifouling-garn und antifouling-garn-herstellungsverfahren sowie verwendung WO2021228322A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21726318.5A EP4149260A1 (de) 2020-05-11 2021-05-05 Antifouling-garn und antifouling-garn-herstellungsverfahren sowie verwendung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020112729.4 2020-05-11
DE102020112729.4A DE102020112729A1 (de) 2020-05-11 2020-05-11 Antifouling-Garn und Antifouling-Garn-Herstellungsverfahren sowie Verwendung

Publications (1)

Publication Number Publication Date
WO2021228322A1 true WO2021228322A1 (de) 2021-11-18

Family

ID=75977550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2021/100408 WO2021228322A1 (de) 2020-05-11 2021-05-05 Antifouling-garn und antifouling-garn-herstellungsverfahren sowie verwendung

Country Status (3)

Country Link
EP (1) EP4149260A1 (de)
DE (1) DE102020112729A1 (de)
WO (1) WO2021228322A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062020A1 (en) 2022-09-22 2024-03-28 Universität Zu Lübeck Biocompatible structured material and uses thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161427A (ja) * 2000-11-22 2002-06-04 Unitica Fibers Ltd 水中資材用繊維
US20100069531A1 (en) 2008-09-12 2010-03-18 Shin-Etsu Chemical Co., Ltd. Process for producing room temperature vulcanizable organopolysiloxane composition and base material coated with composition obtained by the production process
DE60221830T3 (de) 2001-05-10 2012-01-12 The Procter & Gamble Company Multikomponentfasern aus stärke und polymeren
DE102014110505A1 (de) 2014-07-25 2016-01-28 Christian-Albrechts-Universität Zu Kiel Verfahren zur Herstellung von Mehrkomponentenwerkstücken mittels 3D-Druck
US9828524B2 (en) 2012-11-13 2017-11-28 Chugoku Marine Paints, Ltd. Antifouling coating composition, antifouling coating film, antifouling substrate, and method for improving storage stability of antifouling coating compositions
EP2972255B1 (de) 2013-03-15 2018-05-23 Bruker AXS, Inc. Eindimensionaler röntgendetektor mit gekrümmten auslesestreifen
CN110091562A (zh) * 2019-05-07 2019-08-06 江南大学 一种基于剪切增稠胶的抗冲击柔性防护复合材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161427A (ja) * 2000-11-22 2002-06-04 Unitica Fibers Ltd 水中資材用繊維
DE60221830T3 (de) 2001-05-10 2012-01-12 The Procter & Gamble Company Multikomponentfasern aus stärke und polymeren
US20100069531A1 (en) 2008-09-12 2010-03-18 Shin-Etsu Chemical Co., Ltd. Process for producing room temperature vulcanizable organopolysiloxane composition and base material coated with composition obtained by the production process
US9828524B2 (en) 2012-11-13 2017-11-28 Chugoku Marine Paints, Ltd. Antifouling coating composition, antifouling coating film, antifouling substrate, and method for improving storage stability of antifouling coating compositions
EP2972255B1 (de) 2013-03-15 2018-05-23 Bruker AXS, Inc. Eindimensionaler röntgendetektor mit gekrümmten auslesestreifen
DE102014110505A1 (de) 2014-07-25 2016-01-28 Christian-Albrechts-Universität Zu Kiel Verfahren zur Herstellung von Mehrkomponentenwerkstücken mittels 3D-Druck
CN110091562A (zh) * 2019-05-07 2019-08-06 江南大学 一种基于剪切增稠胶的抗冲击柔性防护复合材料及其制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Ullmann's Encyclopedia of Industrial Chemistry", vol. A 24, pages: 72
DATABASE WPI Week 200272, Derwent World Patents Index; AN 2002-669178, XP002803712 *
DATABASE WPI Week 201972, Derwent World Patents Index; AN 2019-698818, XP002803713 *
HAOYI QIU ET AL: "Development and Characterization of Mechanically Durable Silicone-Polythiourethane Composites Modified with Tetrapodal Shaped ZnO Particles for the Potential Application as Fouling-Release Coating in the Marine Sector", MATERIALS, vol. 11, no. 12, 29 December 2018 (2018-12-29), CH, pages 2413, XP055740564, ISSN: 1996-1944, DOI: 10.3390/ma11122413 *
QUI H. ET AL.: "Development and Characterization of Mechanically Durable Silicone-Polythiourethane Composites Modified with Tetrapodal Shaped ZnO Particles for the Potential Application as Fouling-Release Coating in the Marine Sector", MATERIALS, vol. 11, 2018, pages 2413 ff
XIN JIN ET AL.: "Joining the Un-Joinable: Adhesion Between Low Surface Energy Polymers Using Tetrapodal ZnO Linkers", ADV. MAT., vol. 24, no. 42, 2012, pages 5676 - 5680, XP055324022, DOI: 10.1002/adma.201201780
YAMAUCHI YOSHIHIRO ET AL: "Durable and Flexible Superhydrophobic Materials: Abrasion/Scratching/Slicing/Droplet Impacting/Bending/Twisting-Tolerant Composite with Porcupinefish-Like Structure", APPLIED MATERIALS & INTERFACES, vol. 11, no. 35, 20 August 2019 (2019-08-20), US, pages 32381 - 32389, XP055825271, ISSN: 1944-8244, DOI: 10.1021/acsami.9b09524 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062020A1 (en) 2022-09-22 2024-03-28 Universität Zu Lübeck Biocompatible structured material and uses thereof

