WO2021063415A1 - Mopping mechanism and cleaning device - Google Patents

Mopping mechanism and cleaning device Download PDF

Info

Publication number
WO2021063415A1
WO2021063415A1 PCT/CN2020/119691 CN2020119691W WO2021063415A1 WO 2021063415 A1 WO2021063415 A1 WO 2021063415A1 CN 2020119691 W CN2020119691 W CN 2020119691W WO 2021063415 A1 WO2021063415 A1 WO 2021063415A1
Authority
WO
WIPO (PCT)
Prior art keywords
mopping
plate
mopping plate
rotary member
restoration
Prior art date
Application number
PCT/CN2020/119691
Other languages
French (fr)
Inventor
Xingguo XING
Yiming Zhang
Zhen Chen
Original Assignee
Qfeeltech (Beijing) Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qfeeltech (Beijing) Co., Ltd. filed Critical Qfeeltech (Beijing) Co., Ltd.
Publication of WO2021063415A1 publication Critical patent/WO2021063415A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L1/00Cleaning windows
    • A47L1/02Power-driven machines or devices
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/28Floor-scrubbing machines, motor-driven
    • A47L11/284Floor-scrubbing machines, motor-driven having reciprocating tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4036Parts or details of the surface treating tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4063Driving means; Transmission means therefor
    • A47L11/4069Driving or transmission means for the cleaning tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation

Definitions

  • the present disclosure relates to the technology field of smart home appliances and, more particularly, to a mopping mechanism and a cleaning device.
  • cleaning robots As the advance of technologies and the increase of living standards, cleaning robots have been widely used in homes due to their functions such as automatic floor sweeping, vacuum cleaning, etc.
  • the most common robots in currently available cleaning robots are floor-sweeping robots.
  • Floor-sweeping robots can only perform floor sweeping, but do not have floor-mopping functions.
  • a mop is mounted to a bottom surface of the main body of the floor-sweeping robot. The mop is static relative to the main body of the floor-sweeping robot. The mop performs mopping of areas of the floor it passes by as the cleaning robot moves.
  • a mopping mechanism includes a first mopping plate and a second mopping plate.
  • the mopping mechanism also includes a rotary member coupled with the first mopping plate and the second mopping plate and configured to provide a variable stroke for at least one of the first mopping plate or the second mopping plate.
  • the mopping mechanism further includes a mopping assembly driving unit connected with the rotary member and configured to drive the rotary member to rotate. When rotating, the rotary member drives at least one of the first mopping plate or the second mopping plate to move reciprocatively between a first position and a second position.
  • a cleaning device includes a main body including a bottom surface.
  • the cleaning device also includes a mopping mechanism mounted to the bottom surface.
  • the mopping mechanism includes a first mopping plate and a second mopping plate.
  • the mopping mechanism also includes a rotary member coupled with the first mopping plate and the second mopping plate and configured to provide a variable stroke for at least one of the first mopping plate or the second mopping plate.
  • the mopping mechanism further includes a mopping assembly driving unit connected with the rotary member and configured to drive the rotary member to rotate. When rotating, the rotary member drives at least one of the first mopping plate or the second mopping plate to move reciprocatively between a first position and a second position.
  • FIG. 1A is a schematic perspective view of a cleaning device, according to an embodiment of the present disclosure.
  • FIG. 1B is a schematic illustration of a bottom configuration of the cleaning device, according to an embodiment of the present disclosure.
  • FIG. 1C is a schematic illustration of a mopping mechanism, according to an embodiment of the present disclosure.
  • FIGs. 2 and 3 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the present disclosure.
  • FIGs. 4 and 5 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the present disclosure.
  • FIGs. 6 and 7 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the present disclosure.
  • FIGs. 8 and 9 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the present disclosure.
  • FIGs. 10 and 11 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the present disclosure.
  • FIGs. 12 and 13 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the present disclosure.
  • FIGs. 14 and 15 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the present disclosure.
  • FIGs. 16 and 17 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the present disclosure.
  • FIGs. 18 and 19 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the present disclosure.
  • FIGs. 20 and 21 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic illustration of a structure of a rotary member, according to an embodiment of the present disclosure.
  • FIG. 23 is a schematic illustration of a structural of a rotary member including a rail, according to an embodiment of the present disclosure.
  • FIGs. 24 and 25 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the present disclosure.
  • FIGs. 26 and 27 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the present disclosure.
  • FIG. 28 schematically illustrates a cleaning device with a mopping mechanism, according to another embodiment of the present disclosure.
  • FIG. 29 schematically illustrates a rotary member, according to another embodiment of the present disclosure.
  • FIGs. 30 and 31 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the present disclosure.
  • A, B, or C encompasses all combinations of A, B, and C, such as A only, B only, C only, A and B, B and C, A and C, and A, B, and C.
  • a and/or B can mean at least one of A or B.
  • an embodiment illustrated in a drawing shows a single element, it is understood that the embodiment may include a plurality of such elements. Likewise, when an embodiment illustrated in a drawing shows a plurality of such elements, it is understood that the embodiment may include only one such element.
  • the number of elements illustrated in the drawing is for illustration purposes only, and should not be construed as limiting the scope of the embodiment.
  • the embodiments shown in the drawings are not mutually exclusive, and they may be combined in any suitable manner. For example, elements shown in one embodiment but not another embodiment may nevertheless be included in the other embodiment.
  • the present disclosure provides a mopping mechanism and a mobile device including the mopping mechanism (e.g., a cleaning device, such as a cleaning robot) .
  • the mopping mechanism may be configured to change a mopping speed or a mopping frequency of the mops mounted to mopping plates, and may perform reciprocating mopping of the surface to be cleaned, thereby enhancing the cleaning efficiency and cleaning effect.
  • An aspect of the present disclosure provides a mopping mechanism mountable to a bottom surface of a main body of a mobile device (e.g., a cleaning device) .
  • the mopping mechanism may include a mopping assembly driving unit, and a first mopping plate and a second mopping plate mounted to the bottom surface of the main body.
  • the first mopping plate and the second mopping plate may be configured to be movable relative to the bottom surface (and in some embodiments, relative to one another) .
  • each of the first mopping plate and the second mopping plate may be movable between a first position and a second position relative to the bottom surface.
  • a restoration component may be disposed between the first mopping plate and the second mopping plate, and configured to provide a restoration force for restoring the first mopping plate and the second mopping plate from their respective first positions (or second positions) to their respective second positions (or first positions) .
  • a rotary member may be disposed between the first mopping plate and the second mopping plate and configured to provide a variable stroke for the movements of the first mopping plate and the second mopping plate. Different (e.g., opposite or opposing) portions (e.g., a circumferential inner side surface or outer side surface) of the rotary member may be configured to be in contact with or connected with the first mopping plate and the second mopping plate, respectively.
  • the circumferential inner side surface or outer side surface of the rotary member may be in contact with (e.g., abutting against) contacting edges of the first mopping plate and the second mopping plate.
  • different portions of the rotary member may be connected with the first mopping plate and the second mopping plate through a coupling element, such as a crank, a linkage, a piston, etc.
  • a coupling element such as a crank, a linkage, a piston, etc.
  • Each of the first mopping plate and the second mopping plate may have its corresponding first position and second position during a full cycle of a reciprocating movement.
  • each mopping plate may be defined as a position at which any point (e.g., the geometric center, or a contacting point of the mopping plate connected, directly or indirectly through a coupling element, with the rotary member) on the mopping plate is closest to a reference point of the rotary member.
  • the second position may be defined as a position at which any point (e.g., the geometric center, or a contacting point of the mopping plate connected, directly or indirectly through a coupling element, with the rotary member) on the mopping plate is farthest to the reference point of the rotary member.
  • the reference point of the rotary member may be a stationary point on the rotary member that is substantially stationary (e.g., neither rotating nor translating) relative to the rotation shaft (or axis) of the rotary member during the rotation of the rotary member.
  • the reference point may be a center of rotation of the rotary member.
  • the center of rotation of the rotary member may be a geometric center of the rotary member.
  • the reference point may be a point on the rotation shaft that drives the rotary member to rotate.
  • the center of rotation of the rotary member may be a crossing point between a rotation axis and a cross-section of the rotary member perpendicular to the rotation axis.
  • the mopping assembly driving unit may be connected with the rotary member and configured to drive the rotary member to rotate.
  • the rotary member and the restoration component together may provide a driving mechanism to drive the first mopping plate and the second mopping plate to move reciprocatively relative to the bottom surface.
  • the first mopping plate and the second mopping plate may move in parallel with one another or relative to one another, e.g., away from or toward one another.
  • the reciprocating movement of the first mopping plate may be between the first position and the second position of the first mopping plate.
  • the reciprocating movement of the second mopping plate is between the first position and the second position of the second mopping plate.
  • the second mopping plate when the first mopping plate is at its first position (or second position) , the second mopping plate may be also at its first position (or second position) . In some embodiments, when the first mopping plate is at its first position (or second position) , the second mopping plate may be at its second position (or first position) .
  • the rotary member may be a cam having a variable stroke. Different (e.g., opposite or opposing) portions of the circumferential side surface of the cam may be configured to abut against contacting edges of the first mopping plate and the second mopping plate respectively. When different portions of the circumferential side surface of the cam abut against the contacting edges of the first mopping plate and the second mopping plate, different strokes may be provided for the movements of the first mopping plate and the second mopping plate, causing the first mopping plate and the second mopping plate to move relative to the bottom surface at a specific time (e.g., be at different locations relative to one another) .
  • a specific time e.g., be at different locations relative to one another
  • At least one restoration component may be disposed between the first mopping plate and the second mopping plate.
  • An end of the restoration component may be connected to the first mopping plate, another end may be connected to the second mopping plate.
  • the restoration component may be configured to provide a restoration force tending to move the first mopping plate and the second mopping plate toward one another, away from one another.
  • the restoration component may cause one of the first mopping plate and the second mopping plate to both move from their second positions (or first positions) to their first positions (or second positions) , or may cause one of the first mopping plate and the second mopping plate to move from its first position to its second position, and cause the other one of the first mopping plate and the second mopping plate to move from its second position to its first position.
  • the restoration force may be a pulling force.
  • the restoration force when the restoration component is disposed between the first mopping plate and the bottom surface, and/or between the second mopping plate and the bottom surface, the restoration force may be a pushing force (or repulsive force) .
  • the restoration component may have a state in which the restoration component provides a maximum restoration force (e.g., a maximum pulling force or a maximum pushing force) to the first mopping plate and/or the second mopping plate, and a state in which the restoration component provides a minimum restoration force (e.g., a minimum pulling force or a minimum pushing force) to the first mopping plate and/or the second mopping plate.
  • the restoration component may operate between the state providing the maximum restoration force and the state providing the minimum restoration force to at least one of the first mopping plate or the second mopping plate.
  • the minimum restoration force may be a zero force.
  • the minimum restoration force may be a minimum, non-zero pulling force or a minimum, non-zero pushing force.
  • a distal end of the first mopping plate distant from the cam may be provided with at least one restoration component.
  • a distal end of the second mopping plate distant from the cam may be provided with at least one restoration component.
  • the mopping mechanism may include a mopping assembly driving unit, and a first mopping plate and a second mopping plate disposed at the bottom surface of the main body.
  • the first mopping plate and the second mopping plate may be configured to be movable relative to the bottom surface (e.g., movable in parallel with one another or relative to one another) .
  • a rotary member may be disposed between the first mopping plate and the second mopping plate.
  • a rail having a variable stroke (e.g., an oval shape rail) may be disposed (e.g., formed or mounted) on the rotary member.
  • the rail may be connected with the first mopping plate and the second mopping plate, and may provide the variable stroke for the movements of the first mopping plate and the second mopping plate.
  • the shape of the rotary member may be any suitable shape, such as an oval shape, a circular disk shape, a Reuleaux triangle shape, etc.
  • Each of the first mopping plate and the second mopping plate may be provided with a coupling member configured to operably couple with the rail on the rotary member.
  • the mopping assembly driving unit may be connected with the rotary member and configured to drive the rotary member to rotate. When the rotary member rotates, the coupling members respectively disposed on the first mopping plate and the second mopping plate may be configured to move (e.g., slide, roll, etc.
  • the rotary member may be configured to provide a variable stroke to at least one of the first mopping plate or the second mopping plate.
  • the rotary member may be a cam with a variable stroke.
  • the cam may have an oval shape or a Reuleaux triangle shape.
  • the rotary member may be a cam or a circular disk structure mounted or provided with a rail having a variable stroke (e.g., an oval shaped sliding rail) .
  • first mopping plate and the second mopping plate may be slidably disposed at the bottom surface of the main body through a sliding mechanism. In some embodiments, the first mopping plate and the second mopping plate may be rotatably disposed at the bottom surface of the main body through a hinge connection. In some embodiments, the first mopping plate and the second mopping plate may be respectively provided with a hinge connection hole. The bottom surface of the main body may be provided with at least one hinge connection pin configured to operably couple with the hinge connection holes respectively provided on the first mopping plate and the second mopping plate.
  • the first mopping plate and the second mopping plate may be sleeve-fit onto a same hinge connection pin through the hinge connection holes, or respectively sleeve-fit onto different hinge connection pins through the hinge connection holes.
  • the first mopping plate and the second mopping plate may perform reciprocating movements relative to the bottom surface (e.g., in parallel with one another or relative to one another, such as away from or toward one another) .
  • the first mopping plate and the second mopping plate may be respectively provided with a mop for mopping a surface to be cleaned (e.g., a floor) .
  • the mops may be detachably mounted to the first mopping plate and the second mopping plate.
  • the present disclosure also provides a cleaning robot, which includes one or more of the disclosed mopping mechanisms. That is, the cleaning device or the mobile device disclosed herein may be a cleaning robot.
  • the cleaning device (e.g., cleaning robot) also includes a sweeping-cleaning mechanism.
  • the sweeping-cleaning mechanism may be disposed at a front end of the bottom surface of the main body, and the mopping mechanism may be disposed at a rear end of the bottom surface of the main body.
  • the cleaning device also includes a water supply device disposed in the main body.
  • the water supply device may be configured to provide a water source to the mop.
  • the mopping plates may be provided with water supply holes.
  • the water supply device may include a water storage tank and a water pump connected with the water storage tank. A water inlet of the water pump may be connected with the water storage tank. A water outlet of the water pump may be connected with the water supply holes.
  • the cleaning device may also include a first mopping mechanism and a second mopping mechanism symmetrically disposed at a front end and a rear end of the bottom surface of the main body in the moving direction of the cleaning device.
  • the mopping mechanism and the cleaning device provided by the present disclosure have the following advantages:
  • a first mopping plate and a second mopping plate may be disposed at a bottom surface of a main body of the cleaning device.
  • the first mopping plate and the second mopping plate may be configured to move relative to the bottom surface (e.g., in parallel with one another or relative to one another) .
  • a mopping assembly driving unit may be disposed in the main body, and may be mechanically coupled with a rotary member disposed between the first mopping plate and the second mopping plate.
  • the rotary member may be configured to provide a variable stroke for the movement of the first mopping plate and/or the second mopping plate.
  • the mopping assembly driving unit may be configured to drive the rotary member to rotate.
  • the rotary member When rotating, the rotary member may drive the first mopping plate and the second mopping plate to move relative to the bottom surface (e.g., in parallel with one another or relative to one another) .
  • a restoration component may be disposed between the first mopping plate and the second mopping plate, with one end connected with the first mopping plate and the other end connected with the second mopping plate.
  • the restoration component may be configured to generate a restoration force to restore the first mopping plate and the second mopping plate from their respective first positions (or second positions) to their respective second positions (or first positions) .
  • the first mopping plate and the second mopping plate may be driven to perform reciprocating movements relative to the bottom surface (e.g., in parallel with one another or relative to one another) .
  • the disclosed mopping mechanism and the cleaning device of the present disclosure at least one of the first mopping plate or the second mopping plate is movable relative to the bottom surface to perform reciprocating mopping of a surface to be cleaned, thereby enhancing the cleaning efficiency and cleaning effect.
  • FIG. 1A is a schematic perspective view of a device 100, according to an embodiment of the present disclosure.
  • the device 100 may also be referred to as a mobile device 100, a cleaning device 100, a vacuum cleaner 100, a vacuum cleaning robot 100, or a cleaning robot 100.
  • the device 100 is referred to a cleaning device 100 or a cleaning robot 100.
  • the cleaning device 100 may include a main body 110.
  • the main body 110 may have any suitable shape, such as a circular shape (as shown in FIG. 1A) , a rectangle shape, a square shape, or a combination thereof.
  • the main body 110 may include a housing 105 for enclosing and accommodating various elements, parts, or components of the cleaning device 100.
  • the main body 110 may include a first bumper (or first cover, front bumper) 111 and a second bumper (or second cover, rear bumper) 112 at a circumferential side of the main body 110.
  • the first bumper 111 may be separated from the second bumper by one or more gaps 120.
  • At least one of the first bumper 111 or the second bumper 112 may be resiliently coupled with the housing 105 through an elastic member, such as a spring (not shown) .
  • an elastic member such as a spring (not shown)
  • the first bumper 111 or the second bumper 112 may retract when pushed by the obstacle, thereby providing a buffer or an impact absorption for the cleaning device 100.
  • the cleaning device 100 may also include a camera 125.
  • the camera 125 may be configured to capture one or more images of the environment in which the cleaning device 100 operates.
  • the camera 125 is shown as being mounted at the front portion (e.g., behind the front bumper 111) of the cleaning device. It is understood that the camera 125 may be mounted at any other location of the cleaning device, e.g., a top portion of the housing.
  • the orientation of the camera 125 may be in any suitable directions, such as facing front, facing back, facing sides, facing up (e.g., ceiling of a room) , facing a direction forming an acute angle relative to the moving direction of the cleaning device, etc.
  • a processor included in the cleaning device 100 may analyze the images to extract information (e.g., identify objects) for the purpose of localization and mapping of the cleaning device 100.
  • the cleaning device 100 may further include one or more sweeping elements or mechanisms, such as one or more brushes.
  • FIG. 1A shows two side brushes 130 disposed at two sides of a front portion of the bottom of the cleaning device 100.
  • FIG. 1B is a schematic illustration of a bottom view of the structural configuration of the cleaning device 100, according to an embodiment of the present disclosure.
  • the bottom of the main body 110 of the cleaning device 100 may include a bottom surface or plate 155.
  • the bottom surface 155 may be formed by a plurality of surfaces, although for illustrative purposes, the bottom surface 155 is shown as a single piece.
  • a sweeping unit 145 may be mounted to the bottom surface 155.
  • the sweeping unit 145 may include the side brushes 130 and a main brush 150 disposed at a relatively center location of the bottom surface 155.
  • the side brushes 130 and/or the main brush 150 may be mounted to the bottom surface 155, or may be mounted to other components inside the cleaning device 100 and may extend out of the housing through an opening provided at the bottom surface 155.
  • the main brush 150 may be associated with a vacuum hole configured to vacuum dirt or trash that have been swept together into a trash storage tank disposed inside the cleaning device 100, at a top portion, or a side portion of the cleaning device 100.
  • the cleaning device 100 may include a motion unit configured to cause the cleaning device 100 to move along a surface to be cleaned (e.g., a floor) .
  • the motion unit may include an omnidirectional wheel 135 disposed at a front portion of the bottom surface 155.
  • the omnidirectional wheel 135 may be a non-driving, passively rotating wheel.
  • the driving unit may also include at least two driving wheels 140 disposed at two sides of the bottom surface 155. The positions of the omnidirectional wheel 135 and the two driving wheels 140 may form a triangle, as shown in FIG. 1B, to provide a stable support to the main body 110 of the cleaning device 100.
