WO2021228276A1 - 降膜式蒸发器的换热管 - Google Patents

降膜式蒸发器的换热管 Download PDF

Info

Publication number
WO2021228276A1
WO2021228276A1 PCT/CN2021/099551 CN2021099551W WO2021228276A1 WO 2021228276 A1 WO2021228276 A1 WO 2021228276A1 CN 2021099551 W CN2021099551 W CN 2021099551W WO 2021228276 A1 WO2021228276 A1 WO 2021228276A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
exchange tube
liquid guide
axial
guide groove
Prior art date
Application number
PCT/CN2021/099551
Other languages
English (en)
French (fr)
Inventor
李银银
宋强
任滔
刘江彬
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021228276A1 publication Critical patent/WO2021228276A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
    • F28F1/18Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion the element being built-up from finned sections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/26Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being integral with the element

Definitions

  • the invention belongs to the field of heat exchange technology, and specifically provides a heat exchange tube of a falling film evaporator.
  • the falling film evaporator mainly relies on its heat exchange tube to realize the heat exchange process, and the heat exchange mechanism of the heat exchange tube is mainly thin film evaporation heat exchange, and the liquid film formed on the outer surface of the heat exchange tube Because of its low thermal resistance, it has high-efficiency heat transfer performance, that is, the heat transfer performance of the liquid film determines the heat transfer performance of the heat exchange tube. Therefore, whether the liquid film can evenly cover the outer surface of the heat exchange tube is also effective for falling film evaporation.
  • the heat exchange performance of the heat exchanger plays a decisive role.
  • the formation of the liquid film mainly depends on the flow of the heat exchange working fluid sprayed from the liquid distributor on the heat exchange tube.
  • the heat exchange working fluid can be evenly distributed on the outer surface of the heat exchange tube mainly depends on its axial distribution and The circumferential distribution has two aspects. Specifically, there are many spray holes on the dispenser, and the heat exchange working medium is sprayed onto the heat exchange tubes through these spray holes. Therefore, the larger the arrangement density of the spray holes and the smaller the diameter, the better the uniformity. Liquid distribution; however, the arrangement density of the spray holes needs to be restricted by the strength of the liquid distributor, and the pore size needs to be restricted by the viscosity of the heat exchange working fluid. If the hole diameter is too small, it will inevitably affect the normal flow of the heat exchange working fluid, and even It can also cause the problem of clogging the spray hole.
  • the heat exchange working fluid sprayed by the existing liquid distributors can usually only fall on the outer surface of the heat exchange tube in a drop or line shape, and because there is a certain gap between different spray holes, there is only Part of the outer surface of the heat exchange tube can be sprayed on by the heat exchange medium, and the rest of the outer surface can only be covered by the liquid film depending on the diffusion of the heat exchange medium on the surface of the heat exchange tube, so whether the outer surface of the heat exchange tube
  • the formation of a uniform and complete liquid film mainly depends on the diffusion of the heat exchange working fluid, that is, the diffusion of the heat exchange working fluid on the outer surface of the heat exchange tube largely determines the overall heat exchange efficiency of the falling film evaporator.
  • the types of heat exchange tubes configured in the existing falling film evaporator generally include smooth tubes and enhanced tubes.
  • the outer surface of the smooth tube is a smooth surface, and the outer surface of the enhanced tube is provided with an expanded surface.
  • the heat exchange working medium is not subject to any restriction when flowing on its outer surface, so its flow rate is fast and the circulation efficiency is high, but this can easily lead to local dryness. It appears that there is no liquid film formed on part of the outer surface of the heat exchange tube, which affects the heat exchange efficiency of the heat exchange tube.
  • the expanded surface of the existing strengthened tube is usually formed by a fin structure, and the most commonly used fin structure is a fin structure with a T-shaped cross-sectional shape. This T-shaped fin structure has a guiding effect on the heat transfer medium.
  • the existing T-shaped fins are distributed in a spiral shape along the axial direction of the heat exchange tube in order to effectively reduce the flow speed of the heat exchange working fluid to extend the heat exchange time; however, in the actual application process, this Although the spirally distributed T-shaped fins can effectively extend the heat exchange time, they can also easily cause part of the surface of the heat exchange tube to dry up. Since the flow of heat exchange working fluid is mainly affected by gravity and supporting force, and gravity is always vertical downwards, the heat exchange working fluid will keep close to the side of the T-shaped fin during the flow to obtain more upwards. Support, which will inevitably cause the surface farther from the T-shaped fin to dry up, which will affect the heat exchange efficiency of the heat exchange tube, and even adversely affect the heat exchange efficiency of the entire falling film evaporator.
  • the present invention provides a reduction A heat exchange tube of a film evaporator
  • the heat exchange tube includes a tubular body and a plurality of annular fins arranged on the tubular body at intervals along the axial direction of the tubular body, and
  • the cross-sections are all T-shaped, and the vertical part of the ring-shaped fin is connected to the tubular body so that a circumferential liquid guide groove with a T-shaped cross-section is formed between every two adjacent ring-shaped fins,
  • the plane on which the circumferential liquid guide groove is located is perpendicular to the axis of the tubular body
  • the heat exchange tube further includes at least one axial liquid guide that penetrates the plurality of annular fins along the axial direction of the tubular body The grooves enable all the heat exchange working fluids
