WO2021228208A1 - Mopping mechanism and cleaning device - Google Patents

Mopping mechanism and cleaning device Download PDF

Info

Publication number
WO2021228208A1
WO2021228208A1 PCT/CN2021/093701 CN2021093701W WO2021228208A1 WO 2021228208 A1 WO2021228208 A1 WO 2021228208A1 CN 2021093701 W CN2021093701 W CN 2021093701W WO 2021228208 A1 WO2021228208 A1 WO 2021228208A1
Authority
WO
WIPO (PCT)
Prior art keywords
mopping
toothed
intermittent gear
strip
gear
Prior art date
Application number
PCT/CN2021/093701
Other languages
French (fr)
Inventor
Xingguo XING
Xin Wu
Huizhong AN
Yiming Zhang
Zhen Chen
Original Assignee
Qfeeltech (Beijing) Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qfeeltech (Beijing) Co., Ltd. filed Critical Qfeeltech (Beijing) Co., Ltd.
Publication of WO2021228208A1 publication Critical patent/WO2021228208A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/28Floor-scrubbing machines, motor-driven
    • A47L11/284Floor-scrubbing machines, motor-driven having reciprocating tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4036Parts or details of the surface treating tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4063Driving means; Transmission means therefor
    • A47L11/4069Driving or transmission means for the cleaning tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation

Definitions

  • the present disclosure generally relates to the technical field of mobile devices and, more specifically, to a mopping mechanism and a cleaning device.
  • cleaning devices such as cleaning robots
  • functions such as automatic floor sweeping, vacuum cleaning, etc.
  • the most common robots among currently available cleaning robots are floor-sweeping robots.
  • Floor-sweeping robots can only perform floor sweeping, but do not have floor-mopping functions.
  • a mop is mounted to a bottom surface of the main body of the floor-sweeping robot.
  • the mop is static relative to the main body of the cleaning robot, and can only mop a surface to be cleaned in a moving direction of the cleaning robot as the cleaning robot moves in the moving direction.
  • the mop cannot reciprocatively clean the surface to be cleaned.
  • the cleaning efficiency is low and the cleaning effect is poor.
  • the present disclosure provides a mopping mechanism and a cleaning device (e.g., a cleaning robot) , which can reciprocatively mop a surface to be cleaned, thereby increasing the cleaning efficiency and improving the cleaning effect.
  • a cleaning device e.g., a cleaning robot
  • the present disclosure provides the following technical solutions:
  • the present disclosure provides a mopping mechanism configured to be mountable to a bottom surface of a cleaning device.
  • the mopping mechanism includes at least one rotary member and at least one mopping plate.
  • the at least one mopping plate includes a first mopping plate configured to be movably mountable to the bottom surface.
  • the rotary member is mountable to the bottom surface and is configured to be rotatable relative to the bottom surface.
  • the rotary member includes at least one transmission toothed segment.
  • the first mopping plate may be provided with a first toothed strip (e.g., in the form of a rack, a linear gear, etc. ) configured to be engageable with the transmission toothed segment.
  • the transmission toothed segment rotates relative to the bottom surface, the transmission toothed segment drives the first mopping plate to move reciprocatively relative to the bottom surface, thereby causing the first mopping plate to move reciprocatively relative to the bottom surface.
  • the rotary member is a full gear or an intermittent gear including at least one transmission toothed segment.
  • the rotary member is configured to perform a half circle rotation relative to the bottom surface.
  • the rotary member includes a first intermittent gear and a full gear configured to be engageable with the first intermittent gear.
  • the first intermittent gear includes at least one transmission toothed segment group.
  • Each of the at least one transmission toothed segment group includes two transmission toothed segments disposed at opposite portions of the first intermittent gear.
  • the full gear in a full cycle of rotation of the full gear, the full gear is engaged with the first intermittent gear during a first time period of the full cycle, and disengaged with the first intermittent gear during a remaining time period of the full cycle. During the full cycle, the full gear maintains an engaged state with the first toothed strip.
  • the rotary member is a second intermittent gear.
  • the second intermittent gear includes at least one transmission toothed segment.
  • the transmission toothed segments are alternately disposed at different portions of the circumference of the second intermittent gear.
  • no transmission toothed segment is disposed at a first location (or portion) of the circumference opposite to a second location (or portion) of the circumference where a transmission toothed segment is already disposed.
  • no two transmission toothed segments are disposed at opposite portions or locations of the circumference of the second intermittent gear.
  • the second intermittent gear is disposed in a mounting groove located inside the first mopping plate.
  • the mounting groove may extend along a moving direction of the first mopping plate.
  • the mounting groove may include a first mounting edge and a second mounting edge that are disposed parallel with one another and facing one another.
  • a first toothed strip may be provided (e.g., mounted or formed) at the first mounting edge.
  • a second toothed strip may be provided (e.g., mounted or formed) at the second mounting edge.
  • the first toothed strip and the second toothed strip are both configured to be engageable with the transmission toothed segment.
  • the transmission toothed segment engages with only one of the first toothed strip and the second toothed strip at any time instance.
  • the second intermittent gear may perform a full cycle rotation relative to the bottom surface.
  • the mopping mechanism may also include a second mopping plate that is movably mountable to the bottom surface and disposed side by side with the first mopping plate.
  • first mopping plate and the second mopping plate that face one another may be provided with a first toothed strip and a third toothed strip disposed parallel with one another and facing one another.
  • the first toothed strip and the third toothed strip are configured to be engageable with the transmission toothed segment.
  • the rotary member is a full gear.
  • the full gear is configured to perform a half cycle rotation, a full cycle rotation, a quarter cycle rotation, or any suitable fraction of a full cycle rotation, relative to the bottom surface.
  • the rotary member is configured to be engageable with both the first toothed strip and the third toothed strip at the same time (e.g., simultaneously) .
  • the rotary member is a first intermittent gear configured to perform a half cycle rotation, a full cycle rotation, a quarter cycle rotation, or any suitable fraction of a full cycle rotation, relative to the bottom surface.
  • the first intermittent gear includes at least one transmission toothed segment group.
  • Each transmission toothed segment group includes two transmission toothed segments disposed at opposite portions or locations of the circumference of the first intermittent gear.
  • the two transmission toothed segments of the same transmission toothed segment group are configured to be engageable with the first toothed strip and the third toothed strip, respectively, at the same time (e.g., simultaneously) .
  • the rotary member includes the first intermittent gear and a full gear configured to be engageable with the first intermittent gear.
  • the first intermittent gear includes at least one transmission toothed segment group.
  • Each of the at least one transmission toothed segment group includes two transmission toothed segments disposed at opposing portions of the circumference of the first intermittent gear.
  • the first intermittent gear and the full gear are in a disengaged state.
  • the first intermittent gear when any of the transmission toothed segments included in a transmission toothed segment group engages with the full gear, the first intermittent gear is in a disengaged state with at least one of the first toothed strip or the third toothed strip.
  • the full gear in a full cycle of rotation of the full gear, is engaged with the first intermittent gear during a first time period of the full cycle, and disengaged with first intermittent gear during a remaining time period of the full cycle.
  • the full gear maintains an engaged state with at least one of the first toothed strip or the third toothed strip.
  • the rotary member is the first intermittent gear.
  • the first intermittent gear includes at least one transmission toothed segment group.
  • Each of the at least one transmission toothed segment group includes two transmission toothed segments disposed at opposing portions of the circumference of the first intermittent gear.
  • At least one restoration component is disposed between the first mopping plate and the second mopping plate.
  • the first intermittent gear drives the first mopping plate and the second mopping plate through the first toothed strip and the third toothed strip, respectively, to move toward one another to compress the restoration component.
  • the restoration component drives the first mopping plate and the second mopping plate to move away from one another (e.g., in opposite directions) .
  • the rotary member is the first intermittent gear.
  • the first intermittent gear includes at least one transmission toothed segment group.
  • Each of the at least one transmission toothed segment group includes two transmission toothed segments disposed at opposing portions of the circumference of the first intermittent gear.
  • At least one restoration component is disposed between the first mopping plate and the second mopping plate.
  • the first intermittent gear drives the first mopping plate and the second mopping plate through the first toothed strip and the third toothed strip, respectively, to move away from one another (e.g., in opposite directions) to extend the restoration component.
  • the restoration component when the two transmission toothed segments included in a same transmission toothed segment group of the first intermittent gear are in a disengaged state with at least one of the first toothed strip or the third toothed strip, the restoration component provides a pulling restoration force to drive the first mopping plate and the second mopping plate to move toward one another (e.g., in opposite directions toward one another) .
  • the first intermittent gear drives the first mopping plate and the second mopping plate through the first toothed strip and the third toothed strip, respectively, to move toward one another (e.g., in opposite directions) to compress the restoration component.
  • the restoration component when the two transmission toothed segments included in a same transmission toothed segment group of the first intermittent gear are in a disengaged state with at least one of the first toothed strip or the third toothed strip, the restoration component provides a pushing restoration force to drive the first mopping plate and the second mopping plate away from one another (e.g., in opposite directions away from one another) .
  • the present disclosure provides a cleaning robot, which includes the disclosed mopping mechanism.
  • the mopping mechanism and the cleaning robot of the present disclosure has the following advantages:
  • the mopping mechanism includes a mopping plate movably mountable to the bottom surface and a rotary member configured to be rotatable relative to the bottom surface.
  • a transmission toothed segment of the rotary member is configured to be engageable with a toothed strip provided on the mopping plate, to drive the mopping plate to move reciprocatively relative to the bottom surface.
  • FIG. 1 is a schematic perspective view of a cleaning device, according to an embodiment of the present disclosure
  • FIG. 2A is a schematic illustration of a bottom configuration of the cleaning device, according to an embodiment of the present disclosure
  • FIGs. 2B-2E illustrate the structures of the mopping mechanism and the motion states, according to an embodiment of the present disclosure
  • FIGs. 3A-3C illustrate the structures of the mopping mechanism and the motion states, according to an embodiment of the present disclosure
  • FIGs. 4A and 4B illustrate the structures of the mopping mechanism and the motion states, according to an embodiment of the present disclosure
  • FIGs. 4C and 4D illustrate the structures of the mopping mechanism and the motion states, according to an embodiment of the present disclosure
  • FIGs. 5A and 5B illustrate the structures of the mopping mechanism and the motion states, according to an embodiment of the present disclosure
  • FIGs. 5C and 5D illustrate the structures of the mopping mechanism and the motion states, according to an embodiment of the present disclosure.
  • FIGs. 6A and 6B illustrate the structures of the mopping mechanism and the motion states, according to an embodiment of the present disclosure.
  • Couple, ” “coupling, ” “coupled, ” “connect, ” “connection, ” “connected, ” or the like may encompass any suitable mechanical, electrical, electromagnetic coupling or connection.
  • the coupling or connection may be wireless or wired.
  • the coupling or connection may be direct or indirect.
  • phrases “at least one of A or B” may encompass all combinations of A and B, such as A only, B only, or A and B.
  • the phrase “at least one of A, B, or C” may encompass all combinations of A, B, and C, such as A only, B only, C only, A and B, A and C, B and C, or A and B and C.
  • the phrase “A and/or B” may be interpreted in a manner similar to that of the phrase “at least one of A or B. ”
  • the phrase “A and/or B” may encompass all combinations of A and B, such as A only, B only, or A and B.
  • phrase “A, B, and/or C” has a meaning similar to that of the phrase “at least one of A, B, or C. ”
  • the phrase “A, B, and/or C” may encompass all combinations of A, B, and C, such as A only, B only, C only, A and B, A and C, B and C, or A and B and C.
  • an embodiment illustrated in a drawing shows a single element, it is understood that the embodiment may include a plurality of such elements. Likewise, when an embodiment illustrated in a drawing shows a plurality of such elements, it is understood that the embodiment may include only one such element.
  • the number of elements illustrated in the drawing is for illustration purposes only, and should not be construed as limiting the scope of the embodiment.
  • the embodiments shown in the drawings are not mutually exclusive, and they may be combined in any suitable manner. For example, elements shown in one embodiment but not another embodiment may nevertheless be included in the other embodiment.
  • processor used herein may encompass any suitable processor, such as a central processing unit ( “CPU” ) , a graphics processing unit ( “GPU” ) , an application-specific integrated circuit ( “ASIC” ) , a programmable logic device ( “PLD” ) , or a combination thereof. Other processors not listed above may also be used.
  • a processor may be implemented as software, hardware, firmware, or a combination thereof.
  • non-transitory computer-readable medium may encompass any suitable medium for storing, transferring, communicating, broadcasting, or transmitting data, signal, or information.
  • the non-transitory computer-readable medium may include a memory, a hard disk, a magnetic disk, an optical disk, a tape, etc.
  • the memory may include a read-only memory ( “ROM” ) , a random-access memory ( “RAM” ) , a flash memory, etc.
  • a cleaning robot of conventional technology includes a mop mounted to a bottom surface of the cleaning robot. There is no relative movement between the mop and the bottom surface. The mop moves along with the cleaning robot in the moving direction of the cleaning device to mop a surface (e.g., a floor) to be cleaned.
  • the conventional cleaning robot can only mop the surface to be cleaned in the moving direction of the cleaning robot, which results in a low cleaning efficiency and a poor cleaning effect.
  • the present disclosure provides a mopping mechanism and a cleaning robot.
  • a mopping plate and a rotary member are mounted at the bottom surface of the cleaning robot. The mopping plate is slidable relative to the bottom surface. The rotary member is rotatable relative to the bottom surface and the mopping plate.
  • a transmission toothed segment provided on the rotary member is engageable with a toothed strip provided on the mopping plate.
  • the mopping plate is driven by the transmission toothed segment and the toothed strip to move reciprocatively relative to the bottom surface.
  • a mop mounted at the mopping plate may mop a surface to be cleaned repeatedly and reciprocatively, thereby enhancing the cleaning efficiency and cleaning effect.
  • FIG. 1 is a schematic perspective view of a device 100, according to an embodiment of the present disclosure.
  • the device 100 may also be referred to as a mobile device 100, a cleaning device 100, a vacuum cleaner 100, a vacuum cleaning robot 100, a sweeping-mopping robot 100, or a cleaning robot 100.
  • the device 100 is referred to as a cleaning device 100 or a cleaning robot 100.
  • the cleaning device 100 may include a main body 110.
  • the main body 110 may have any suitable shape, such as a circular shape (as shown in FIG. 1) , a rectangle shape, a square shape, an oval shape, or a combination thereof.
  • the main body 110 may include an exterior housing (or referred to as a housing) 105 for enclosing and accommodating various elements, parts, or components of the cleaning device 100.
  • the main body 110 (or the housing 105) may include a first bumper (or first cover, front bumper) 111 and a second bumper (or second cover, rear bumper) 112 at a circumferential side of the main body 110.
  • the first bumper 111 may be separated from the second bumper by one or more gaps 120.
  • At least one of the first bumper 111 or the second bumper 112 may be resiliently coupled with the housing 105 or another part of the main body 110 through an elastic member, such as a spring (not shown) .
  • the first bumper 111 or the second bumper 112 may retract when pushed by the obstacle, thereby providing a buffer or an impact absorption for the cleaning device 100.
  • One or more collision sensors may be disposed at the first bumper 111 and/or the second bumper 112. When the first bumper 111 and/or the second bumper 112 collides with an object, the one or more collision sensors may detect the collision and generate a signal indicating the occurrence of the collision. In some embodiments, the collision sensor may detect a potential collision and generate a warning signal, or trigger a controller (not shown) to make a collision avoidance control.
  • the controller may control the operation of the cleaning device 100 to stop the cleaning device 100 or change the moving direction of the cleaning device 100 to avoid the collision.
  • the cleaning device 100 may also include a camera 125.
  • the camera 125 may be configured to capture one or more images of the environment in which the cleaning device 100 operates.
  • the camera 125 is shown as being mounted at the front portion (e.g., behind a protective cover disposed at the front bumper 111) of the cleaning device 100. It is understood that the camera 125 may be mounted at any other location of the cleaning device 100, e.g., a top portion of the housing, a side portion, a back portion, etc.
  • the orientation of the camera 125 may be in any suitable directions, such as facing front, facing back, facing sides, facing up (e.g., ceiling of a room) , facing a direction forming an acute angle relative to the moving direction of the cleaning device, etc.
  • two or more cameras may be disposed at various portions of the cleaning device 100.
  • the facing direction of each camera may be adjustable through a manual adjustment or an electrical adjustment.
  • the facing direction of a camera may be fixed.
  • the cleaning device 100 may include a controller 190 (shown in FIG. 2A) .
  • the controller 190 may analyze the images to extract information (e.g., identify objects, which may be obstacles for the movement of the cleaning device 100) for the purpose of localization and mapping of the cleaning device 100.
  • the cleaning device 100 may further include one or more sweeping elements or mechanisms, such as one or more brushes.
  • FIG. 1 shows two side brushes 145 disposed at two sides of a front portion of the cleaning device 100 at the bottom of the cleaning device 100.
  • FIG. 2A is a schematic illustration of a bottom view of the cleaning device 100 shown in FIG. 1, according to an embodiment of the present disclosure.
  • the cleaning device 100 may include the main body 110 and one or more motion devices 135 and 140, one or more driving mechanisms (e.g., electric motor, not shown) , and a mopping mechanism 170 mounted at a bottom surface 155 of the main body 110.
  • the main body 110 of the cleaning device 100 may include the bottom surface 155 and the exterior housing 105 shown in FIG. 1.
  • the bottom surface 155 and the exterior housing 105 may be connected to form a chamber (not shown) .
  • the chamber may provide mounting spaces the various parts or mechanisms of the cleaning device 100, including, e.g., the electric motor.
  • the one or more driving mechanisms may be disposed in the chamber formed by the bottom surface 155 and the exterior housing 105.
  • the one or more driving mechanisms may provide a driving force to the one or more motion devices 135 and 140 and the mopping mechanism 170.
  • the one or more driving mechanisms may include one or more driving devices, such as electric motors.
  • the one or more driving devices may provide a driving force to the one or more motion devices 135 and 140 and the mopping mechanism 170.
  • a single driving device may prove the driving force for the one or more motion devices 135 and 140 and the mopping mechanism 170.
  • the one or more motion devices 135 and 140 may share a driving device, and the mopping mechanism 170 may be coupled with another driving device.
  • the bottom surface 155 may be, but not be limited to, a rectangular plate, a circular plate, a kidney shaped plate, or a combination thereof. It is understood that the bottom surface 155 may have any other suitable shape.
  • the bottom surface 155 may include a front end and a back end, as shown in FIG. 1. In some embodiments, the end where the camera 125 is mounted may be treated as the front end.
  • the one or more motion devices 135 and 140 may drive the cleaning device 100 to move, such that the mopping mechanism 170 mounted at the bottom surface 155 may be driven to move reciprocatively to clean the floor.
  • the one or more motion devices 135 and 140 may include an omnidirectional wheel (labelled as 135) and at least two wheel groups (labelled as 140) .
  • the omnidirectional wheel 135 may serve as the turning wheel of the cleaning device 100 to control the turning of the cleaning device 100.
  • the two wheel groups 140 may be disposed at the bottom surface 155 at opposite sides to control the forward and backward movements of the cleaning device 100.
  • the omnidirectional wheel 135 may be disposed at the front end of the bottom surface 155.
  • the two wheel groups 140 are disposed at edge locations of the bottom surface 155 on both sides. That is, the locations of the omnidirectional wheel 135 and the two wheel groups 140 may be configured to form a triangle (when location points are connected) at the bottom surface 155. In some embodiments, the motion devices 135 and 140 may be in other forms, such as track chains, biped or multi-ped walking mechanisms.
  • the cleaning device 100 may be a mopping-sweeping integrated device, which has both the floor sweeping function and the floor mopping function.