  • the driving wheels 140 may be rotatable around a rotation axis passing through a center of symmetry of the driving wheels 140. In some embodiments, the driving wheels 140 may not be rotatable around an axis perpendicular to the bottom surface 155.
  • the omnidirectional wheel 135 may freely rotate around an axis perpendicular to the bottom surface 155, and around an axis passing through a center of symmetry of the omnidirectional wheel 135.
  • the omnidirectional wheel 135 and the driving wheels 140 together move the cleaning device 100 in any desirable direction.
  • the at least two driving wheels 140 may be independently driven by at least two electric motors disposed inside the main body 110. When the two driving wheels 140 are driven at different speeds, the rotation speed differential of the driving wheels 140 may cause the cleaning device 100 to turn.
  • the driving wheels 140 may be rotatable also around an axis perpendicular to the bottom surface 155.
  • the cleaning device 100 may include a mopping mechanism 160 disposed at the bottom surface 155.
  • the mopping mechanism 160 may include at least one movable mopping plate attached with a mop to mop the surface to be cleaned (e.g., a floor) .
  • the mopping mechanism 160 is shown as a rectangle in FIG. 1B.
  • the mopping mechanism 160 may have any suitable shapes, such as a round shape, a square shape, a triangle shape, or a portion or a combination thereof.
  • FIG. 1C is a schematic illustration of the mopping mechanism 160 shown in FIG. 1B, according to an embodiment of the present disclosure.
  • the mopping mechanism 160 may include two mopping assemblies, a first mopping assembly 161 and a second mopping assembly 162, indicated by the dashed rectangles.
  • the number of the mopping assemblies included in the mopping mechanism 160 is not limited to two, which can be any suitable number, such as one, three, four, five, six, etc.
  • the mopping mechanism 160 may include one mopping assembly.
  • the mopping mechanism 160 may include two mopping assemblies, as shown in FIG. 1C.
  • first mopping assembly 161 and the second mopping assembly 162 are presumed to have the same or similar configuration or structures, although in other embodiments, they may have different configurations or structures.
  • first mopping assembly 161 will be described.
  • the structures and movements of the second mopping assembly 162 may be similar to those of the first mopping assembly 161.
  • the first mopping assembly 161 may include a rotary member 180, and a first mopping plate 171 and a second mopping plate 172 disposed at (e.g., movably mounted to) the bottom surface 1055.
  • the number of the mopping plates included in each of the first mopping assembly 161 is not limited to two, which may be any suitable number, such as one, three, four, five, six, etc.
  • At least one of the first mopping plate 171 or the second mopping plate 172 may be configured to be movable relative to the bottom surface 155 of the main body 110.
  • At least one of the first mopping plate 171 or the second mopping plate 172 may be configured to be movable relative to the other one of the first mopping plate 171 or the second mopping plate 172.
  • at least one of the first mopping plate 171 or the second mopping plate 172 is not fixed (i.e., is not static) , and is movable (e.g., rotatable, slidable, etc. ) relative to the bottom surface 155 of the main body 110.
  • only one of the first mopping plate 171 or the second mopping plate 172 is movable relative to the bottom surface 155, and the other one may be fixed (e.g., non-movable) relative to the bottom surface 155.
  • first mopping plate 171 and the second mopping plate 172 may move toward one another and away from one another. In some embodiments, the first mopping plate 171 and the second mopping plate 172 may move in the same direction in parallel with one another. In some embodiments, both of the first mopping plate 171 and the second mopping plate 172 are movable relative to the bottom surface 155. In the following descriptions of various embodiments, for discussion purposes, the first mopping plate and the second mopping plate may be described as both being movable relative to the bottom surface.
  • the first mopping assembly 161 may include a restoration component 175 mounted between the first mopping plate 171 and the second mopping plate 172, with one end of the restoration component 175 connected to the first mopping plate 171 and the other end of the restoration component 175 connected to the second mopping plate 172, as shown in FIG. 1C.
  • the restoration component 175 may operate between providing a maximum restoration force and a minimum restoration force during a cycle.
  • the restoration component 175 may be an elastic member, such as a spring (e.g., a spiral spring) , an elastic strip, an elastic rope, an elastic plate, etc.
  • the restoration component 175 may include a magnetic blocks assembly including at least two magnetic elements having same poles (e.g., same N poles or same S poles) facing one another. When the magnetic blocks assembly is used, the at least two magnetic elements may be mounted on the first mopping plate 171 and the second mopping plate 172 with the same poles facing one another.
  • the restoration component 175 may include a gear or a cam. In the embodiment shown in FIG.
  • the restoration component 175 may be configured to provide a restoration force, which may tend to restore the first mopping plate 171 and the second mopping plate 172 from their respective second position (e.g., farthest from a reference point on the rotary member 180) to their respective first position (e.g., closest from the reference point on the rotary member 180) .
  • the restoration component 175 may provide a restoration force to restore the first mopping plate 171 and the second mopping plate 172 from their second positions to their first positions (e.g., to pull them toward one another) .
  • the restoration force of the restoration component 175 may be a maximum pulling force.
  • the restoration component 175 may provide a substantially zero or minimum restoration force, or may provide a pulling force.
  • the restoration component 175 is a spring
  • the spring may be at its neutral state (neither compressed nor extended with a substantially zero restoration force) , or may be in a state providing a pulling force.
  • the restoration component 175 may be stretched, and may generate a restoration force tending to pull the first mopping plate 171 and the second mopping plate 172 toward one another.
  • the first mopping assembly 161 may include a mopping assembly driving mechanism 190.
  • the mopping assembly driving mechanism 190 may include the rotary member 180 and a mopping assembly driving unit 195.
  • the mopping assembly driving unit 195 may include an electric motor coupled with the rotary member 180, and configured to drive the rotary member 180 to rotate.
  • the mopping assembly driving unit 195 may include any other suitable devices for driving the rotary member 180 to rotate.
  • the rotary member 180 may be disposed between the first mopping plate 171 and the second mopping plate 172 and configured to provide a variable stroke for the movements of the first mopping plate 171 and/or the second mopping plate 172. Examples of the rotary member 180 is shown in FIG. 22 and FIG.
  • the rotary member 180 may include an oval cylindrical body with an oval cross-sectional shape having a long axis (corresponding to a long stroke) and a short axis (corresponding to a short stroke) .
  • the first position of a mopping plate (e.g., 171 or 172) may also correspond to a position where the mopping plate is at its short stroke during a reciprocating movement cycle, and the second position is a position where the mopping plate is at its long stroke during the reciprocating movement cycle.
  • Any other suitable shapes may be configured for the rotary member 180, as long as the rotary member 180 has different strokes, such as the Reuleaux triangle shape shown in FIG. 29, which is described below. In the embodiment shown in FIG.
  • the rotary member 180 may be a cam having an oval shape. As shown in FIG. 22, the rotary member 180 may include a center hole (or mounting hole) 185 configured to receive a rotation shaft of the mopping assembly driving unit 195. When the rotation shaft rotates, the mopping assembly driving unit 195 may drive the rotary member 180 to rotate.
  • the mounting hole 185 may have any suitable shape, such as square, circle, rectangle, etc.
  • the rotary member 180 may include an upper surface 181, a lower surface (not shown) , and a circumferential side surface 182, as shown in FIG. 22. As shown in FIG. 1C, when the rotary member 180 is a cam shown in FIG. 22, different (e.g., opposite or opposing) portions of the circumferential side surface 182 of the rotary member 180 may be configured to abut against or be in contact with the first mopping plate 171 and the second mopping plate 172 respectively.
  • a first state of the rotary member disclosed herein may be defined as a state in which the rotary member provides a shortest stroke (for discussion purposes, the shortest stroke is also referred to as a “short stroke” ) to at least one (e.g., each) of the first mopping plate 171 or the second mopping plate 172.
  • a second state of the rotary member disclosed herein may be defined as a state in which the rotary member provides a longest stroke (for discussion purposes, the longest stroke is also referred to as a “long stroke” ) to at least one (e.g., each) of the first mopping plate 171 or the second mopping plate 172.
  • FIG. 2 shows an example first state of the rotary member 180
  • FIG. 3 shows an example second state of the rotary member 180
  • the rotary member 180 may be disposed between the first mopping plate 171 and the second mopping plate 172 with opposite portions of the circumferential side surface 182 corresponding to the short stroke (or short axis) abutting against a contacting edge of the first mopping plate 171 and a contacting edge of the second mopping plate 172. That is, at the first state of the rotary member 180, the short axis of the rotary member 180 may be substantially perpendicular to the contacting edges of the first mopping plate 171 and second mopping plate 172 that are in contact with circumferential side surface 182 of the rotary member 180.
  • the restoration component 175 may be in a state with a zero restoration force (e.g., when the restoration component 175 is a spring, the spring may be neither compressed nor extended) , or in a state providing a pulling force for the first mopping plate 171 and the second mopping plate 172.
  • the stroke between the portions of the circumferential side surface 182 abutting against the contacting edges of the first mopping plate 171 and the second mopping plate 172 may gradually change, from the short stroke to the long stoke, and from the long stroke to the short stroke.
  • the stroke between the portions of the circumferential side surface 182 abutting against the first mopping plate 171 and the second mopping plate 172 may gradually increase, and the rotary member 180 may push the first mopping plate 171 and the second mopping plate 172 to overcome the restoration force of the restoration component 175 to move away from one another, until opposite portions of the circumferential side surface 182 of the rotary member 180 abutting against the first mopping plate 171 and the second mopping plate 172 correspond to the long stroke (or long axis) , as shown in FIG. 3.
  • this state of the rotary member 180 may be referred to as a second state of the rotary member 180, in which the long axis of the rotary member 180 may be substantially perpendicular to the contacting edges of the first mopping plate 171 and the second mopping plate 172.
  • the first mopping plate 171 and the second mopping plate 172 may be pulled by the restoration force of the restoration component 175 to move toward one another.
  • the first mopping plate 171 and the second mopping plate 172 may be driven by the rotary member 180 and the restoration component 175 to perform reciprocating movements away from one another and toward one another, as indicated by an arrow 179 in FIG. 3.
  • the arrow 179 shown in other figures also indicates the relative movement directions of the first mopping plate 171 and the second mopping plate 172. Although the arrow 179 is shown as a straight arrow in FIG. 3, the actual moving directions of the first mopping plate 171 and the second mopping plate 172 may be straight or slightly curved.
  • the straight arrow 179 indicates that the movement of the first mopping plate 171 and the second mopping plate 172 is a substantially sliding movement relative to the bottom surface 155 (and relative to one another) .
  • the plates are shown to perform movements relative to one another for illustrative purposes, it is understood that through re-configurations, the plates may be configured to move in parallel with one another relative to the bottom surface 155.
  • both of the first mopping plate 171 and the second mopping plate 172 may be rotatable or pivotable relative to the bottom surface 155 when pushed by the rotary member 180 or pulled by the restoration component 175.
  • the first mopping plate 171 may be rotatable or pivotable around a first hinge connection pin (or rod, shaft, etc., which is not shown in FIG. 1C)
  • the second mopping plate 172 may be rotatable or pivotable around a second hinge connection pin (or rod, shaft, etc., which is not shown in FIG. 1C)
  • the first hinge connection pin and the second hinge connection pin may be the same pin, or may be different pins.
  • the rotation or pivot of the first mopping plate 171 and the second mopping plate 172 is merely an example of the relative movement between the first mopping plate 171 and the second mopping plate 172, or between the first mopping plate 171 (or the second mopping plate 172) and the bottom surface 155.
  • the rotation movement will be described below in connection with other figures.
  • the combined actions of the mopping assembly driving unit 195, the rotary member 180, and the restoration component 175 may drive the first mopping plate 171 and the second mopping plate 172 to move reciprocatively away from or toward one another, and relative to the bottom surface 155 of the main body 110.
  • the cleaning device 100 including the mopping mechanism 160 may be any suitable cleaning device.
  • the cleaning device 100 may be a cleaning robot (e.g., a floor-mopping robot, a floor-sweeping-and-mopping integrated robot, a window cleaning robot, etc. ) , or may be a handheld floor-mopping machine.
  • the shape and size of the main body 110 may be substantially the same as the shape and size of the bottom surface 155.
  • shape and/or size of the main body 110 may be different from the shape and/or size of the bottom surface 155.
  • the bottom surface 155 of the main body 110 may have a rectangular shape, a square shape, a circular shape, or any other suitable shape.
  • the bottom surface 155 of the main body 110 includes a circular shape.
  • the mopping mechanism 160 may be mounted with a mop configured to mop a surface to be cleaned.
  • a floor or a window may be mopped by the cleaning device 100.
  • the two mopping mechanisms 160 may be symmetrically or asymmetrically disposed at the bottom surface 155.
  • the mopping assembly driving unit 195 shown in FIG. 1C may not be a part of the mopping mechanism 160.
  • the mopping assembly driving unit 195 may be disposed in the main body 110.
  • the first mopping plate 171 and the second mopping plate 172 of the first mopping assembly 161 may be disposed opposing one another (e.g., side by side with one another, as shown in FIG. 1C) .
  • the first mopping plate 171 and the second mopping plate 172 may be mounted to the bottom surface 155 of the main body 110.
  • the first mopping plate 171 and the second mopping plate 172 may be movable relative to the bottom surface 155 (in some embodiments, also relative to one another) of the main body 110.
  • At least one (e.g., each) of the first mopping plate 171 or the second mopping plate 172 may be configured to rotate (or pivot, or swing) or to slide relative to the bottom surface 155 and relative to the other one of the first mopping plate 171 and the second mopping plate 172.
  • the first mopping plate 171 may be fixedly mounted to the bottom surface 155
  • the second mopping plate 172 may be movably mounted to the bottom surface 155.
  • the first mopping plate 171 may be movably mounted to the bottom surface 155
  • the second mopping plate 172 may be fixedly mounted to the bottom surface 155.
  • the first mopping plate 171 may be movably mounted to the bottom surface 155
  • the second mopping plate 172 may also be movably mounted to the bottom surface 155.
  • one or more rails, tracks, or other suitable structure may be provided at the bottom surface 155 to allow the first mopping plate 171 and/or the second mopping plate 172 to move (e.g., in a rotation movement or a sliding movement) relative to the bottom surface 155.
  • the mopping assembly driving unit 195 may be disposed in the main body 110.
  • the mopping assembly driving unit 195 may include a variable-frequency electric motor.
  • the motor may be any suitable motor, such as a brushed motor or a brushless motor.
  • a driving shaft (not shown) of the variable-frequency electric motor may penetrate through the bottom surface 155 to connect with the mounting hole 185 of the rotary member 180.
  • the motor may drive the rotary member 180 to rotate.
  • the rotation speed of the variable-frequency motor may be adjusted based on a desired degree of cleanness. As shown in FIG. 1, the rotary member 180 may be disposed between the first mopping plate 171 and the second mopping plate 172.
  • the rotary member 180 may rotate between the first mopping plate 171 and the second mopping plate 172. As the rotary member 180 rotates, different portions (e.g., two portions) of the circumferential side surface 182 (shown in FIG. 22) of the rotary member 180 may abut against edge or side surfaces of the first mopping plate 171 and the second mopping plate 172 respectively. In some embodiments, the rotary member 180 provides a variable stroke between a maximum (or long) stroke and a minimum (or short) stroke.
  • the rotary member 180 may be a cam having a variable stroke, as shown in FIG. 22.
  • Other suitable shapes may also be used for the rotary member 180 to provide a variable stroke, such as the Reuleaux triangle shape shown in FIG. 29, which is described below.
  • the cam with an oval shape shown in FIG. 22 may be connected with the driving shaft of the mopping assembly driving unit 195 through the mounting hole 185 (shown in FIG. 22) provided in the cam with an opening at the top surface 181.
  • the driving shaft may be inserted through a key groove into the mounting hole 185.
  • the mounting hole 185 may be a through hole connecting the top surface 181 and the bottom surface (not shown) of the cam.
  • the mounting hole 185 may not be a through hole, but may be a cavity or a recessed portion in the body of the cam with an opening at the top surface 181.
  • the circumferential side surface 182 may be referred to as a working surface, and may be associated with a variable stroke.
  • the working surface can be either the circumferential outer side surface or the circumferential inner side surface of the rotary member 180.
  • different (e.g., opposite or opposing) portions of the circumferential side surface 182 may abut against the first mopping plate 171 and the second mopping plate 172 respectively.
  • different portions of the cam may be connected with the first mopping plate 171 and the second mopping plate 172 through a crank, a linkage, and/or a piston.
  • the state of the rotary member 180 at this moment may be defined as the first state of the rotary member 180.
  • the first and second mopping plates 171 and 172 may be at their respective first positions, as shown in FIG. 2.
  • the rotary member 180 When two different (e.g., opposite or opposing) portions of the rotary member 180 along a long axis abut against the first mopping plate 171 and the second mopping plate 172 respectively, the rotary member 180 is at the second state, and the first and second mopping plates 171 and 172 may be at their respective second positions, as shown in FIG. 3.
  • the restoration component 175 disposed between the first mopping plate 171 and the second mopping plate 172 may be configured to provide a restoration force for restoring the first mopping plate 171 and/or the second mopping plate 172 from their respective second positions back to their respective first positions, as shown in FIG. 3 and FIG. 2 respectively.
  • the restoration component 175 may be any suitable component for providing the restoration force.
  • the restoration component 175 may provide a restoration force to restore the first and second mopping plates 171 and 172 from their respective first positions to their respective second positions.
  • FIG. 2 shows an example of the restoration component 175, which is a spiral spring.
  • the restoration component 175 may be any other suitable spring, an elastic rope, an elastic plate, an elastic strip, a cam, a magnetic blocks assembly including at least two magnets with same poles facing one another, etc.
  • the mopping assembly driving unit 195 may drive the rotary member 180 (which may be a cam) to overcome the restoration force of the restoration component 175 and to rotate.
  • the rotary member 180 may rotate from the first state (with short axis aligned substantially perpendicular to the edges of the first mopping plate 171 and the second mopping plate 172) to the second state (with the long axis aligned substantially perpendicular to the edges of the first mopping plate 171 and the second mopping plate 172) , causing the first and second mopping plates 171 and 172 to transition from their respective first positions (shown in FIG. 2) to their respective second positions (shown in FIG. 3) .
  • the rotary member 180 may continue to rotate from the second state to the first state. Under the restoration force of the restoration component 175, the first and second mopping plates 171 and 172 may transition from their respective second positions to their respective first positions.
  • first mopping plate 171 and the second mopping plate 172 may perform reciprocating movements away from and toward one another, or between their respective first positions and second positions.
  • both of the first mopping plate 171 and the second mopping plate 172 are described as being movable relative to the bottom surface 155, in some embodiments, one of the first mopping plate 171 and the second mopping plate 172 may be fixed relative to the bottom surface 155.
  • the rotation of the rotary member 180 may only drive the movable one of the first mopping plate 171 and the second mopping plate 172 to move relative to the bottom surface 155, e.g., to perform the reciprocating movements away from and toward the fixed one of the first mopping plate 171 and the second mopping plate 172.
  • the present disclosure may include the following different detailed implementations:
  • both of the first mopping plate 171 and the second mopping plate 172 may be movable relative to the bottom surface 155 of the main body 110.
  • At least one restoration component 175 may be disposed between the first mopping plate 171 and the second mopping plate 172.
  • a first end of the restoration component 175 may be connected to the first mopping plate 171
  • a second end (e.g., the end opposing the first end) of the restoration component 175 may be connected to the second mopping plate 172.
  • a spring is used as an example of the restoration component 175.
  • the spring may be disposed between the first mopping plate 171 and the second mopping plate 172.