  • the number of the axial liquid guide grooves is multiple, and the plurality of axial liquid guide grooves are evenly distributed along the circumferential direction of the tubular body.
  • the number of the axial liquid guide grooves is 100 to 160.
  • the distance between the lateral portions of two adjacent annular fins is 0.05 to 0.3 mm.
  • the distance between the vertical portions of the two adjacent annular fins is 0.1 to 0.6 mm.
  • the height of the annular fin is set to be greater than the groove depth of the axial liquid guide groove.
  • the height of the annular fin is 0.3 to 1 mm.
  • the groove depth of the axial liquid guide groove is greater than or equal to 0.3 mm.
  • the groove width of the axial liquid guide groove is 0.05 to 0.15 mm.
  • the outer diameter of the heat exchange tube is 15.8 to 25.4 mm.
  • the heat exchange tube of the falling film evaporator of the present invention includes a tubular body and is arranged on the tubular body at intervals along the axial direction of the tubular body.
  • a plurality of ring-shaped fins, the cross-section of the ring-shaped fins are all T-shaped, and the vertical part of the ring-shaped fin is connected with the tubular body so that every two adjacent ring-shaped fins
  • a circumferential liquid guide groove with a T-shaped cross section is formed between the sheets. The plane of the circumferential liquid guide groove is perpendicular to the axis of the tubular body.
  • the heat exchange tube further includes At least one axial liquid guide groove penetrated by the plurality of annular fins enables the heat exchange working fluids of all the circumferential liquid guide grooves to flow with each other.
  • a plurality of the annular fins are arranged at intervals along the axial direction of the tubular body to form a plurality of the circumferential liquid guide grooves with a T-shaped cross section.
  • the axis of the tubular body is vertical, so that the heat exchange working medium can be evenly distributed in the circumferential direction through the circumferential guide liquid groove, thereby effectively preventing the surface of the heat exchange tube from drying out, and at the same time, this arrangement can effectively speed up The flow rate of the heat exchange working fluid, thereby effectively improving its cycle efficiency; and the present application also provides at least one axial liquid guide groove to ensure that the heat exchange working fluid can be evenly distributed in the axial direction.
  • the present application can effectively ensure that the heat exchange working medium forms a uniform and complete liquid film on the outer surface of the heat exchange tube, thereby effectively improving the heat exchange efficiency of the heat exchange tube.
  • a plurality of the axial liquid guide grooves are evenly distributed along the circumferential direction of the tubular body, so that the heat exchange working medium can pass through the axial liquid guide grooves in all the circumferential liquid guide grooves.
  • Better mutual circulation so as to effectively ensure that the heat exchange working medium can flow better under the guidance of the axial guide groove and the circumferential guide groove, thereby effectively ensuring that the liquid film formed by the heat exchange working medium can be uniform and complete It covers the entire outer surface of the heat exchange tube to ensure the heat exchange efficiency of the heat exchange tube to the greatest extent.
  • the present invention also strictly restricts the size of each location to ensure that the heat exchange working medium can be uniformly distributed on the outer surface of the heat exchange tube to the greatest extent, thereby maximizing the heat exchange efficiency of the heat exchange tube.
  • FIG. 1 is a schematic diagram of the overall structure of the heat exchange tube of the present invention.
  • FIG. 2 is a side view of the heat exchange tube of the present invention.
  • Figure 3 is a cross-sectional view at A-A in Figure 2;
  • Figure 4 is a front view of the heat exchange tube of the present invention.
  • Figure 5 is a cross-sectional view at B-B in Figure 4.
  • connection and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection. , Or integrally connected; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection. , Or integrally connected; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • FIG. 1 is a schematic diagram of the overall structure of the heat exchange tube of the present invention
  • Figure 2 is a side view of the heat exchange tube of the present invention
  • Figure 3 is a cross-sectional view at AA in Figure 2
  • FIG. 5 is a cross-sectional view at BB in FIG. 4.
  • the heat exchange tube of the present invention includes a tubular body 11 and a plurality of annular fins 12 arranged on the tubular body 11 at intervals along the axial direction of the tubular body 11.
  • the tubular body 11 is formed with a lumen , There is usually water circulating in the tube cavity (of course it may also be other working fluids, there is no limitation here, as long as heat exchange can be achieved), the water flowing through the tube cavity of the tubular body 11 is exchanged with the outside of the heat exchange tube
  • the heat working medium that is, the commonly called refrigerant, the present invention does not impose any restriction on its specific composition, and the technician can select it according to actual use requirements
  • the annular fin 12 surrounds the tubular body 11 in the circumferential direction
  • a plurality of ring-shaped fins 12 are arranged at intervals along the axial direction of the tubular body 11, so that the gap between two adjacent ring-shaped fins 12 can form a ring-shaped circumferential liquid guide groove 111 , So that the heat exchange working medium can be distributed in the circumferential direction through the circumferential guide liquid groove 111.
  • the present invention does not impose any restriction on the structure of the two ends of the tubular body 11 and the connection mode of the heat exchange tube with other components, and the present invention does not impose any restriction on the number of annular fins 12 and the length of the tubular body 11. , Technicians can set by themselves according to actual needs. The adjustment of these specific structures does not deviate from the basic principle of the present invention, and belongs to the protection scope of the present invention.
  • the outer diameter D of the heat exchange tube (see the label in Figure 3 for details) is set to 15.8mm to 25.4mm.
  • the technician can choose any value within this value range so that the water flow can fully fill the entire