  • the cleaning device may further include a cleaning mechanism 130.
  • the cleaning mechanism 130 may be mounted to the bottom surface 155, and may include one or more elements that are rotatable relative to the bottom surface 155, to sweep and collect trash from the floor to be cleaned.
  • the cleaning mechanism 130 may include a main brush 150 and at least one side brush 145.
  • the main brush 150 may be disposed at a central location of the bottom surface 155.
  • Multiple side brushes 145 may be uniformly distributed at a front portion of the bottom surface 155. As shown in FIG.
  • two side brushes 145 may be symmetrically disposed at edge locations at two sides of the bottom surface 155.
  • the two side brushes 145 may be disposed at the front end of the bottom surface 155.
  • the omnidirectional wheel 135 may be located between the two side brushes 145.
  • the main brush 150 may be disposed at a central location of the bottom surface 155, and may be located between the two wheel groups 140.
  • the cleaning device 100 may be a floor mopping device (e.g., robot) , which may only have the mopping mechanism 170 but not the cleaning mechanism 130, i.e., only have the floor moping function but not the floor sweeping function.
  • the mopping mechanism 170 may be disposed behind the cleaning mechanism, to provide the “first sweeping, then mopping” operation scheme.
  • the mounting locations of the mopping mechanism 170 and the cleaning mechanism 130 are not limited.
  • the cleaning mechanism 130 may be mounted behind the mopping mechanism 170.
  • the mopping mechanism 170 is disposed behind the cleaning mechanism 130, which may enable the cleaning device 100 to provide an enhanced cleaning effect for the floor.
  • the mopping mechanism 170 includes at least one rotary member 180 and at least one mopping plate 175.
  • the rotary member 180 may include at least one transmission toothed segment 181.
  • the at least one transmission toothed segment 181 may be provided at a portion of the circumference of the rotary member 180. Although one transmission toothed segment 181 is shown in FIG. 2A, the rotary member 180 may include any suitable number of transmission toothed segments, such as two, three, four, etc.
  • the mopping plate 175 may be slidably mounted at the bottom surface 155.
  • the sliding direction of the mopping plate 175 may be parallel with or may cross the moving direction of the cleaning device 100. In some embodiments, the sliding direction of the mopping mechanism 170 along the bottom surface 155 may be perpendicular to the moving direction of the cleaning device 100.
  • One or more toothed strips or segments may be mounted to, or otherwise provided at, the mopping plate 175.
  • the one or more toothed strips may be configured to engage with the at least one transmission toothed segment 181 of the rotary member 180 during operation.
  • FIG. 2A shows that two toothed strips or segments (a first toothed strip 182 and a second toothed strip 183) are mounted to, or otherwise provided at, the mopping plate 175 to engage with the at least one transmission toothed segment 181 of the rotary member 180.
  • the mopping mechanism 170 may include only one toothed strip or segment.
  • Each of the toothed strips 182 and 182 may include multiple teeth for engaging with the teeth of the transmission toothed segment 181.
  • the rotary member 180 may be mounted on the bottom surface 155. In some embodiments, the rotary member 180 may be located at an end of the chamber of the cleaning device 100.
  • the rotary member 180 may be connected with a driving mechanism (not shown) disposed at least partially within the chamber of the cleaning device 100.
  • the driving mechanism may be configured to drive the rotary member 180 to rotate relative to the bottom surface 155.
  • the at least one transmission toothed segment 181 may engage with the toothed strip 182 of the mopping plate 175 in a first time period, and engage with the toothed strip 183 of the mopping plate 175 in a second time period.
  • the transmission toothed segment 181 may include multiple transmission teeth. The transmission teeth of the transmission toothed segment 181 may engage with the teeth on one of the toothed strip 182 or the toothed strip 183 of the mopping plate 3610 at a specific time.
  • the driving force generated by the one or more driving mechanism may be transmitted to the mopping plate 175 through the transmission toothed segment 181 of the rotary member 180 and the toothed strips 182 and 183 provided at the mopping plate 175, to drive the mopping plate 175 to move reciprocatively relative to the bottom surface 155.
  • the mopping plate 175 of the present disclosure can move reciprocatively relative to the bottom surface 155, and therefore, can repeatedly and reciprocatively mop the floor to be cleaned, which can enhance the cleaning efficiency and cleaning effect.
  • the mopping plate 175 may be driven to slide reciprocatively relative to the bottom surface 155 through changing the direction of the driving force provided by the driving mechanism.
  • the driving mechanism may include an electric motor. By changing the rotation direction of the electric motor, the direction of the driving force may be changed. As a result, the mopping plate 175 may be driven to move reciprocatively relative to the bottom surface 155 (e.g., reciprocating sliding) .
  • multiple toothed strips may be disposed at different locations of the mopping plate 175, and the configuration shown in FIG. 2A is merely an exemplary configuration.
  • the mopping plate 175 may be driven to reciprocatively slide relative to the bottom surface 155.
  • the number of the mopping plates included in the mopping mechanism 170, the number and locations of the toothed strips included on the mopping plates, and the structural form of the rotary member 180 may be configured to be other suitable numbers, locations, and forms. Different exemplary configurations of the mopping mechanism will be explained as follows.
  • FIGs. 2B-2E illustrates states of the movement or operation of the mopping mechanism 170 at different time instances.
  • the mopping mechanism 170 includes the mopping plate 175 mounted to the bottom surface 155.
  • the mopping plate 175 may also be referred to as a first mopping plate 175.
  • a guiding block (not shown) may be disposed at a back side of the first mopping plate 175 facing the bottom surface 155.
  • Guiding rails (not shown) may be provided at the bottom surface 155 to match with the guiding block provided at the first mopping plate 175.
  • the first mopping plate 175 may be mounted to the bottom surface 155 through the coupling between the guiding block and the guiding rails.
  • a mounting groove may be provided at a central portion of the first mopping plate 175.
  • the mounting groove may be a rectangular groove, a kidney-shaped groove, or a groove with any other suitable shape.
  • an arc shaped groove connected with the rectangular groove may be disposed at two ends of the rectangular groove.
  • the arc-shaped grooves may match with gears disposed in the mounting groove.
  • the mounting groove may include a first mounting edge and a second mounting edge.
  • the first mounting edge and the second mounting edge may be parallel with one another and may face one another.
  • the rotary member 180 may be disposed within a mounting space between the first mounting edge and the second mounting edge.
  • the first toothed strip 182 may be disposed at the first mounting edge.
  • the second toothed strip 183 may be disposed at the second mounting edge.
  • the first toothed strip 182 and the second toothed strip 183 may engage with the transmission toothed segment 181 of the rotary member 180, such that the rotary member 180 may drive the first mopping plate 175 to move reciprocatively relative to the bottom surface 155.
  • the mounting groove may be provided at the central portion of the first mopping plate 175.
  • the rotary member 180 may be located in the mounting groove.
  • the rotary member 180 may be driven by the driving mechanism to rotate in the mounting groove relative to the bottom surface 155.
  • a mounting hole may be disposed on the first mopping plate 175 at the location where the mounting groove is provided.
  • the mounting hole may be a through hole penetrating the upper and lower surfaces of the first mopping plate 175, which makes it convenient to mount the rotary member 180 to the first mopping plate 175.
  • the mounting hole may have a rectangular shape or a rounded rectangular shape.
  • the mounting hole is a through aperture or hole that extends throughout the upper and lower surfaces of the mopping plate 175, whereas the mounting groove penetrates only one surface of the mopping plate 175.
  • the mounting groove and the mounting hole are collectively referred to as the mounting structure.
  • the present disclosure does not limit the detailed configuration of the mounting structure disposed at the first mopping plate 175 for mounting the rotary member 180.
  • the rotary member 180 of the present disclosure may be referred to as a second intermittent gear 180.
  • the second intermittent gear 180 may be located in the mounting groove.
  • the second intermittent gear 180 may rotate for a full cycle (e.g., 360 degrees) relative to the bottom surface 155.
  • At least one transmission toothed segment 181 may be disposed at the circumference of the second intermittent gear 180.
  • each transmission toothed segment (when multiple transmission toothed segments are included) may be engaged with the first toothed strip 182 and the second toothed strip 183, respectively.
  • the transmission toothed segments may be alternately disposed at the circumference of the second intermittent gear 180, such that when a transmission toothed segment is disposed at a first portion or location on the second intermittent gear 180, no other transmission toothed segment is disposed at a second location or portion opposite to the first portion or location. In other words, no two transmission toothed segments are disposed at opposite portions of the circumference of the second intermittent gear 180 along a same diameter.
  • two or more transmission toothed segments are included.
  • the second intermittent gear 180 rotates for a full cycle relative to the bottom surface 155, at a specific time or during a specific time period, only one of the transmission toothed segments is engaged with the first toothed strip 182 or the second toothed strip 183 of the first mopping plate 175. No multiple transmission toothed segments are engaged with the first toothed strip 182 and the second toothed strip 183 in the same time period.
  • This configuration can avoid the jamming phenomenon between the first mopping plate 175 and the second intermittent gear 180.
  • the above-described technical solution will be further explained based on the number of transmission toothed segments included on the second intermittent gear 180.
  • a length of the transmission toothed segment may occupy 1/3 or 1/4 (or other suitable ratio) of the total circumference of the second intermittent gear 180, such that during the rotation of the second intermittent gear 180, the jamming phenomenon between the first mopping plate 175 and the second intermittent gear 180 can be avoided.
  • the second intermittent gear 180 may be provided with two transmission toothed segments, which may be spaced apart along the circumference of the second intermittent gear 180.
  • the second intermittent gear 180 may include two alternately disposed transmission toothed segments: a first transmission toothed segment and a second transmission toothed segment.
  • the first transmission toothed segment may be disposed at a first portion (or location) of the circumference of the second intermittent gear 180.
  • a portion (or location) opposite to the first portion may be defined as a second portion (or location) of the second intermittent gear 180.
  • the first portion and the second portion may be along the same diameter.
  • the second transmission toothed segment may be disposed at a portion of the circumference on the second intermittent gear 180 other than the first portion and the second portion.
  • the second transmission toothed segment is not located at a portion opposite to the first portion on the second intermittent gear 180 where the first transmission toothed segment is located. This configuration can avoid the jamming phenomenon between the second intermittent gear 180 and the toothed strips of the first mopping plate 175.
  • the second transmission toothed segment is disengaged with the first toothed strip 182 or the second toothed strip 183.
  • the transmission toothed segments may be alternately disposed along the circumference of the second intermittent gear 180. No transmission toothed segment is disposed at a location opposing another location of the second intermittent gear 180 where a transmission toothed segment is already disposed.
  • the second intermittent gear 180 rotates, if any of the transmission toothed segments is engaged with the first toothed strip 182 or the second toothed strip 183, then during the same time period, other transmission toothed segments are all in a disengaged state. That is, during a same time period, only one transmission toothed segment is engaged with one of the first toothed strip 182 or the second toothed strip 183.
  • the second intermittent gear 180 may be connected with a driving mechanism (not shown) .
  • the driving mechanism e.g., an electric motor
  • the driving mechanism may drive the second intermittent gear 180 to perform a full cycle movement relative to the bottom surface 155.
  • the transmission toothed segment 181 of the second intermittent gear 180 may be engaged with the first toothed strip 182 to drive the first mopping plate 175 to move to the right side of the bottom surface 155.
  • the transmission toothed segment 181 is disengaged with the first toothed strip 172 and has not yet been engaged with the second toothed strip 183, as shown in FIG. 2C, the first toothed strip 182 and the second toothed strip 183 are both in the disengaged state. There is no force (or there is minimal force) between the second intermittent gear 180 and the mopping plate 175.
  • the first mopping plate 175 starts moving toward the left side of the bottom surface 155. That is, the first mopping plate 175 starts moving toward its initial location, until the transmission toothed segment 181 on the second intermittent gear 180 is separated (e.g., disengaged) from the second toothed strip 183. As shown in FIG. 2E, the transmission toothed segment 181 may again engage with the first toothed strip 182 and the second toothed strip 183, until the first mopping plate 175 returns to the initial location.
  • the first mopping plate 175 completes a cycle of reciprocating movement relative to the bottom surface 155.
  • the second intermittent gear 180 continues to rotate clockwise, and when the transmission toothed segment 181 again engages with the first toothed strip 182, the first mopping plate 175 may enter a second round or cycle of reciprocating movement.
  • the first mopping plate 175 may continuously perform cyclic, reciprocating movements.
  • the second intermittent gear 180 may continuously rotate counter-clockwise instead of clockwise to perform the continuous cyclic reciprocating movements relative to the bottom surface, which is not repeated here.
  • FIG. 3A and FIG. 3B schematically illustrate the structure and motion states of the mopping mechanism 170, according to an embodiment of the present disclosure.
  • the mopping mechanism 170 may include at least one rotary member 180 and two mopping plates.
  • the two mopping plates may include a first mopping plate 171 and a second mopping plate 172.
  • the first mopping plate 171 may be slidably mounted to the bottom surface 155.
  • the connection between the first mopping plate 171 and the bottom surface 155 may refer to any of the configurations disclosed in other embodiments.
  • the second mopping plate 172 may be fixedly mounted to the bottom surface 155.
  • the first mopping plate 171 and the second mopping plate 172 may be disposed side by side at the bottom surface 155.
  • a gap may be provided between the first mopping plate 171 and the second mopping plate 172 to allow for the first mopping plate 171 to slide relative to the bottom surface 155.
  • the rotary member 180 may be disposed between the first mopping plate 171 and the second mopping plate 172.
  • a connection plate may be disposed at a side of the first mopping plate 171 farcing the second mopping plate 172.
  • the connection plate may be a part of the first mopping plate 171, or may be a separate part that is detachably connected with the first mopping plate 171.
  • the connection plate of the first mopping plate 171 may be provided with a mounting groove.
  • the mounting groove may be a rectangular groove, a kidney-shaped groove (as shown in FIG. 3A and FIG. 3B) , a fork shaped structure having an open end (as shown in FIG. 3C) , or a groove having any other suitable shape.
  • the mounting groove may include a first mounting edge and a second mounting edge.
  • the first mounting edge and the second mounting edge may be parallel with one another and may face one another.
  • the first toothed strip 182 may be provided at (e.g., formed at or mounted to) the first mounting edge.
  • the second toothed strip 183 may be provided at (e.g., formed at or mounted to) the second mounting edge.
  • the rotary member 180 may be disposed within the mounting space between the first mounting edge and the second mounting edge (i.e., between the first toothed strip 182 and the second toothed strip 183) .
  • the first toothed strip 182 and the second toothed strip 183 may be engaged with a transmission toothed segment 181 on the rotary member 180.
  • the rotary member 180 may be the second intermittent gear described above.
  • the manner in which the second intermittent gear 180 engages with the first toothed strip 182 and the second toothed strip 183 in the embodiment shown in FIG. 3A and FIG. 3B are the same as those described above in connection with FIGs. 2B-2E, which is not repeated here.
  • the second intermittent gear 180 may include one transmission toothed segment 181. Next, the full cycle movement of the second intermittent gear 180 relative to the bottom surface 155 when driven by the driving mechanism will be explained.
  • the second intermittent gear 180 when the second intermittent gear 180 rotates clockwise, and when the transmission toothed segment 181 is engaged with the first toothed strip 182, the second intermittent gear 180 may drive the first toothed strip 182 through the transmission toothed segment 181 to move in a direction toward the second mopping plate 172. As a result, the first mopping plate 171 may move toward the second mopping plate 172. In other words, the first mopping plate 171 and the second mopping plate 172 may move toward one another.
  • the second intermittent gear 180 continues to rotate clockwise, and when the transmission toothed segment 181 is engaged with the second toothed strip 183, as shown in FIG.
  • the second intermittent gear 180 may drive the second toothed strip 183 through the transmission toothed segment 181 to move in a direction away from the second mopping plate 172, thereby driving the first mopping plate 171 to move in a direction away from the second mopping plate 172. Accordingly, the first mopping plate 171 completes a reciprocating movement relative to the bottom surface 155 (i.e., relative to the second mopping plate 172) .
  • the transmission toothed segment 181 of the second intermittent gear 180 may again engage with the first toothed strip 182.
  • the first mopping plate 171 may enter a next cycle of reciprocating movement.
  • the first mopping plate 171 may continuously perform cyclic, reciprocating movements relative to the bottom surface 155. It is understood that the second intermittent gear 180 may continuously rotate in the counter-clockwise direction, instead of the clockwise direction, to achieve the continuous cyclic reciprocating movements of the first mopping plate 171 relative to the bottom surface 155, which is not repeated here.
  • FIG. 4A and FIG. 4B schematically illustrate the structure and the motion states of the mopping mechanism 170, according to an embodiment of the present disclosure.
  • the mopping mechanism 170 of the present disclosure may include two mopping plates and a rotary member.
  • the two mopping plates may include the first mopping plate 171 and the second mopping plate 172.
  • the first mopping plate 171 may be slidably mounted to the bottom surface 155.
  • the connection between the first mopping plate 171 and the bottom surface 155 may refer to the above described connection in any of the disclosed embodiments, which is not repeated here.
  • the second mopping plate 172 may be fixedly mounted to the bottom surface 155.
  • the first mopping plate 171 and the second mopping plate 172 may be disposed side by side at the bottom surface 155.
  • a gap may be provided between the first mopping plate 171 and the second mopping plate 172 to allow the first mopping plate 171 to move relative to the bottom surface 155.
  • a first extension 191 may extend from a side of the first mopping plate 171 toward the second mopping plate 172.
  • a first toothed strip 201 may be provided at (e.g., mounted to or formed at) a side of the first extension 191 facing a rotary member 185.
  • the rotary member 185 may be a full gear (also referred to as 185) .
  • the full gear 185 may be mounted to the bottom surface 155, and may be located between the first mopping plate 171 and the second mopping plate 172.
  • the full gear 185 may engage with the first toothed strip 201.
  • the full gear 185 may be connected with a driving mechanism (not shown) . When driven by the driving mechanism, the full gear 185 may perform a half cycle movement or a full cycle movement relative to the bottom surface 155, i.e., first rotating in a first direction for a first angle and then rotating in a second direction for a second angle.
  • the first direction and the second direction may be the clockwise direction and the counter-clockwise direction, respectively, or may be the counter-clockwise direction and the clockwise direction, respectively.
  • the first angle may or may not be equal to the second angle. At least one of the first angle or the second angle may be an angle of 90°, 180°, 360°, or 600°, etc.
  • the driving mechanism may be an electric motor. By controlling the clockwise or counter-clockwise rotation of the electric motor, the full gear 185 may be controlled to perform a half cycle movement or a full cycle movement relative to the bottom surface 155.
  • the electric motor may drive the full gear 185 to rotate in a first direction (e.g., clockwise direction) .