  • the spring may be disposed at one side of the rotary member 180 (which is shown as a cam in the example shown in FIG. 2 to FIG. 5) .
  • multiple springs may be disposed at both sides of the rotary member 180.
  • the multiple springs may be symmetrically disposed at both sides of the rotary member 180.
  • an additional spring similar to the spring labelled as “175” may be disposed on the right side of the rotary member 180 to connect the first mopping plate 171 and the second mopping plate 172. As shown in FIG. 2 or FIG.
  • the spring when the rotary member 180 mounted between the first mopping plate 171 and the second mopping plate 172 is in the first state (with the short axis aligned perpendicular to the edges of the first mopping plate 171 and the second mopping plate 172) , the spring may be in a natural state when the restoration force provided by the spring is substantially zero, or may be in an extended state with a pulling force to pull the first and second mopping plates 171 and 172 toward one another. As shown in FIG. 3 or FIG. 5, when the rotary member 180 overcomes the elastic force of the spring to rotate from the first state to the second state, correspondingly, the first mopping plate 171 and second mopping plate 172 are driven by the rotary member 180 to move away from one another in opposite directions.
  • the spring may be extended.
  • the rotary member 180 may continue to rotate from the second state to the first state.
  • the spring may restore from the extended state to the natural state (or from a more extended state to a less extended state) .
  • the restoration force of the spring may drive the first mopping plate 171 and the second mopping plate 172 to move toward one another.
  • the first mopping plate 171 and the second mopping plate 172 may perform reciprocating movements relative to the bottom surface 155 (e.g., away from and toward one another) .
  • the reciprocatively moving first mopping plate 171 and second mopping plate 172 may mop a surface to be cleaned back and forth, which enhances the mopping cleaning efficiency and effect.
  • FIG. 4 and FIG. 5 show that the first mopping plate 171 and the second mopping plate 172 may have shapes similar to a quarter circle.
  • the mopping plates 171 and 172 can have any suitable shapes, such as triangle, square, oval, etc.
  • the first mopping plate 171 and the second mopping plate 172 may be configured to move relative to the bottom surface 155 of the main body 110.
  • a distal end portion (e.g., a distal edge) of each of the first mopping plate 171 and the second mopping plate 172 distant from the rotary member 180 may be provided with at least one restoration component 175. That is, the distal end portion of the first mopping plate 171 distant from the rotary member 180 may be provided with one or multiple restoration components 175.
  • Each of the one or more restoration components 175 may have an end connected with the distal end portion of the first mopping plate 171, and another end connected with a first non-movable portion 201 of the bottom surface 155 (or of the main body 110) at a first location. Additionally or alternatively, the distal end portion of the second mopping plate 172 distant from the rotary member 180 may be provided with one or multiple restoration components 175. Each of the one or more restoration components 175 may have an end connected with the distal end portion of the second mopping plate 172, and another end connected with a second non-movable portion 202 of the bottom surface 155 (or of the main body 110) at a second location, as shown in FIG. 6.
  • the restoration component 175 may be a spring or any suitable elastic member.
  • the first non-movable portion 201 and the second non-movable portion 202 of the bottom surface 155 may each be a fixture mounted at the bottom surface 155 or an integral portion of the bottom surface 155.
  • the first non-movable portion 201 and the second non-movable portion 202 may provide support to the restoration components 175 and may serve to secure one end of each of the restoration components 175.
  • the first mopping assembly 161 may not include a restoration component disposed between the first mopping plate 171 and the second mopping plate 172 as in the embodiment shown in FIG. 1C.
  • each restoration component 175 may provide a substantially zero restoration force, or may have a pushing force against the first mopping plate 171 or the second mopping plate 172.
  • the first mopping plate 171 and the second mopping plate 172 may be in their respective first positions.
  • the first mopping plate 171 and second mopping plate 172 may move away from one another to compress the restoration components 175 disposed at the distant ends of the first mopping plate 171 and the second mopping plate 172.
  • the restoration components 175 may provide a pushing force against the first and second mopping plates 171 and 172 shown in FIG. 7.
  • FIG. 7 shows that the first mopping plate 171 and the second mopping plate 172 are in their respective second positions, i.e., are farthest away from one another.
  • the restoration components 175 may restore from the state providing the maximum restoration force (shown in FIG. 7) to the state providing the minimum restoration force (shown in FIG. 6) .
  • the restoration force of the restoration components 175 may push the first mopping plate 171 and the second mopping plate 172 to move closer to one another, i.e., from the second positions shown in FIG. 7 to the first positions shown in FIG. 6.
  • a third implementation may be a combination of the first implementation shown in FIG. 2 and FIG. 3 and the second implementation shown in FIG. 6 and FIG. 7.
  • the third implementation as shown in FIG. 8 and FIG. 9, in addition to the one or more restoration components 175 provided between the first mopping plate 171 and the first non-movable portion 201, and between the second mopping plate 172 and the second non-movable portion 202, as shown in FIG. 6, one or more restoration components 175 may be disposed between the first mopping plate 171 and the second mopping plate 172, similar to the embodiment shown in FIG. 2.
  • FIG. 8 shows that the rotary member 180 is at the first state, with the short axis aligned substantially perpendicular to the contacting edges of the first mopping plate 171 and the second mopping plate 172.
  • FIG. 9 shows that the rotary member 180 is at the second state, with the long axis aligned substantially perpendicular to the contacting edges of the first mopping plate 171 and the second mopping plate 172.
  • any suitable number of restoration components 175 may be disposed between the first mopping plate 171 and the second mopping plate 172, between the distal end of first mopping plate 171 and the first non-movable portion 201 of the bottom surface 155 or the main body 110, and between the distal end of the second mopping plate 172 and the second non-movable portion 202 of the bottom surface 155 or the main body 110.
  • One or more restoration components 175 and the rotary member 180 can cooperate together to cause the reciprocating movements of the first mopping plate 171 and the second mopping plate 172 between their respective first positions and second positions (e.g., away from and toward one another as described above) .
  • the restoration components 175 disposed at various locations may be of the same type or may be of different types.
  • first mopping plate 171 and the second mopping plate 172 may both be configured to be movable relative to the bottom surface 155 of the main body 110 to achieve the reciprocating movements.
  • the reciprocating movements of the first mopping plate 171 and the second mopping plate 172 may be in the same direction or may be in different (e.g., opposite) directions.
  • the first mopping plate 171 and the second mopping plate 172 may move away from one another and toward one another reciprocatively.
  • one of the first mopping plate 171 and the second mopping plate 172 may be fixed to the bottom surface 155 of the main body 110, the other one of the first and second mopping plates 171 and 172 may be movable relative to the bottom surface 155.
  • the first mopping plate 171 may be fixed to the bottom surface 155, and the second mopping plate 172 may be movable relative to the bottom surface 155.
  • one or more restoration components 175 e.g., springs
  • one or more restoration components 175 may be disposed between the distal end of the second mopping plate 172 distant from the rotary member 180 and the bottom surface 155 or the main body 110.
  • restoration components 175 e.g., springs
  • restoration components 175 may be disposed both between the first mopping plate 171 and the second mopping plate 172, and between the distal end of the second mopping plate 172 distant from the rotary member 180 and the bottom surface 155 or the main body 110.
  • the reciprocating movements of the first mopping plate 171 and the second mopping plate 172 (e.g., away from and toward one another) caused by the coupled or combined actions of the one or more restoration components 175 (e.g., springs) and the rotary member 180, may be similar to the reciprocating movement described above.
  • the rotation axis of the rotary member 180 in the first state may coincide with the rotation axis of the rotary member 180 in the second state. That is, the rotation axis of the rotary member 180 may be fixed.
  • the rotation axis of the rotary member 180 in the first state may not coincide (or not be coaxial) with, but may be parallel with, the rotation axis of the rotary member 180 in the second state.
  • the driving shaft of the mopping assembly driving unit 195 is coaxial with the rotation axis of the rotary member 180, the driving shaft may not be fixed at one axial location.
  • the driving shaft may be configured to be movable between two parallel axial locations (between a first axial location when the rotary member 180 is in the first state and a second axial location when the rotary member 180 is in the second state) , in order to achieve the reciprocating movement of one of the first mopping plate 171 or the second mopping plate 172, which is not fixed to the bottom surface 155 (i.e., which is movable relative to the bottom surface 155) .
  • the rotation axis of the rotary member 180 may be movable between two parallel axial locations.
  • the driving shaft of the mopping assembly driving unit 195 is coaxial with the rotation axis of the rotary member 180, the driving shaft may also be movable between the two parallel axial locations.
  • the restoration component 175 may include at least one of a spring, an elastic rope, or a magnetic blocks assembly (e.g., at least two magnets with same poles facing one another) , such as an electromagnetic blocks assembly.
  • the elastic rope may be disposed in a manner similar to the spring, except that the elastic rope may not be configured to provide a restoration force to push the mopping plates.
  • the magnetic blocks assembly may generate an attractive force (e.g., pulling force) or a repulsive force (e.g., pushing force) .
  • the magnetic blocks that generate the attractive force may be disposed between the first mopping plate 171 and the second mopping plate 172, e.g., replacing the spring 175 shown in FIG. 2.
  • the magnetic blocks that generate the repulsive force may be disposed between the first mopping plate 171 and the main body 110 or the bottom surface 155, or between the second mopping plate 172 and the main body 110 or the bottom surface 155, or between the first mopping plate 171 and the main body 110 (or the bottom surface 155) and between the second mopping plate 172 and the main body 110 (or the bottom surface 155) , e.g., replacing the springs disposed at the distal ends of the first mopping plate 171 and the second mopping plate 172, as shown in FIG. 8.
  • the at least two magnetic elements included in the magnetic blocks assembly may include a first magnetic element disposed at the non-movable portion 201 (or the non-movable portion 202) of the bottom surface 155, and a second magnetic element disposed at the distal end of the first mopping plate 171 (or the second mopping plate 172) .
  • restoration components 175 When multiple restoration components are included in the mopping mechanism 160, the same reference numeral “175” have been used to indicate the restoration components in the figures, for the simplicity of illustration. It is understood that different restoration components 175 may be in different forms. For example, one restoration component 175 may be a spring, another restoration component 175 may be an elastic rope, an elastic plate, a magnetic blocks assembly, etc. In some embodiments, the multiple restoration components 175 may be of the same type.
  • the restoration components 175 may be disposed at at least one of the following locations: between a distal end of the first mopping plate 171 and the first non-movable portion 201 of the bottom surface 155 (or of the main body 110) , between a distal end of the second mopping plate 172 and the second non-movable portion 202 of the bottom surface 155 (or of the main body 110) , or between proximal ends of the first mopping plate 171 and the second mopping plate 172 (i.e., the ends close to the rotary member 180) .
  • the restoration components 175 may be cams, as shown in FIG. 10.
  • the cams serving as the restoration components 175 may be similar to the rotary member 180 (which can also be a cam with an oval shape as shown in FIG. 22 or a Reuleaux triangle shape as shown in FIG. 29) , or may be different.
  • the cams serving as the restoration components 175 may be passive cams that are not driven by an electric motor.
  • the strokes of the cams serving as the restoration components 175 may be smaller than or equal to the strokes of the rotary member 180.
  • the stroke of a cam serving as the restoration component 175 in the embodiment shown in FIG. 10 and FIG. 11 may be variable between a maximum stroke and a minimum stroke (or a long stroke and a short stroke) .
  • the strokes of the cams serving as the restoration components 175 may be configured based on the reciprocating strokes of the first and second mopping plates 171 and 172.
  • the cams serving as the restoration components 175 may be operably coupled with the rotary member 180 through the first mopping plate 171 and the second mopping plate 172, as shown in FIG. 10 and FIG. 11.
  • the cams serving as the restoration components 175 may be actively driven cams.
  • the cams serving as the restoration components 175 may be driven by a driving unit to rotate.
  • the driving unit may be the mopping assembly driving unit 195 or a part of the mopping assembly driving unit 195, or may be a driving unit separate from the mopping assembly driving unit 195.
  • driving units may be individually and separately provided for the cams serving as the restoration components 175.
  • the embodiments shown in FIG. 10 and FIG. 11 may further improve the reliability of the reciprocating movement of the first and second mopping plates 171 and 172.
  • FIG. 10 shows three cams are disposed the following locations: between the proximal ends of the first mopping plate 171 and the second mopping plate 172, between the distal end of the first mopping plate 171 and the first non-movable portion 201 of the bottom surface 155, between the distal end of the second mopping plate 172 and the second non-movable portion 202 of the bottom surface 155.
  • the number of the cams is not limited to three, and can be any suitable numbers, such as four, five, six, etc.
  • the multiple restoration components 175 may be different.
  • one or more of the multiple restoration components 175 may not be a cam.
  • the first mopping assembly 161 may include a combination of cams and springs (or other forms disclosed herein) for the restoration components 175.
  • both of the first mopping plate 171 and the second mopping plate 172 may perform the reciprocating movements relative to the bottom surface 155 (e.g., away from or toward one another) .
  • one of the first mopping plate 171 and the second mopping plate 172 may be fixed (i.e., non-movable) relative to the bottom surface 155 of the main body 110, and the other one of the first mopping plate 171 and the second mopping plate 172 may perform the reciprocating movement away from or toward the fixed, non-movable mopping plate.
  • the reciprocating movement of the first mopping plate 171 and/or the second mopping plate 172 may be implemented through sliding, rolling, or both, or any other suitable manners.
  • the first mopping plate 171 and the main body 110 (or the bottom surface 155) , and/or the second mopping plate 171 and the main body 110 (or the bottom surface 155) may be movably (e.g., slidably or rollably) coupled through a rail, a groove, or rollers (not shown in figures) .
  • a rail may be disposed at a side of the first mopping plate 171 and/or the second mopping plate 172 that faces the main body 110.
  • a groove may be disposed at the bottom surface 155 of the main body 110 facing the first mopping plate 171 and/or the second mopping plate 172.
  • the groove and the rail may be configured to operably couple with one another, such that the rail may be slidable in and along the groove, thereby achieving the movable mounting of the first mopping plate 171 and/or the second mopping plate 172 to the bottom surface 155 of the main body 110.
  • one or more rollers may be provided on the bottom surface 155 of the main body 110 facing the first mopping plate 171 and/or the second mopping plate 172 to enable the first mopping plate 171 and/or the second mopping plate 172 to move relative to the bottom surface 155.
  • a rail or groove may be provided on a side of the first mopping plate 171 and/or a side of the second mopping plate 172 facing the bottom surface 155 to operably couple with the rollers provided on the bottom surface 155 to facilitate the relative movement of the first mopping plate 171 and/or the second mopping plate 172.
  • one or more rollers may be provided on the side of the first mopping plate 171 and/or the side of the second mopping plate 172 that faces the bottom surface 155 of the main body 110 to enable the first mopping plate 171 and/or the second mopping plate 172 to move relative to the bottom surface 155.
  • a rail or groove may be provided on the bottom surface 155 of the main body 110 to operable couple with the rollers provided on the side of the first mopping plate 171 and/or the side of the second mopping plate 172 to facilitate the movement of the first mopping plate 171 and/or the second mopping plate 172 relative to the bottom surface 155.
  • the reciprocating movement of the first mopping plate 171 and/or the second mopping plate 172 may include rotation. As shown in FIG. 12 to FIG. 16, the first mopping plate 171 and the second mopping plate 172 may reciprocatively rotate relative to the bottom surface 155 (e.g., away from or toward one another) . Hinge connection holes may be respectively disposed at the first mopping plate 171 and the second mopping plate 172. At least one hinge connection pin configured to be operably coupled with the hinge connection holes may be disposed at the bottom surface 155 of the main body 110. In the configuration shown in FIG. 12, two hinge connection holes 211 and 212 are schematically disposed near the 90-degree corners of the first mopping plate 171 and the second mopping plate 172.
  • the hinge connection holes on the first mopping plate 171 and the second mopping plate 172 may receive a same hinge connection pin (not shown) mounted on the bottom surface 155 or may receive different hinge connection pins mounted on the bottom surface 155, as shown in FIG. 12, such that each of the first mopping plate 171 and the second mopping plate 172 is hinge connected with the bottom surface 155 of the main body 110, and can rotate around the hinge connection pin or pins. It should be understood that the rotational configuration shown in FIG. 12 to FIG. 16 may be combined with other embodiments shown in other figures, such as the embodiment shown in FIG. 1.
  • the first mopping plate 171 and the second mopping plate 172 may have two straight sides and an arc shaped side (e.g., a shape similar to a quarter circle shape) .
  • two hinge connection holes may be disposed on the bottom surface 155 of the main body 110, and hinge connection pins may be integrally formed or fixedly mounted to the first mopping plate 171 and the second mopping plate 172. The hinge connection pins from the first mopping plate 171 and the second mopping plate 172 may be inserted into the hinge connection holes disposed at the bottom surface 155.
  • a single hinge connection pin may be disposed at the bottom surface 155 of the main body 110, which may penetrate into two hinge connection holes separately and overlappingly disposed at the first mopping plate 171 and the second mopping plate 172.
  • the hinge connection pins may be fixedly disposed at the first mopping plate 171 and the second mopping plate 172. In such embodiments, the first mopping plate 171 and the second mopping plate 172 may not be provided with hinge connection holes.
  • the hinge connection holes may be provided in the bottom surface 155.
  • the hinge connection pins may be fixedly provided at the bottom surface 155 of the main body 110, and the two hinge connection pins may be disposed opposing one another, each being received in a hinge connection hole provided at the first mopping plate 171 and the second mopping plate 172.
  • the bottom surface 155 of the main body 110 may not be provided with hinge connection holes.
  • the first mopping plate 171 and the second mopping plate 172 may be sleeve-fit with a same hinge connection pin 220 provided at the bottom surface 155 through respective hinge connection holes provided on the first mopping plate 171 and the second mopping plate 172.
  • the single hinge connection pin 220 may be operably coupled (e.g., sleeve-fit) with a hinge connection hole provided on the first mopping plate 171, or a hinge connection hole provided on the second mopping plate 172, or a hinge connection hole provided at a shared portion of the first mopping plate 171 and the second mopping plate 172.
  • the shared portion of the first mopping plate 171 and the second mopping plate 172 may be made of a resilient material, such as a rubber, which may be bent during the movement of the first mopping plate 171 and the second mopping plate 172.
  • the restoration component 175 (e.g., a spring) may be disposed between the first mopping plate 171 and the second mopping plate 172, with one end of the restoration component 175 connected with the first mopping plate 171, and another end of the restoration component 175 connected with the second mopping plate 172.
  • the rotary member 180 e.g., a cam
  • the restoration component 175 may state provide the minimum restoration force, and the first mopping plate 171 and the second mopping plate 172 may be in their respective first positions.
  • the first mopping plate 171 and the second mopping plate 172 may be pushed apart by the rotary member 180 in opposite directions. That is, the first mopping plate 171 and the second mopping plate 172 may rotate in opposite directions away from one another to reach the respective limit states or positions.
  • the gap or distance between the first mopping plate 171 and the second mopping plate 172 may be the largest, and the restoration component 175 may provide the maximum restoration force.
  • the restoration component 175 e.g., a spring
  • the restoration component 175 may generate a restoration force tending to pull the first mopping plate 171 and the second mopping plate 172 toward one another.
  • the rotary member 180 rotates from the second state shown in FIG. 13 back to the first state shown in FIG.
  • first mopping plate 171 and the second mopping plate 172 may be pulled by the restoration force of the restoration component 175 to rotate toward one another until they reach their respective first positions shown in FIG. 12. These processes may be repeated. As a result, the first mopping plate 171 and the second mopping plate 172 may be driven to perform reciprocating rotational movements (or referred to as swing movements) relative to the bottom surface 155 (and in some embodiments, also relative to one another) .