  • the tube cavity of the tubular body 11 effectively ensures that the water flow in the heat exchange tube can fully exchange heat with the heat exchange working medium flowing through the outside of the heat exchange tube, thereby effectively improving the heat exchange efficiency.
  • the value of the outer diameter of the heat exchange tube is also related to the length of the heat exchange tube. The longer the length of the heat exchange tube, the smaller the outer diameter of the heat exchange tube, and the shorter the length of the heat exchange tube. The larger the outer diameter of the heat pipe, in order to maximize the heat exchange efficiency of the water flow and the heat exchange working medium.
  • the cross section of the ring fin 12 is T-shaped, and the vertical portion 121 of the ring fin 12 is connected to the tubular body 11 so that a circumferential guide liquid formed between every two adjacent ring fins 12
  • the cross section of the groove 111 is T-shaped, and the plane on which the circumferential liquid guide groove 111 is located is perpendicular to the axis of the tubular body 11. As shown in FIG.
  • each ring fin 12 is composed of a vertical portion 121 and a lateral portion 122, and the width of the vertical portion 121 is smaller than the width of the lateral portion 122, so that
  • the cross section of the annular fin 12 is T-shaped; it can be understood that the overall shape of the vertical portion 121 and the lateral portion 122 is actually an annular shape, and the annular fin 12 is connected to the tubular body 11 through the vertical portion 121.
  • the vertical portion 121 and the lateral portion 122 of two adjacent ring-shaped fins 12 together form a circumferential liquid guide groove 111, because the gap between the vertical portions 121 of the two adjacent ring-shaped fins 12 is larger than that of adjacent ones.
  • the gap between the lateral portions 122 of the two ring-shaped fins 12, so that the cross-section of the circumferential liquid guide 111 formed between the two adjacent ring-shaped fins 12 is also T-shaped, and this T-shaped cross-section makes Circumferential guide liquid tank 111 is narrow in outer and wide in inner, so that the heat exchange working fluid entering the circumferential guide fluid tank 111 is not easy to flow out, thus effectively ensuring that all heat exchange working fluids can be better used to form a liquid film to cover the heat exchange The outer surface of the tube will not drip off prematurely, thereby effectively ensuring the heat exchange efficiency of the heat exchange tube.
  • the heat exchange tube also includes a plurality of axial liquid guide grooves 112 penetrating a plurality of annular fins 12 along the axial direction of the tubular body 11 so that all circumferential guides The heat exchange working fluids of the liquid tank 111 can flow with each other.
  • the axial liquid guide groove 112 is arranged along the axial direction of the tubular body 11, that is, the axis of the axial liquid guide groove 112 is parallel to the axis of the tubular body 11, and each axial liquid guide groove 112 is arranged to penetrate along the axial direction of the tubular body 11 All the annular fins 12, that is, each axial liquid guiding groove 112 can connect all the circumferential liquid guiding grooves 111 so that the heat exchange working medium can better circulate. It should be noted that the present invention does not impose any restriction on the specific number of the axial guiding liquid groove 112, and the technician can set it according to actual use requirements; as a preferred setting scheme, the number of the axial guiding liquid groove 112 is more than one.
  • All the heat exchange working fluids in the circumferential guide liquid tank 111 can better flow with each other, thereby effectively improving the uniform distribution effect of the heat exchange working fluids.
  • a plurality of axial liquid guide grooves 112 are evenly distributed along the circumferential direction of the tubular body 11, and the number of axial liquid guide grooves 112 is set to 100 to 160, so as to maximize the distance between the circumferential liquid guide grooves 111.
  • the present invention gives the following preferred ranges for the distance c between the lateral portions 122 of the two adjacent annular fins 12 and the distance d between the vertical portions 121:
  • the distance c between the lateral portions 122 of two adjacent annular fins 12 is 0.05 mm to 0.3 mm; the distance d between the vertical portions 121 of two adjacent annular fins 12 is 0.1 mm to 0.6 mm.
  • the technician can choose any value within the above-mentioned preferred value range, so as to effectively ensure that the circumferential flow guiding effect of the circumferential guiding liquid tank 111 can be optimally exerted, thereby effectively ensuring that the heat exchange working fluid can be evenly distributed in the circumferential direction.
  • the height of the annular fin 12 is set to be greater than the groove depth of the axial liquid guiding groove 112, that is, the groove bottom of the circumferential liquid guiding groove 111 is lower than the groove bottom of the axial liquid guiding groove 112, and
  • the depth difference between the two is the difference between the height of the annular fin 12 and the groove depth of the axial liquid guide groove 112. This is the depth difference can effectively ensure that there is always a certain amount of accumulation in each circumferential guide liquid groove 111
  • the thickness of the heat exchange working medium is to further effectively avoid the problem of local drying up on the outer surface of the heat exchange tube.
  • the viscosity of the heat exchange working medium determines the difference between the height of the annular fin 12 and the groove depth of the axial liquid guide groove 112; specifically: the greater the viscosity of the heat exchange working medium, the greater the annular fin 12 The smaller the difference between the height and the depth of the axial guide groove 112, in order to effectively ensure a good flow effect of the heat exchange working medium; the smaller the viscosity of the heat exchange working medium, the higher the height of the annular fin 12 and the axial guide The greater the difference between the depths of the liquid tank 112 is, so as to effectively ensure that a certain thickness of heat exchange working fluid can be accumulated to avoid the problem of local drying up.