  • a first direction e.g., clockwise direction
  • the first mopping plate 171 may start moving in a direction toward the second mopping plate 172.
  • the first mopping plate 171 may have moved to a predetermined location, such as an end location of the first toothed strip 201 as shown in FIG. 4B.
  • the electric motor may drive the full gear 185 to rotate in a second rotation direction (e.g., counter-clockwise direction) .
  • the first mopping plate 171 may start moving in a direction away from the second mopping plate 172, i.e., the first mopping plate 171 may start returning to its initial location. After an amount of the second angle for which the full gear 185 has rotated is substantially the same as an amount of the first angle, the first mopping plate 171 may have moved to its initial location. At this moment, the first mopping plate 171 completes a cycle of reciprocating movement relative to the bottom surface 155. When the full gear 185 again starts rotation in the first direction, the first mopping plate 171 enters a next cycle of reciprocating movement. As a result, the first mopping plate 171 may continuously perform cyclic, reciprocating movements relative to the bottom surface 155.
  • the rotary member of the present disclosure is not limited to be the full gear 185 that performs full cycle movements relative to the bottom surface 155.
  • the rotary member may be the second intermittent gear 180 that includes at least one transmission toothed segment.
  • a rotation range for the second intermittent gear 180 when the transmission toothed segment is engaged with the first toothed strip 201 may be configured such that the second intermittent gear 180 may perform a half cycle movement or a quarter cycle movement relative to the bottom surface 155.
  • the second intermittent gear 180 may be used in the embodiment shown in FIG. 4A to replace the full gear 185, and may be configured in a manner similar to the second intermittent gear 180 described above in connection with FIGs. 2B-3C.
  • FIG. 4C and FIG. 4D are schematic illustrations of the structure and motion states of the mopping mechanism, according to an embodiment of the present disclosure.
  • the embodiment shown in FIG. 4C and FIG. 4D is based on the embodiment shown in FIG. 4A and FIG. 4B. Descriptions of the similar or the same features between the embodiments are not repeated.
  • the differences between the embodiment shown in FIG. 4C and FIG. 4D and the embodiment shown in FIG. 4A and FIG. 4B include: the first mopping plate 171 and the second mopping plate 172 are slidably mounted to the bottom surface 155, and the first mopping plate 171 and the second mopping plate 172 are disposed side by side with one another.
  • a space is provided between the first mopping plate 171 and the second mopping plate 172 to allow the first mopping plate 171 and the second mopping plate 172 to slide toward one another.
  • the first extension 191 of the first mopping plate 171 extends toward the second mopping plate 172.
  • a second extension 192 extends from the second mopping plate 172 toward the first mopping plate 171.
  • the first toothed strip 201 is provided at a side of the first extension 191 that faces the second extension 192.
  • a third toothed strip 203 may be provided at a side of the second extension 192 that faces the first extension 191. That is, the first toothed strip 201 and the third toothed strip 203 may be disposed parallel with one another, and may face one another.
  • the rotary member 185 included in the embodiment shown in FIG. 4C may be a full gear (also referred to as 185) .
  • the full gear 185 may be located between the first toothed strip 201 and the third toothed strip 203.
  • the full gear 185 may be engaged with the first toothed strip 201 and the third toothed strip 203 at the same time.
  • the full gear 185 may be connected with a driving mechanism (not shown) .
  • the full gear 185 When driven by the driving mechanism, the full gear 185 may perform a half cycle movement or a full cycle movement relative to the bottom surface 155 (the half cycle movement has been described above) .
  • the driving mechanism may include an electric motor. Through controlling the clockwise and counter-clockwise rotation of the electric motor, the full gear 185 may be driven to perform the half cycle movement or the full cycle movement relative to the bottom surface 155.
  • the electric motor may drive the full gear 185 to rotate clockwise (in this embodiment, the first rotation direction is the clockwise direction, and the second rotation direction is the counter-clockwise direction) .
  • the first mopping plate 171 may move in a direction toward the second mopping plate 172.
  • the second mopping plate 172 may move in a direction toward the first mopping plate 171. That is, the first mopping plate 171 and the second mopping plate 172 may move toward one another.
  • the full gear 185 rotates clockwise for a first angle (the first angle may be, e.g., 90°, 180°, 300°, or 400°, etc. )
  • the first mopping plate 171 and the second mopping plate 172 may have moved to a specific location respectively (e.g., an end location of the first toothed strip 201 and/or the third toothed strip 203) .
  • the electric motor may drive the full gear 185 to rotate counter-clockwise.
  • the first mopping plate 171 may move in a direction away from the second mopping plate 172.
  • the second mopping plate 172 may also move in a direction away from the first mopping plate 171. That is, the first mopping plate 171 and the second mopping plate 172 may move away from one another.
  • the full gear 185 has rotated counter-clockwise for a second angle (the second angle may be equal to the first angle or may be different from the first angle)
  • the first mopping plate 171 and the second mopping plate 172 may have moved to their initial locations.
  • the first mopping plate 171 and the second mopping plate 172 complete a cycle of reciprocating movement relative to the bottom surface 155.
  • the first mopping plate 171 and the second mopping plate 172 each complete a cycle of reciprocating movement separately.
  • the full gear 185 starts to rotate again in the first direction, which is the clockwise direction
  • the first mopping plate 171 and the second mopping plate 172 enter the next cycle (or period) of reciprocating movements. Therefore, the first mopping plate 171 and the second mopping plate 172 may continuously perform cyclic, reciprocating movements relative to the bottom surface 155.
  • FIG. 5A and FIG. 5B schematically illustrate the structure and motion states of the mopping mechanism, according to an embodiment of the present disclosure.
  • this embodiment is based on the embodiment shown in FIG. 4A and FIG. 4B.
  • the difference between the embodiment shown in FIG. 5A and FIG. 5B and the embodiment shown in FIG. 4A and FIG. 4B include: a rotary member 230 included therein is formed by a first intermittent gear 232 and a full gear 231 that are coupled with one another.
  • the first intermittent gear 232 may engage with the full gear 231 during rotation at certain time periods.
  • the first mopping plate 171 may include the first extension 191 extending from the first mopping plate 171 toward the second mopping plate 172.
  • the first extension 171 may include the first toothed strip 201 provided at a side facing the rotary member 230.
  • the first toothed strip 201 may engage with the first intermittent gear 232 and the full gear 231.
  • the full gear 231 may be engaged with the first toothed strip 201 at all time during an operation or a full cycle rotation.
  • the first intermittent gear 232 may include at least one transmission toothed segment group.
  • Each of the at least one transmission toothed segment group may include two transmission toothed segments disposed at opposite portions or locations of the first intermittent gear 232.
  • FIG. 5A shows one transmission toothed segment group for illustrative purposes.
  • the transmission toothed segment group includes two transmission toothed segments: a first transmission toothed segment 241 and a second transmission toothed segment 242.
  • the first transmission toothed segment 241 may be disposed at a first location (or first portion) of the first intermittent gear 232.
  • the second transmission toothed segment 242 may be disposed at a second location (or second portion) of the first intermittent gear 232. That is, the two transmission toothed segments 241 and 242 of the transmission toothed segment group may be disposed at the opposite portions or locations of the first intermittent gear 232.
  • the first transmission toothed segment 241 and the second transmission toothed segment 242 may engage with the first toothed strip 201 separately at a predetermined time interval or time period. That is, when the first transmission toothed segment 241 is engaged with the first toothed strip 201, the second transmission toothed segment 242 and the first toothed strip 201 may be in a disengaged state, and the second transmission toothed segment 242 and the full gear 231 may be in a disengaged state.
  • a transmission toothed segment (e.g., 241 or 242) of the first intermittent gear 232 is engaged with the first toothed strip 201 or the full gear 231
  • another transmission toothed segment (e.g., 242 or 241) of the same transmission toothed segment group is in a disengaged state with the first toothed strip 201 and the full gear 231.
  • the full gear 231 may be engaged with the first intermittent gear 232 during a first time period of the full cycle.
  • the full gear 231 and the first intermittent gear 232 may be disengaged.
  • the full gear 231 may maintain an engaged state with the first toothed strip 201.
  • the first intermittent gear 232 shown in FIG. 5A may be an active gear, and may be connected with a driving mechanism, such as an electric motor (not shown) .
  • a driving mechanism such as an electric motor (not shown)
  • the first intermittent gear 232 may perform full cycle movements relative to the bottom surface 155.
  • the first transmission toothed segment 241 of a transmission toothed segment group is engaged with the first toothed strip 201
  • the first intermittent gear 232 and the full gear 231 may be in the disengaged state.
  • the first intermittent gear 232 may drive the first mopping plate 171 to move in a direction toward the second mopping plate 172.
  • the driving force may be transmitted to the full gear 231 through the first toothed strip 241, to cause the full gear 231 to passively rotate following the rotation of the first intermittent gear 232.
  • the first transmission toothed segment 241 may separate from the first toothed strip 201. Then, the first transmission tooth segment 241 may engage with the full gear 231. At this moment, the second transmission toothed segment 242 is in a disengaged state and gradually approaches the first toothed strip 201. Because the first transmission toothed segment 241 is engaged with the full gear 231, the first transmission toothed segment 241 may drive the full gear 231 to rotate counter-clockwise. The driving force may be transmitted to the first toothed strip 201 through the full gear 231, such that the first mopping plate 171 may be driven to move in a direction away from the second mopping plate 172. That is, the first mopping plate 171 may move toward its initial location.
  • the first mopping plate 171 may return to its initial location. Accordingly, the first mopping plate 171 completes a cycle of reciprocating movement relative to the bottom surface 155.
  • the first mopping plate 171 may enter the next cycle of reciprocating movement. Therefore, the first mopping plate 171 may continuously perform cyclic, reciprocating movements relative to the bottom surface 155. It is understood that the first intermittent gear 232 may continuously rotate counter-clockwise to drive the first mopping plate 171 to continuously perform cyclic, reciprocating movements relative to the bottom surface 155.
  • the first intermittent gear 232 includes a group of transmission toothed segments that are disposed at opposite locations (or portions) of the first intermittent gear 232.
  • the first mopping plate 171 may complete two full cycles of reciprocating movements.
  • multiple (e.g., two or more) groups of transmission toothed segments may be disposed at opposite portions of the first intermittent gear 232, as long as the jamming phenomenon between the full gear 231 and the first intermittent gear 232 is avoided.
  • FIG. 5C and FIG. 5D schematically illustrate the structure and the motion states of the mopping mechanism, according to an embodiment of the present disclosure.
  • this embodiment is based on the embodiment shown in FIG. 5A and FIG. 5B.
  • the differences between the embodiment shown in FIG. 5C and FIG. 5D and the embodiment shown in FIG. 5A and FIG. 5B include: the second mopping plate 172 is slidably mounted to the bottom surface 155.
  • the first extension 191 of the first mopping plate 171 extends toward the second mopping plate 172, and the second extension 192 of the second mopping plate 172 extends toward the first mopping plate 171.
  • the first toothed strip 201 is disposed at a side of the first extension 191 that faces the second extension 192.
  • the third toothed strip 203 is disposed at a side of the second extension 192 that faces the first extension 191. That is, the first toothed strip 201 and the third toothed strip 203 are disposed to face one another.
  • the configuration of the first extension 191 and the second extension 192 may refer to the embodiment shown in FIG. 4C and FIG. 4D.
  • the differences between the embodiment shown in FIG. 5C and FIG. 5D and the embodiment shown in FIG. 5A and FIG. 5B also include: in the embodiment shown in FIG. 5C and FIG. 5D, the full gear 231 is engaged with the first toothed strip 201 and the third toothed strip 203 at all time during an operation.
  • the first intermittent gear 232 may include the first transmission toothed segment 241 and the second transmission toothed segment 242.
  • the second transmission toothed segment 242 is also engaged with the third toothed strip 203.
  • the second transmission toothed segment 242 is also engaged with the first toothed strip 201.
  • the first intermittent gear 232 is an active gear connected with a driving mechanism, such as an electric motor (not shown) .
  • a driving mechanism such as an electric motor (not shown) .
  • the first intermittent gear 232 may perform a full cycle movement relative to the bottom surface 155.
  • the first transmission toothed segment 241 engages with the first toothed strip 201
  • the first intermittent gear 232 may drive the first mopping plate 171 to move in a direction toward the second mopping plate 172.
  • the second transmission toothed segment 242 may be engaged with the third toothed strip 203 to drive the second mopping plate 172 to move in a direction toward the first mopping plate 171. That is, the first mopping plate 171 and the second mopping plate 172 may move toward one another.
  • the first intermittent gear 232 and the full gear 231 are in a disengaged state.
  • the driving force of the first intermittent gear 232 may be transmitted to the full gear 231 through the first toothed strip 201 and the third toothed strip 203 separately.
  • the driving force drives the full gear 231 to rotate passively following the rotation of the first intermittent gear 232.
  • the first transmission toothed segment 241 may separate from the first toothed strip 201, and the first transmission toothed segment 241 may engage with the full gear 231.
  • the second transmission segment 242 may be in a disengaged state and may gradually move closer to the first toothed strip 201. Because the first transmission toothed segment 241 is engaged with the full gear 231, the first transmission toothed segment 241 may drive the full gear 231 to rotate counter-clockwise.
  • the driving force of the first transmission toothed segment 241 may be transmitted to the first toothed strip 201 and the third toothed strip 203 through the full gear 231, which drives the first mopping plate 171 to move in a direction away from the second mopping plate 172.
  • the second mopping plate 172 may move in a direction away from the first mopping plate 171. That is, the first mopping plate 171 and the second mopping plate 172 may move away from one another.
  • the first mopping plate 171 and the second mopping plate 172 may restore to their initial locations. Hence, the first mopping plate 171 and the second mopping plate 172 complete a full cycle of reciprocating movement relative to the bottom surface 155.
  • the first intermittent gear 232 continues to rotate clockwise, when the second transmission toothed segment 242 engages with the first toothed strip 201, the engagement causes the first mopping plate 171 and the second mopping plate 172 to enter a next cycle of reciprocating movement. Accordingly, the first mopping plate 171 and the second mopping plate 172 may continuously perform cyclic, reciprocating movements relative to the bottom surface 155.
  • the first mopping plate 171 and the second mopping plate 172 may complete two full cycles of reciprocating movements, which can enhance the cleaning efficiency and cleaning effect. It is understood that the first intermittent gear 232 may continuously rotate counter-clockwise to cause the first mopping plate 171 and the second mopping plate 172 to continuously perform cyclic, reciprocating movements relative to the bottom surface 155.
  • FIG. 6A and FIG. 6B schematically illustrate the structure and motion states of the mopping mechanism, according to an embodiment of the present disclosure.
  • the embodiment shown in FIG. 6A and FIG. 6B is based on the embodiment shown in FIG. 5C and FIG. 5D.
  • the differences between the embodiment shown in FIG. 6A and FIG. 6B and the embodiment shown in FIG. 5C and FIG. 5D include: the rotary member only includes a first intermittent gear 252.
  • the structure of the first intermittent gear 252 may be the same as or similar to that of the first intermittent gear 232 shown in FIG. 5C and FIG. 5D.
  • at least one restoration component 260 is disposed between the first mopping plate 171 and the second mopping plate 172.
  • the retracting and extending directions of the restoration component 260 may be the same as the sliding directions of the first mopping plate 171 or the second mopping plate 172.
  • the restoration component 260 may be a spiral spring or other parts or assemblies that can retract and extend to deform (e.g., an elastic band, a magnet, etc. ) , thereby providing a restoration force to the first mopping plate 171 and/or the second mopping plate 172.
  • the spiral spring is used as an example of the restoration component 260 disposed between the first mopping plate 171 and the second mopping plate 172 to describe the movement process of the mopping mechanism 170.
  • the first intermittent gear 252 shown in FIG. 6A may be connected with a driving mechanism (not shown) . When driven by the driving mechanism, the first intermittent gear 252 may perform a full cycle movement relative to the bottom surface 155.
  • the first mopping plate 171 may include a first extension 291 extending from the first mopping plate 171 toward the second mopping plate 172.
  • the second mopping plate 172 may include a second extension 292 extending from the second mopping plate 172 toward the first mopping plate 171.
  • the first extension 291 and the second extension 292 may be substantially parallel one another.
  • the first intermittent gear 252 may be disposed between the first extension 291 and the second extension 292.
  • the first intermittent gear 252 may include at least one transmission toothed segment group, which may include a first transmission toothed segment 341 and a second transmission toothed segment 342.
  • the first transmission toothed segment 341 and the second transmission toothed segment 342 may be provided at opposite portions (or locations) of the circumference of the first intermittent gear 252.
  • the first intermittent gear 252 drives the first mopping plate 171 to move in a direction toward the second mopping plate 172.
  • the second transmission toothed segment 342 included in the same transmission toothed segment group may engage with the third toothed strip 272, and may drive the second mopping plate 172 to move in a direction toward the first mopping plate 171. That is, the first mopping plate 171 and the second mopping plate 172 may move toward one another. In this state, the first mopping plate 171 and the second mopping plate 172 may move toward one another to compress the spiral spring 260, such that the spiral spring 260 may be in a compressed state.
  • the first transmission toothed segment 341 may separate from the first toothed strip 271, and may be located between the first toothed strip 271 and the third toothed strip 272.
  • the second transmission toothed segment 342 may also be in a disengaged state.
  • the spiral spring 260 may restore from a compressed state to a free state, during which process the spiral spring 260 may provide a pushing restoration force to the first mopping plate 171 and the second mopping plate 172. Under the pushing restoration force, the first mopping plate 171 may move in a direction away from the second mopping plate 172.
  • the second mopping plate 172 may move in a direction away from the first mopping plate 171. That is, the first mopping plate 171 and the second mopping plate 172 may move away from one another. Accordingly, the first mopping plate 171 and the second mopping plate 172 may each complete a full cycle of reciprocating movement.
  • the first intermittent gear 252 continues to rotate clockwise, when the first transmission toothed segment 341 is engaged with the third toothed strip 272, the second transmission toothed segment 342 may be engaged with the first toothed strip 271.
  • the first mopping plate 171 and the second mopping plate 172 may be driven to move toward one another and to compress the spiral spring 260.
  • the above processes may be repeated, such that the first mopping plate 171 and the second mopping plate 172 may complete the second cycle of reciprocating movement. That is, within a full cycle movement of the first intermittent gear 252, the first mopping plate 171 and the second mopping plate 172 may each complete two full cycles of reciprocating movement, which can enhance the cleaning efficiency and the cleaning effect for floor cleaning.
  • the spiral spring as an example of the restoration component 260, is configured to provide a pulling force as a restoration force.
  • the restoration force may be a compression force.
  • the restoration component 260 may be disposed between a moving mopping plate and a fixed portion of the bottom plate 155.