  • multiple restoration components 175 may be included in the first mopping assembly 161.
  • one or more additional restoration components 175 may be disposed between the first mopping plate 171 and the main body 110 (or the bottom surface 155, e.g., at a left distal end of the first mopping plate 171, similar to the embodiment shown in FIG. 7.
  • the one or more additional restoration components 175 disposed at the left distal end of the first mopping plate 171 may be compressed while the first mopping plate 171 is driven by the rotary member 180 to rotate counter-clockwise to the left.
  • the one or more additional restoration components 175 disposed at the left distal end of the first mopping plate 171 may provide a pushing restoration force to the first mopping plate 171.
  • one or more additional restoration components 175 may be disposed between the second mopping plate 172 and the main body 110 (or the bottom surface 155) , e.g., at a right distal end of the second mopping plate 172, similar to the embodiment shown in FIG. 7.
  • the one or more additional restoration components 175 disposed at the right distal end of the second mopping plate 172 may be compressed while the first mopping plate 172 is driven by the rotary member 180 to rotate clockwise to the right.
  • the one or more additional restoration components 175 disposed at the right distal end of the second mopping plate 172 may provide a pushing restoration force to the second mopping plate 172.
  • one or more additional restoration components 175 may be disposed both between the first mopping plate 171 and the main body 110 (or the bottom surface 155) as described above, and between the second mopping plate 172 and the main body 110 (or the bottom surface 155) as described above. In some embodiments, when one or more restoration components 175 are disposed at the left distal end of the first mopping plate 171 and at the right distal end of the second mopping plate 172, the restoration component 175 disposed between the first mopping plate 171 and the second mopping plate 172 may be included or may be omitted.
  • the one or more additional restoration components 175 may be disposed at edges of the first mopping plate 171 and the second mopping plate 172 that are perpendicular to the edges contacting the rotary member 180, as shown in FIG. 16 and FIG. 17.
  • the motion states of the first mopping plate 171 and the second mopping plate 172 may be derived from the above embodiments.
  • no restoration component 175 is disposed between the first mopping plate 171 and the second mopping plate 172, as in the embodiment shown in FIG. 14.
  • one or more restoration components 175 may be disposed between the first mopping plate 171 and the second mopping plate 172 in the embodiment shown in FIG. 16 and FIG. 17.
  • the rotary member 180 in the above embodiment may be a cam having an oval shape
  • the rotary member 180 may have any other suitable shapes, such as a rhombus shape, a square shape, a trapezoid shape, a hexagon shape, or a Reuleaux triangle shape shown in FIG. 29, etc.
  • the rotary member 180 e.g., a cam
  • the restoration component 175 e.g., a spring
  • reciprocating movements of the first and second mopping plates 171 and 172 may be achieved.
  • the first mopping plate 171 and the second mopping plate 172 may be driven by the rotary member 180 and the restoration component 175 to move between their respective first positions and second positions (e.g., away from one another and toward one another) reciprocatively.
  • Such movements increase the cleaning efficiency and cleaning effect of the cleaning device 100 for a surface to be cleaned.
  • the rotary member 180 may be directly connected with an electric motor of the mopping assembly driving unit 195, the space occupied by the mopping mechanism 160 is small, and the cost is relatively low.
  • the acting torque is small, and the structures are simple, which can reduce the fatigue of the mechanical structures in long term reciprocating movement processes. As a result, the damage to the mechanical components can be reduced, the reliability can be enhanced, and the operational lifetime of the device can be extended.
  • FIGs. 18, 19, 20, and 21 illustrate a mopping mechanism 260 according to another embodiment of the present disclosure.
  • the mopping mechanism 260 differs from the mopping mechanism 160 (e.g., differs from the first mopping assembly 161) in that the mopping mechanism 260 includes a rotary member 280 including a variable stroke rail 321 (shown in FIG. 23) formed or provided (e.g., mounted) on a surface (or a side) of the rotary member 280.
  • the variable stroke rail 321 may have an oval shape, a Reuleaux triangle shape, or any other shape that can provide a variable stroke.
  • the rotary member 280 may include features or structures similar to the rotary member 180. As shown in FIG.
  • the rotary member 280 including the variable stroke rail 321 may be disposed between the first mopping plate 171 and the second mopping plate 172.
  • the rotary member 280 may be connected with the mopping assembly driving unit 195.
  • a connection member 243 (which may also be referred to as a coupling member) may be respectively provided on the first mopping plate 171 and the second mopping plate 172 to operably couple with the rail 321.
  • a surface (e.g., an inner or outer surface) of the rail 321 may function as a working surface to be in contact with the connection member 243 for connecting with the mopping plates.
  • FIG. 23 shows the connection members 243 coupled with the variable stroke rail 321 for illustrative purposes only.
  • connection members 243 may be parts of or may be mounted to the first mopping plate 171 and the second mopping plate 172. That is, the first mopping plate 171 and the second mopping plate 172 may be mounted to the variable stroke rail 321 of the rotary member 280 through the respective connection members 243.
  • a restoration component 175 is not included, as shown in FIG. 18, the mopping mechanism 260 can still achieve the reciprocating relative movements of the first mopping plate 171 and the second mopping plate 172 through the rotary member 280 having the variable stroke rail 321.
  • This implementation of the mopping mechanism may have a simplified structure. Although no restoration component 175 is shown in the embodiment of FIGs. 18, 19, 20, 21, and 22, in some embodiments, one or more restoration components 175 may be disposed at various suitable locations, such as between the first mopping plate 171 and the second mopping plate 172, or at locations similar to those shown in FIG. 16 and FIG. 17.
  • the rotary member 280 of this embodiment may be a cam or a circular disk having the variable stoke rail 321.
  • the variable stroke rail 321 may be formed as a part on the cam or the circular disk, or may be mounted on the cam or circular disk.
  • the variable stroke rail 321 may have an oval shape with a variable stroke.
  • the oval shape of the rail 321 may define a maximum stroke (a long stroke) and a minimum stroke (a short stroke) .
  • the rotary member 280 may have any suitable shape, e.g., an oval shape, a rectangular shape, a square shape, a circular shape, a star shape, a triangle shape, a Reuleaux triangle shape (shown in FIG. 29) , a hexagon shape, etc.
  • the variable stroke rail 321 is not limited to having an oval shape, and can have other continuous shape, such as a rhombus shape, a square shape, a trapezoid shape, a hexagon shape, etc.
  • the first mopping plate 171 and the second mopping plate 172 may each be provided with a sliding block, sliding bar, a pin, or a roller (which are examples of the connection member 243) to operably couple with the variable stroke rail 321.
  • the sliding blocks or rollers may fit with (e.g., snap-fit on or in) the variable stroke rail 321, and may freely move along the variable stroke rail 321 when the rotary member 280 rotates.
  • the first mopping plate 171 and the second mopping plate 172 may be movably mounted to the bottom surface 155 through a sliding mechanism 311 and a sliding mechanism 312, as shown in FIGs. 20 and 21.
  • Each of the sliding mechanisms 311 and 312 may include a rail or groove and a matching roller or slider (e.g., a sliding bar, ball, block, etc. ) .
  • the rail or groove may be provided at the bottom surface 155
  • the matching roller or slider may be provided at the first mopping plate 171 and the second mopping plate 172.
  • the matching roller or slider may be provided at the bottom surface 155
  • the rail or groove may be provided at the first mopping plate 171 and the second mopping plate 172.
  • first mopping plate 171 and the second mopping plate 172 may be hinge connected to the bottom surface 155 and may rotate (or pivot, swing) relative to the bottom surface 155, as shown in FIGs. 18 and 19.
  • the movable mounting of the first mopping plate 171 and the second mopping plate 172 on the bottom surface 155, or the hinge mounting of the first mopping plate 171 and the second mopping plate 172 on the bottom surface 155 can be configured similar to those described above in connection with other embodiments.
  • the rotary member 280 (e.g., a cam) having the variable stroke rail 321 disposed between the first mopping plate 171 and the second mopping plate 172 is used as an example to explain the motion state of the first mopping plate 171 and the second mopping plate 172: when the rotary member 280 is in the first state (with a short axis aligned perpendicular to contacting edges of the first mopping plate 171 and the second mopping plate 172) , correspondingly, the first mopping plate 171 and the second mopping plate 172 are in their respective first positions, and the distance between the first mopping plate 171 and the second mopping plate 172 may be the smallest, as shown in FIGs. 18 and 20.
  • the mopping assembly driving unit 195 may be controlled to drive the rotary member 280 to rotate, such that when the rotary member 280 transitions from the first state to the second state (with the long axis aligned substantially perpendicular to the contacting edges of the first mopping plate 171 and the second mopping plate 172) , correspondingly, the first mopping plate 171 and the second mopping plate 172 reach their respective second positions. At this moment, the distance between the first mopping plate 171 and the second mopping plate 172 may be the largest. Accordingly, in this process, the first mopping plate 171 the second mopping plate 172 move away from one another.
  • a variable-frequency electric motor e.g., a variable-frequency electric motor
  • the sliding blocks or rollers i.e., the connection members 243 provided at the first mopping plate 171 and the second mopping plate 172 are limited by the rail 321 of the rotary member 280.
  • the distance between the first mopping plate 171 and the second mopping plate 172 reduces to a minimum distance. In this process, the first mopping plate 171 and the second mopping plate 172 move toward one another. Therefore, the present disclosure provides a second type of mopping mechanism.
  • the second type of mopping mechanism shown in FIGs. 18-21 and 23 may also be implemented in other embodiments shown in other figures, such as the embodiment shown in FIG. 1A to FIG. 1C.
  • the mopping assembly driving unit 195 may drive the rotary member 280 to rotate, which may drive the first mopping plate 171 and the second mopping plate 172 through the connection members 243 and the rail 321 to perform reciprocating movements, e.g., relative to the bottom surface 155 (and in some embodiments, relative to one another, such as away from and toward one another) .
  • the mopping efficiency and mopping effect for a surface to be cleaned can be enhanced with the disclosed mopping mechanism.
  • FIG. 24 –FIG. 27 illustrate a mopping mechanism 360, according to another embodiment of the present disclosure.
  • the mopping mechanism 360 may include structures similar to the mopping mechanism 160 or 260 described above.
  • the mopping mechanism 360 may include coupling elements 333 and 334 provided on the first mopping plate 171 and the second mopping plate 172 respectively to operably couple with a rotary member 380.
  • At least one (e.g., each) of the coupling elements 333 and 334 may include a bearing, a pin, a roller, a slider (e.g., a sliding ball, a sliding bar, a sliding block, etc. ) , or a gear.
  • At least one (e.g., each) of the coupling elements 333 and 334 may include a crank, a linkage, or a piston.
  • the coupling elements 333 and 334 may be of the same type (e.g., both being a bearing) .
  • the coupling elements 333 and 334 may be of different types (e.g., a bearing and a roller, a bearing and a slider, a roller and a slider, a pin and a roller, a pin and a slider, a bearing and a gear, etc. ) .
  • the rotary member 380 may include matching features or structures to engage with the coupling element 333 and 334.
  • the rotary member 380 may be cap shaped (not shown) , with an inner or outer side surface of the cap coupled with the coupling elements 333 and 334.
  • the inner side surface or the outer side surface of the cap shaped rotary member 380 may be a smooth surface.
  • the coupling elements 333 and 334 are pins, the inner side surface or the outer side surface of the cap shaped rotary member 380 may be a smooth surface.
  • the inner side surface or the outer side surface of the cap shaped rotary member 380 may include a groove or a rail for the rollers or sliders to roll or slide along.
  • the cap shaped rotary member 380 may be an outer gear or an inner gear, with the outer side surface or the inner side surface configured with a plurality of teeth to engage with the gears 333 and 334.
  • the restoration component (s) 175 may be omitted.
  • the coupling elements 333 and 334 may be cranks, linkages, and/or pistons that may connect the first and second mopping plates 171 and 172 with the rotary member 380.
  • the coupling elements 333 and 334 shown in the figures are for illustrative purposes, and can be any other suitable elements that may function to couple the first mopping plate 171 and the second mopping plate 172 with the rotary member 380.
  • the rotary member 380 may be similar to the rotary member 180, which may have a shape shown in FIG. 22 or FIG. 29.
  • the outer side surface of the rotary member 380 may be in contact with the coupling elements 333 and 334.
  • an inner side surface of the rotary member 380 may be in contact with the coupling elements 333 and 334 (e.g., when the rotary member 380 includes a cap shape, the inner side surface of the cap may be in contact with the coupling elements 333 and 334) .
  • an outer side surface of the rotary member 380 may be coupled with (e.g., abutting against or engaged with) the coupling elements 333 and 334 to drive the first mopping plate 171 and the second mopping plate 172 to move reciprocatively between their respective first positions and second positions relative to the bottom surface 155 (e.g., away from and toward one another) .
  • the coupling elements 333 and 334 may be coupled with (e.g., abutting against or engaged with) the coupling elements 333 and 334 to drive the first mopping plate 171 and the second mopping plate 172 to move reciprocatively between their respective first positions and second positions relative to the bottom surface 155 (e.g., away from and toward one another) .
  • an inner side surface of the rotary member 380 may be coupled with (e.g., abutting against or engaged with) the coupling elements 333 and 334 to drive the first mopping plate 171 and the second mopping plate 172 to move reciprocatively between their respective first positions and second positions (e.g., away from and toward one another, and/or relative to the bottom surface 155) .
  • At least two restoration components 175 may be provided at suitable locations to provide a pulling force (or a restoration force) tending to pull the first mopping plate 171 and the second mopping plate 172 apart when the rotary member 380 is at the first state (with the short axis aligned perpendicular to the edges of the first mopping plate 171 and the second mopping plate 172) , as shown in FIG. 26. That is, when the rotary member 380 is at the first state as shown in FIG.
  • the restoration components 175 may be in a state providing a pulling force to pull the first mopping plate 171 and the second mopping plate 172 away from one another.
  • the first mopping plate 171 and the second mopping plate 172 may perform rotational movements relative to the bottom surface 155.
  • Each of the restoration components 175 may have one end connected with a non-movable portion of the bottom surface 155 or the main body 110, and another end connected with the first mopping plate 171 or the second mopping plate 172.
  • the restoration components 175 may be in other suitable forms, as long as the structure can provide a pulling force to pull the first and second mopping plates 171 and 172 during the movement of the first and second mopping plates 171 and 172.
  • hinge connection pins and holes are not shown in FIG. 24 –FIG. 27, hinge connection pins may be included in the embodiments shown in FIG. 24 –FIG. 27, similar to the embodiments shown in FIG. 13 or FIG. 18.
  • the shape of the rotary member 380 may not affect the reciprocating movement between the two mopping plates 171 and 172. Therefore, the rotary member 380 is not limited to be an oval shaped cam, a Reuleaux triangle shaped cam, or a circular disk, and can be other rotating structures having other shapes.
  • a restoration component 175 is shown. In some embodiments, multiple restoration components 175 may be included in the embodiment shown in FIG. 24, such as those shown in FIG. 16.
  • the rotary member disclosed herein configured to provide a variable stroke to at least one of the first mopping plate or the second mopping plate may having a Reuleaux triangle shape (cross section) , as shown in FIG. 29.
  • the Reuleaux triangle shape shown in FIG. 29 may be implemented in a cam.
  • the Reuleaux triangle shape may provide a variable stroke to the first mopping plate 171 and the second mopping plate 172.
  • the first mopping plate 171 and the second mopping plate 172 may be configured to be in contact with different portions of the circumferential side surface of the rotary member having the Reuleaux triangle shape.
  • the different portions may have different distances (or strokes) from the center of the Reuleaux triangle shape (which may be a rotation center) .
  • the center of the Reuleaux triangle shape which may be a rotation center
  • one of the first mopping plate 171 and the second mopping plate 172 may be in contact with a side surface portion where an apex point 2901 is located, and the other one of the first mopping plate 171 and the second mopping plate 172 may be in contact with an opposite or opposing side surface 2902.
  • the apex point 2901 and the opposing side surface 2902 may have different distances (or strokes) to the rotation center of the rotary member with the Reuleaux triangle shape.
  • the mopping plate in contact with the apex point 2901 may have a longer stroke than the mopping plate in contact with the side surface 2902.
  • the mopping plate in contact with the apex point 2901 may be at the first position of the mopping plate, and the other mopping plate in contact with the side surface 2902 may be at the second position of the other mopping plate.
  • This may be different from the rotary member being in an oval shaped cam, as shown in, e.g., FIG. 2 and FIG. 3, where the first mopping plate 171 and the second mopping plate 172 are at their respective first positions at the same time, or at their respective second positions at the same time.
  • Any other suitable two portions with different distances to the rotation center may be configured to be in contact with the first and second mopping plates 171 and 172, thereby providing a variable stroke to at least one of the first mopping plate 171 or the second mopping plate 172.
  • the second mopping plate 172 when the first mopping plate 171 is at the first position (e.g., closest to the center of rotation of the rotary member having the Reuleaux triangle shape) , the second mopping plate 172 may be at the second position (e.g., farthest from the center of rotation of the rotary member having the Reuleaux triangle shape) .
  • any rotary member shown as a cam shape may be replaced by the Reuleaux triangle shape shown in FIG. 29.
  • the restoration component when a cam is used as a restoration component, the restoration component may instead have the Reuleaux triangle shape shown in FIG. 29.
  • the rotary member and the restoration component through the rotary member and the restoration component, reciprocating movement away from or toward one another between the two mopping plates 171 and 172 can be realized, thereby increasing the cleaning efficiency and cleaning effect of the cleaning device with respect to the surface to be cleaned. Because the rotary member and the electric motor of the mopping assembly driving unit may be directly connected, the space occupied by the mopping mechanism is small, and the cost is low. Further, in some embodiments, the reciprocating movement between the two mopping plates 171 and 172 can be realized by using the rotary member alone without using the restoration component. Thus, the structure can be simplified, which reduces the fatigue of the mechanical structure in long term reciprocating movement processes, reduces damages to the mechanical components, increases the reliability, and extends the operational lifetime of the cleaning device.
  • first mopping plate 171 and the second mopping plate 172 may both be provided with a mop (not shown) .
  • the shape of the mops may be consistent with the shape of the mopping plates, or may be different.
  • the mops may be detachably mounted on the mopping plates 171 and 172.
  • the mops may be mounted to the mopping plates 171 and 172 through a sticking method (e.g., through a magic tape or strip) , a tie rope or strip, a snap-fitting mechanism, a quick-release mechanism, etc., which makes it convenient to detach the mops, and convenient to replace the mops.
  • the rotary member may provide a variable stroke, either through the shape of the rotary member or through another structure provided at the rotary member, such as the rail 321.
  • the rotary member may at least partially drive the first mopping plate and the second mopping plate to move reciprocatively according to the variable stroke, as the rotary member rotates.
  • the reciprocating movement of the first mopping plate and the second mopping plate may be achieved by combined actions of the rotary member and a restoration component.
  • the reciprocating movement of the first mopping plate and the second mopping plate may be achieved by combined actions of the rotary member and coupling elements (e.g., 333 and 334) provided at the first mopping plate and the second mopping plate.
  • the cleaning device may be a cleaning robot.
  • the cleaning robot may include one, two, or more mopping mechanisms described above. If multiple mopping mechanisms are included, the multiple mopping mechanisms may be of the same type, or may be of different types.
  • a mopping mechanism one or more mopping plate assemblies may be included. When multiple mopping plate assemblies are included, the mopping plate assemblies may be structurally similar, or may be structurally different.
  • the various embodiments of the mopping plate assembly shown in various figures may be combined in an embodiment.