  • the present invention gives the following preferred ranges for the height h of the annular fin 12, the groove depth L and the groove width b of the axial guide groove 112: the height h of the annular fin 12 is set to 0.3 mm to 1mm; the groove depth L of the axial liquid guiding groove 112 is set to be greater than or equal to 0.3mm; the groove width b of the axial liquid guiding groove 112 is set to 0.05mm to 0.15mm.
  • the technician can choose any value within the above-mentioned preferred value range to effectively ensure that the axial flow guiding function of the axial liquid guiding groove 112 can be optimally exerted, thereby effectively ensuring that the heat exchange working medium can be uniformly distributed in the axial direction.
  • this preferred embodiment aims at two Heat exchange tubes of different sizes have been subjected to multiple heat exchange experiments and relevant experimental data on heat transfer coefficients have been obtained.
  • the data of the first heat exchange tube is as follows: the length of the first heat exchange tube is 2.5m, the outer diameter D of the first heat exchange tube is 25.4mm, and the distance between the transverse portions 122 of two adjacent annular fins 12
  • the distance c is 0.4mm
  • the distance d between the vertical portions 121 of two adjacent annular fins 12 is 0.65mm
  • the height h of the annular fin 12 is 0.9mm
  • the groove depth of the axial guide groove 112 L is 0.25 mm
  • the groove width b of the axial liquid guide groove 112 is 0.1 mm
  • the number of axial liquid guide grooves 112 is 120.
  • the data of the second heat exchange tube is as follows: the length of the second heat exchange tube is 2.5m, the outer diameter D of the second heat exchange tube is 25.4mm, and the distance between the transverse portions 122 of two adjacent annular fins 12
  • the distance c is 0.25 mm
  • the distance d between the vertical portions 121 of two adjacent annular fins 12 is 0.5 mm
  • the height h of the annular fin 12 is 0.9 mm
  • the groove depth of the axial guide groove 112 L is 0.6 mm
  • the groove width b of the axial liquid guide groove 112 is 0.1 mm
  • the number of axial liquid guide grooves 112 is 120.
  • the difference between the first heat exchange tube and the second heat exchange tube is only the distance c between the lateral portions 122 of the two adjacent annular fins 12, and the distance between the two adjacent annular fins 12
  • the distance d between the vertical portions 121 and the groove depth L of the axial liquid guide groove 112 are different, wherein the distance c between the lateral portions 122 of the two adjacent annular fins 12 of the first heat exchange tube is,
  • the values of the distance d between the vertical portions 121 and the groove depth L of the axial liquid guide groove 112 are beyond the preferred value range given in this preferred embodiment, and the two adjacent second heat exchange tubes
  • the values of the distance c between the lateral portions 122 of the annular fin 12, the distance d between the vertical portions 121, and the groove depth L of the axial guide groove 112 are the preferred values given in this preferred embodiment. Within range.
  • the groove depth of the axial guide groove of the heat exchange tube of the existing falling film evaporator is set between 0.1mm and 0.3mm.
  • this groove depth range is not possible at all.
  • the axial diffusion of the heat exchange working fluid is well realized, especially when the groove width is also small, the heat exchange working fluid can almost only flow between the two groove walls and cannot enter the circumferential guide liquid groove. This leads to the problem that the heat exchange working fluid cannot achieve axial diffusion, and thus the liquid film cannot be formed.
  • the falling film evaporation heat transfer coefficient ho1 of the first heat exchange tube is 14398W/(m2°C)
  • the falling film evaporation heat transfer of the second heat exchange tube The coefficient ho2 is 16220W/(m2°C)
  • the heat transfer coefficient of falling film evaporation of the second heat exchange tube is increased by 12.7% compared with that of the first heat exchange tube;
  • the falling film evaporation heat transfer coefficient ho1 of the first heat exchange tube is 14096W/(m2°C)
  • the falling film evaporation heat transfer coefficient ho2 of the second heat exchange tube is 16199W/(m2) °C)
  • the falling film evaporation heat transfer coefficient of the second heat exchange tube is 15.0% higher than that of the first heat exchange tube
  • the falling film evaporation heat transfer coefficient ho1 of the first heat exchange tube is 14011W/(m2°C)
  • the falling film evaporation heat transfer coefficient ho2 of the second heat exchange tube is 16628W/(m2) °C)
  • the falling film evaporation heat transfer coefficient of the second heat exchange tube is 18.9% higher than that of the first heat exchange tube
  • the falling film evaporation heat transfer coefficient ho1 of the first heat exchange tube is 14383W/(m2°C)
  • the falling film evaporation heat transfer coefficient ho2 of the second heat exchange tube is 16127W/(m2) °C)
  • the falling film evaporation heat transfer coefficient of the second heat exchange tube is increased by 12.1% compared to the falling film evaporation heat transfer coefficient of the first heat exchange tube;
  • the falling film evaporation heat transfer coefficient ho1 of the first heat exchange tube is 14403W/(m2°C)
  • the falling film evaporation heat transfer coefficient ho2 of the second heat exchange tube is 16173W/(m2) °C)
  • the falling film evaporation heat transfer coefficient of the second heat exchange tube is increased by 12.3% compared to the falling film evaporation heat transfer coefficient of the first heat exchange tube.
  • the heat exchange performance of the second heat exchange tube is greatly improved than that of the first heat exchange tube, so the two adjacent annular fins 12
  • the value of the distance between the horizontal portions 122 of the adjacent two ring-shaped fins 12 and the distance between the vertical portions 121 of the two adjacent ring-shaped fins 12 is very important.
  • the heat transfer performance of the heat exchange tube Can get a greater improvement.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本发明属于换热技术领域,具体提供一种降膜式蒸发器的换热管。本发明旨在解决现有换热管的T形翅片的设置方式不佳而容易影响换热效率的问题。为此,本发明的降膜式蒸发器的换热管包括管状主体以及沿管状主体的轴向间隔地设置在管状主体上的多个环状翅片,环状翅片的截面均为T形且环状翅片的竖向部分与管状主体连接以使得每相邻的两个环状翅片之间均形成截面为T形的周向导液槽,周向导液槽所处的平面与管状主体的轴线垂直,换热管还包括沿管状主体的轴向将多个环状翅片贯穿的至少一个轴向导液槽以使得所有周向导液槽的换热工质能够相互流动。本发明能够有效保证换热工质在换热管的外表面上形成均匀完整的液膜,进而有效提升换热管的换热效率。