Landscapes

  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)

Abstract

A mopping mechanism (170) and a cleaning device (100) are provided. The mopping mechanism (170) includes a rotary member (180) mountable to a bottom surface (155) of the cleaning device (100). The rotary member (180) is configured to be rotatable relative to the bottom surface (155), and includes at least one transmission toothed segment (181). The mopping mechanism (170) also includes a first mopping plate (171) movably mountable to the bottom surface (155) and including a first toothed strip (201) configured to be engageable with the at least one transmission toothed segment (181). The at least one transmission toothed segment (181) is configured to be rotatable relative to the bottom surface (155) to drive the first mopping plate (171) to move receprocatively relative to the bottom surface (155).

Description

MOPPING MECHANISM AND CLEANING DEVICE
CROSS-REFERENCE TO RELATED APPLICATION
This application claims priority to Chinese Patent Application No. 202010412681.8, filed on May 15, 2020. The entire content of the above-mentioned application is incorporated herein by reference.
TECHNICAL FIELD
The present disclosure generally relates to the technical field of mobile devices and, more specifically, to a mopping mechanism and a cleaning device.
BACKGROUND
As the advance of technologies and the improvement of living standards, cleaning devices, such as cleaning robots, have been widely used in homes due to their functions such as automatic floor sweeping, vacuum cleaning, etc.
The most common robots among currently available cleaning robots are floor-sweeping robots. Floor-sweeping robots can only perform floor sweeping, but do not have floor-mopping functions. To accomplish the floor-mopping functions in a cleaning robot, typically a mop is mounted to a bottom surface of the main body of the floor-sweeping robot. The mop is static relative to the main body of the cleaning robot, and can only mop a surface to be cleaned in a moving direction of the cleaning robot as the cleaning robot moves in the moving direction. The mop cannot reciprocatively clean the surface to be cleaned. Thus, the cleaning efficiency is low and the cleaning effect is poor.
SUMMARY OF THE DISCLOSURE
The present disclosure provides a mopping mechanism and a cleaning device (e.g., a cleaning robot) , which can reciprocatively mop a surface to be cleaned, thereby increasing the cleaning efficiency and improving the cleaning effect.
To overcome the limitations of the conventional technologies and achieve the objective of the present disclosure, the present disclosure provides the following technical solutions:
According to one aspect, the present disclosure provides a mopping mechanism configured to be mountable to a bottom surface of a cleaning device. The mopping mechanism includes at least one rotary member and at least one mopping plate. The at least one mopping plate includes a first mopping plate configured to be movably mountable to the bottom surface. The rotary member is mountable to the bottom surface and is configured to be rotatable relative to the bottom surface. The rotary member includes at least one transmission toothed segment. The first mopping plate may be provided with a first toothed strip (e.g., in the form of a rack, a linear gear, etc. ) configured to be engageable with the transmission toothed segment. When the transmission toothed segment rotates relative to the bottom surface, the transmission toothed segment drives the first mopping plate to move reciprocatively relative to the bottom surface, thereby causing the first mopping plate to move reciprocatively relative to the bottom surface.
In some embodiments, the rotary member is a full gear or an intermittent gear including at least one transmission toothed segment. The rotary member is configured to perform a half circle rotation relative to the bottom surface.
In some embodiments, the rotary member includes a first intermittent gear and a full gear configured to be engageable with the first intermittent gear. The first intermittent gear includes at least one transmission toothed segment group. Each of the at least one transmission toothed segment group includes two transmission toothed segments disposed at opposite portions of the first intermittent gear.
In some embodiments, when one of the transmission toothed segments of the first intermittent gear engages with the first toothed strip or with the full gear, another one of the transmission toothed segments included in the same transmission toothed segment group is in an disengaged state.
In some embodiments, in a full cycle of rotation of the full gear, the full gear is engaged with the first intermittent gear during a first time period of the full cycle, and disengaged with the first intermittent gear during a remaining time period of the full cycle. During the full cycle, the full gear maintains an engaged state with the first toothed strip.
In some embodiments, the rotary member is a second intermittent gear. The second intermittent gear includes at least one transmission toothed segment.
If the second intermittent gear includes two or more transmission toothed segments, the transmission toothed segments are alternately disposed at different portions of the circumference of the second intermittent gear. In addition, no transmission toothed segment is disposed at a first location (or portion) of the circumference opposite to a second location (or portion) of the circumference where a transmission toothed segment is already disposed. In other words, no two transmission toothed segments are disposed at opposite portions or locations of the circumference of the second intermittent gear.
In some embodiments, the second intermittent gear is disposed in a mounting groove located inside the first mopping plate. The mounting groove may extend along a moving direction of the first mopping plate. The mounting groove may include a first mounting edge and a second mounting edge that are disposed parallel with one another and facing one another. A first toothed strip may be provided (e.g., mounted or formed) at the first mounting edge. A second toothed strip may be provided (e.g., mounted or formed) at the second mounting edge. The first toothed strip and the second toothed strip are both configured to be engageable with the transmission toothed segment.
When the second intermittent gear rotates, if any of the transmission toothed segments included thereon engages with the first toothed strip or the second toothed strip, the transmission toothed segment engages with only one of the first toothed strip and the second toothed strip at any time instance. The second intermittent gear may perform a full cycle rotation relative to the bottom surface.
In some embodiments, the mopping mechanism may also include a second mopping plate that is movably mountable to the bottom surface and disposed side by side with the first mopping plate.
The opposing sides of the first mopping plate and the second mopping plate that face one another may be provided with a first toothed strip and a third toothed strip disposed parallel with one another and facing one  another. The first toothed strip and the third toothed strip are configured to be engageable with the transmission toothed segment.
In some embodiments, the rotary member is a full gear. The full gear is configured to perform a half cycle rotation, a full cycle rotation, a quarter cycle rotation, or any suitable fraction of a full cycle rotation, relative to the bottom surface. The rotary member is configured to be engageable with both the first toothed strip and the third toothed strip at the same time (e.g., simultaneously) .
In some embodiments, the rotary member is a first intermittent gear configured to perform a half cycle rotation, a full cycle rotation, a quarter cycle rotation, or any suitable fraction of a full cycle rotation, relative to the bottom surface. The first intermittent gear includes at least one transmission toothed segment group. Each transmission toothed segment group includes two transmission toothed segments disposed at opposite portions or locations of the circumference of the first intermittent gear. The two transmission toothed segments of the same transmission toothed segment group are configured to be engageable with the first toothed strip and the third toothed strip, respectively, at the same time (e.g., simultaneously) .
In some embodiments, the rotary member includes the first intermittent gear and a full gear configured to be engageable with the first intermittent gear. The first intermittent gear includes at least one transmission toothed segment group. Each of the at least one transmission toothed segment group includes two transmission toothed segments disposed at opposing portions of the circumference of the first intermittent gear.
In some embodiments, when any of the transmission toothed segments included in a transmission toothed segment group engages with the first toothed strip or the third toothed strip, the first intermittent gear and the full gear are in a disengaged state.
In some embodiments, when any of the transmission toothed segments included in a transmission toothed segment group engages with the full gear, the first intermittent gear is in a disengaged state with at least one of the first toothed strip or the third toothed strip.
In some embodiments, in a full cycle of rotation of the full gear, the full gear is engaged with the first intermittent gear during a first time period of the full cycle, and disengaged with first intermittent gear during a remaining time period of the full cycle. During the full cycle, the full gear maintains an engaged state with at least one of the first toothed strip or the third toothed strip.
In some embodiments, the rotary member is the first intermittent gear. The first intermittent gear includes at least one transmission toothed segment group. Each of the at least one transmission toothed segment group includes two transmission toothed segments disposed at opposing portions of the circumference of the first intermittent gear.
In some embodiments, at least one restoration component is disposed between the first mopping plate and the second mopping plate.
In some embodiments, when two transmission toothed segments of a same transmission toothed segment group of the first intermittent gear engage with the first toothed strip and the third toothed strip, respectively, the first intermittent gear drives the first mopping plate and the second mopping plate through the first toothed strip and the third toothed strip, respectively, to move toward one another to compress the restoration  component.
In some embodiments, when the two transmission toothed segments of a same transmission toothed segment group of the first intermittent gear are in a disengaged state with at least one of the first toothed strip or the third toothed strip, the restoration component drives the first mopping plate and the second mopping plate to move away from one another (e.g., in opposite directions) .
In some embodiments, the rotary member is the first intermittent gear. The first intermittent gear includes at least one transmission toothed segment group. Each of the at least one transmission toothed segment group includes two transmission toothed segments disposed at opposing portions of the circumference of the first intermittent gear.
In some embodiments, at least one restoration component is disposed between the first mopping plate and the second mopping plate.
In some embodiments, when the two transmission toothed segments included in a same transmission toothed segment group of the first intermittent gear are engaged with the first toothed strip and the third toothed strip, respectively, the first intermittent gear drives the first mopping plate and the second mopping plate through the first toothed strip and the third toothed strip, respectively, to move away from one another (e.g., in opposite directions) to extend the restoration component.
In some embodiments, when the two transmission toothed segments included in a same transmission toothed segment group of the first intermittent gear are in a disengaged state with at least one of the first toothed strip or the third toothed strip, the restoration component provides a pulling restoration force to drive the first mopping plate and the second mopping plate to move toward one another (e.g., in opposite directions toward one another) .
In some embodiments, when the two transmission toothed segments included in a same transmission toothed segment group of the first intermittent gear are engaged with the first toothed strip and the third toothed strip, respectively, the first intermittent gear drives the first mopping plate and the second mopping plate through the first toothed strip and the third toothed strip, respectively, to move toward one another (e.g., in opposite directions) to compress the restoration component.
In some embodiments, when the two transmission toothed segments included in a same transmission toothed segment group of the first intermittent gear are in a disengaged state with at least one of the first toothed strip or the third toothed strip, the restoration component provides a pushing restoration force to drive the first mopping plate and the second mopping plate away from one another (e.g., in opposite directions away from one another) .
In another aspect, the present disclosure provides a cleaning robot, which includes the disclosed mopping mechanism.
Compared with conventional technologies, the mopping mechanism and the cleaning robot of the present disclosure has the following advantages:
in the mopping mechanism and the cleaning robot of the present disclosure, the mopping mechanism includes a mopping plate movably mountable to the bottom surface and a rotary member configured to be rotatable  relative to the bottom surface. A transmission toothed segment of the rotary member is configured to be engageable with a toothed strip provided on the mopping plate, to drive the mopping plate to move reciprocatively relative to the bottom surface. Compared to the conventional configuration in which the mopping plate is fixedly mounted to the bottom surface, because the mopping plate of the present disclosure can move reciprocatively relative to the bottom surface, a mop mounted on the mopping plate can mop a surface to be cleaned repeatedly and reciprocatively, thereby enhancing the cleaning efficiency and cleaning effect.
Besides the above-described technical problems resolved by the present disclosure, the technical features provided by the technical solutions, and the advantageous effects provided by the technical features of the technical solutions, as well as other technical problems addressed by the mopping mechanism and cleaning device of the present disclosure, other technical features included in the technical solutions, and other advantageous effects provided by the other technical features, will be further explained in detail when describing the detailed embodiments.
BRIEF DESCRIPTION OF THE DRAWINGS
To explain the technical solutions of the present disclosure, the drawings that illustrate embodiments of the present disclosure will be briefly introduced. It is understood that the drawings described below are merely some of the embodiments of the present disclosure. A person having ordinary skills in the art can obtain other drawings based on the accompanying drawings without creative efforts. In the drawings:
FIG. 1 is a schematic perspective view of a cleaning device, according to an embodiment of the present disclosure;
FIG. 2A is a schematic illustration of a bottom configuration of the cleaning device, according to an embodiment of the present disclosure;
FIGs. 2B-2E illustrate the structures of the mopping mechanism and the motion states, according to an embodiment of the present disclosure;
FIGs. 3A-3C illustrate the structures of the mopping mechanism and the motion states, according to an embodiment of the present disclosure;
FIGs. 4A and 4B illustrate the structures of the mopping mechanism and the motion states, according to an embodiment of the present disclosure;
FIGs. 4C and 4D illustrate the structures of the mopping mechanism and the motion states, according to an embodiment of the present disclosure;
FIGs. 5A and 5B illustrate the structures of the mopping mechanism and the motion states, according to an embodiment of the present disclosure;
FIGs. 5C and 5D illustrate the structures of the mopping mechanism and the motion states, according to an embodiment of the present disclosure; and
FIGs. 6A and 6B illustrate the structures of the mopping mechanism and the motion states, according to an embodiment of the present disclosure.
Reference Numbers in the Drawings:
100 –cleaning device; 105 –exterior housing; 110 –main body; 111 –first bumper; 112 –second bumper; 120 –gap; 125 –camera; 130 –cleaning mechanism; 135 –omnidirectional wheel; 140 –wheel group; 145 –side brush; 150 –main brush; 155 –bottom surface; 170 –mopping mechanism; 171 –first mopping plate; 172 –second mopping plate; 175 –mopping plate; 180 –rotary member; 181 –transmission toothed segment; 182 –first toothed strip; 183 –second toothed strip; 185 –full gear; 190 –controller; 191 –first extension; 192 –second extension; 201 –first toothed strip; 203 –third toothed strip; 230 –rotary member; 231 –full gear; 232 –first intermittent gear; 241 –first transmission toothed segment; 242 –second transmission toothed segment; 252 –first intermittent gear; 260 –restoration component; 271 –first toothed strip; 272 –second toothed strip; 291 –first extension; 292 –second extension; 341 –first transmission toothed segment; 342 –second transmission toothed segment.
DETAILED DESCRIPTION
To render the objectives, features, and advantages of the present disclosure easier to understand, the technical solutions of the present disclosure will be described in detail with reference to the accompanying drawings. The embodiments described herein are merely some embodiments of the present disclosure, and are not all of the embodiments of the present disclosure. Based on the embodiments of the present disclosure, a person having ordinary skills in the art can obtain other embodiments without creative efforts, which all fall within the scope of protection of the present disclosure.
The singular forms “a, ” “an, ” and “the” are intended to include the plural forms as well, unless the context indicates otherwise. The terms “comprise, ” “comprising, ” “include, ” and the like specify the presence of stated features, steps, operations, elements, and/or components, and do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups.
As used herein, the terms “couple, ” “coupling, ” “coupled, ” “connect, ” “connection, ” “connected, ” or the like may encompass any suitable mechanical, electrical, electromagnetic coupling or connection. The coupling or connection may be wireless or wired. The coupling or connection may be direct or indirect.
The phrase “at least one of A or B” may encompass all combinations of A and B, such as A only, B only, or A and B. Likewise, the phrase “at least one of A, B, or C” may encompass all combinations of A, B, and C, such as A only, B only, C only, A and B, A and C, B and C, or A and B and C. The phrase “A and/or B” may be interpreted in a manner similar to that of the phrase “at least one of A or B. ” For example, the phrase “A and/or B” may encompass all combinations of A and B, such as A only, B only, or A and B. Likewise, the phrase “A, B, and/or C” has a meaning similar to that of the phrase “at least one of A, B, or C. ” For example, the phrase “A, B, and/or C” may encompass all combinations of A, B, and C, such as A only, B only, C only, A and B, A and C, B and C, or A and B and C.
Further, when an embodiment illustrated in a drawing shows a single element, it is understood that the embodiment may include a plurality of such elements. Likewise, when an embodiment illustrated in a drawing shows a plurality of such elements, it is understood that the embodiment may include only one such element. The number of elements illustrated in the drawing is for illustration purposes only, and should not be construed as  limiting the scope of the embodiment. Moreover, unless otherwise noted, the embodiments shown in the drawings are not mutually exclusive, and they may be combined in any suitable manner. For example, elements shown in one embodiment but not another embodiment may nevertheless be included in the other embodiment.
The term “processor” used herein may encompass any suitable processor, such as a central processing unit ( “CPU” ) , a graphics processing unit ( “GPU” ) , an application-specific integrated circuit ( “ASIC” ) , a programmable logic device ( “PLD” ) , or a combination thereof. Other processors not listed above may also be used. A processor may be implemented as software, hardware, firmware, or a combination thereof.
The term “non-transitory computer-readable medium” may encompass any suitable medium for storing, transferring, communicating, broadcasting, or transmitting data, signal, or information. For example, the non-transitory computer-readable medium may include a memory, a hard disk, a magnetic disk, an optical disk, a tape, etc. The memory may include a read-only memory ( “ROM” ) , a random-access memory ( “RAM” ) , a flash memory, etc.
A cleaning robot of conventional technology includes a mop mounted to a bottom surface of the cleaning robot. There is no relative movement between the mop and the bottom surface. The mop moves along with the cleaning robot in the moving direction of the cleaning device to mop a surface (e.g., a floor) to be cleaned. However, the conventional cleaning robot can only mop the surface to be cleaned in the moving direction of the cleaning robot, which results in a low cleaning efficiency and a poor cleaning effect. To address these limitations, the present disclosure provides a mopping mechanism and a cleaning robot. A mopping plate and a rotary member are mounted at the bottom surface of the cleaning robot. The mopping plate is slidable relative to the bottom surface. The rotary member is rotatable relative to the bottom surface and the mopping plate. A transmission toothed segment provided on the rotary member is engageable with a toothed strip provided on the mopping plate. When the rotary member rotates, the mopping plate is driven by the transmission toothed segment and the toothed strip to move reciprocatively relative to the bottom surface. Thus, a mop mounted at the mopping plate may mop a surface to be cleaned repeatedly and reciprocatively, thereby enhancing the cleaning efficiency and cleaning effect.
FIG. 1 is a schematic perspective view of a device 100, according to an embodiment of the present disclosure. The device 100 may also be referred to as a mobile device 100, a cleaning device 100, a vacuum cleaner 100, a vacuum cleaning robot 100, a sweeping-mopping robot 100, or a cleaning robot 100. For discussion purposes, the device 100 is referred to as a cleaning device 100 or a cleaning robot 100. The cleaning device 100 may include a main body 110. The main body 110 may have any suitable shape, such as a circular shape (as shown in FIG. 1) , a rectangle shape, a square shape, an oval shape, or a combination thereof. The main body 110 may include an exterior housing (or referred to as a housing) 105 for enclosing and accommodating various elements, parts, or components of the cleaning device 100. The main body 110 (or the housing 105) may include a first bumper (or first cover, front bumper) 111 and a second bumper (or second cover, rear bumper) 112 at a circumferential side of the main body 110. The first bumper 111 may be separated from the second bumper by one or more gaps 120. At least one of the first bumper 111 or the second bumper 112 may be resiliently coupled with the housing 105 or another part of the main body 110 through an elastic member, such as a spring (not shown) . When the cleaning device 100 collides with an obstacle, such as a wall or furniture, the first bumper 111 or the  second bumper 112 may retract when pushed by the obstacle, thereby providing a buffer or an impact absorption for the cleaning device 100. One or more collision sensors may be disposed at the first bumper 111 and/or the second bumper 112. When the first bumper 111 and/or the second bumper 112 collides with an object, the one or more collision sensors may detect the collision and generate a signal indicating the occurrence of the collision. In some embodiments, the collision sensor may detect a potential collision and generate a warning signal, or trigger a controller (not shown) to make a collision avoidance control. For example, the controller may control the operation of the cleaning device 100 to stop the cleaning device 100 or change the moving direction of the cleaning device 100 to avoid the collision. The cleaning device 100 may also include a camera 125. The camera 125 may be configured to capture one or more images of the environment in which the cleaning device 100 operates. For illustrative purposes, the camera 125 is shown as being mounted at the front portion (e.g., behind a protective cover disposed at the front bumper 111) of the cleaning device 100. It is understood that the camera 125 may be mounted at any other location of the cleaning device 100, e.g., a top portion of the housing, a side portion, a back portion, etc. The orientation of the camera 125 may be in any suitable directions, such as facing front, facing back, facing sides, facing up (e.g., ceiling of a room) , facing a direction forming an acute angle relative to the moving direction of the cleaning device, etc. In some embodiments, two or more cameras may be disposed at various portions of the cleaning device 100. In some embodiments, the facing direction of each camera may be adjustable through a manual adjustment or an electrical adjustment. In some embodiments, the facing direction of a camera may be fixed. The cleaning device 100 may include a controller 190 (shown in FIG. 2A) . The controller 190 may analyze the images to extract information (e.g., identify objects, which may be obstacles for the movement of the cleaning device 100) for the purpose of localization and mapping of the cleaning device 100. The cleaning device 100 may further include one or more sweeping elements or mechanisms, such as one or more brushes. FIG. 1 shows two side brushes 145 disposed at two sides of a front portion of the cleaning device 100 at the bottom of the cleaning device 100.
FIG. 2A is a schematic illustration of a bottom view of the cleaning device 100 shown in FIG. 1, according to an embodiment of the present disclosure. As shown in FIG. 2A, the cleaning device 100 may include the main body 110 and one or  more motion devices  135 and 140, one or more driving mechanisms (e.g., electric motor, not shown) , and a mopping mechanism 170 mounted at a bottom surface 155 of the main body 110. The main body 110 of the cleaning device 100 may include the bottom surface 155 and the exterior housing 105 shown in FIG. 1. The bottom surface 155 and the exterior housing 105 may be connected to form a chamber (not shown) . The chamber may provide mounting spaces the various parts or mechanisms of the cleaning device 100, including, e.g., the electric motor.