  • the cleaning robot may be provided with two mopping plate assemblies 161 and 162 on the bottom surface 155, as shown in FIG. 1C.
  • first mopping plate assembly 161 and the second mopping plate assembly 162 may be any of the suitable mopping plate assemblies disclosed herein.
  • the two mopping plate assemblies 161 and 162 may be symmetrically or asymmetrically disposed on the bottom surface 155.
  • the first mopping plate assembly 161 and the second mopping plate assembly 162 may be symmetrically disposed at the front end and the rear end of the bottom surface 155 of the main body 110.
  • the first mopping plate assembly 161 and the second mopping plate assembly 162 may be disposed along the moving direction of the cleaning device.
  • Each of the first mopping plate assembly 161 and the second mopping plate assembly 162 may be any embodiment shown in FIGs. 2-27.
  • the cleaning device may include a sweeping-cleaning mechanism.
  • the sweeping-cleaning mechanism may be disposed at the front end of the cleaning device, and the mopping mechanism may be disposed at the rear end of the cleaning device.
  • the sweeping-cleaning mechanism may sweep-clean the surface to be cleaned.
  • the mopping mechanism of the present disclosure may mop the surface to be cleaned, thereby avoiding dust marks appearing after the surface to be cleaned is mopped, which further improves the cleaning effect.
  • the cleaning device of the present disclosure may include a water supply device.
  • the water supply device may be configured to provide a water source to the mop attached to the mopping plates 171 and 172, such that the mop can maintain a moisturized state for better mopping the surface to be cleaned.
  • the water supply device may be disposed in the main body 110 or on a handle when the cleaning device is a handheld cleaning machine.
  • the water supply device may include a water storage tank and a water pump connected with the water storage tank. A water inlet of the water pump may be connected with the water storage tank, and a water outlet of the water pump may provide the water source to the mop through a conduit.
  • a water supply hole may be provided on each mopping plate.
  • the water supply hole may be connected with the water outlet of the water pump through the conduit, and may provide a suitable amount of water to moisturize the mop for mopping purposes. During the mopping, the mop may maintain a moisturized state, thereby improving the cleaning effect for the surface to be cleaned.
  • the first mopping plate 171 and the second mopping plate 172 are shown and described as both being movable relative to the bottom surface 155. It is understood that in some embodiments, only one of the first mopping plate 171 and the second mopping plate 172 may be movable relative to the bottom surface.
  • the rotary member may drive the movable one of the first mopping plate 171 and the second mopping plate 172 to move from its first position to second position
  • the restoration component may drive the movable one of the first mopping plate 171 and the second mopping plate 172 to return from its second position to first position.
  • the rotary member may drive the movable one of the first mopping plate 171 and the second mopping plate 172 between its first position and second position.
  • FIG. 28 schematically illustrates another mopping mechanism, according to an embodiment of the present disclosure.
  • the mopping plates 171 and 172 may be connected with the driving wheels 140 through linkages 291 and 292, in a manner similar to a wheel structure of a steam locomotive.
  • the driving wheels 140 moves forward, the mopping plates 171 and 172 may be moved back and forth (reciprocating movement) in the moving direction of the cleaning device 100 by the linkages 291 and 292.
  • a separate mopping assembly driving unit may be omitted.
  • a driving unit that drives the driving wheels 140 indirectly provides the actuation force to move the first mopping plate 171 and the second mopping plate 172.
  • the structural complexity of the cleaning device 100 may be reduced, and manufacturing costs may also be reduced. Because the speed of the reciprocating movement of the first and second mopping plates 171 and 172 are proportional to the moving speed of the driving wheels 140, the cleaning efficiency may be improved and the cleaning time may be shortened when the cleaning device 100 is operated in a fast cleaning mode.
  • FIGs. 30 and 31 schematically illustrate another mopping mechanism, according to an embodiment of the present disclosure.
  • the embodiment shown in FIGs. 30 and 31 is similar to the embodiment shown in FIGs. 26 and 27, except that the restoration component 175 is disposed between the first mopping plate 171 and the second mopping plate 172.
  • FIG. 30 shows the state in which the first mopping plate 171 and the second mopping plate 172 are away from one another. In this state, when the coupling elements 333 and 334 are bearings, pins, rollers, balls, etc., the restoration component 175 may be in a compressed state, such that the restoration component 175 pushes the first mopping plate 171 and the second mopping plate 172 away from one another.
  • the restoration component 175 may be in a state to provide a pulling force to pull the first mopping plate 171 and the second mopping plate 172 toward one another, or may be in a state to provide a pushing force to push the first mopping plate 171 and the second mopping plate 172 away from one another.
  • FIG. 31 shows the state in which the first mopping plate 171 and the second mopping plate 172 are close to one another. In this state, the restoration component 175 may be in a state providing a pushing force, a state providing a pulling force, or a neutral state providing substantially zero force.
  • the embodiment shown in FIG. 26 and FIG. 27 may be combined, such that at least three restoration components may be included in the mopping mechanism.
  • the mopping mechanism of the present disclosure is not limited to be used in a cleaning robot, and may also be used in traditional handheld floor mopping machines.
  • the rotary member disclosed herein may include any suitable structure configured to provide, either directly or through other coupling elements, a variable stroke to the movement of the first mopping plate and/or the second mopping plate.
  • the restoration component disclosed herein may include any suitable structure configured to provide a restoration force to cause the first mopping plate and/or the second mopping plate to move from the second position to the first position (or from the first position to the second position) .

Landscapes

  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)

Abstract

A mopping mechanism (160), which includes a first mopping plate (171) and a second mopping plate (172). The mopping mechanism (160) also includes a rotary member (180) coupled with the first mopping plate (171) and the second mopping plate (172) and configured to provide a variable stroke for at least one of the first mopping plate (171) or the second mopping plate (172). The mopping mechanism (160) further includes a mopping assembly driving unit (195) connected with the rotary member (180) and configured to drive the rotary member (180) to rotate. When rotating, the rotary member (180) drives at least one of the first mopping plate (171) or the second mopping plate (172) to move reciprocally between a first position and a second position.

Description

MOPPING MECHANISM AND CLEANING DEVICE
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to U.S. Provisional Patent Application No. 62/916,841, filed on October 18, 2019, and also claims priority to Chinese Patent Application No. 201910944823.2, filed on September 30, 2019. The entire contents of the above-referenced applications are incorporated herein by reference.
TECHNICAL FIELD
The present disclosure relates to the technology field of smart home appliances and, more particularly, to a mopping mechanism and a cleaning device.
BACKGROUND
As the advance of technologies and the increase of living standards, cleaning robots have been widely used in homes due to their functions such as automatic floor sweeping, vacuum cleaning, etc.
The most common robots in currently available cleaning robots are floor-sweeping robots. Floor-sweeping robots can only perform floor sweeping, but do not have floor-mopping functions. To accomplish the floor-mopping functions in a cleaning robot, typically a mop is mounted to a bottom surface of the main body of the floor-sweeping robot. The mop is static relative to the main body of the floor-sweeping robot. The mop performs mopping of areas of the floor it passes by as the cleaning robot moves.
However, because the mop is static relative to the chassis, the mop cannot perform reciprocating mopping of the surface to be cleaned. As a result, the cleaning efficiency is low and the cleaning effect is poor.
SUMMARY
According to an aspect of the present disclosure, a mopping mechanism is provided. The mopping mechanism includes a first mopping plate and a second mopping plate.  The mopping mechanism also includes a rotary member coupled with the first mopping plate and the second mopping plate and configured to provide a variable stroke for at least one of the first mopping plate or the second mopping plate. The mopping mechanism further includes a mopping assembly driving unit connected with the rotary member and configured to drive the rotary member to rotate. When rotating, the rotary member drives at least one of the first mopping plate or the second mopping plate to move reciprocatively between a first position and a second position.
According to another aspect of the present disclosure, a cleaning device is provided. The cleaning device includes a main body including a bottom surface. The cleaning device also includes a mopping mechanism mounted to the bottom surface. The mopping mechanism includes a first mopping plate and a second mopping plate. The mopping mechanism also includes a rotary member coupled with the first mopping plate and the second mopping plate and configured to provide a variable stroke for at least one of the first mopping plate or the second mopping plate. The mopping mechanism further includes a mopping assembly driving unit connected with the rotary member and configured to drive the rotary member to rotate. When rotating, the rotary member drives at least one of the first mopping plate or the second mopping plate to move reciprocatively between a first position and a second position.
BRIEF DESCRIPTION OF THE DRAWINGS
To explain the technical solutions of the present disclosure, the drawings that illustrate embodiments of the present disclosure will be briefly introduced. It is understood that the drawings described below are only some of the embodiments of the present disclosure. A person having ordinary skills in the art can obtain other drawings based on the accompanying drawings without creative efforts.
FIG. 1A is a schematic perspective view of a cleaning device, according to an embodiment of the present disclosure.
FIG. 1B is a schematic illustration of a bottom configuration of the cleaning device, according to an embodiment of the present disclosure.
FIG. 1C is a schematic illustration of a mopping mechanism, according to an embodiment of the present disclosure.
FIGs. 2 and 3 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the  present disclosure.
FIGs. 4 and 5 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the present disclosure.
FIGs. 6 and 7 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the present disclosure.
FIGs. 8 and 9 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the present disclosure.
FIGs. 10 and 11 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the present disclosure.
FIGs. 12 and 13 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the present disclosure.
FIGs. 14 and 15 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the present disclosure.
FIGs. 16 and 17 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the present disclosure.
FIGs. 18 and 19 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the present disclosure.
FIGs. 20 and 21 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the present disclosure.
FIG. 22 is a schematic illustration of a structure of a rotary member, according to an embodiment of the present disclosure.
FIG. 23 is a schematic illustration of a structural of a rotary member including a rail, according to an embodiment of the present disclosure.
FIGs. 24 and 25 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the  present disclosure.
FIGs. 26 and 27 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the present disclosure.
FIG. 28 schematically illustrates a cleaning device with a mopping mechanism, according to another embodiment of the present disclosure.
FIG. 29 schematically illustrates a rotary member, according to another embodiment of the present disclosure.
FIGs. 30 and 31 illustrate schematic configurations and motion states of a first mopping assembly included in the mopping mechanism, according to an embodiment of the present disclosure.
DETAILED DESCRIPTION
To render the objectives, features, and advantages of the present disclosure more obvious and easier to understand, the technical solutions of the present disclosure will be described clearly and completely with reference to the accompanying drawings. Obviously, the embodiments described herein are only some of the embodiments of the present disclosure, and are not all of the embodiments of the present disclosure. Based on the embodiments of the present disclosure, a person having ordinary skills in the art can obtain other embodiments without creative efforts, which all belong to the scope of protection of the present disclosure.
The singular forms “a, ” “an, ” and “the” are intended to include the plural forms as well, unless the context indicates otherwise. And, the terms “comprise, ” “comprising, ” “include, ” and the like specify the presence of stated features, steps, operations, elements, and/or components but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups. The term “and/or” used herein includes any suitable combination of one or more related items listed. For example, A and/or B can mean A only, A and B, and B only. The symbol “/” means “or” between the related items separated by the symbol. The phrase “at least one of” A, B, or C encompasses all combinations of A, B, and C, such as A only, B only, C only, A and B, B and C, A and C, and A, B, and C. In this regard, A and/or B can mean at least one of A or B.
Further, when an embodiment illustrated in a drawing shows a single element, it is understood that the embodiment may include a plurality of such elements. Likewise, when an embodiment illustrated in a drawing shows a plurality of such elements, it is understood that  the embodiment may include only one such element. The number of elements illustrated in the drawing is for illustration purposes only, and should not be construed as limiting the scope of the embodiment. Moreover, unless otherwise noted, the embodiments shown in the drawings are not mutually exclusive, and they may be combined in any suitable manner. For example, elements shown in one embodiment but not another embodiment may nevertheless be included in the other embodiment.
The present disclosure provides a mopping mechanism and a mobile device including the mopping mechanism (e.g., a cleaning device, such as a cleaning robot) . The mopping mechanism may be configured to change a mopping speed or a mopping frequency of the mops mounted to mopping plates, and may perform reciprocating mopping of the surface to be cleaned, thereby enhancing the cleaning efficiency and cleaning effect.
To realize the above objective, the present disclosure provides the following technical solutions:
An aspect of the present disclosure provides a mopping mechanism mountable to a bottom surface of a main body of a mobile device (e.g., a cleaning device) . The mopping mechanism may include a mopping assembly driving unit, and a first mopping plate and a second mopping plate mounted to the bottom surface of the main body. The first mopping plate and the second mopping plate may be configured to be movable relative to the bottom surface (and in some embodiments, relative to one another) . In some embodiments, each of the first mopping plate and the second mopping plate may be movable between a first position and a second position relative to the bottom surface. A restoration component may be disposed between the first mopping plate and the second mopping plate, and configured to provide a restoration force for restoring the first mopping plate and the second mopping plate from their respective first positions (or second positions) to their respective second positions (or first positions) . A rotary member may be disposed between the first mopping plate and the second mopping plate and configured to provide a variable stroke for the movements of the first mopping plate and the second mopping plate. Different (e.g., opposite or opposing) portions (e.g., a circumferential inner side surface or outer side surface) of the rotary member may be configured to be in contact with or connected with the first mopping plate and the second mopping plate, respectively. For example, in some embodiments, the circumferential inner side surface or outer side surface of the rotary member may be in contact with (e.g., abutting against) contacting edges of the first mopping plate and the second mopping plate. In some embodiments, different portions of the rotary member may be connected with the first mopping plate and the second mopping plate through a coupling element, such as a crank, a  linkage, a piston, etc. Each of the first mopping plate and the second mopping plate may have its corresponding first position and second position during a full cycle of a reciprocating movement. The first position of each mopping plate (first or second mopping plate) may be defined as a position at which any point (e.g., the geometric center, or a contacting point of the mopping plate connected, directly or indirectly through a coupling element, with the rotary member) on the mopping plate is closest to a reference point of the rotary member. The second position may be defined as a position at which any point (e.g., the geometric center, or a contacting point of the mopping plate connected, directly or indirectly through a coupling element, with the rotary member) on the mopping plate is farthest to the reference point of the rotary member. The reference point of the rotary member may be a stationary point on the rotary member that is substantially stationary (e.g., neither rotating nor translating) relative to the rotation shaft (or axis) of the rotary member during the rotation of the rotary member. For example, in some embodiments, the reference point may be a center of rotation of the rotary member. In some embodiments, the center of rotation of the rotary member may be a geometric center of the rotary member. In some embodiments, the reference point may be a point on the rotation shaft that drives the rotary member to rotate. The center of rotation of the rotary member may be a crossing point between a rotation axis and a cross-section of the rotary member perpendicular to the rotation axis. The mopping assembly driving unit may be connected with the rotary member and configured to drive the rotary member to rotate. The rotary member and the restoration component together may provide a driving mechanism to drive the first mopping plate and the second mopping plate to move reciprocatively relative to the bottom surface. In some embodiments, the first mopping plate and the second mopping plate may move in parallel with one another or relative to one another, e.g., away from or toward one another. The reciprocating movement of the first mopping plate may be between the first position and the second position of the first mopping plate. The reciprocating movement of the second mopping plate is between the first position and the second position of the second mopping plate. In some embodiments, when the first mopping plate is at its first position (or second position) , the second mopping plate may be also at its first position (or second position) . In some embodiments, when the first mopping plate is at its first position (or second position) , the second mopping plate may be at its second position (or first position) .
In some embodiments, the rotary member may be a cam having a variable stroke. Different (e.g., opposite or opposing) portions of the circumferential side surface of the cam may be configured to abut against contacting edges of the first mopping plate and the second mopping plate respectively. When different portions of the circumferential side surface of the  cam abut against the contacting edges of the first mopping plate and the second mopping plate, different strokes may be provided for the movements of the first mopping plate and the second mopping plate, causing the first mopping plate and the second mopping plate to move relative to the bottom surface at a specific time (e.g., be at different locations relative to one another) .
In some embodiments, at least one restoration component may be disposed between the first mopping plate and the second mopping plate. An end of the restoration component may be connected to the first mopping plate, another end may be connected to the second mopping plate. The restoration component may be configured to provide a restoration force tending to move the first mopping plate and the second mopping plate toward one another, away from one another. In some embodiments, the restoration component may cause one of the first mopping plate and the second mopping plate to both move from their second positions (or first positions) to their first positions (or second positions) , or may cause one of the first mopping plate and the second mopping plate to move from its first position to its second position, and cause the other one of the first mopping plate and the second mopping plate to move from its second position to its first position. In some embodiments, the restoration force may be a pulling force. In some embodiments, when the restoration component is disposed between the first mopping plate and the bottom surface, and/or between the second mopping plate and the bottom surface, the restoration force may be a pushing force (or repulsive force) . The restoration component may have a state in which the restoration component provides a maximum restoration force (e.g., a maximum pulling force or a maximum pushing force) to the first mopping plate and/or the second mopping plate, and a state in which the restoration component provides a minimum restoration force (e.g., a minimum pulling force or a minimum pushing force) to the first mopping plate and/or the second mopping plate. During operations, when the first mopping plate and the second mopping plate are performing reciprocating movements, the restoration component may operate between the state providing the maximum restoration force and the state providing the minimum restoration force to at least one of the first mopping plate or the second mopping plate. In some embodiment, the minimum restoration force may be a zero force. In some embodiments, the minimum restoration force may be a minimum, non-zero pulling force or a minimum, non-zero pushing force.
In some embodiments, a distal end of the first mopping plate distant from the cam may be provided with at least one restoration component. In some embodiments, a distal end of the second mopping plate distant from the cam may be provided with at least one  restoration component.
Another aspect of the present disclosure provides a mopping mechanism mountable to a bottom surface of a main body of a cleaning robot. The mopping mechanism may include a mopping assembly driving unit, and a first mopping plate and a second mopping plate disposed at the bottom surface of the main body. The first mopping plate and the second mopping plate may be configured to be movable relative to the bottom surface (e.g., movable in parallel with one another or relative to one another) . A rotary member may be disposed between the first mopping plate and the second mopping plate. A rail having a variable stroke (e.g., an oval shape rail) may be disposed (e.g., formed or mounted) on the rotary member. The rail may be connected with the first mopping plate and the second mopping plate, and may provide the variable stroke for the movements of the first mopping plate and the second mopping plate. The shape of the rotary member may be any suitable shape, such as an oval shape, a circular disk shape, a Reuleaux triangle shape, etc. Each of the first mopping plate and the second mopping plate may be provided with a coupling member configured to operably couple with the rail on the rotary member. The mopping assembly driving unit may be connected with the rotary member and configured to drive the rotary member to rotate. When the rotary member rotates, the coupling members respectively disposed on the first mopping plate and the second mopping plate may be configured to move (e.g., slide, roll, etc. ) along the rail on the rotary member, thereby driving the first mopping plate and the second mopping plate to move reciprocatively relative to the bottom surface of the cleaning robot (e.g., move in parallel with one another or relative to one another, such as away from or toward one another) .
In some embodiments, the rotary member may be configured to provide a variable stroke to at least one of the first mopping plate or the second mopping plate. For example, in some embodiments, the rotary member may be a cam with a variable stroke. The cam may have an oval shape or a Reuleaux triangle shape. In some embodiments, the rotary member may be a cam or a circular disk structure mounted or provided with a rail having a variable stroke (e.g., an oval shaped sliding rail) .