Description

降膜式蒸发器的换热管 技术领域
本发明属于换热技术领域,具体提供一种降膜式蒸发器的换热管。
背景技术
降膜式蒸发器作为一种常用蒸发器,其换热过程主要依靠其换热管实现,而该换热管的换热机理主要是薄膜蒸发换热,形成在换热管外表面的液膜因热阻较小而具备高效的换热性能,即液膜的换热性能决定了换热管的换热性能,因而液膜能否均匀覆盖换热管的外表面也就对降膜式蒸发器的换热性能起到了决定性的作用。液膜的形成主要是依靠布液器喷淋出的换热工质在换热管上的流动,换热工质能否在换热管的外表面均布主要取决于其轴向分布情况和周向分布情况两方面。具体地,布液器上设置有很多喷淋孔,换热工质通过这些喷淋孔被喷淋至换热管上,因而喷淋孔的布置密度越大、孔径越小就越有利于均匀布液;但是,喷淋孔的布置密度需要受到布液器强度的限制,其孔径大小则需要受到换热工质的粘度的限制,孔径过小必然会影响换热工质的正常流动,甚至还会导致堵塞喷淋孔的问题。基于此,现有布液器喷淋出的换热工质通常只能以滴状或线状落到换热管的外表面上,并且由于不同喷淋孔之间具有一定的间隙,因而只有换热管的部分外表面上能够被换热工质喷淋到,其余外表面则只能依靠换热工质在换热管表面的扩散才能被液膜覆盖,因而换热管的外表面是否能够形成均匀完整的液膜主要还是依靠换热工质的扩散,即换热工质在换热管外表面上的扩散情况很大程度地决定了降膜式蒸发器的整体换热效率。
现有降膜式蒸发器配置的换热管的种类通常包括光滑管和强化管两种,其中,光滑管的外表面是光滑面,强化管的外表面则设置有扩展表面。具体地,由于光滑管的外表面是光滑的,换热工质在其外表面上流动时没有受到任何限制,因而其流动速度快,循环效 率也高,但这也很容易导致局部干涸现象的出现,即换热管的部分外表面上没有形成液膜,从而影响换热管的换热效率。强化管的外表面由于设置有扩展表面,换热工质的流动因受到扩展表面的引导而更容易实现均布以形成均匀完整的液膜;当然,换热工质是否能够实现均布与扩展表面的结构有密切相关。如果扩展表面的结构不合理,换热工质的流动即便是受到扩展表面的引导也很难实现均布。现有强化管的扩展表面通常都是由翅片结构形成的,而最为常用的翅片结构就是截面形状为T形的翅片结构,这种T形翅片结构对换热工质的引导效果十分突出,现有T形翅片都是沿换热管的轴向呈螺旋状分布,以便有效减小换热工质的流动速度以延长换热时间;但是,在实际应用的过程中,这种呈螺旋状分布的T形翅片虽然确实能够有效延长换热时间,却也很容易导致换热管的部分表面出现干涸现象。由于换热工质的流动主要受重力和支撑力的影响,而重力始终是竖直向下的,因而换热工质在流动过程中会不断贴近T形翅片的侧面以获得更多向上的支撑,这就必然容易导致距离T形翅片较远的表面出现干涸现象,从而影响换热管的换热效率,甚至对整个降膜式蒸发器的换热效率造成不良影响。
相应地,本领域需要一种新的降膜式蒸发器的换热管来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有换热管的T形翅片的设置方式不佳而对换热管的换热效率造成不良影响的问题,本发明提供了一种降膜式蒸发器的换热管,所述换热管包括管状主体以及沿所述管状主体的轴向间隔地设置在所述管状主体上的多个环状翅片,所述环状翅片的截面均为T形且所述环状翅片的竖向部分与所述管状主体连接以使得每相邻的两个所述环状翅片之间均形成截面为T形的周向导液槽,所述周向导液槽所处的平面与所述管状主体的轴线垂直,所述换热管还包括沿所述管状主体的轴向将所述多个环状翅片贯穿的至少一个轴向导液槽以使得所有所述周向导液槽的换热工质能够相互流动。
在上述降膜式蒸发器的换热管的优选技术方案中,所述轴向导液槽的数量为多个,多个所述轴向导液槽沿所述管状主体的周向均匀分布。
在上述降膜式蒸发器的换热管的优选技术方案中,所述轴向导液槽的数量为100至160个。
在上述降膜式蒸发器的换热管的优选技术方案中,相邻的两个所述环状翅片的横向部分之间的距离为0.05至0.3mm。
在上述降膜式蒸发器的换热管的优选技术方案中,相邻的两个所述环状翅片的竖向部分之间的距离为0.1至0.6mm。
在上述降膜式蒸发器的换热管的优选技术方案中,所述环状翅片的高度设置为大于所述轴向导液槽的槽深。
在上述降膜式蒸发器的换热管的优选技术方案中,所述环状翅片的高度为0.3至1mm。
在上述降膜式蒸发器的换热管的优选技术方案中,所述轴向导液槽的槽深大于或等于0.3mm。
在上述降膜式蒸发器的换热管的优选技术方案中,所述轴向导液槽的槽宽为0.05至0.15mm。
在上述降膜式蒸发器的换热管的优选技术方案中,所述换热管的外径为15.8至25.4mm。
本领域技术人员能够理解的是,在本发明的技术方案中,本发明的降膜式蒸发器的换热管包括管状主体以及沿所述管状主体的轴向间隔地设置在所述管状主体上的多个环状翅片,所述环状翅片的截面均为T形且所述环状翅片的竖向部分与所述管状主体连接以使得每相邻的两个所述环状翅片之间均形成截面为T形的周向导液槽,所述周向导液槽所处的平面与所述管状主体的轴线垂直,所述换热管还包括沿所述管状主体的轴向将所述多个环状翅片贯穿的至少一个轴向导液槽以使得所有所述周向导液槽的换热工质能够相互流动。本发明通过沿所述管状主体的轴向间隔设置多个所述环状翅片以形成多个截面为T形的所述周向导液槽,所述周向导液槽所处的平面与所述管状主体的轴线垂直,以使换热工质能够通过所述周向导液槽实现周向的均匀分布,从而有效避免所述换热管的表面出现干涸现象,同时这种 设置方式还能有效加快换热工质的流动速度,进而有效提升其循环效率;并且本申请还通过设置至少一个所述轴向导液槽以保证换热工质能够在轴线方向上均匀分布。通过上述结构设置,本申请能够有效保证换热工质在所述换热管的外表面上形成均匀完整的液膜,进而有效提升所述换热管的换热效率。
进一步地,本发明通过将多个所述轴向导液槽沿所述管状主体的周向均匀分布,以使换热工质能够通过这些所述轴向导液槽在所有所述周向导液槽中更好地相互流通,以便有效保证换热工质能够在所述轴向导液槽和所述周向导液槽的引导下更好地流动,从而有效保证换热工质形成的液膜能够均匀完整地覆盖整个所述换热管的外表面,进而最大程度地保证所述换热管的换热效率。
进一步地,本发明还通过严格限制各处尺寸以最大程度地保证换热工质能够在所述换热管的外表面均匀分布,进而最大程度地提升所述换热管的换热效率。
附图说明
图1是本发明的换热管的整体结构示意图;
图2是本发明的换热管的侧视图;
图3是图2中A-A处的剖视图;
图4是本发明的换热管的正视图;
图5是图4中B-B处的剖视图;