The one or more driving mechanisms may be disposed in the chamber formed by the bottom surface 155 and the exterior housing 105. The one or more driving mechanisms may provide a driving force to the one or  more motion devices  135 and 140 and the mopping mechanism 170. The one or more driving mechanisms may include one or more driving devices, such as electric motors. The one or more driving devices may provide a driving force to the one or  more motion devices  135 and 140 and the mopping mechanism 170. In some embodiments, a single driving device may prove the driving force for the one or  more motion devices  135 and 140  and the mopping mechanism 170. In some embodiments, the one or  more motion devices  135 and 140 may share a driving device, and the mopping mechanism 170 may be coupled with another driving device.
For the convenience of describing the mounting locations of the one or  more motion devices  135 and 140 and the mopping mechanism 170 on the bottom surface 155, in the present disclosure, the bottom surface 155 may be, but not be limited to, a rectangular plate, a circular plate, a kidney shaped plate, or a combination thereof. It is understood that the bottom surface 155 may have any other suitable shape. Along the moving direction of the cleaning device 100, the bottom surface 155 may include a front end and a back end, as shown in FIG. 1. In some embodiments, the end where the camera 125 is mounted may be treated as the front end.
In some embodiments, the one or  more motion devices  135 and 140 may drive the cleaning device 100 to move, such that the mopping mechanism 170 mounted at the bottom surface 155 may be driven to move reciprocatively to clean the floor. In some embodiments, the one or  more motion devices  135 and 140 may include an omnidirectional wheel (labelled as 135) and at least two wheel groups (labelled as 140) . The omnidirectional wheel 135 may serve as the turning wheel of the cleaning device 100 to control the turning of the cleaning device 100. The two wheel groups 140 may be disposed at the bottom surface 155 at opposite sides to control the forward and backward movements of the cleaning device 100. The omnidirectional wheel 135 may be disposed at the front end of the bottom surface 155. The two wheel groups 140 are disposed at edge locations of the bottom surface 155 on both sides. That is, the locations of the omnidirectional wheel 135 and the two wheel groups 140 may be configured to form a triangle (when location points are connected) at the bottom surface 155. In some embodiments, the  motion devices  135 and 140 may be in other forms, such as track chains, biped or multi-ped walking mechanisms.
In some embodiments, the cleaning device 100 may be a mopping-sweeping integrated device, which has both the floor sweeping function and the floor mopping function. Thus, the cleaning device may further include a cleaning mechanism 130. For example, the cleaning mechanism 130 may be mounted to the bottom surface 155, and may include one or more elements that are rotatable relative to the bottom surface 155, to sweep and collect trash from the floor to be cleaned. In some embodiments, as shown in FIG. 2A, the cleaning mechanism 130 may include a main brush 150 and at least one side brush 145. The main brush 150 may be disposed at a central location of the bottom surface 155. Multiple side brushes 145 may be uniformly distributed at a front portion of the bottom surface 155. As shown in FIG. 2A, in some embodiments, two side brushes 145 may be symmetrically disposed at edge locations at two sides of the bottom surface 155. The two side brushes 145 may be disposed at the front end of the bottom surface 155. The omnidirectional wheel 135 may be located between the two side brushes 145. The main brush 150 may be disposed at a central location of the bottom surface 155, and may be located between the two wheel groups 140. In other embodiments, the cleaning device 100 may be a floor mopping device (e.g., robot) , which may only have the mopping mechanism 170 but not the cleaning mechanism 130, i.e., only have the floor moping function but not the floor sweeping function.
In some embodiments, in the mopping-sweeping integrated configuration of the cleaning device 100, using the forward moving direction of the cleaning device 100 as a reference, the mopping mechanism 170 may be disposed behind the cleaning mechanism, to provide the “first sweeping, then mopping” operation scheme. The  mounting locations of the mopping mechanism 170 and the cleaning mechanism 130 are not limited. For example, the cleaning mechanism 130 may be mounted behind the mopping mechanism 170. In the embodiment shown in FIG. 2A, the mopping mechanism 170 is disposed behind the cleaning mechanism 130, which may enable the cleaning device 100 to provide an enhanced cleaning effect for the floor.
In the present disclosure, the mopping mechanism 170 includes at least one rotary member 180 and at least one mopping plate 175. The rotary member 180 may include at least one transmission toothed segment 181. The at least one transmission toothed segment 181 may be provided at a portion of the circumference of the rotary member 180. Although one transmission toothed segment 181 is shown in FIG. 2A, the rotary member 180 may include any suitable number of transmission toothed segments, such as two, three, four, etc. The mopping plate 175 may be slidably mounted at the bottom surface 155. The sliding direction of the mopping plate 175 may be parallel with or may cross the moving direction of the cleaning device 100. In some embodiments, the sliding direction of the mopping mechanism 170 along the bottom surface 155 may be perpendicular to the moving direction of the cleaning device 100.
One or more toothed strips or segments may be mounted to, or otherwise provided at, the mopping plate 175. The one or more toothed strips may be configured to engage with the at least one transmission toothed segment 181 of the rotary member 180 during operation. FIG. 2A shows that two toothed strips or segments (a first toothed strip 182 and a second toothed strip 183) are mounted to, or otherwise provided at, the mopping plate 175 to engage with the at least one transmission toothed segment 181 of the rotary member 180. It is understood that in some embodiments, the mopping mechanism 170 may include only one toothed strip or segment. Each of the  toothed strips  182 and 182 may include multiple teeth for engaging with the teeth of the transmission toothed segment 181. The rotary member 180 may be mounted on the bottom surface 155. In some embodiments, the rotary member 180 may be located at an end of the chamber of the cleaning device 100. The rotary member 180 may be connected with a driving mechanism (not shown) disposed at least partially within the chamber of the cleaning device 100. The driving mechanism may be configured to drive the rotary member 180 to rotate relative to the bottom surface 155. When the rotary member 180 rotates, the at least one transmission toothed segment 181 may engage with the toothed strip 182 of the mopping plate 175 in a first time period, and engage with the toothed strip 183 of the mopping plate 175 in a second time period. The transmission toothed segment 181 may include multiple transmission teeth. The transmission teeth of the transmission toothed segment 181 may engage with the teeth on one of the toothed strip 182 or the toothed strip 183 of the mopping plate 3610 at a specific time.
The driving force generated by the one or more driving mechanism (not shown) may be transmitted to the mopping plate 175 through the transmission toothed segment 181 of the rotary member 180 and the  toothed strips  182 and 183 provided at the mopping plate 175, to drive the mopping plate 175 to move reciprocatively relative to the bottom surface 155. Compared with the conventional technology, where the mop is fixedly mounted to the bottom surface, the mopping plate 175 of the present disclosure can move reciprocatively relative to the bottom surface 155, and therefore, can repeatedly and reciprocatively mop the floor to be cleaned, which can enhance the cleaning efficiency and cleaning effect.
In some embodiments, the mopping plate 175 may be driven to slide reciprocatively relative to the  bottom surface 155 through changing the direction of the driving force provided by the driving mechanism. For example, the driving mechanism may include an electric motor. By changing the rotation direction of the electric motor, the direction of the driving force may be changed. As a result, the mopping plate 175 may be driven to move reciprocatively relative to the bottom surface 155 (e.g., reciprocating sliding) . In some embodiments, multiple toothed strips may be disposed at different locations of the mopping plate 175, and the configuration shown in FIG. 2A is merely an exemplary configuration. Through periodic engagement between the  toothed strips  182 and 183 and the transmission toothed segment (s) 181 on the rotary member 180 (hence the rotary member may also be referred to as a transmission member) and through different engaging locations, the mopping plate 175 may be driven to reciprocatively slide relative to the bottom surface 155.
The number of the mopping plates included in the mopping mechanism 170, the number and locations of the toothed strips included on the mopping plates, and the structural form of the rotary member 180 may be configured to be other suitable numbers, locations, and forms. Different exemplary configurations of the mopping mechanism will be explained as follows.
FIGs. 2B-2E illustrates states of the movement or operation of the mopping mechanism 170 at different time instances. As shown in FIG. 2B to FIG. 2E, the mopping mechanism 170 includes the mopping plate 175 mounted to the bottom surface 155. For discussion purposes, the mopping plate 175 may also be referred to as a first mopping plate 175. In some embodiments, a guiding block (not shown) may be disposed at a back side of the first mopping plate 175 facing the bottom surface 155. Guiding rails (not shown) may be provided at the bottom surface 155 to match with the guiding block provided at the first mopping plate 175. The first mopping plate 175 may be mounted to the bottom surface 155 through the coupling between the guiding block and the guiding rails.
A mounting groove may be provided at a central portion of the first mopping plate 175. The mounting groove may be a rectangular groove, a kidney-shaped groove, or a groove with any other suitable shape. For example, in some embodiments, an arc shaped groove connected with the rectangular groove may be disposed at two ends of the rectangular groove. The arc-shaped grooves may match with gears disposed in the mounting groove. Along the moving direction of the first mopping plate 175, the mounting groove may include a first mounting edge and a second mounting edge. The first mounting edge and the second mounting edge may be parallel with one another and may face one another. The rotary member 180 may be disposed within a mounting space between the first mounting edge and the second mounting edge. The first toothed strip 182 may be disposed at the first mounting edge. The second toothed strip 183 may be disposed at the second mounting edge. The first toothed strip 182 and the second toothed strip 183 may engage with the transmission toothed segment 181 of the rotary member 180, such that the rotary member 180 may drive the first mopping plate 175 to move reciprocatively relative to the bottom surface 155.
As described above, the mounting groove may be provided at the central portion of the first mopping plate 175. The rotary member 180 may be located in the mounting groove. The rotary member 180 may be driven by the driving mechanism to rotate in the mounting groove relative to the bottom surface 155. In some embodiments, a mounting hole may be disposed on the first mopping plate 175 at the location where the mounting  groove is provided. The mounting hole may be a through hole penetrating the upper and lower surfaces of the first mopping plate 175, which makes it convenient to mount the rotary member 180 to the first mopping plate 175. The mounting hole may have a rectangular shape or a rounded rectangular shape. The difference between the mounting hole and the mounting groove does not lie in their shapes, but in the following aspect: the mounting hole is a through aperture or hole that extends throughout the upper and lower surfaces of the mopping plate 175, whereas the mounting groove penetrates only one surface of the mopping plate 175. For the convenience of description, in the present disclosure, unless otherwise noted, the mounting groove and the mounting hole are collectively referred to as the mounting structure. The present disclosure does not limit the detailed configuration of the mounting structure disposed at the first mopping plate 175 for mounting the rotary member 180.
For discussion purposes, the rotary member 180 of the present disclosure may be referred to as a second intermittent gear 180. The second intermittent gear 180 may be located in the mounting groove. The second intermittent gear 180 may rotate for a full cycle (e.g., 360 degrees) relative to the bottom surface 155. At least one transmission toothed segment 181 may be disposed at the circumference of the second intermittent gear 180. During a rotation of second intermittent gear 180 relative to the bottom surface 155, each transmission toothed segment (when multiple transmission toothed segments are included) may be engaged with the first toothed strip 182 and the second toothed strip 183, respectively. In some embodiments, when the second intermittent gear 180 is provided with two or more transmission toothed segments, the transmission toothed segments may be alternately disposed at the circumference of the second intermittent gear 180, such that when a transmission toothed segment is disposed at a first portion or location on the second intermittent gear 180, no other transmission toothed segment is disposed at a second location or portion opposite to the first portion or location. In other words, no two transmission toothed segments are disposed at opposite portions of the circumference of the second intermittent gear 180 along a same diameter.
In some embodiments, two or more transmission toothed segments are included. When the second intermittent gear 180 rotates for a full cycle relative to the bottom surface 155, at a specific time or during a specific time period, only one of the transmission toothed segments is engaged with the first toothed strip 182 or the second toothed strip 183 of the first mopping plate 175. No multiple transmission toothed segments are engaged with the first toothed strip 182 and the second toothed strip 183 in the same time period. This configuration can avoid the jamming phenomenon between the first mopping plate 175 and the second intermittent gear 180. Next, the above-described technical solution will be further explained based on the number of transmission toothed segments included on the second intermittent gear 180.
For example, when there is one transmission toothed segment on the second intermittent gear 180, a length of the transmission toothed segment may occupy 1/3 or 1/4 (or other suitable ratio) of the total circumference of the second intermittent gear 180, such that during the rotation of the second intermittent gear 180, the jamming phenomenon between the first mopping plate 175 and the second intermittent gear 180 can be avoided.
In some embodiments, the second intermittent gear 180 may be provided with two transmission toothed segments, which may be spaced apart along the circumference of the second intermittent gear 180. For  example, the second intermittent gear 180 may include two alternately disposed transmission toothed segments: a first transmission toothed segment and a second transmission toothed segment. The first transmission toothed segment may be disposed at a first portion (or location) of the circumference of the second intermittent gear 180. A portion (or location) opposite to the first portion may be defined as a second portion (or location) of the second intermittent gear 180. The first portion and the second portion may be along the same diameter. The second transmission toothed segment may be disposed at a portion of the circumference on the second intermittent gear 180 other than the first portion and the second portion. That is, the second transmission toothed segment is not located at a portion opposite to the first portion on the second intermittent gear 180 where the first transmission toothed segment is located. This configuration can avoid the jamming phenomenon between the second intermittent gear 180 and the toothed strips of the first mopping plate 175.
In some embodiments, during a time period in which the second intermittent gear 180 rotates for a full cycle relative to the bottom surface 155, when the first transmission toothed segment is engaged with the first toothed strip 182 or the second toothed strip 183, the second transmission toothed segment is disengaged with the first toothed strip 182 or the second toothed strip 183. That is, when the second intermittent gear 180 rotates, during a time period, only one of the first transmission toothed segment and the second transmission toothed segment is engaged with the first toothed strip 182 or the second toothed strip 183, and another transmission toothed segment is in a disengaged state (i.e., not engaged with either of the first toothed strip 182 or the second toothed strip 183) . This configuration can avoid the jamming phenomenon between the first mopping plate 175 and the second intermittent gear 180.
Similarly, if the second intermittent gear 180 includes three or more transmission toothed segments, the transmission toothed segments may be alternately disposed along the circumference of the second intermittent gear 180. No transmission toothed segment is disposed at a location opposing another location of the second intermittent gear 180 where a transmission toothed segment is already disposed. When the second intermittent gear 180 rotates, if any of the transmission toothed segments is engaged with the first toothed strip 182 or the second toothed strip 183, then during the same time period, other transmission toothed segments are all in a disengaged state. That is, during a same time period, only one transmission toothed segment is engaged with one of the first toothed strip 182 or the second toothed strip 183.
The second intermittent gear 180 may be connected with a driving mechanism (not shown) . The driving mechanism (e.g., an electric motor) may drive the second intermittent gear 180 to perform a full cycle movement relative to the bottom surface 155. Next, the movement process of the first mopping plate 175 relative to the bottom surface 155 will be explained using a second intermittent gear 180 having one transmission toothed segment 181 as an example.
When the second intermittent gear 180 rotates clockwise as shown in FIG. 2B, the transmission toothed segment 181 of the second intermittent gear 180 may be engaged with the first toothed strip 182 to drive the first mopping plate 175 to move to the right side of the bottom surface 155. When the transmission toothed segment 181 is disengaged with the first toothed strip 172 and has not yet been engaged with the second toothed strip 183, as shown in FIG. 2C, the first toothed strip 182 and the second toothed strip 183 are both in the  disengaged state. There is no force (or there is minimal force) between the second intermittent gear 180 and the mopping plate 175.
As the second intermittent gear 180 continues to rotate clockwise, as shown in FIG. 2D, when the transmission toothed segment 181 engages with the second toothed strip 183, the first mopping plate 175 starts moving toward the left side of the bottom surface 155. That is, the first mopping plate 175 starts moving toward its initial location, until the transmission toothed segment 181 on the second intermittent gear 180 is separated (e.g., disengaged) from the second toothed strip 183. As shown in FIG. 2E, the transmission toothed segment 181 may again engage with the first toothed strip 182 and the second toothed strip 183, until the first mopping plate 175 returns to the initial location.
During the processes described above, the first mopping plate 175 completes a cycle of reciprocating movement relative to the bottom surface 155. When the second intermittent gear 180 continues to rotate clockwise, and when the transmission toothed segment 181 again engages with the first toothed strip 182, the first mopping plate 175 may enter a second round or cycle of reciprocating movement. As a result, the first mopping plate 175 may continuously perform cyclic, reciprocating movements. It is understood that the second intermittent gear 180 may continuously rotate counter-clockwise instead of clockwise to perform the continuous cyclic reciprocating movements relative to the bottom surface, which is not repeated here.
FIG. 3A and FIG. 3B schematically illustrate the structure and motion states of the mopping mechanism 170, according to an embodiment of the present disclosure.
As shown in FIG. 3A and FIG. 3B, the mopping mechanism 170 may include at least one rotary member 180 and two mopping plates. The two mopping plates may include a first mopping plate 171 and a second mopping plate 172. The first mopping plate 171 may be slidably mounted to the bottom surface 155. The connection between the first mopping plate 171 and the bottom surface 155 may refer to any of the configurations disclosed in other embodiments. The second mopping plate 172 may be fixedly mounted to the bottom surface 155. The first mopping plate 171 and the second mopping plate 172 may be disposed side by side at the bottom surface 155. A gap may be provided between the first mopping plate 171 and the second mopping plate 172 to allow for the first mopping plate 171 to slide relative to the bottom surface 155.
The rotary member 180 may be disposed between the first mopping plate 171 and the second mopping plate 172. A connection plate may be disposed at a side of the first mopping plate 171 farcing the second mopping plate 172. The connection plate may be a part of the first mopping plate 171, or may be a separate part that is detachably connected with the first mopping plate 171. The connection plate of the first mopping plate 171 may be provided with a mounting groove. The mounting groove may be a rectangular groove, a kidney-shaped groove (as shown in FIG. 3A and FIG. 3B) , a fork shaped structure having an open end (as shown in FIG. 3C) , or a groove having any other suitable shape.
Along the moving direction of the first mopping plate 171, the mounting groove may include a first mounting edge and a second mounting edge. The first mounting edge and the second mounting edge may be parallel with one another and may face one another. The first toothed strip 182 may be provided at (e.g., formed at or mounted to) the first mounting edge. The second toothed strip 183 may be provided at (e.g., formed at or  mounted to) the second mounting edge. The rotary member 180 may be disposed within the mounting space between the first mounting edge and the second mounting edge (i.e., between the first toothed strip 182 and the second toothed strip 183) . The first toothed strip 182 and the second toothed strip 183 may be engaged with a transmission toothed segment 181 on the rotary member 180. The rotary member 180 may be the second intermittent gear described above. The manner in which the second intermittent gear 180 engages with the first toothed strip 182 and the second toothed strip 183 in the embodiment shown in FIG. 3A and FIG. 3B are the same as those described above in connection with FIGs. 2B-2E, which is not repeated here.
In some embodiments, the second intermittent gear 180 may include one transmission toothed segment 181. Next, the full cycle movement of the second intermittent gear 180 relative to the bottom surface 155 when driven by the driving mechanism will be explained.
As shown in FIG. 3A, when the second intermittent gear 180 rotates clockwise, and when the transmission toothed segment 181 is engaged with the first toothed strip 182, the second intermittent gear 180 may drive the first toothed strip 182 through the transmission toothed segment 181 to move in a direction toward the second mopping plate 172. As a result, the first mopping plate 171 may move toward the second mopping plate 172. In other words, the first mopping plate 171 and the second mopping plate 172 may move toward one another. When the second intermittent gear 180 continues to rotate clockwise, and when the transmission toothed segment 181 is engaged with the second toothed strip 183, as shown in FIG. 3B, the second intermittent gear 180 may drive the second toothed strip 183 through the transmission toothed segment 181 to move in a direction away from the second mopping plate 172, thereby driving the first mopping plate 171 to move in a direction away from the second mopping plate 172. Accordingly, the first mopping plate 171 completes a reciprocating movement relative to the bottom surface 155 (i.e., relative to the second mopping plate 172) . When the second intermittent gear 180 continues to rotate clockwise, the transmission toothed segment 181 of the second intermittent gear 180 may again engage with the first toothed strip 182. The first mopping plate 171 may enter a next cycle of reciprocating movement. Thus, the first mopping plate 171 may continuously perform cyclic, reciprocating movements relative to the bottom surface 155. It is understood that the second intermittent gear 180 may continuously rotate in the counter-clockwise direction, instead of the clockwise direction, to achieve the continuous cyclic reciprocating movements of the first mopping plate 171 relative to the bottom surface 155, which is not repeated here.
FIG. 4A and FIG. 4B schematically illustrate the structure and the motion states of the mopping mechanism 170, according to an embodiment of the present disclosure.
As shown in FIG. 4A and FIG. 4B, the mopping mechanism 170 of the present disclosure may include two mopping plates and a rotary member. The two mopping plates may include the first mopping plate 171 and the second mopping plate 172. The first mopping plate 171 may be slidably mounted to the bottom surface 155. The connection between the first mopping plate 171 and the bottom surface 155 may refer to the above described connection in any of the disclosed embodiments, which is not repeated here.
In some embodiments, the second mopping plate 172 may be fixedly mounted to the bottom surface 155. The first mopping plate 171 and the second mopping plate 172 may be disposed side by side at the bottom surface 155. A gap may be provided between the first mopping plate 171 and the second mopping plate 172 to  allow the first mopping plate 171 to move relative to the bottom surface 155. A first extension 191 may extend from a side of the first mopping plate 171 toward the second mopping plate 172. A first toothed strip 201 may be provided at (e.g., mounted to or formed at) a side of the first extension 191 facing a rotary member 185.