In some embodiments, the first mopping plate and the second mopping plate may be slidably disposed at the bottom surface of the main body through a sliding mechanism. In some embodiments, the first mopping plate and the second mopping plate may be rotatably disposed at the bottom surface of the main body through a hinge connection. In some embodiments, the first mopping plate and the second mopping plate may be respectively provided with a hinge connection hole. The bottom surface of the main body may be provided  with at least one hinge connection pin configured to operably couple with the hinge connection holes respectively provided on the first mopping plate and the second mopping plate. The first mopping plate and the second mopping plate may be sleeve-fit onto a same hinge connection pin through the hinge connection holes, or respectively sleeve-fit onto different hinge connection pins through the hinge connection holes. The first mopping plate and the second mopping plate may perform reciprocating movements relative to the bottom surface (e.g., in parallel with one another or relative to one another, such as away from or toward one another) .
In some embodiments, the first mopping plate and the second mopping plate may be respectively provided with a mop for mopping a surface to be cleaned (e.g., a floor) . The mops may be detachably mounted to the first mopping plate and the second mopping plate.
The present disclosure also provides a cleaning robot, which includes one or more of the disclosed mopping mechanisms. That is, the cleaning device or the mobile device disclosed herein may be a cleaning robot.
In some embodiments, the cleaning device (e.g., cleaning robot) also includes a sweeping-cleaning mechanism. Along a moving direction of the cleaning device, the sweeping-cleaning mechanism may be disposed at a front end of the bottom surface of the main body, and the mopping mechanism may be disposed at a rear end of the bottom surface of the main body.
In some embodiments, the cleaning device also includes a water supply device disposed in the main body. The water supply device may be configured to provide a water source to the mop. The mopping plates may be provided with water supply holes. The water supply device may include a water storage tank and a water pump connected with the water storage tank. A water inlet of the water pump may be connected with the water storage tank. A water outlet of the water pump may be connected with the water supply holes. The cleaning device may also include a first mopping mechanism and a second mopping mechanism symmetrically disposed at a front end and a rear end of the bottom surface of the main body in the moving direction of the cleaning device.
Compared to the conventional technologies, the mopping mechanism and the cleaning device provided by the present disclosure have the following advantages:
According to embodiments of the mopping mechanism and the cleaning device of the present disclosure, a first mopping plate and a second mopping plate may be disposed at a bottom surface of a main body of the cleaning device. The first mopping plate and the second mopping plate may be configured to move relative to the bottom surface (e.g., in parallel with  one another or relative to one another) . A mopping assembly driving unit may be disposed in the main body, and may be mechanically coupled with a rotary member disposed between the first mopping plate and the second mopping plate. The rotary member may be configured to provide a variable stroke for the movement of the first mopping plate and/or the second mopping plate. The mopping assembly driving unit may be configured to drive the rotary member to rotate. When rotating, the rotary member may drive the first mopping plate and the second mopping plate to move relative to the bottom surface (e.g., in parallel with one another or relative to one another) . In some embodiments, a restoration component may be disposed between the first mopping plate and the second mopping plate, with one end connected with the first mopping plate and the other end connected with the second mopping plate. The restoration component may be configured to generate a restoration force to restore the first mopping plate and the second mopping plate from their respective first positions (or second positions) to their respective second positions (or first positions) . That is, under the combined actions of the mopping assembly driving unit, the rotary member, and the restoration component, the first mopping plate and the second mopping plate may be driven to perform reciprocating movements relative to the bottom surface (e.g., in parallel with one another or relative to one another) . Compared to a floor-mopping robot of conventional technologies in which the mopping plate (s) are static relative to the chassis (or bottom of the robot) , in the disclosed mopping mechanism and the cleaning device of the present disclosure, at least one of the first mopping plate or the second mopping plate is movable relative to the bottom surface to perform reciprocating mopping of a surface to be cleaned, thereby enhancing the cleaning efficiency and cleaning effect.
In addition to the technical issues addressed by the present disclosure, the technical features of the technical solutions, and the advantageous effects of the technical features of the technical solutions, other technical issues, other technical features of the technical solutions, and other advantageous effects of other technical features of the mopping mechanism and the cleaning robot of the present disclosure will be described in detail in the following embodiments.
FIG. 1A is a schematic perspective view of a device 100, according to an embodiment of the present disclosure. The device 100 may also be referred to as a mobile device 100, a cleaning device 100, a vacuum cleaner 100, a vacuum cleaning robot 100, or a cleaning robot 100. For discussion purposes, the device 100 is referred to a cleaning device 100 or a cleaning robot 100. The cleaning device 100 may include a main body 110. The main body 110 may have any suitable shape, such as a circular shape (as shown in FIG. 1A) , a  rectangle shape, a square shape, or a combination thereof. The main body 110 may include a housing 105 for enclosing and accommodating various elements, parts, or components of the cleaning device 100. The main body 110 (or the housing 105) may include a first bumper (or first cover, front bumper) 111 and a second bumper (or second cover, rear bumper) 112 at a circumferential side of the main body 110. The first bumper 111 may be separated from the second bumper by one or more gaps 120. At least one of the first bumper 111 or the second bumper 112 may be resiliently coupled with the housing 105 through an elastic member, such as a spring (not shown) . When the cleaning device 100 collides with an obstacle, such as a wall or a furniture, the first bumper 111 or the second bumper 112 may retract when pushed by the obstacle, thereby providing a buffer or an impact absorption for the cleaning device 100. One or more collision sensors may be disposed at the inner side of the first bumper 111 and/or the second bumper 112. When the first bumper 111 and/or the second bumper 112 collides with an object, the one or more collision sensors may detect the collision and generate a signal indicating the occurrence of the collision. The cleaning device 100 may also include a camera 125. The camera 125 may be configured to capture one or more images of the environment in which the cleaning device 100 operates. For illustrative purposes, the camera 125 is shown as being mounted at the front portion (e.g., behind the front bumper 111) of the cleaning device. It is understood that the camera 125 may be mounted at any other location of the cleaning device, e.g., a top portion of the housing. The orientation of the camera 125 may be in any suitable directions, such as facing front, facing back, facing sides, facing up (e.g., ceiling of a room) , facing a direction forming an acute angle relative to the moving direction of the cleaning device, etc. A processor (not shown) included in the cleaning device 100 may analyze the images to extract information (e.g., identify objects) for the purpose of localization and mapping of the cleaning device 100. The cleaning device 100 may further include one or more sweeping elements or mechanisms, such as one or more brushes. FIG. 1A shows two side brushes 130 disposed at two sides of a front portion of the bottom of the cleaning device 100.
FIG. 1B is a schematic illustration of a bottom view of the structural configuration of the cleaning device 100, according to an embodiment of the present disclosure. The bottom of the main body 110 of the cleaning device 100 may include a bottom surface or plate 155. In some embodiments, the bottom surface 155 may be formed by a plurality of surfaces, although for illustrative purposes, the bottom surface 155 is shown as a single piece. A sweeping unit 145 may be mounted to the bottom surface 155. The sweeping unit 145 may include the side brushes 130 and a main brush 150 disposed at a relatively center location of  the bottom surface 155. The side brushes 130 and/or the main brush 150 may be mounted to the bottom surface 155, or may be mounted to other components inside the cleaning device 100 and may extend out of the housing through an opening provided at the bottom surface 155. Although not shown, in some embodiments, the main brush 150 may be associated with a vacuum hole configured to vacuum dirt or trash that have been swept together into a trash storage tank disposed inside the cleaning device 100, at a top portion, or a side portion of the cleaning device 100.
The cleaning device 100 may include a motion unit configured to cause the cleaning device 100 to move along a surface to be cleaned (e.g., a floor) . The motion unit may include an omnidirectional wheel 135 disposed at a front portion of the bottom surface 155. The omnidirectional wheel 135 may be a non-driving, passively rotating wheel. The driving unit may also include at least two driving wheels 140 disposed at two sides of the bottom surface 155. The positions of the omnidirectional wheel 135 and the two driving wheels 140 may form a triangle, as shown in FIG. 1B, to provide a stable support to the main body 110 of the cleaning device 100. In some embodiments, the driving wheels 140 may be rotatable around a rotation axis passing through a center of symmetry of the driving wheels 140. In some embodiments, the driving wheels 140 may not be rotatable around an axis perpendicular to the bottom surface 155. The omnidirectional wheel 135 may freely rotate around an axis perpendicular to the bottom surface 155, and around an axis passing through a center of symmetry of the omnidirectional wheel 135. The omnidirectional wheel 135 and the driving wheels 140 together move the cleaning device 100 in any desirable direction. The at least two driving wheels 140 may be independently driven by at least two electric motors disposed inside the main body 110. When the two driving wheels 140 are driven at different speeds, the rotation speed differential of the driving wheels 140 may cause the cleaning device 100 to turn. In some embodiments, the driving wheels 140 may be rotatable also around an axis perpendicular to the bottom surface 155.
The cleaning device 100 may include a mopping mechanism 160 disposed at the bottom surface 155. The mopping mechanism 160 may include at least one movable mopping plate attached with a mop to mop the surface to be cleaned (e.g., a floor) . For illustrative purposes, the mopping mechanism 160 is shown as a rectangle in FIG. 1B. The mopping mechanism 160 may have any suitable shapes, such as a round shape, a square shape, a triangle shape, or a portion or a combination thereof.
FIG. 1C is a schematic illustration of the mopping mechanism 160 shown in FIG. 1B, according to an embodiment of the present disclosure. The mopping mechanism 160 may  include two mopping assemblies, a first mopping assembly 161 and a second mopping assembly 162, indicated by the dashed rectangles. The number of the mopping assemblies included in the mopping mechanism 160 is not limited to two, which can be any suitable number, such as one, three, four, five, six, etc. For example, in some embodiments, the mopping mechanism 160 may include one mopping assembly. In some embodiments, the mopping mechanism 160 may include two mopping assemblies, as shown in FIG. 1C. In the following descriptions, for the simplicity of discussion and illustration, the first mopping assembly 161 and the second mopping assembly 162 are presumed to have the same or similar configuration or structures, although in other embodiments, they may have different configurations or structures. For discussion purposes, only the structures and movements of the first mopping assembly 161 will be described. The structures and movements of the second mopping assembly 162 may be similar to those of the first mopping assembly 161.
As shown in FIG. 1C, the first mopping assembly 161 may include a rotary member 180, and a first mopping plate 171 and a second mopping plate 172 disposed at (e.g., movably mounted to) the bottom surface 1055. The number of the mopping plates included in each of the first mopping assembly 161 is not limited to two, which may be any suitable number, such as one, three, four, five, six, etc. At least one of the first mopping plate 171 or the second mopping plate 172 may be configured to be movable relative to the bottom surface 155 of the main body 110. In some embodiments, at least one of the first mopping plate 171 or the second mopping plate 172 may be configured to be movable relative to the other one of the first mopping plate 171 or the second mopping plate 172. In some embodiments, at least one of the first mopping plate 171 or the second mopping plate 172 is not fixed (i.e., is not static) , and is movable (e.g., rotatable, slidable, etc. ) relative to the bottom surface 155 of the main body 110. In some embodiments, only one of the first mopping plate 171 or the second mopping plate 172 is movable relative to the bottom surface 155, and the other one may be fixed (e.g., non-movable) relative to the bottom surface 155. In some embodiments, the first mopping plate 171 and the second mopping plate 172 may move toward one another and away from one another. In some embodiments, the first mopping plate 171 and the second mopping plate 172 may move in the same direction in parallel with one another. In some embodiments, both of the first mopping plate 171 and the second mopping plate 172 are movable relative to the bottom surface 155. In the following descriptions of various embodiments, for discussion purposes, the first mopping plate and the second mopping plate may be described as both being movable relative to the bottom surface.
As shown in FIG. 1C, the first mopping assembly 161 may include a restoration  component 175 mounted between the first mopping plate 171 and the second mopping plate 172, with one end of the restoration component 175 connected to the first mopping plate 171 and the other end of the restoration component 175 connected to the second mopping plate 172, as shown in FIG. 1C. The restoration component 175 may operate between providing a maximum restoration force and a minimum restoration force during a cycle. In some embodiments, the restoration component 175 may be an elastic member, such as a spring (e.g., a spiral spring) , an elastic strip, an elastic rope, an elastic plate, etc. In some embodiments, the restoration component 175 may include a magnetic blocks assembly including at least two magnetic elements having same poles (e.g., same N poles or same S poles) facing one another. When the magnetic blocks assembly is used, the at least two magnetic elements may be mounted on the first mopping plate 171 and the second mopping plate 172 with the same poles facing one another. In some embodiments, the restoration component 175 may include a gear or a cam. In the embodiment shown in FIG. 1C, the restoration component 175 may be configured to provide a restoration force, which may tend to restore the first mopping plate 171 and the second mopping plate 172 from their respective second position (e.g., farthest from a reference point on the rotary member 180) to their respective first position (e.g., closest from the reference point on the rotary member 180) . The restoration component 175 may provide a restoration force to restore the first mopping plate 171 and the second mopping plate 172 from their second positions to their first positions (e.g., to pull them toward one another) . In the embodiment shown in FIG. 1C, when the first mopping plate 171 and the second mopping plate 172 are at their second positions, the restoration force of the restoration component 175 may be a maximum pulling force.
As shown in FIG. 2, when the first mopping plate 171 and the second mopping plate 172 are at their first positions, the first mopping plate 171 and the second mopping plate 172 may be closest to one another and to the reference point on the rotary member 180. The restoration component 175 may provide a substantially zero or minimum restoration force, or may provide a pulling force. For example, when the restoration component 175 is a spring, when the first and  second mopping plates  171 and 172 are at the first positions as shown in FIG. 2, the spring may be at its neutral state (neither compressed nor extended with a substantially zero restoration force) , or may be in a state providing a pulling force. When the first mopping plate 171 and the second mopping plate 172 are driven by the rotary member 180 to move away from one another and away from their respective first positions shown in FIG. 2 to arrive at their respective second positions shown in FIG. 3, the restoration component 175 may be stretched, and may generate a restoration force tending to pull the first  mopping plate 171 and the second mopping plate 172 toward one another.
The first mopping assembly 161 may include a mopping assembly driving mechanism 190. In the embodiment shown in FIG. 1C, the mopping assembly driving mechanism 190 may include the rotary member 180 and a mopping assembly driving unit 195. In some embodiments, the mopping assembly driving unit 195 may include an electric motor coupled with the rotary member 180, and configured to drive the rotary member 180 to rotate. The mopping assembly driving unit 195 may include any other suitable devices for driving the rotary member 180 to rotate. The rotary member 180 may be disposed between the first mopping plate 171 and the second mopping plate 172 and configured to provide a variable stroke for the movements of the first mopping plate 171 and/or the second mopping plate 172. Examples of the rotary member 180 is shown in FIG. 22 and FIG. 29 and described below. In the embodiment shown in FIG. 22, the rotary member 180 may include an oval cylindrical body with an oval cross-sectional shape having a long axis (corresponding to a long stroke) and a short axis (corresponding to a short stroke) . The first position of a mopping plate (e.g., 171 or 172) may also correspond to a position where the mopping plate is at its short stroke during a reciprocating movement cycle, and the second position is a position where the mopping plate is at its long stroke during the reciprocating movement cycle. Any other suitable shapes may be configured for the rotary member 180, as long as the rotary member 180 has different strokes, such as the Reuleaux triangle shape shown in FIG. 29, which is described below. In the embodiment shown in FIG. 22, the rotary member 180 may be a cam having an oval shape. As shown in FIG. 22, The rotary member 180 may include a center hole (or mounting hole) 185 configured to receive a rotation shaft of the mopping assembly driving unit 195. When the rotation shaft rotates, the mopping assembly driving unit 195 may drive the rotary member 180 to rotate. The mounting hole 185 may have any suitable shape, such as square, circle, rectangle, etc.
The rotary member 180 may include an upper surface 181, a lower surface (not shown) , and a circumferential side surface 182, as shown in FIG. 22. As shown in FIG. 1C, when the rotary member 180 is a cam shown in FIG. 22, different (e.g., opposite or opposing) portions of the circumferential side surface 182 of the rotary member 180 may be configured to abut against or be in contact with the first mopping plate 171 and the second mopping plate 172 respectively. A first state of the rotary member disclosed herein (e.g., rotary member 180) may be defined as a state in which the rotary member provides a shortest stroke (for discussion purposes, the shortest stroke is also referred to as a “short stroke” ) to at least one (e.g., each) of the first mopping plate 171 or the second mopping plate 172. A second state of  the rotary member disclosed herein (e.g., rotary member 180) may be defined as a state in which the rotary member provides a longest stroke (for discussion purposes, the longest stroke is also referred to as a “long stroke” ) to at least one (e.g., each) of the first mopping plate 171 or the second mopping plate 172. FIG. 2 shows an example first state of the rotary member 180, and FIG. 3 shows an example second state of the rotary member 180. As shown in FIG. 2, the rotary member 180 may be disposed between the first mopping plate 171 and the second mopping plate 172 with opposite portions of the circumferential side surface 182 corresponding to the short stroke (or short axis) abutting against a contacting edge of the first mopping plate 171 and a contacting edge of the second mopping plate 172. That is, at the first state of the rotary member 180, the short axis of the rotary member 180 may be substantially perpendicular to the contacting edges of the first mopping plate 171 and second mopping plate 172 that are in contact with circumferential side surface 182 of the rotary member 180. When the rotary member 180 is at the first state, as shown in FIG. 2, the restoration component 175 may be in a state with a zero restoration force (e.g., when the restoration component 175 is a spring, the spring may be neither compressed nor extended) , or in a state providing a pulling force for the first mopping plate 171 and the second mopping plate 172. When the rotary member 180 rotates, the stroke between the portions of the circumferential side surface 182 abutting against the contacting edges of the first mopping plate 171 and the second mopping plate 172 may gradually change, from the short stroke to the long stoke, and from the long stroke to the short stroke. When the rotary member 180 rotates from the first state, the stroke between the portions of the circumferential side surface 182 abutting against the first mopping plate 171 and the second mopping plate 172 may gradually increase, and the rotary member 180 may push the first mopping plate 171 and the second mopping plate 172 to overcome the restoration force of the restoration component 175 to move away from one another, until opposite portions of the circumferential side surface 182 of the rotary member 180 abutting against the first mopping plate 171 and the second mopping plate 172 correspond to the long stroke (or long axis) , as shown in FIG. 3. In some embodiments, this state of the rotary member 180 may be referred to as a second state of the rotary member 180, in which the long axis of the rotary member 180 may be substantially perpendicular to the contacting edges of the first mopping plate 171 and the second mopping plate 172. Beyond the second state, as the rotary member 180 continues to rotate from the second state shown in FIG. 3 to the first state shown in FIG. 2 (as the stroke between the opposite portions of the circumferential side surface 182 continues to reduce from the long stroke to the short stroke) , the first mopping plate 171 and the second mopping plate 172 may be pulled by the  restoration force of the restoration component 175 to move toward one another. These processes may be repeated. As a result, due to the changing strokes between the opposite or opposing portions of the circumferential side surface 182 of the rotary member 180, the first mopping plate 171 and the second mopping plate 172 may be driven by the rotary member 180 and the restoration component 175 to perform reciprocating movements away from one another and toward one another, as indicated by an arrow 179 in FIG. 3. The arrow 179 shown in other figures also indicates the relative movement directions of the first mopping plate 171 and the second mopping plate 172. Although the arrow 179 is shown as a straight arrow in FIG. 3, the actual moving directions of the first mopping plate 171 and the second mopping plate 172 may be straight or slightly curved. The straight arrow 179 indicates that the movement of the first mopping plate 171 and the second mopping plate 172 is a substantially sliding movement relative to the bottom surface 155 (and relative to one another) . In the embodiments shown in the figures, although the plates are shown to perform movements relative to one another for illustrative purposes, it is understood that through re-configurations, the plates may be configured to move in parallel with one another relative to the bottom surface 155.