附图标记:11、管状主体;111、周向导液槽;112、轴向导液槽;12、环状翅片;121、竖向部分;122、横向部分。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合。例如,需要说明的是,在本发明的描述中,术语“上”、“下”、“左”、“右”、“竖向”、“横向”、“内”、“外”等指示的方向或位置关系的术语是基于附图所 示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
参阅图1至5,其中,图1是本发明的换热管的整体结构示意图;图2是本发明的换热管的侧视图;图3是图2中A-A处的剖视图;图4是本发明的换热管的正视图;图5是图4中B-B处的剖视图。如图1至5所示,本发明的换热管包括管状主体11以及沿管状主体11的轴向间隔地设置在管状主体11上的多个环状翅片12,管状主体11形成有管腔,管腔中通常流通有水(当然也可能是其他工质,在此不作限制,只要能实现换热即可),流经管状主体11的管腔的水与流经换热管外部的换热工质(即通常所说的冷媒,本发明不对其具体成分作任何限制,技术人员可以根据实际使用需求自行选定)进行换热;环状翅片12为沿管状主体11的周向环绕而形成的翅片结构,多个环状翅片12沿管状主体11的轴向呈间隔设置,以使相邻两个环状翅片12之间的间隙能够形成环状的周向导液槽111,以便换热工质能够通过周向导液槽111实现周向分布。
需要说明的是,本发明不对管状主体11两端的结构以及换热管与其他构件的连接方式作任何限制,并且本发明也不对环状翅片12的个数和管状主体11的长度作任何限制,技术人员可以根据实际使用需求自行设定。这些具体结构的调整均不偏离本发明的基本原理,属于本发明的保护范围。
作为一种优选实施例,换热管的外径D(详见图3中的标注)设置为15.8mm至25.4mm,技术人员可以在此取值范围内任意取值,以便水流能够充分充斥整个管状主体11的管腔,从而有效保证换 热管内的水流能够与流经换热管外部的换热工质充分换热,进而有效提升换热效率。当然,作为一种优选实施例,换热管的外径取值还与换热管的长度有关,换热管的长度越长换热管的外径越小,换热管的长度越短换热管的外径越大,以便最大程度地保证水流和换热工质的换热效率。
进一步地,环状翅片12的截面均为T形且环状翅片12的竖向部分121与管状主体11连接以使得每相邻的两个环状翅片12之间形成的周向导液槽111的截面均为T形,并且周向导液槽111所处的平面与管状主体11的轴线垂直。如图3所示,基于环状翅片12的截面,每个环状翅片12均由竖向部分121和横向部分122组成,并且竖向部分121的宽度小于横向部分122的宽度,以使环状翅片12的截面呈T形;可以理解的是,竖向部分121和横向部分122的整体形状其实都是圆环状,环状翅片12通过竖向部分121与管状主体11相连。相邻的两个环状翅片12的竖向部分121和横向部分122共同形成周向导液槽111,由于相邻的两个环状翅片12的竖向部分121之间的间隙大于相邻的两个环状翅片12的横向部分122之间的间隙,因而相邻的两个环状翅片12之间形成的周向导液槽111的截面也为T形,并且这个T形截面使周向导液槽111呈外窄内宽,以使进入周向导液槽111的换热工质不易轻易流出,从而有效保证所有换热工质都能够更好地用于形成液膜以覆盖换热管的外表面而不会过早滴落,进而有效保证换热管的换热效率。
继续参阅图4和图5,如图4和5所示,换热管还包括沿管状主体11的轴向将多个环状翅片12贯穿的多个轴向导液槽112以使得所有周向导液槽111的换热工质能够相互流动。轴向导液槽112沿管状主体11的轴向设置,即,轴向导液槽112的轴线与管状主体11的轴线平行,并且每个轴向导液槽112均设置为沿管状主体11的轴向贯穿所有环状翅片12,即,每个轴向导液槽112均能够将所有周向导液槽111连通以使换热工质能够更好地流通。需要说明的是,本发明不对轴向导液槽112的具体数量作任何限制,技术人员可以根据实际使用需求自行设定;作为一种优选设置方案,轴向导液槽112的数量为多个,以使所有周向导液槽111中的换热工质能够更好地相互流动, 从而有效提升换热工质的均布效果。进一步优选地,多个轴向导液槽112沿管状主体11的周向均匀分布,并且轴向导液槽112的数量设置为100个至160个,以便最大程度地提升各个周向导液槽111之间的连通效果,进而有效提升换热效率。需要说明的是,为了更清楚地展示换热管的各种结构,本优选实施例所用的附图中并没绘制出如此多的轴向导液槽112,即附图中的各个结构仅是示意性的,不对本发明的保护范围构成任何限制。
继续参阅图3,经过大量试验和调研,本发明对相邻的两个环状翅片12的横向部分122之间的距离c和竖向部分121之间的距离d给出如下优选范围:相邻的两个环状翅片12的横向部分122之间的距离c为0.05mm至0.3mm;相邻的两个环状翅片12的竖向部分121之间的距离d为0.1mm至0.6mm。技术人员可以在上述优选取值范围内任意取值,以便有效保证周向导液槽111的周向导流作用能够得到最佳的发挥,进而有效保证换热工质能够在周向上均匀分布。
进一步地,作为一种优选实施例,环状翅片12的高度设置为大于轴向导液槽112的槽深,即周向导液槽111的槽底低于轴向导液槽112的槽底,而两者之间相差的深度就是环状翅片12的高度与轴向导液槽112的槽深之间的差值,这是深度差能够有效保证每个周向导液槽111中都始终蓄积有一定厚度的换热工质,以便进一步有效避免换热管的外表面出现局部干涸的问题。优选地,换热工质的粘度决定了环状翅片12的高度与轴向导液槽112的槽深之间的差值;具体为:换热工质的粘度越大,环状翅片12的高度与轴向导液槽112的槽深之间的差值越小,以便有效保证换热工质良好的流动效果;换热工质的粘度越小,环状翅片12的高度与轴向导液槽112的槽深之间的差值越大,以便有效保证能够蓄积一定厚度的换热工质而避免局部干涸的问题。
经过大量试验和调研,本发明对环状翅片12的高度h、轴向导液槽112的槽深L和槽宽b给出如下优选范围:环状翅片12的高度h设置为0.3mm至1mm;轴向导液槽112的槽深L设置为大于或等于0.3mm;轴向导液槽112的槽宽b设置为0.05mm至0.15mm。技术人员可以在上述优选取值范围内任意取值,以便有效保证轴向导液 槽112的轴向导流作用能够得到最佳的发挥,进而有效保证换热工质能够在轴线方向上均布。
基于上述优选实施例中所述的内容,为了有效验证上述优选数值范围所能带来的技术效果,特别是针对相邻的两个环状翅片12的横向部分122之间的距离c和相邻的两个环状翅片12的竖向部分121之间的距离d在上述优选范围内取值时所能给换热管的换热效率带来的突出效果,本优选实施例针对两种不同尺寸的换热管进行了多次换热实验并获得了有关换热系数的相关实验数据。