In some embodiments, the rotary member 185 may be a full gear (also referred to as 185) . The full gear 185 may be mounted to the bottom surface 155, and may be located between the first mopping plate 171 and the second mopping plate 172. The full gear 185 may engage with the first toothed strip 201. The full gear 185 may be connected with a driving mechanism (not shown) . When driven by the driving mechanism, the full gear 185 may perform a half cycle movement or a full cycle movement relative to the bottom surface 155, i.e., first rotating in a first direction for a first angle and then rotating in a second direction for a second angle. The first direction and the second direction may be the clockwise direction and the counter-clockwise direction, respectively, or may be the counter-clockwise direction and the clockwise direction, respectively. The first angle may or may not be equal to the second angle. At least one of the first angle or the second angle may be an angle of 90°, 180°, 360°, or 600°, etc. In some embodiments, the driving mechanism may be an electric motor. By controlling the clockwise or counter-clockwise rotation of the electric motor, the full gear 185 may be controlled to perform a half cycle movement or a full cycle movement relative to the bottom surface 155.
As shown in FIG. 4A, the electric motor (not shown) may drive the full gear 185 to rotate in a first direction (e.g., clockwise direction) . At this moment, the first mopping plate 171 may start moving in a direction toward the second mopping plate 172. After the full gear 185 rotates clockwise for the first angle, the first mopping plate 171 may have moved to a predetermined location, such as an end location of the first toothed strip 201 as shown in FIG. 4B. Then, the electric motor may drive the full gear 185 to rotate in a second rotation direction (e.g., counter-clockwise direction) . At this moment, the first mopping plate 171 may start moving in a direction away from the second mopping plate 172, i.e., the first mopping plate 171 may start returning to its initial location. After an amount of the second angle for which the full gear 185 has rotated is substantially the same as an amount of the first angle, the first mopping plate 171 may have moved to its initial location. At this moment, the first mopping plate 171 completes a cycle of reciprocating movement relative to the bottom surface 155. When the full gear 185 again starts rotation in the first direction, the first mopping plate 171 enters a next cycle of reciprocating movement. As a result, the first mopping plate 171 may continuously perform cyclic, reciprocating movements relative to the bottom surface 155.
It should be understood that the rotary member of the present disclosure is not limited to be the full gear 185 that performs full cycle movements relative to the bottom surface 155. In some embodiments, the rotary member may be the second intermittent gear 180 that includes at least one transmission toothed segment. For example, a rotation range for the second intermittent gear 180 when the transmission toothed segment is engaged with the first toothed strip 201 may be configured such that the second intermittent gear 180 may perform a half cycle movement or a quarter cycle movement relative to the bottom surface 155. The second intermittent gear 180 may be used in the embodiment shown in FIG. 4A to replace the full gear 185, and may be configured in a manner similar to the second intermittent gear 180 described above in connection with FIGs. 2B-3C.
FIG. 4C and FIG. 4D are schematic illustrations of the structure and motion states of the mopping  mechanism, according to an embodiment of the present disclosure.
The embodiment shown in FIG. 4C and FIG. 4D is based on the embodiment shown in FIG. 4A and FIG. 4B. Descriptions of the similar or the same features between the embodiments are not repeated. The differences between the embodiment shown in FIG. 4C and FIG. 4D and the embodiment shown in FIG. 4A and FIG. 4B include: the first mopping plate 171 and the second mopping plate 172 are slidably mounted to the bottom surface 155, and the first mopping plate 171 and the second mopping plate 172 are disposed side by side with one another. A space is provided between the first mopping plate 171 and the second mopping plate 172 to allow the first mopping plate 171 and the second mopping plate 172 to slide toward one another. The first extension 191 of the first mopping plate 171 extends toward the second mopping plate 172. A second extension 192 extends from the second mopping plate 172 toward the first mopping plate 171. The first toothed strip 201 is provided at a side of the first extension 191 that faces the second extension 192. A third toothed strip 203 may be provided at a side of the second extension 192 that faces the first extension 191. That is, the first toothed strip 201 and the third toothed strip 203 may be disposed parallel with one another, and may face one another.
In some embodiments, the rotary member 185 included in the embodiment shown in FIG. 4C may be a full gear (also referred to as 185) . The full gear 185 may be located between the first toothed strip 201 and the third toothed strip 203. The full gear 185 may be engaged with the first toothed strip 201 and the third toothed strip 203 at the same time. The full gear 185 may be connected with a driving mechanism (not shown) . When driven by the driving mechanism, the full gear 185 may perform a half cycle movement or a full cycle movement relative to the bottom surface 155 (the half cycle movement has been described above) . For example, the driving mechanism may include an electric motor. Through controlling the clockwise and counter-clockwise rotation of the electric motor, the full gear 185 may be driven to perform the half cycle movement or the full cycle movement relative to the bottom surface 155.
In the embodiment shown in FIG. 4C, the electric motor (not shown) may drive the full gear 185 to rotate clockwise (in this embodiment, the first rotation direction is the clockwise direction, and the second rotation direction is the counter-clockwise direction) . At this moment, the first mopping plate 171 may move in a direction toward the second mopping plate 172. Simultaneously, the second mopping plate 172 may move in a direction toward the first mopping plate 171. That is, the first mopping plate 171 and the second mopping plate 172 may move toward one another. After the full gear 185 rotates clockwise for a first angle (the first angle may be, e.g., 90°, 180°, 300°, or 400°, etc. ) , the first mopping plate 171 and the second mopping plate 172 may have moved to a specific location respectively (e.g., an end location of the first toothed strip 201 and/or the third toothed strip 203) .
As shown in FIG. 4D, the electric motor may drive the full gear 185 to rotate counter-clockwise. At this moment, the first mopping plate 171 may move in a direction away from the second mopping plate 172. The second mopping plate 172 may also move in a direction away from the first mopping plate 171. That is, the first mopping plate 171 and the second mopping plate 172 may move away from one another. When the full gear 185 has rotated counter-clockwise for a second angle (the second angle may be equal to the first angle or may be different from the first angle) , the first mopping plate 171 and the second mopping plate 172 may have moved to their initial locations. Accordingly, the first mopping plate 171 and the second mopping plate 172 complete a cycle  of reciprocating movement relative to the bottom surface 155. At the same time, the first mopping plate 171 and the second mopping plate 172 each complete a cycle of reciprocating movement separately. When the full gear 185 starts to rotate again in the first direction, which is the clockwise direction, the first mopping plate 171 and the second mopping plate 172 enter the next cycle (or period) of reciprocating movements. Therefore, the first mopping plate 171 and the second mopping plate 172 may continuously perform cyclic, reciprocating movements relative to the bottom surface 155.
FIG. 5A and FIG. 5B schematically illustrate the structure and motion states of the mopping mechanism, according to an embodiment of the present disclosure.
As shown in FIG. 5A and FIG. 5B, this embodiment is based on the embodiment shown in FIG. 4A and FIG. 4B. The difference between the embodiment shown in FIG. 5A and FIG. 5B and the embodiment shown in FIG. 4A and FIG. 4B include: a rotary member 230 included therein is formed by a first intermittent gear 232 and a full gear 231 that are coupled with one another. The first intermittent gear 232 may engage with the full gear 231 during rotation at certain time periods. As described above in connection with the embodiment shown in FIG. 4A and FIG. 4B, the first mopping plate 171 may include the first extension 191 extending from the first mopping plate 171 toward the second mopping plate 172. The first extension 171 may include the first toothed strip 201 provided at a side facing the rotary member 230. The first toothed strip 201 may engage with the first intermittent gear 232 and the full gear 231. The features included in the embodiment shown in FIG. 5A and FIG. 5B similar to or the same as those included in the embodiment shown in FIG. 4A and FIG. 4B will not be described in detail.
In some embodiments, the full gear 231 may be engaged with the first toothed strip 201 at all time during an operation or a full cycle rotation. The first intermittent gear 232 may include at least one transmission toothed segment group. Each of the at least one transmission toothed segment group may include two transmission toothed segments disposed at opposite portions or locations of the first intermittent gear 232. FIG. 5A shows one transmission toothed segment group for illustrative purposes. The transmission toothed segment group includes two transmission toothed segments: a first transmission toothed segment 241 and a second transmission toothed segment 242. The first transmission toothed segment 241 may be disposed at a first location (or first portion) of the first intermittent gear 232. The second transmission toothed segment 242 may be disposed at a second location (or second portion) of the first intermittent gear 232. That is, the two transmission  toothed segments  241 and 242 of the transmission toothed segment group may be disposed at the opposite portions or locations of the first intermittent gear 232.
The first transmission toothed segment 241 and the second transmission toothed segment 242 may engage with the first toothed strip 201 separately at a predetermined time interval or time period. That is, when the first transmission toothed segment 241 is engaged with the first toothed strip 201, the second transmission toothed segment 242 and the first toothed strip 201 may be in a disengaged state, and the second transmission toothed segment 242 and the full gear 231 may be in a disengaged state. In other words, when a transmission toothed segment (e.g., 241 or 242) of the first intermittent gear 232 is engaged with the first toothed strip 201 or the full gear 231, another transmission toothed segment (e.g., 242 or 241) of the same transmission toothed segment group is in a disengaged state with the first toothed strip 201 and the full gear 231. In addition, during a full cycle of  rotation of the full gear 231 (i.e., rotating for 360°) , the full gear 231 may be engaged with the first intermittent gear 232 during a first time period of the full cycle. During a remaining time period of the full cycle, the full gear 231 and the first intermittent gear 232 may be disengaged. During the full cycle, the full gear 231 may maintain an engaged state with the first toothed strip 201.
In some embodiments, the first intermittent gear 232 shown in FIG. 5A may be an active gear, and may be connected with a driving mechanism, such as an electric motor (not shown) . When driven by the driving mechanism, the first intermittent gear 232 may perform full cycle movements relative to the bottom surface 155. When the first transmission toothed segment 241 of a transmission toothed segment group is engaged with the first toothed strip 201, the first intermittent gear 232 and the full gear 231 may be in the disengaged state. The first intermittent gear 232 may drive the first mopping plate 171 to move in a direction toward the second mopping plate 172. At the same time, the driving force may be transmitted to the full gear 231 through the first toothed strip 241, to cause the full gear 231 to passively rotate following the rotation of the first intermittent gear 232.
As shown in FIG. 5B, when the first intermittent gear 232 rotates clockwise, the first transmission toothed segment 241 may separate from the first toothed strip 201. Then, the first transmission tooth segment 241 may engage with the full gear 231. At this moment, the second transmission toothed segment 242 is in a disengaged state and gradually approaches the first toothed strip 201. Because the first transmission toothed segment 241 is engaged with the full gear 231, the first transmission toothed segment 241 may drive the full gear 231 to rotate counter-clockwise. The driving force may be transmitted to the first toothed strip 201 through the full gear 231, such that the first mopping plate 171 may be driven to move in a direction away from the second mopping plate 172. That is, the first mopping plate 171 may move toward its initial location.
As the first intermittent gear 232 continues to rotate clockwise, after the first transmission toothed segment 241 is separated from the full gear 231, the first mopping plate 171 may return to its initial location. Accordingly, the first mopping plate 171 completes a cycle of reciprocating movement relative to the bottom surface 155. When the second transmission toothed segment 242 engages with the first toothed strip 201, the first mopping plate 171 may enter the next cycle of reciprocating movement. Therefore, the first mopping plate 171 may continuously perform cyclic, reciprocating movements relative to the bottom surface 155. It is understood that the first intermittent gear 232 may continuously rotate counter-clockwise to drive the first mopping plate 171 to continuously perform cyclic, reciprocating movements relative to the bottom surface 155.
It is understood that in this embodiment, the first intermittent gear 232 includes a group of transmission toothed segments that are disposed at opposite locations (or portions) of the first intermittent gear 232. In a full cycle movement of the first intermittent gear 232, the first mopping plate 171 may complete two full cycles of reciprocating movements. To enhance the frequency of the reciprocating movement of the first mopping plate 171 relative to the bottom surface 155, multiple (e.g., two or more) groups of transmission toothed segments may be disposed at opposite portions of the first intermittent gear 232, as long as the jamming phenomenon between the full gear 231 and the first intermittent gear 232 is avoided.
FIG. 5C and FIG. 5D schematically illustrate the structure and the motion states of the mopping mechanism, according to an embodiment of the present disclosure.
As shown in FIG. 5C and FIG. 5D, this embodiment is based on the embodiment shown in FIG. 5A and FIG. 5B. The differences between the embodiment shown in FIG. 5C and FIG. 5D and the embodiment shown in FIG. 5A and FIG. 5B include: the second mopping plate 172 is slidably mounted to the bottom surface 155. The first extension 191 of the first mopping plate 171 extends toward the second mopping plate 172, and the second extension 192 of the second mopping plate 172 extends toward the first mopping plate 171. The first toothed strip 201 is disposed at a side of the first extension 191 that faces the second extension 192. The third toothed strip 203 is disposed at a side of the second extension 192 that faces the first extension 191. That is, the first toothed strip 201 and the third toothed strip 203 are disposed to face one another. The configuration of the first extension 191 and the second extension 192 may refer to the embodiment shown in FIG. 4C and FIG. 4D.
The differences between the embodiment shown in FIG. 5C and FIG. 5D and the embodiment shown in FIG. 5A and FIG. 5B also include: in the embodiment shown in FIG. 5C and FIG. 5D, the full gear 231 is engaged with the first toothed strip 201 and the third toothed strip 203 at all time during an operation. The first intermittent gear 232 may include the first transmission toothed segment 241 and the second transmission toothed segment 242. When the first transmission toothed segment 241 is engaged with the first toothed strip 201, the second transmission toothed segment 242 is also engaged with the third toothed strip 203. When the first transmission toothed segment 241 is engaged with the third toothed strip 203, the second transmission toothed segment 242 is also engaged with the first toothed strip 201.
As shown in FIG. 5C, the first intermittent gear 232 is an active gear connected with a driving mechanism, such as an electric motor (not shown) . When driven by the driving mechanism, the first intermittent gear 232 may perform a full cycle movement relative to the bottom surface 155. When the first transmission toothed segment 241 engages with the first toothed strip 201, the first intermittent gear 232 may drive the first mopping plate 171 to move in a direction toward the second mopping plate 172. At the same time, the second transmission toothed segment 242 may be engaged with the third toothed strip 203 to drive the second mopping plate 172 to move in a direction toward the first mopping plate 171. That is, the first mopping plate 171 and the second mopping plate 172 may move toward one another. At this moment, the first intermittent gear 232 and the full gear 231 are in a disengaged state. The driving force of the first intermittent gear 232 may be transmitted to the full gear 231 through the first toothed strip 201 and the third toothed strip 203 separately. The driving force drives the full gear 231 to rotate passively following the rotation of the first intermittent gear 232.
As shown in FIG. 5D, as the first intermittent gear 232 rotates clockwise, the first transmission toothed segment 241 may separate from the first toothed strip 201, and the first transmission toothed segment 241 may engage with the full gear 231. At this moment, the second transmission segment 242 may be in a disengaged state and may gradually move closer to the first toothed strip 201. Because the first transmission toothed segment 241 is engaged with the full gear 231, the first transmission toothed segment 241 may drive the full gear 231 to rotate counter-clockwise. The driving force of the first transmission toothed segment 241 may be transmitted to the first toothed strip 201 and the third toothed strip 203 through the full gear 231, which drives the first mopping plate 171 to move in a direction away from the second mopping plate 172. At the same time, the second mopping plate 172 may move in a direction away from the first mopping plate 171. That is, the first mopping plate 171 and  the second mopping plate 172 may move away from one another.
When the first transmission toothed segment 241 separates from the full gear 231, the first mopping plate 171 and the second mopping plate 172 may restore to their initial locations. Hence, the first mopping plate 171 and the second mopping plate 172 complete a full cycle of reciprocating movement relative to the bottom surface 155. As the first intermittent gear 232 continues to rotate clockwise, when the second transmission toothed segment 242 engages with the first toothed strip 201, the engagement causes the first mopping plate 171 and the second mopping plate 172 to enter a next cycle of reciprocating movement. Accordingly, the first mopping plate 171 and the second mopping plate 172 may continuously perform cyclic, reciprocating movements relative to the bottom surface 155.
Similarly, during a full rotation period (or cycle) of the first intermittent gear 232, the first mopping plate 171 and the second mopping plate 172 may complete two full cycles of reciprocating movements, which can enhance the cleaning efficiency and cleaning effect. It is understood that the first intermittent gear 232 may continuously rotate counter-clockwise to cause the first mopping plate 171 and the second mopping plate 172 to continuously perform cyclic, reciprocating movements relative to the bottom surface 155.
FIG. 6A and FIG. 6B schematically illustrate the structure and motion states of the mopping mechanism, according to an embodiment of the present disclosure.
The embodiment shown in FIG. 6A and FIG. 6B is based on the embodiment shown in FIG. 5C and FIG. 5D. The differences between the embodiment shown in FIG. 6A and FIG. 6B and the embodiment shown in FIG. 5C and FIG. 5D include: the rotary member only includes a first intermittent gear 252. The structure of the first intermittent gear 252 may be the same as or similar to that of the first intermittent gear 232 shown in FIG. 5C and FIG. 5D. In addition, at least one restoration component 260 is disposed between the first mopping plate 171 and the second mopping plate 172. The retracting and extending directions of the restoration component 260 may be the same as the sliding directions of the first mopping plate 171 or the second mopping plate 172. The restoration component 260 may be a spiral spring or other parts or assemblies that can retract and extend to deform (e.g., an elastic band, a magnet, etc. ) , thereby providing a restoration force to the first mopping plate 171 and/or the second mopping plate 172. Next, the spiral spring is used as an example of the restoration component 260 disposed between the first mopping plate 171 and the second mopping plate 172 to describe the movement process of the mopping mechanism 170.
The first intermittent gear 252 shown in FIG. 6A may be connected with a driving mechanism (not shown) . When driven by the driving mechanism, the first intermittent gear 252 may perform a full cycle movement relative to the bottom surface 155. The first mopping plate 171 may include a first extension 291 extending from the first mopping plate 171 toward the second mopping plate 172. The second mopping plate 172 may include a second extension 292 extending from the second mopping plate 172 toward the first mopping plate 171. The first extension 291 and the second extension 292 may be substantially parallel one another. The first intermittent gear 252 may be disposed between the first extension 291 and the second extension 292. At sides of the first extension 291 and the second extension 292 that face one another, a first toothed strip 271 and a third toothed strip 272 are respectively provided. The first intermittent gear 252 may include at least one transmission  toothed segment group, which may include a first transmission toothed segment 341 and a second transmission toothed segment 342. In some embodiments, the first transmission toothed segment 341 and the second transmission toothed segment 342 may be provided at opposite portions (or locations) of the circumference of the first intermittent gear 252. When the first transmission toothed segment 241 included in the transmission toothed segment group of the first intermittent gear 252 is engaged with the first toothed strip 271, the first intermittent gear 252 drives the first mopping plate 171 to move in a direction toward the second mopping plate 172. As this moment, the second transmission toothed segment 342 included in the same transmission toothed segment group may engage with the third toothed strip 272, and may drive the second mopping plate 172 to move in a direction toward the first mopping plate 171. That is, the first mopping plate 171 and the second mopping plate 172 may move toward one another. In this state, the first mopping plate 171 and the second mopping plate 172 may move toward one another to compress the spiral spring 260, such that the spiral spring 260 may be in a compressed state.
As shown in FIG. 6B, as the first intermittent gear 252 continues to rotate clockwise, the first transmission toothed segment 341 may separate from the first toothed strip 271, and may be located between the first toothed strip 271 and the third toothed strip 272. As this moment, the second transmission toothed segment 342 may also be in a disengaged state. In this state, the spiral spring 260 may restore from a compressed state to a free state, during which process the spiral spring 260 may provide a pushing restoration force to the first mopping plate 171 and the second mopping plate 172. Under the pushing restoration force, the first mopping plate 171 may move in a direction away from the second mopping plate 172. Under the pushing restoration force, the second mopping plate 172 may move in a direction away from the first mopping plate 171. That is, the first mopping plate 171 and the second mopping plate 172 may move away from one another. Accordingly, the first mopping plate 171 and the second mopping plate 172 may each complete a full cycle of reciprocating movement.
As the first intermittent gear 252 continues to rotate clockwise, when the first transmission toothed segment 341 is engaged with the third toothed strip 272, the second transmission toothed segment 342 may be engaged with the first toothed strip 271. Again, the first mopping plate 171 and the second mopping plate 172 may be driven to move toward one another and to compress the spiral spring 260. The above processes may be repeated, such that the first mopping plate 171 and the second mopping plate 172 may complete the second cycle of reciprocating movement. That is, within a full cycle movement of the first intermittent gear 252, the first mopping plate 171 and the second mopping plate 172 may each complete two full cycles of reciprocating movement, which can enhance the cleaning efficiency and the cleaning effect for floor cleaning.
It should be noted that in the above embodiments, the spiral spring, as an example of the restoration component 260, is configured to provide a pulling force as a restoration force. In other embodiments not described herein, the restoration force may be a compression force. In such embodiments, the restoration component 260 may be disposed between a moving mopping plate and a fixed portion of the bottom plate 155.
It is also understood that the clockwise or counter-clockwise rotation directions described herein in relation to any figure are merely example rotation directions for illustrative and discussion purposes.
Finally, it should be noted that various embodiments have been described to illustrate the exemplary implementations of the disclosed technical solutions, and not to limit the scope of the present disclosure. Although  the present disclosure is explained in detail with reference to the above-described embodiments, a person having ordinary skills in the art would appreciate that various other changes, modifications, rearrangements, and substitutions to some or all of the technical features of the technical solutions reflected in the above-described embodiments may be made without departing from the scope of the present disclosure. Such modifications and/or substitutions do not render corresponding technical solutions to depart from the scope of the present disclosure. The scope of the present disclosure is defined in the appended claims.