In some embodiments, both of the first mopping plate 171 and the second mopping plate 172 may be rotatable or pivotable relative to the bottom surface 155 when pushed by the rotary member 180 or pulled by the restoration component 175. For example, in some embodiments, the first mopping plate 171 may be rotatable or pivotable around a first hinge connection pin (or rod, shaft, etc., which is not shown in FIG. 1C) , and the second mopping plate 172 may be rotatable or pivotable around a second hinge connection pin (or rod, shaft, etc., which is not shown in FIG. 1C) . In some embodiments, the first hinge connection pin and the second hinge connection pin may be the same pin, or may be different pins. The rotation or pivot of the first mopping plate 171 and the second mopping plate 172 is merely an example of the relative movement between the first mopping plate 171 and the second mopping plate 172, or between the first mopping plate 171 (or the second mopping plate 172) and the bottom surface 155. The rotation movement will be described below in connection with other figures.
In the embodiment shown in FIG. 1C, the combined actions of the mopping assembly driving unit 195, the rotary member 180, and the restoration component 175 may drive the first mopping plate 171 and the second mopping plate 172 to move reciprocatively away from or toward one another, and relative to the bottom surface 155 of the main body 110.
The cleaning device 100 including the mopping mechanism 160 may be any suitable cleaning device. For example, the cleaning device 100 may be a cleaning robot (e.g., a floor-mopping robot, a floor-sweeping-and-mopping integrated robot, a window cleaning robot, etc. ) , or may be a handheld floor-mopping machine. In some embodiments, the shape and size of the main body 110 may be substantially the same as the shape and size of the bottom surface 155. In some embodiments, shape and/or size of the main body 110 may be different from the shape and/or size of the bottom surface 155. In some embodiments, the bottom surface 155 of the main body 110 may have a rectangular shape, a square shape, a circular shape, or any other suitable shape. For example, as shown in FIG. 1B, the bottom surface 155 of the main body 110 includes a circular shape. The mopping mechanism 160 may be mounted with a mop configured to mop a surface to be cleaned. For example, a floor or a window may be mopped by the cleaning device 100. When two mopping mechanisms 160 are provided at the bottom surface 155 of the main body 110, the two mopping mechanisms 160 may be symmetrically or asymmetrically disposed at the bottom surface 155.
In some embodiments, the mopping assembly driving unit 195 shown in FIG. 1C may not be a part of the mopping mechanism 160. The mopping assembly driving unit 195 may be disposed in the main body 110. In some embodiments, the first mopping plate 171 and the second mopping plate 172 of the first mopping assembly 161 may be disposed opposing one another (e.g., side by side with one another, as shown in FIG. 1C) . The first mopping plate 171 and the second mopping plate 172 may be mounted to the bottom surface 155 of the main body 110. The first mopping plate 171 and the second mopping plate 172 may be movable relative to the bottom surface 155 (in some embodiments, also relative to one another) of the main body 110. In some embodiments, at least one (e.g., each) of the first mopping plate 171 or the second mopping plate 172 may be configured to rotate (or pivot, or swing) or to slide relative to the bottom surface 155 and relative to the other one of the first mopping plate 171 and the second mopping plate 172. In some embodiments, the first mopping plate 171 may be fixedly mounted to the bottom surface 155, and the second mopping plate 172 may be movably mounted to the bottom surface 155. In some embodiments, the first mopping plate 171 may be movably mounted to the bottom surface 155, and the second mopping plate 172 may be fixedly mounted to the bottom surface 155. In some embodiments, the first mopping plate 171 may be movably mounted to the bottom surface 155, and the second mopping plate 172 may also be movably mounted to the bottom surface 155. In some embodiments, to enable one or both of the first mopping plate 171 and the second mopping plate 172 to move (e.g., slide) relative to the bottom surface, one or more  rails, tracks, or other suitable structure (not shown) may be provided at the bottom surface 155 to allow the first mopping plate 171 and/or the second mopping plate 172 to move (e.g., in a rotation movement or a sliding movement) relative to the bottom surface 155.
In some embodiments, the mopping assembly driving unit 195 may be disposed in the main body 110. In some embodiments, the mopping assembly driving unit 195 may include a variable-frequency electric motor. The motor may be any suitable motor, such as a brushed motor or a brushless motor. A driving shaft (not shown) of the variable-frequency electric motor may penetrate through the bottom surface 155 to connect with the mounting hole 185 of the rotary member 180. The motor may drive the rotary member 180 to rotate. In some embodiments, the rotation speed of the variable-frequency motor may be adjusted based on a desired degree of cleanness. As shown in FIG. 1, the rotary member 180 may be disposed between the first mopping plate 171 and the second mopping plate 172. Under the action of the mopping assembly driving unit 195, the rotary member 180 may rotate between the first mopping plate 171 and the second mopping plate 172. As the rotary member 180 rotates, different portions (e.g., two portions) of the circumferential side surface 182 (shown in FIG. 22) of the rotary member 180 may abut against edge or side surfaces of the first mopping plate 171 and the second mopping plate 172 respectively. In some embodiments, the rotary member 180 provides a variable stroke between a maximum (or long) stroke and a minimum (or short) stroke. When different portions of the circumferential side surface 182 of the rotary member 180 abut against the first mopping plate 171 and the second mopping plate 172, at least one of the first mopping plate 171 or the second mopping plate 172 may be pushed by the rotary member 180 to move relative to the bottom surface 155 of the main body 110.
In some embodiments, the rotary member 180 may be a cam having a variable stroke, as shown in FIG. 22. Other suitable shapes may also be used for the rotary member 180 to provide a variable stroke, such as the Reuleaux triangle shape shown in FIG. 29, which is described below. The cam with an oval shape shown in FIG. 22 may be connected with the driving shaft of the mopping assembly driving unit 195 through the mounting hole 185 (shown in FIG. 22) provided in the cam with an opening at the top surface 181. The driving shaft may be inserted through a key groove into the mounting hole 185. In some embodiments, the mounting hole 185 may be a through hole connecting the top surface 181 and the bottom surface (not shown) of the cam. In some embodiments, the mounting hole 185 may not be a through hole, but may be a cavity or a recessed portion in the body of the cam with an opening at the top surface 181. When the driving shaft of the mopping assembly driving unit  195 rotates, the driving shaft may drive the cam to rotate. The circumferential side surface 182 may be referred to as a working surface, and may be associated with a variable stroke. In some embodiments, the working surface can be either the circumferential outer side surface or the circumferential inner side surface of the rotary member 180. In some embodiments, different (e.g., opposite or opposing) portions of the circumferential side surface 182 may abut against the first mopping plate 171 and the second mopping plate 172 respectively. In some embodiments, different portions of the cam may be connected with the first mopping plate 171 and the second mopping plate 172 through a crank, a linkage, and/or a piston.
For the convenience of discussing the motion state of the rotary member 180 relative to the first mopping plate 171 and the second mopping plate 172, in some embodiments, when two opposite portions of the rotary member 180 along a short axis abut against the first mopping plate 171 and the second mopping plate 172 respectively, the state of the rotary member 180 at this moment may be defined as the first state of the rotary member 180. In some embodiments, when the rotary member 180 is at the first state, the first and  second mopping plates  171 and 172 may be at their respective first positions, as shown in FIG. 2. When two different (e.g., opposite or opposing) portions of the rotary member 180 along a long axis abut against the first mopping plate 171 and the second mopping plate 172 respectively, the rotary member 180 is at the second state, and the first and  second mopping plates  171 and 172 may be at their respective second positions, as shown in FIG. 3.
The restoration component 175 disposed between the first mopping plate 171 and the second mopping plate 172 may be configured to provide a restoration force for restoring the first mopping plate 171 and/or the second mopping plate 172 from their respective second positions back to their respective first positions, as shown in FIG. 3 and FIG. 2 respectively. The restoration component 175 may be any suitable component for providing the restoration force. In some embodiments, the restoration component 175 may provide a restoration force to restore the first and  second mopping plates  171 and 172 from their respective first positions to their respective second positions. FIG. 2 shows an example of the restoration component 175, which is a spiral spring. It is understood that in other embodiments, the restoration component 175 may be any other suitable spring, an elastic rope, an elastic plate, an elastic strip, a cam, a magnetic blocks assembly including at least two magnets with same poles facing one another, etc. The mopping assembly driving unit 195 may drive the rotary member 180 (which may be a cam) to overcome the restoration force of the restoration component 175 and to rotate. The rotary member 180 may rotate from the first state (with short axis aligned substantially perpendicular to the edges of the first mopping plate 171 and the second  mopping plate 172) to the second state (with the long axis aligned substantially perpendicular to the edges of the first mopping plate 171 and the second mopping plate 172) , causing the first and  second mopping plates  171 and 172 to transition from their respective first positions (shown in FIG. 2) to their respective second positions (shown in FIG. 3) . The rotary member 180 may continue to rotate from the second state to the first state. Under the restoration force of the restoration component 175, the first and  second mopping plates  171 and 172 may transition from their respective second positions to their respective first positions. The above processes may be repeated, causing the first mopping plate 171 and the second mopping plate 172 to perform reciprocating movements away from and toward one another, or between their respective first positions and second positions. Although in the above descriptions of the rotary member 180, both of the first mopping plate 171 and the second mopping plate 172 are described as being movable relative to the bottom surface 155, in some embodiments, one of the first mopping plate 171 and the second mopping plate 172 may be fixed relative to the bottom surface 155. As a result, the rotation of the rotary member 180 may only drive the movable one of the first mopping plate 171 and the second mopping plate 172 to move relative to the bottom surface 155, e.g., to perform the reciprocating movements away from and toward the fixed one of the first mopping plate 171 and the second mopping plate 172.
In some embodiments, based on the mounting states (e.g., fixedly mounted or removably mounted) of the first mopping plate 171 and the second mopping plate 172 relative to the bottom surface 155 respectively, and the type of mounting and mounting location of the restoration component 175, the present disclosure may include the following different detailed implementations:
In a first implementation: as shown in FIG. 2 to FIG. 5, both of the first mopping plate 171 and the second mopping plate 172 may be movable relative to the bottom surface 155 of the main body 110. At least one restoration component 175 may be disposed between the first mopping plate 171 and the second mopping plate 172. For example, a first end of the restoration component 175 may be connected to the first mopping plate 171, and a second end (e.g., the end opposing the first end) of the restoration component 175 may be connected to the second mopping plate 172. In the embodiments shown in FIG. 2 to FIG. 5, a spring is used as an example of the restoration component 175. The spring may be disposed between the first mopping plate 171 and the second mopping plate 172. In some embodiments, the spring may be disposed at one side of the rotary member 180 (which is shown as a cam in the example shown in FIG. 2 to FIG. 5) . In some embodiments, multiple springs may be disposed at both sides of the rotary member 180. For example, the multiple springs may be  symmetrically disposed at both sides of the rotary member 180. Using the embodiment shown in FIG. 3 as an example, an additional spring similar to the spring labelled as “175” may be disposed on the right side of the rotary member 180 to connect the first mopping plate 171 and the second mopping plate 172. As shown in FIG. 2 or FIG. 4, when the rotary member 180 mounted between the first mopping plate 171 and the second mopping plate 172 is in the first state (with the short axis aligned perpendicular to the edges of the first mopping plate 171 and the second mopping plate 172) , the spring may be in a natural state when the restoration force provided by the spring is substantially zero, or may be in an extended state with a pulling force to pull the first and  second mopping plates  171 and 172 toward one another. As shown in FIG. 3 or FIG. 5, when the rotary member 180 overcomes the elastic force of the spring to rotate from the first state to the second state, correspondingly, the first mopping plate 171 and second mopping plate 172 are driven by the rotary member 180 to move away from one another in opposite directions. During this process, the spring may be extended. The rotary member 180 may continue to rotate from the second state to the first state. During this process, the spring may restore from the extended state to the natural state (or from a more extended state to a less extended state) . The restoration force of the spring may drive the first mopping plate 171 and the second mopping plate 172 to move toward one another. These processes may be repeated when the rotary member 180 is continuously driven by the mopping assembly driving unit 195, thereby achieving the reciprocating movements of the first mopping plate 171 and/or the second mopping plate 172 relative to the bottom surface 155 of the main body 110, and the reciprocating relative movements between the first mopping plate 171 and the second mopping plate 172. In this embodiment, under the combined actions of the rotary member 180 and one or more springs, the first mopping plate 171 and the second mopping plate 172 may perform reciprocating movements relative to the bottom surface 155 (e.g., away from and toward one another) . The reciprocatively moving first mopping plate 171 and second mopping plate 172 may mop a surface to be cleaned back and forth, which enhances the mopping cleaning efficiency and effect.
FIG. 4 and FIG. 5 show that the first mopping plate 171 and the second mopping plate 172 may have shapes similar to a quarter circle. The mopping  plates  171 and 172 can have any suitable shapes, such as triangle, square, oval, etc.
In a second implementation: as shown in FIG. 6 and FIG. 7, the first mopping plate 171 and the second mopping plate 172 may be configured to move relative to the bottom surface 155 of the main body 110. A distal end portion (e.g., a distal edge) of each of the first mopping plate 171 and the second mopping plate 172 distant from the rotary member 180  may be provided with at least one restoration component 175. That is, the distal end portion of the first mopping plate 171 distant from the rotary member 180 may be provided with one or multiple restoration components 175. Each of the one or more restoration components 175 may have an end connected with the distal end portion of the first mopping plate 171, and another end connected with a first non-movable portion 201 of the bottom surface 155 (or of the main body 110) at a first location. Additionally or alternatively, the distal end portion of the second mopping plate 172 distant from the rotary member 180 may be provided with one or multiple restoration components 175. Each of the one or more restoration components 175 may have an end connected with the distal end portion of the second mopping plate 172, and another end connected with a second non-movable portion 202 of the bottom surface 155 (or of the main body 110) at a second location, as shown in FIG. 6. The restoration component 175 may be a spring or any suitable elastic member. The first non-movable portion 201 and the second non-movable portion 202 of the bottom surface 155 may each be a fixture mounted at the bottom surface 155 or an integral portion of the bottom surface 155. The first non-movable portion 201 and the second non-movable portion 202 may provide support to the restoration components 175 and may serve to secure one end of each of the restoration components 175. In the embodiment shown in FIG. 6 and FIG. 7, the first mopping assembly 161 may not include a restoration component disposed between the first mopping plate 171 and the second mopping plate 172 as in the embodiment shown in FIG. 1C.
In the embodiment shown in FIG. 6 and FIG. 7, when the rotary member 180 is in the first state (with the short axis aligned perpendicular to the edges of the first mopping plate 171 and the second mopping plate 172) shown in FIG. 6, each restoration component 175 may provide a substantially zero restoration force, or may have a pushing force against the first mopping plate 171 or the second mopping plate 172. Correspondingly, the first mopping plate 171 and the second mopping plate 172 may be in their respective first positions. When the rotary member 180 rotates from the first state to the second state (with the long axis aligned perpendicular to the edges of the first mopping plate 171 and the second mopping plate 172) shown in FIG. 7, correspondingly, the first mopping plate 171 and second mopping plate 172 may move away from one another to compress the restoration components 175 disposed at the distant ends of the first mopping plate 171 and the second mopping plate 172. In the state shown in FIG. 7, the restoration components 175 may provide a pushing force against the first and  second mopping plates  171 and 172 shown in FIG. 7. FIG. 7 shows that the first mopping plate 171 and the second mopping plate 172 are in their respective second positions, i.e., are farthest away from one another. When the rotary member 180 continues to  rotate in the original rotation direction from the second state (shown in FIG. 7) to the first state (shown in FIG. 6) , the restoration components 175 may restore from the state providing the maximum restoration force (shown in FIG. 7) to the state providing the minimum restoration force (shown in FIG. 6) . In this process, the restoration force of the restoration components 175 may push the first mopping plate 171 and the second mopping plate 172 to move closer to one another, i.e., from the second positions shown in FIG. 7 to the first positions shown in FIG. 6.
A third implementation may be a combination of the first implementation shown in FIG. 2 and FIG. 3 and the second implementation shown in FIG. 6 and FIG. 7. In the third implementation, as shown in FIG. 8 and FIG. 9, in addition to the one or more restoration components 175 provided between the first mopping plate 171 and the first non-movable portion 201, and between the second mopping plate 172 and the second non-movable portion 202, as shown in FIG. 6, one or more restoration components 175 may be disposed between the first mopping plate 171 and the second mopping plate 172, similar to the embodiment shown in FIG. 2.
FIG. 8 shows that the rotary member 180 is at the first state, with the short axis aligned substantially perpendicular to the contacting edges of the first mopping plate 171 and the second mopping plate 172. FIG. 9 shows that the rotary member 180 is at the second state, with the long axis aligned substantially perpendicular to the contacting edges of the first mopping plate 171 and the second mopping plate 172. It is understood that any suitable number of restoration components 175 may be disposed between the first mopping plate 171 and the second mopping plate 172, between the distal end of first mopping plate 171 and the first non-movable portion 201 of the bottom surface 155 or the main body 110, and between the distal end of the second mopping plate 172 and the second non-movable portion 202 of the bottom surface 155 or the main body 110. One or more restoration components 175 and the rotary member 180 can cooperate together to cause the reciprocating movements of the first mopping plate 171 and the second mopping plate 172 between their respective first positions and second positions (e.g., away from and toward one another as described above) . The restoration components 175 disposed at various locations may be of the same type or may be of different types.
Further, in some embodiments, the first mopping plate 171 and the second mopping plate 172 may both be configured to be movable relative to the bottom surface 155 of the main body 110 to achieve the reciprocating movements. The reciprocating movements of the first mopping plate 171 and the second mopping plate 172 may be in the same direction  or may be in different (e.g., opposite) directions. For example, in some embodiments, the first mopping plate 171 and the second mopping plate 172 may move away from one another and toward one another reciprocatively. In some embodiments, in the various implementations for achieving the reciprocating relative movements of the first mopping plate 171 and the second mopping plate 172, one of the first mopping plate 171 and the second mopping plate 172 may be fixed to the bottom surface 155 of the main body 110, the other one of the first and  second mopping plates  171 and 172 may be movable relative to the bottom surface 155. For example, the first mopping plate 171 may be fixed to the bottom surface 155, and the second mopping plate 172 may be movable relative to the bottom surface 155. In such an embodiment, one or more restoration components 175 (e.g., springs) may be disposed between the first mopping plate 171 and the second mopping plate 172. Alternatively or additionally, one or more restoration components 175 (e.g., springs) may be disposed between the distal end of the second mopping plate 172 distant from the rotary member 180 and the bottom surface 155 or the main body 110. Alternatively or additionally, restoration components 175 (e.g., springs) may be disposed both between the first mopping plate 171 and the second mopping plate 172, and between the distal end of the second mopping plate 172 distant from the rotary member 180 and the bottom surface 155 or the main body 110. The reciprocating movements of the first mopping plate 171 and the second mopping plate 172 (e.g., away from and toward one another) caused by the coupled or combined actions of the one or more restoration components 175 (e.g., springs) and the rotary member 180, may be similar to the reciprocating movement described above.
It should be noted that in the disclosed technical solution in which the first mopping plate 171 and the second mopping plate 172 are both movable relative to the bottom surface 155 of the main body 110, the rotation axis of the rotary member 180 in the first state may coincide with the rotation axis of the rotary member 180 in the second state. That is, the rotation axis of the rotary member 180 may be fixed.