Also Published As

Publication number Publication date
EP4149260A1 (de) 2023-03-22
DE102020112729A1 (de) 2021-11-11

Similar Documents

Publication Publication Date Title
DE60128004T2 (de) Nicht haftende spandex-garne mit antimikrobiellen mitteln darin und diese enthaltende textilstoffe
DE60013755T2 (de) Antibakterielle Eigenschaften verleihende Glaszusammensetzung, antibakterielle Faser, antibakterieller Zwirn und antibakterieller Stoff
EP2557916B1 (de) Insektizidhaltiges netzartiges flächengebilde
EP2190490B2 (de) Bioresorbierbarer gelatinevliesstoff
WO2008049250A1 (de) Mikrobizide elektrogesponnene polymerfasern mit polyethylenimin- nanopartikeln für textile anwendungen
DE102009059276A1 (de) Formulierung mit Metallnanopartikel
EP1825752A2 (de) Beschichtungszusammensetzung, aus SiO2-erzeugendem Mittel, mit wenigstens einem antibakteriellen Wirkstoff
WO2021228322A1 (de) Antifouling-garn und antifouling-garn-herstellungsverfahren sowie verwendung
DE4134320A1 (de) Kuenstliches haar
KR20190015563A (ko) 물 및 공기 여과를 위한 청소 가능하며 일광-내성인 다기능성 나노섬유 필터 및 나노섬유 필터의 제작 과정
WO2018046315A1 (de) Kabelwickelband
EP1682624A1 (de) Biozidfreie antifouling-beschichtung enthaltend ein auf basaltfasern basierendes flächengebilde
DE102013214075A1 (de) Gewebe mit Polymerschicht
EP3326465B1 (de) Verwendung von basalt zur reduzierung von fouling und/oder als antibakterielles material, beschichtung für eine oberfläche und verfahren zur herstellung einer beschichtung
DE202010003123U1 (de) Rohr aus einem Polymer, insbesondere zweilagiges Wellrohr
EP3847308B1 (de) Beschichtete mikrofaserbahn und verfahren zur herstellung derselben
FR2831188A1 (fr) Produit textile a activite anti-algues
JPH0681214A (ja) 水棲生物の付着防止効果を有する繊維および繊維製品
AT202689B (de) Verfahren zur Herstellung von streckorientiertem Fasermaterial oder Endlosfasern
DE102008032199A1 (de) Luftfrachtnetz
DE102015104162B4 (de) Verfahren zur herstellung eines naturfaserformteils, naturfaserformteil und dessen verwendung
JPH01149702A (ja) 海洋生物の付着防止剤
JPH0576258A (ja) 水中資材用繊維
DE2505710A1 (de) Fasergebilde aus folienfasern, verfahren und vorrichtung zu ihrer herstellung und ihre verwendung auf dem textil- und anderen gebieten
DE102022112137A1 (de) Mittel zum Schutz von Pflanzen und Tieren, Herstellung des Mittels und Verfahren zur Verwendung des Mittels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21726318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021726318

Country of ref document: EP

Effective date: 20221212