Claims (20)

  1. A mopping mechanism, comprising:
    a rotary member mountable to a bottom surface of a cleaning device, the rotary member being rotatable relative to the bottom surface and including at least one transmission toothed segment; and
    a first mopping plate movably mountable to the bottom surface and including a first toothed strip configured to be engageable with the at least one transmission toothed segment,
    wherein the at least one transmission toothed segment is configured to be rotatable relative to the bottom surface to drive the first mopping plate to move reciprocatively relative to the bottom surface.
  2. The mopping mechanism of claim 1, wherein
    the rotary member is a full gear configured to perform a half cycle rotation or a full cycle rotation relative to the bottom surface.
  3. The mopping mechanism of claim 1, wherein
    the rotary member is an intermittent gear including the at least one transmission toothed segment, and
    the rotary member is configured to perform a half cycle rotation or a full cycle rotation relative to the bottom surface.
  4. The mopping mechanism of claim 1, wherein
    the rotary member includes a first intermittent gear and a full gear configured to be engageable with one another.
  5. The mopping mechanism of claim 4, wherein
    the first intermittent gear includes at least one transmission toothed segment group, each of the at least one transmission toothed segment group including two transmission toothed segments disposed at opposite portions of the first intermittent gear, and
    when one of the two transmission toothed segments of the first intermittent gear is engaged with the first toothed strip or the full gear, the other one of the two transmission toothed segments included in a same transmission toothed segment group is in a disengaged state.
  6. The mopping mechanism of claim 5, wherein
    in a full cycle of rotation of the full gear, the full gear is configured to be engaged with the first intermittent gear during a first time period of the full cycle, and disengaged with the first intermittent gear during a remaining time period of the full cycle, and
    the full gear is configured to be engaged with the first toothed strip during the full cycle.
  7. The mopping mechanism of claim 4, wherein
    the rotary member includes a second intermittent gear including two or more transmission toothed segments alternately disposed on the second intermittent gear.
  8. The mopping mechanism of claim 7, wherein no two transmission toothed segments are disposed at two opposite portions of the second intermittent gear.
  9. The mopping mechanism of claim 7, wherein
    the second intermittent gear is disposed within a mounting groove extending along a moving direction of the first mopping plate,
    the mounting groove includes a first mounting edge and a second mounting edge facing one another, and
    the first toothed strip is provided at the first mounting edge, a second toothed strip is provided at the second mounting edge, and the first toothed strip and the second toothed strip are configured to be engageable with the two or more transmission toothed segments.
  10. The mopping mechanism of claim 9, wherein
    when the second intermittent gear rotates, one of the two or more transmission toothed segments is engaged with one of the first toothed strip or the second toothed strip, and
    the second intermittent gear is configured to perform a full cycle rotation relative to the bottom surface.
  11. The mopping mechanism of claim 1, further comprising:
    a second mopping plate movably mountable to the bottom surface and configured to be disposed side by side with the first mopping plate,
    wherein the first toothed strip and a third toothed strip are provided at opposing sides of the first mopping plate and the second mopping plate, and
    wherein the first toothed strip and the third toothed strip are configured to be engageable with the at least one transmission toothed segment.
  12. The mopping mechanism of claim 11, wherein
    the rotary member is a full gear configured to perform a half cycle rotation relative to the bottom surface, and configured to be engageable with the first toothed strip and the third toothed strip at the same time.
  13. The mopping mechanism of claim 11, wherein
    the rotary member is a first intermittent gear configured to perform a half cycle rotation relative to the bottom surface, the first intermittent gear including at least one transmission toothed segment group, each of the at least one toothed segment group including two transmission toothed segments disposed at opposite portions of the first intermittent gear, and
    the two transmission toothed segments of a same transmission toothed segment group are configured to be engageable with the first toothed strip and the third toothed strip, respectively, at the same time.
  14. The mopping mechanism of claim 11, wherein
    the rotary member includes a first intermittent gear and a full gear configured to be engageable with one another, the first intermittent gear including at least one transmission toothed segment group, each of the at least one transmission toothed segment group including two transmission toothed segments disposed at opposite portions of the first intermittent gear,
    when one of the two transmission toothed segments included in a transmission toothed segment group is engaged with the first toothed strip or the third toothed strip, the first intermittent gear and the full gear are in a disengaged state.
  15. The mopping mechanism of claim 14, wherein
    when one of the two transmission toothed segments included in a transmission toothed segment group is engaged with the full gear, the first intermittent gear is disengaged with the first toothed strip or the third toothed strip,
    in a full cycle of rotation of the full gear, the full gear is engaged with the first intermittent gear during a first time period of the full cycle, and disengaged from the first intermittent gear during a remaining time period of the full cycle, and
    the full gear is engaged with at least one of the first toothed strip or the third toothed strip during the full cycle.
  16. The mopping mechanism of claim 11, wherein
    the rotary member is a first intermittent gear including at least one transmission toothed segment group, each of the at least one transmission toothed segment group including two transmission toothed segments disposed at opposite portions of the first intermittent gear, and
    the mopping mechanism further includes at least one restoration component disposed between the first mopping plate and the second mopping plate.
  17. The mopping mechanism of claim 16, wherein
    when the two transmission toothed segments included in a same transmission toothed segment group of the first intermittent gear are engaged with the first toothed strip and the third toothed strip, respectively, the first intermittent gear is configured to drive the first mopping plate and the second mopping plate through the first toothed strip and the third toothed strip, respectively, to move toward one another to compress the at least one restoration component, and
    when the two transmission toothed segments included in the same transmission toothed segment group of the first intermittent gear are disengaged from at least one of the first toothed strip or the third toothed strip, the at least one restoration component is configured to drive the first mopping plate and the second mopping plate to move away from one another.
  18. The mopping mechanism of claim 16, wherein
    when the two transmission toothed segments included in a same transmission toothed segment group of the first intermittent gear are engaged with the first toothed strip and the third toothed strip, respectively, the first intermittent gear is configured to drive the first mopping plate and the second mopping plate through the first toothed strip and the third toothed strip, respectively, to move away from one another to extend the at least one restoration component, and
    when the two transmission toothed segments included in the same transmission toothed segment group of the first intermittent gear are disengaged from at least one of the first toothed strip or the third toothed strip, the at least one restoration component is configured to drive the first mopping plate and the second mopping plate to move toward one another.
  19. A cleaning device, comprising:
    a main body including a bottom surface; and
    a mopping mechanism, including:
    a rotary member mounted to the bottom surface and configured to be rotatable relative to the bottom surface, the rotary member including at least one transmission toothed segment; and
    a first mopping plate movably mounted to the bottom surface and including a first toothed strip configured to be engageable with the at least one transmission toothed segment,
    wherein the at least one transmission toothed segment is configured to be rotatable relative to the bottom surface to drive the first mopping plate to move reciprocatively relative to the bottom surface.
  20. The cleaning device of claim 19, wherein the rotary member includes at least one of a full gear or an intermittent gear.
PCT/CN2021/093701 2020-05-15 2021-05-13 Mopping mechanism and cleaning device WO2021228208A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010412681.8 2020-05-15
CN202010412681.8A CN113662477A (en) 2020-05-15 2020-05-15 Mop mechanism and cleaning robot

Publications (1)

Publication Number Publication Date
WO2021228208A1 true WO2021228208A1 (en) 2021-11-18

Family

ID=78525915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093701 WO2021228208A1 (en) 2020-05-15 2021-05-13 Mopping mechanism and cleaning device

Country Status (2)

Country Link
CN (1) CN113662477A (en)
WO (1) WO2021228208A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114129098A (en) * 2021-12-07 2022-03-04 昆山斯特惠机械制造有限公司 Floor mopping machine
DE102022207385B3 (en) 2022-07-19 2023-11-09 BSH Hausgeräte GmbH Wiping device for a floor cleaner
DE102022207383B3 (en) 2022-07-19 2023-11-09 BSH Hausgeräte GmbH Wiping device for a floor cleaner

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116737A (en) * 1991-02-08 1993-05-14 Tokyo Electric Co Ltd Belt conveyor
CN101674767A (en) * 2007-04-20 2010-03-17 金容旭 Apparatus for cleaning floor
CN203354491U (en) * 2013-05-21 2013-12-25 齐齐哈尔齐三机床有限公司 Electric mop
CN203914791U (en) * 2014-05-11 2014-11-05 中国石油大学(华东) A kind of reciprocating automatic floor cleaning machine
CN204500545U (en) * 2015-04-02 2015-07-29 兰州东方神童机器人开发有限公司 Home intelligent reciprocating swing type floor-mopping robot
US20160339710A1 (en) * 2015-05-20 2016-11-24 Seiko Epson Corporation Maintenance device and liquid ejecting apparatus
CN107510417A (en) * 2016-06-15 2017-12-26 好样科技有限公司 Automatic cleaning machine
CN108577696A (en) * 2018-07-18 2018-09-28 江苏美的清洁电器股份有限公司 The mopping device reciprocally to move along a straight line
CN208758134U (en) * 2018-07-29 2019-04-19 金华中科通信技术有限公司 It is a kind of for cleaning the wiping arrangement of optical cable wire core
CN212879154U (en) * 2020-05-15 2021-04-06 速感科技(北京)有限公司 Mop mechanism and cleaning robot

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116737A (en) * 1991-02-08 1993-05-14 Tokyo Electric Co Ltd Belt conveyor
CN101674767A (en) * 2007-04-20 2010-03-17 金容旭 Apparatus for cleaning floor
CN203354491U (en) * 2013-05-21 2013-12-25 齐齐哈尔齐三机床有限公司 Electric mop
CN203914791U (en) * 2014-05-11 2014-11-05 中国石油大学(华东) A kind of reciprocating automatic floor cleaning machine
CN204500545U (en) * 2015-04-02 2015-07-29 兰州东方神童机器人开发有限公司 Home intelligent reciprocating swing type floor-mopping robot
US20160339710A1 (en) * 2015-05-20 2016-11-24 Seiko Epson Corporation Maintenance device and liquid ejecting apparatus
CN107510417A (en) * 2016-06-15 2017-12-26 好样科技有限公司 Automatic cleaning machine
CN108577696A (en) * 2018-07-18 2018-09-28 江苏美的清洁电器股份有限公司 The mopping device reciprocally to move along a straight line
CN208758134U (en) * 2018-07-29 2019-04-19 金华中科通信技术有限公司 It is a kind of for cleaning the wiping arrangement of optical cable wire core
CN212879154U (en) * 2020-05-15 2021-04-06 速感科技(北京)有限公司 Mop mechanism and cleaning robot

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114129098A (en) * 2021-12-07 2022-03-04 昆山斯特惠机械制造有限公司 Floor mopping machine
DE102022207385B3 (en) 2022-07-19 2023-11-09 BSH Hausgeräte GmbH Wiping device for a floor cleaner
DE102022207383B3 (en) 2022-07-19 2023-11-09 BSH Hausgeräte GmbH Wiping device for a floor cleaner
EP4309559A2 (en) 2022-07-19 2024-01-24 BSH Hausgeräte GmbH Wiper device for a floor cleaner

Also Published As

Publication number Publication date
CN113662477A (en) 2021-11-19

Similar Documents

Publication Publication Date Title
WO2021228208A1 (en) Mopping mechanism and cleaning device
CN109645893B (en) Cleaning robot
JP5048663B2 (en) Robot cleaning device
WO2021063415A1 (en) Mopping mechanism and cleaning device
CN109274879B (en) Camera telescopic assembly and electronic product
EP2997870B1 (en) Automatic cleaner
WO2021136023A1 (en) Mopping mechanism and cleaning device
CN108160617B (en) Cleaning device
CN113558528A (en) Lifting device and floor sweeping robot
US9510720B2 (en) Automatic cleaner
JP6217952B2 (en) Robot vacuum cleaner
CN110710920A (en) Robotic vacuum cleaner with extended side brush
CN217744249U (en) Cleaning device
JP2006187477A (en) Self-propelled vacuum cleaner
CN111973084A (en) Floor sweeping robot capable of automatically cleaning corners
CN116942022A (en) Transmission device and cleaning equipment
CN217645157U (en) Lifting and rotating device and cleaning robot
CN212879154U (en) Mop mechanism and cleaning robot
CN210810830U (en) Floor sweeping robot
CN212729642U (en) Double-sided scraping device
CN113925379A (en) Double-sided scraping device
CN114598802B (en) Information acquisition device, camera and vehicle
CN117617829B (en) Cleaning robot and control method thereof
CN219206786U (en) Collision detection device and sweeping robot
CN220326125U (en) Cabinet with protection computer server

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21803532

Country of ref document: EP

Kind code of ref document: A1