第一换热管的数据如下:第一换热管的长度为2.5m,第一换热管的外径D为25.4mm,相邻的两个环状翅片12的横向部分122之间的距离c为0.4mm,相邻的两个环状翅片12的竖向部分121之间的距离d为0.65mm,环状翅片12的高度h为0.9mm,轴向导液槽112的槽深L为0.25mm,轴向导液槽112的槽宽b为0.1mm,轴向导液槽112的设置数量为120个。
第二换热管的数据如下:第二换热管的长度为2.5m,第二换热管的外径D为25.4mm,相邻的两个环状翅片12的横向部分122之间的距离c为0.25mm,相邻的两个环状翅片12的竖向部分121之间的距离d为0.5mm,环状翅片12的高度h为0.9mm,轴向导液槽112的槽深L为0.6mm,轴向导液槽112的槽宽b为0.1mm,轴向导液槽112的设置数量为120个。
由此可见,第一换热管和第二换热管的差别仅在于相邻的两个环状翅片12的横向部分122之间的距离c、相邻的两个环状翅片12的竖向部分121之间的距离d以及轴向导液槽112的槽深L的不同,其中,第一换热管的相邻的两个环状翅片12的横向部分122之间的距离c、竖向部分121之间的距离d以及轴向导液槽112的槽深L的取值均超出了本优选实施例中给出的优选取值范围,而第二换热管的相邻的两个环状翅片12的横向部分122之间的距离c、竖向部分121之间的距离d以及轴向导液槽112的槽深L的取值则在本优选实施例中给出的优选取值范围内。
需要说明的是,现有降膜式蒸发器的换热管的轴向导液槽的槽深都是设置在0.1mm至0.3mm之间,然而通过多次试验发现,这 个槽深范围根本就不能很好地实现换热工质的轴向扩散,特别是在槽宽也较小的情况下,换热工质几乎只能在两个槽壁之间流动而无法进入周向导液槽中,从而导致换热工质无法实现轴向扩散的问题,进而导致液膜无法形成。
基于上述两种换热管的尺寸特征做出实物,在其他实验条件均相同的情况下,采用换热工质为R1234ze(E)的降膜式蒸发器进行换热管外的换热工质与换热管内的水进行换热的实验,在换热工质的流动密度q=23KW/㎡,换热工质的蒸发温度t=5℃,换热管外液膜的雷诺数Re=1400的条件下,改变换热管内的水流速度v进行测试,得到如下表所示的实验数据(需要说明的是,以下实验结果采用的是多次实验结果的平均值,以便有效消除偶然误差带来的影响):
Figure PCTCN2021099551-appb-000001
基于上表中的数据,在水流速度为1.0m/s测得:第一换热管的降膜蒸发换热系数ho1为14398W/(㎡℃),第二换热管的降膜蒸发换热系数ho2为16220W/(㎡℃),第二换热管的降膜蒸发换热系数相比于第一换热管的降膜蒸发换热系数提升了12.7%;
在水流速度为1.5m/s测得:第一换热管的降膜蒸发换热系数ho1为14096W/(㎡℃),第二换热管的降膜蒸发换热系数ho2为16199W/(㎡℃),第二换热管的降膜蒸发换热系数相比于第一换热管的降膜蒸发换热系数提升了15.0%;
在水流速度为2.0m/s测得:第一换热管的降膜蒸发换热系数ho1为14011W/(㎡℃),第二换热管的降膜蒸发换热系数ho2为16628W/(㎡℃),第二换热管的降膜蒸发换热系数相比于第一换热管的降膜蒸发换热系数提升了18.9%;
在水流速度为2.5m/s测得:第一换热管的降膜蒸发换热系数ho1为14383W/(㎡℃),第二换热管的降膜蒸发换热系数ho2为16127W/(㎡℃),第二换热管的降膜蒸发换热系数相比于第一换热管的降膜蒸发换热系数提升了12.1%;
在水流速度为3.0m/s测得:第一换热管的降膜蒸发换热系数ho1为14403W/(㎡℃),第二换热管的降膜蒸发换热系数ho2为16173W/(㎡℃),第二换热管的降膜蒸发换热系数相比于第一换热管的降膜蒸发换热系数提升了12.3%。
由此可见,在不同的水流速度下,第二换热管的换热性能均比第一换热管的换热性能有了较大幅度的提升,因而相邻的两个环状翅片12的横向部分122之间的距离和相邻的两个环状翅片12的竖向部分121之间的距离的取值是十分重要的,并且当相邻的两个环状翅片12的横向部分122之间的距离和相邻的两个环状翅片12的竖向部分121之间的距离的取值位于本优选实施例提供的优选取值范围内时,换热管的换热性能就能得到较大幅度的提升。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种降膜式蒸发器的换热管,其特征在于,所述换热管包括管状主体以及沿所述管状主体的轴向间隔地设置在所述管状主体上的多个环状翅片,
    所述环状翅片的截面均为T形且所述环状翅片的竖向部分与所述管状主体连接以使得每相邻的两个所述环状翅片之间均形成截面为T形的周向导液槽,所述周向导液槽所处的平面与所述管状主体的轴线垂直,
    所述换热管还包括沿所述管状主体的轴向将所述多个环状翅片贯穿的至少一个轴向导液槽以使得所有所述周向导液槽的换热工质能够相互流动。
  2. 根据权利要求1所述的换热管,其特征在于,所述轴向导液槽的数量为多个,多个所述轴向导液槽沿所述管状主体的周向均匀分布。
  3. 根据权利要求2所述的换热管,其特征在于,所述轴向导液槽的数量为100至160个。
  4. 根据权利要求1所述的换热管,其特征在于,相邻的两个所述环状翅片的横向部分之间的距离为0.05至0.3mm。
  5. 根据权利要求4所述的换热管,其特征在于,相邻的两个所述环状翅片的竖向部分之间的距离为0.1至0.6mm。
  6. 根据权利要求1所述的换热管,其特征在于,所述环状翅片的高度设置为大于所述轴向导液槽的槽深。
  7. 根据权利要求6所述的换热管,其特征在于,所述环状翅片的高度为0.3至1mm。
  8. 根据权利要求7所述的换热管,其特征在于,所述轴向导液槽的槽深大于或等于0.3mm。
  9. 根据权利要求8所述的换热管,其特征在于,所述轴向导液槽的槽宽为0.05至0.15mm。
  10. 根据权利要求1至9中任一项所述的换热管,其特征在于,所述换热管的外径为15.8至25.4mm。
PCT/CN2021/099551 2020-08-03 2021-06-11 降膜式蒸发器的换热管 WO2021228276A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010769122.2A CN114061358A (zh) 2020-08-03 2020-08-03 降膜式蒸发器的换热管
CN202010769122.2 2020-08-03

Publications (1)

Publication Number Publication Date
WO2021228276A1 true WO2021228276A1 (zh) 2021-11-18

Family

ID=78525210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099551 WO2021228276A1 (zh) 2020-08-03 2021-06-11 降膜式蒸发器的换热管

Country Status (2)

Country Link
CN (1) CN114061358A (zh)
WO (1) WO2021228276A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1103481A (zh) * 1993-07-07 1995-06-07 株式会社神户制钢所 用于降膜式蒸发器的热交换管
CN201885619U (zh) * 2010-12-02 2011-06-29 珠海格力电器股份有限公司 换热管以及包括该换热管的空调换热器
CN102121805A (zh) * 2011-04-07 2011-07-13 金龙精密铜管集团股份有限公司 降膜蒸发器用强化传热管
CN202221261U (zh) * 2011-08-16 2012-05-16 江苏萃隆精密铜管股份有限公司 一种蒸发器用的热交换管
CN103063072A (zh) * 2013-01-10 2013-04-24 江苏萃隆精密铜管股份有限公司 一种热交换管
CN203100513U (zh) * 2013-01-10 2013-07-31 江苏萃隆精密铜管股份有限公司 一种热交换管
JP2017020736A (ja) * 2015-07-13 2017-01-26 株式会社コベルコ マテリアル銅管 沸騰型伝熱管
CN206959678U (zh) * 2017-06-30 2018-02-02 中国石油天然气股份有限公司 空心环t型翅片管组合换热器
CN208901686U (zh) * 2018-09-20 2019-05-24 苏州新太铜高效管有限公司 一种蒸发换热管
CN211400919U (zh) * 2019-12-10 2020-09-01 珠海格力电器股份有限公司 一种降膜换热管、降膜换热器和空调器
CN112944977A (zh) * 2019-12-10 2021-06-11 珠海格力电器股份有限公司 一种降膜换热管、降膜换热器和空调器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153580A (ja) * 1999-11-29 2001-06-08 Furukawa Electric Co Ltd:The 伝熱管
CN100365369C (zh) * 2005-08-09 2008-01-30 江苏萃隆铜业有限公司 蒸发器热交换管
CN101556125B (zh) * 2009-04-29 2012-02-15 金龙精密铜管集团股份有限公司 蒸发器传热管
CN105066761B (zh) * 2015-09-22 2017-03-08 烟台恒辉铜业有限公司 一种带窄缝形蒸汽排出口的蒸发管
CN108801034B (zh) * 2018-05-02 2019-10-22 珠海格力电器股份有限公司 换热管、换热器及热泵机组
CN208780005U (zh) * 2018-08-16 2019-04-23 上海欧贡制冷科技有限公司 一种蒸发换热管

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1103481A (zh) * 1993-07-07 1995-06-07 株式会社神户制钢所 用于降膜式蒸发器的热交换管
CN201885619U (zh) * 2010-12-02 2011-06-29 珠海格力电器股份有限公司 换热管以及包括该换热管的空调换热器
CN102121805A (zh) * 2011-04-07 2011-07-13 金龙精密铜管集团股份有限公司 降膜蒸发器用强化传热管
CN202221261U (zh) * 2011-08-16 2012-05-16 江苏萃隆精密铜管股份有限公司 一种蒸发器用的热交换管
CN103063072A (zh) * 2013-01-10 2013-04-24 江苏萃隆精密铜管股份有限公司 一种热交换管
CN203100513U (zh) * 2013-01-10 2013-07-31 江苏萃隆精密铜管股份有限公司 一种热交换管
JP2017020736A (ja) * 2015-07-13 2017-01-26 株式会社コベルコ マテリアル銅管 沸騰型伝熱管
CN206959678U (zh) * 2017-06-30 2018-02-02 中国石油天然气股份有限公司 空心环t型翅片管组合换热器
CN208901686U (zh) * 2018-09-20 2019-05-24 苏州新太铜高效管有限公司 一种蒸发换热管
CN211400919U (zh) * 2019-12-10 2020-09-01 珠海格力电器股份有限公司 一种降膜换热管、降膜换热器和空调器
CN112944977A (zh) * 2019-12-10 2021-06-11 珠海格力电器股份有限公司 一种降膜换热管、降膜换热器和空调器

Also Published As

Publication number Publication date
CN114061358A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
CN105157441B (zh) 多管排一体式联箱自动调节分液冷凝器
CN106017136B (zh) 一种立式管壳式换热器
JP2007078298A (ja) 熱交換器
US11454448B2 (en) Enhanced heat transfer surface
US11913735B2 (en) Heat exchanger
EP2246655A1 (en) Heat exchanger
WO2021228276A1 (zh) 降膜式蒸发器的换热管
CN109974484B (zh) 换热器和具有其的制冷设备
CN105783347A (zh) 降膜式蒸发器用制冷剂分配器
CN101782347B (zh) 热交换器及其翅片
US4141411A (en) Tubular heat exchanger
CN218002296U (zh) 转接管及其微通道换热器
CN102654372B (zh) 一种棱锥形翅片冷凝管
CN102401598A (zh) 一种降膜蒸发换热管
CN210674258U (zh) 一种水平降膜布液器
CN211204519U (zh) 冷凝器与制冷设备
EP3859263B1 (en) Heat exchanger
CN211400919U (zh) 一种降膜换热管、降膜换热器和空调器
CN112944977A (zh) 一种降膜换热管、降膜换热器和空调器
CN108895864B (zh) 折流板组件和包括此组件的管壳式换热器
CN208223234U (zh) 一种散热器
CN207113689U (zh) 翅片和换热器
CN112923752A (zh) 一种闭式冷却塔用换热器
CN210119147U (zh) 换热器和具有其的制冷设备
CN212300011U (zh) 换热器和空调机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803089

Country of ref document: EP

Kind code of ref document: A1