In an implementation in which one of the first mopping plate 171 and the second mopping plate 172 is fixed to the bottom surface 155 of the main body 110, the rotation axis of the rotary member 180 in the first state may not coincide (or not be coaxial) with, but may be parallel with, the rotation axis of the rotary member 180 in the second state. In other words, in the embodiment in which the driving shaft of the mopping assembly driving unit 195 is coaxial with the rotation axis of the rotary member 180, the driving shaft may not be fixed at one axial location. Instead, the driving shaft may be configured to be movable between two parallel axial locations (between a first axial location when the rotary member 180 is in the  first state and a second axial location when the rotary member 180 is in the second state) , in order to achieve the reciprocating movement of one of the first mopping plate 171 or the second mopping plate 172, which is not fixed to the bottom surface 155 (i.e., which is movable relative to the bottom surface 155) . This is because when one of the first mopping plate 171 and the second mopping plate 172 is fixed to the bottom surface 155, and when the rotary member 180 (e.g., a cam) having a variable stroke (i.e., in a range between a minimum stroke and a maximum stroke corresponding to the short axis and the long axis) rotates, the rotary member 180 abutting against the non-movable mopping plate (e.g., first mopping plate 171) fixedly mounted to the bottom surface 155 may be pushed by the non-movable mopping plate to change the location of the rotation axis, i.e., to change the distance from the rotation axis of the rotary member 180 to a surface of the non-movable mopping plate. Thus, the rotation axis of the rotary member 180 may be movable between two parallel axial locations. When the driving shaft of the mopping assembly driving unit 195 is coaxial with the rotation axis of the rotary member 180, the driving shaft may also be movable between the two parallel axial locations.
In some embodiments, the restoration component 175 may include at least one of a spring, an elastic rope, or a magnetic blocks assembly (e.g., at least two magnets with same poles facing one another) , such as an electromagnetic blocks assembly. The elastic rope may be disposed in a manner similar to the spring, except that the elastic rope may not be configured to provide a restoration force to push the mopping plates. The magnetic blocks assembly may generate an attractive force (e.g., pulling force) or a repulsive force (e.g., pushing force) . The magnetic blocks that generate the attractive force may be disposed between the first mopping plate 171 and the second mopping plate 172, e.g., replacing the spring 175 shown in FIG. 2. The magnetic blocks that generate the repulsive force may be disposed between the first mopping plate 171 and the main body 110 or the bottom surface 155, or between the second mopping plate 172 and the main body 110 or the bottom surface 155, or between the first mopping plate 171 and the main body 110 (or the bottom surface 155) and between the second mopping plate 172 and the main body 110 (or the bottom surface 155) , e.g., replacing the springs disposed at the distal ends of the first mopping plate 171 and the second mopping plate 172, as shown in FIG. 8. When the magnetic blocks assembly is disposed at a distal end of the first mopping plate 171 or the second mopping plate 172, the at least two magnetic elements included in the magnetic blocks assembly may include a first magnetic element disposed at the non-movable portion 201 (or the non-movable portion 202) of the bottom surface 155, and a second magnetic element disposed at the distal end of the  first mopping plate 171 (or the second mopping plate 172) .
When multiple restoration components are included in the mopping mechanism 160, the same reference numeral “175” have been used to indicate the restoration components in the figures, for the simplicity of illustration. It is understood that different restoration components 175 may be in different forms. For example, one restoration component 175 may be a spring, another restoration component 175 may be an elastic rope, an elastic plate, a magnetic blocks assembly, etc. In some embodiments, the multiple restoration components 175 may be of the same type.
As shown in FIG. 10 and FIG. 11, the restoration components 175 may be disposed at at least one of the following locations: between a distal end of the first mopping plate 171 and the first non-movable portion 201 of the bottom surface 155 (or of the main body 110) , between a distal end of the second mopping plate 172 and the second non-movable portion 202 of the bottom surface 155 (or of the main body 110) , or between proximal ends of the first mopping plate 171 and the second mopping plate 172 (i.e., the ends close to the rotary member 180) . The restoration components 175 may be cams, as shown in FIG. 10. The cams serving as the restoration components 175 may be similar to the rotary member 180 (which can also be a cam with an oval shape as shown in FIG. 22 or a Reuleaux triangle shape as shown in FIG. 29) , or may be different. For example, the cams serving as the restoration components 175 may be passive cams that are not driven by an electric motor. The strokes of the cams serving as the restoration components 175 may be smaller than or equal to the strokes of the rotary member 180. Similar to a cam serving as the rotary member 180, the stroke of a cam serving as the restoration component 175 in the embodiment shown in FIG. 10 and FIG. 11 may be variable between a maximum stroke and a minimum stroke (or a long stroke and a short stroke) . The strokes of the cams serving as the restoration components 175 may be configured based on the reciprocating strokes of the first and  second mopping plates  171 and 172. The cams serving as the restoration components 175 may be operably coupled with the rotary member 180 through the first mopping plate 171 and the second mopping plate 172, as shown in FIG. 10 and FIG. 11. In some embodiments, the cams serving as the restoration components 175 may be actively driven cams. For example, the cams serving as the restoration components 175 may be driven by a driving unit to rotate. The driving unit may be the mopping assembly driving unit 195 or a part of the mopping assembly driving unit 195, or may be a driving unit separate from the mopping assembly driving unit 195. In some embodiments, driving units may be individually and separately provided for the cams serving as the restoration components 175. With the cams serving as the restoration components 175,  the embodiments shown in FIG. 10 and FIG. 11 may further improve the reliability of the reciprocating movement of the first and  second mopping plates  171 and 172. FIG. 10 shows three cams are disposed the following locations: between the proximal ends of the first mopping plate 171 and the second mopping plate 172, between the distal end of the first mopping plate 171 and the first non-movable portion 201 of the bottom surface 155, between the distal end of the second mopping plate 172 and the second non-movable portion 202 of the bottom surface 155. The number of the cams is not limited to three, and can be any suitable numbers, such as four, five, six, etc. In some embodiments, the multiple restoration components 175 may be different. For example, one or more of the multiple restoration components 175 may not be a cam. The first mopping assembly 161 may include a combination of cams and springs (or other forms disclosed herein) for the restoration components 175.
In some embodiments, both of the first mopping plate 171 and the second mopping plate 172 may perform the reciprocating movements relative to the bottom surface 155 (e.g., away from or toward one another) . In some embodiments, one of the first mopping plate 171 and the second mopping plate 172 may be fixed (i.e., non-movable) relative to the bottom surface 155 of the main body 110, and the other one of the first mopping plate 171 and the second mopping plate 172 may perform the reciprocating movement away from or toward the fixed, non-movable mopping plate.
In some embodiments, the reciprocating movement of the first mopping plate 171 and/or the second mopping plate 172 may be implemented through sliding, rolling, or both, or any other suitable manners. For example, the first mopping plate 171 and the main body 110 (or the bottom surface 155) , and/or the second mopping plate 171 and the main body 110 (or the bottom surface 155) may be movably (e.g., slidably or rollably) coupled through a rail, a groove, or rollers (not shown in figures) . For example, in some embodiments, a rail may be disposed at a side of the first mopping plate 171 and/or the second mopping plate 172 that faces the main body 110. Correspondingly, in some embodiments, a groove may be disposed at the bottom surface 155 of the main body 110 facing the first mopping plate 171 and/or the second mopping plate 172. The groove and the rail may be configured to operably couple with one another, such that the rail may be slidable in and along the groove, thereby achieving the movable mounting of the first mopping plate 171 and/or the second mopping plate 172 to the bottom surface 155 of the main body 110.
In some embodiments, one or more rollers may be provided on the bottom surface 155 of the main body 110 facing the first mopping plate 171 and/or the second mopping plate  172 to enable the first mopping plate 171 and/or the second mopping plate 172 to move relative to the bottom surface 155. In some embodiments, a rail or groove may be provided on a side of the first mopping plate 171 and/or a side of the second mopping plate 172 facing the bottom surface 155 to operably couple with the rollers provided on the bottom surface 155 to facilitate the relative movement of the first mopping plate 171 and/or the second mopping plate 172. In some embodiments, one or more rollers may be provided on the side of the first mopping plate 171 and/or the side of the second mopping plate 172 that faces the bottom surface 155 of the main body 110 to enable the first mopping plate 171 and/or the second mopping plate 172 to move relative to the bottom surface 155. In some embodiments, a rail or groove may be provided on the bottom surface 155 of the main body 110 to operable couple with the rollers provided on the side of the first mopping plate 171 and/or the side of the second mopping plate 172 to facilitate the movement of the first mopping plate 171 and/or the second mopping plate 172 relative to the bottom surface 155.
In some embodiments, the reciprocating movement of the first mopping plate 171 and/or the second mopping plate 172 may include rotation. As shown in FIG. 12 to FIG. 16, the first mopping plate 171 and the second mopping plate 172 may reciprocatively rotate relative to the bottom surface 155 (e.g., away from or toward one another) . Hinge connection holes may be respectively disposed at the first mopping plate 171 and the second mopping plate 172. At least one hinge connection pin configured to be operably coupled with the hinge connection holes may be disposed at the bottom surface 155 of the main body 110. In the configuration shown in FIG. 12, two hinge connection holes 211 and 212 are schematically disposed near the 90-degree corners of the first mopping plate 171 and the second mopping plate 172. The hinge connection holes on the first mopping plate 171 and the second mopping plate 172 may receive a same hinge connection pin (not shown) mounted on the bottom surface 155 or may receive different hinge connection pins mounted on the bottom surface 155, as shown in FIG. 12, such that each of the first mopping plate 171 and the second mopping plate 172 is hinge connected with the bottom surface 155 of the main body 110, and can rotate around the hinge connection pin or pins. It should be understood that the rotational configuration shown in FIG. 12 to FIG. 16 may be combined with other embodiments shown in other figures, such as the embodiment shown in FIG. 1.
In some embodiments, as shown in FIG. 12, the first mopping plate 171 and the second mopping plate 172 may have two straight sides and an arc shaped side (e.g., a shape similar to a quarter circle shape) . In some embodiments, two hinge connection holes may be disposed on the bottom surface 155 of the main body 110, and hinge connection pins may be  integrally formed or fixedly mounted to the first mopping plate 171 and the second mopping plate 172. The hinge connection pins from the first mopping plate 171 and the second mopping plate 172 may be inserted into the hinge connection holes disposed at the bottom surface 155. In some embodiments, a single hinge connection pin may be disposed at the bottom surface 155 of the main body 110, which may penetrate into two hinge connection holes separately and overlappingly disposed at the first mopping plate 171 and the second mopping plate 172. In some embodiments, the hinge connection pins may be fixedly disposed at the first mopping plate 171 and the second mopping plate 172. In such embodiments, the first mopping plate 171 and the second mopping plate 172 may not be provided with hinge connection holes. The hinge connection holes may be provided in the bottom surface 155. In some embodiments, the hinge connection pins may be fixedly provided at the bottom surface 155 of the main body 110, and the two hinge connection pins may be disposed opposing one another, each being received in a hinge connection hole provided at the first mopping plate 171 and the second mopping plate 172. In such embodiments, the bottom surface 155 of the main body 110 may not be provided with hinge connection holes.
Referring to FIG. 14 and FIG. 15, the first mopping plate 171 and the second mopping plate 172 may be sleeve-fit with a same hinge connection pin 220 provided at the bottom surface 155 through respective hinge connection holes provided on the first mopping plate 171 and the second mopping plate 172. The single hinge connection pin 220 may be operably coupled (e.g., sleeve-fit) with a hinge connection hole provided on the first mopping plate 171, or a hinge connection hole provided on the second mopping plate 172, or a hinge connection hole provided at a shared portion of the first mopping plate 171 and the second mopping plate 172. The shared portion of the first mopping plate 171 and the second mopping plate 172 may be made of a resilient material, such as a rubber, which may be bent during the movement of the first mopping plate 171 and the second mopping plate 172.
As shown in any of FIG. 12 to FIG. 15, the restoration component 175 (e.g., a spring) may be disposed between the first mopping plate 171 and the second mopping plate 172, with one end of the restoration component 175 connected with the first mopping plate 171, and another end of the restoration component 175 connected with the second mopping plate 172. As shown in FIG. 12, when the rotary member 180 (e.g., a cam) is in the first state with the short axis aligned perpendicular to the opposing contacting edges of the first mopping plate 171 and the second mopping plate 172, the restoration component 175 may state provide the minimum restoration force, and the first mopping plate 171 and the second mopping plate 172 may be in their respective first positions. During a process when the rotary  member 180 rotates from the first state to the second state with the long axis aligned substantially perpendicular to the opposing contacting edges of the first mopping plate 171 and the second mopping plate 172, or with the end portions of the rotary member 180 along the long axis contacting the contacting edges of the first mopping plate 171 and the second mopping plate 172, as shown in FIG. 13, the first mopping plate 171 and the second mopping plate 172 may be pushed apart by the rotary member 180 in opposite directions. That is, the first mopping plate 171 and the second mopping plate 172 may rotate in opposite directions away from one another to reach the respective limit states or positions. At this moment, the gap or distance between the first mopping plate 171 and the second mopping plate 172 may be the largest, and the restoration component 175 may provide the maximum restoration force. As the rotary member 180 continues to rotate in the original rotation direction, the rotary member 180 transitions from the second state to the first state. During this process, the restoration component 175 (e.g., a spring) may generate a restoration force tending to pull the first mopping plate 171 and the second mopping plate 172 toward one another. As the rotary member 180 rotates from the second state shown in FIG. 13 back to the first state shown in FIG. 12, the first mopping plate 171 and the second mopping plate 172 may be pulled by the restoration force of the restoration component 175 to rotate toward one another until they reach their respective first positions shown in FIG. 12. These processes may be repeated. As a result, the first mopping plate 171 and the second mopping plate 172 may be driven to perform reciprocating rotational movements (or referred to as swing movements) relative to the bottom surface 155 (and in some embodiments, also relative to one another) .
In some embodiments, multiple restoration components 175 may be included in the first mopping assembly 161. In some embodiments, one or more additional restoration components 175 may be disposed between the first mopping plate 171 and the main body 110 (or the bottom surface 155, e.g., at a left distal end of the first mopping plate 171, similar to the embodiment shown in FIG. 7. The one or more additional restoration components 175 disposed at the left distal end of the first mopping plate 171 may be compressed while the first mopping plate 171 is driven by the rotary member 180 to rotate counter-clockwise to the left. Thus, the one or more additional restoration components 175 disposed at the left distal end of the first mopping plate 171 may provide a pushing restoration force to the first mopping plate 171. In some embodiments, one or more additional restoration components 175 may be disposed between the second mopping plate 172 and the main body 110 (or the bottom surface 155) , e.g., at a right distal end of the second mopping plate 172, similar to the embodiment shown in FIG. 7. The one or more additional restoration components 175  disposed at the right distal end of the second mopping plate 172 may be compressed while the first mopping plate 172 is driven by the rotary member 180 to rotate clockwise to the right. Thus, the one or more additional restoration components 175 disposed at the right distal end of the second mopping plate 172 may provide a pushing restoration force to the second mopping plate 172. In some embodiments, one or more additional restoration components 175 may be disposed both between the first mopping plate 171 and the main body 110 (or the bottom surface 155) as described above, and between the second mopping plate 172 and the main body 110 (or the bottom surface 155) as described above. In some embodiments, when one or more restoration components 175 are disposed at the left distal end of the first mopping plate 171 and at the right distal end of the second mopping plate 172, the restoration component 175 disposed between the first mopping plate 171 and the second mopping plate 172 may be included or may be omitted.
In some embodiments, instead of or in addition to providing the one or more additional restoration components 175 at the left distal end of the first mopping plate 171 and at the right distal end of the second mopping plate 172, as shown in FIG. 12, the one or more additional restoration components 175 may be disposed at edges of the first mopping plate 171 and the second mopping plate 172 that are perpendicular to the edges contacting the rotary member 180, as shown in FIG. 16 and FIG. 17. The motion states of the first mopping plate 171 and the second mopping plate 172 may be derived from the above embodiments. In the embodiment shown in FIG. 16 and FIG. 17, no restoration component 175 is disposed between the first mopping plate 171 and the second mopping plate 172, as in the embodiment shown in FIG. 14. In some embodiments, one or more restoration components 175 may be disposed between the first mopping plate 171 and the second mopping plate 172 in the embodiment shown in FIG. 16 and FIG. 17.
Although the rotary member 180 in the above embodiment may be a cam having an oval shape, the rotary member 180 may have any other suitable shapes, such as a rhombus shape, a square shape, a trapezoid shape, a hexagon shape, or a Reuleaux triangle shape shown in FIG. 29, etc.
In the disclosed embodiments of the mopping mechanism 160, through the coupled actions between the rotary member 180 (e.g., a cam) and the restoration component 175 (e.g., a spring) , reciprocating movements of the first and  second mopping plates  171 and 172 may be achieved. The first mopping plate 171 and the second mopping plate 172 may be driven by the rotary member 180 and the restoration component 175 to move between their respective first positions and second positions (e.g., away from one another and toward one  another) reciprocatively. Such movements increase the cleaning efficiency and cleaning effect of the cleaning device 100 for a surface to be cleaned. Because the rotary member 180 may be directly connected with an electric motor of the mopping assembly driving unit 195, the space occupied by the mopping mechanism 160 is small, and the cost is relatively low. In addition, in the coupling between the rotary member 180 and the restoration component 175, the acting torque is small, and the structures are simple, which can reduce the fatigue of the mechanical structures in long term reciprocating movement processes. As a result, the damage to the mechanical components can be reduced, the reliability can be enhanced, and the operational lifetime of the device can be extended.
FIGs. 18, 19, 20, and 21 illustrate a mopping mechanism 260 according to another embodiment of the present disclosure. The mopping mechanism 260 differs from the mopping mechanism 160 (e.g., differs from the first mopping assembly 161) in that the mopping mechanism 260 includes a rotary member 280 including a variable stroke rail 321 (shown in FIG. 23) formed or provided (e.g., mounted) on a surface (or a side) of the rotary member 280. The variable stroke rail 321 may have an oval shape, a Reuleaux triangle shape, or any other shape that can provide a variable stroke. The rotary member 280 may include features or structures similar to the rotary member 180. As shown in FIG. 18, the rotary member 280 including the variable stroke rail 321 may be disposed between the first mopping plate 171 and the second mopping plate 172. The rotary member 280 may be connected with the mopping assembly driving unit 195. A connection member 243 (which may also be referred to as a coupling member) may be respectively provided on the first mopping plate 171 and the second mopping plate 172 to operably couple with the rail 321. A surface (e.g., an inner or outer surface) of the rail 321 may function as a working surface to be in contact with the connection member 243 for connecting with the mopping plates. FIG. 23 shows the connection members 243 coupled with the variable stroke rail 321 for illustrative purposes only. The connection members 243 may be parts of or may be mounted to the first mopping plate 171 and the second mopping plate 172. That is, the first mopping plate 171 and the second mopping plate 172 may be mounted to the variable stroke rail 321 of the rotary member 280 through the respective connection members 243. Under the action of the mopping assembly driving unit 195, although a restoration component 175 is not included, as shown in FIG. 18, the mopping mechanism 260 can still achieve the reciprocating relative movements of the first mopping plate 171 and the second mopping plate 172 through the rotary member 280 having the variable stroke rail 321. This implementation of the mopping mechanism may have a simplified structure. Although no restoration component 175 is shown  in the embodiment of FIGs. 18, 19, 20, 21, and 22, in some embodiments, one or more restoration components 175 may be disposed at various suitable locations, such as between the first mopping plate 171 and the second mopping plate 172, or at locations similar to those shown in FIG. 16 and FIG. 17.
As shown in FIG. 23, the rotary member 280 of this embodiment may be a cam or a circular disk having the variable stoke rail 321. The variable stroke rail 321 may be formed as a part on the cam or the circular disk, or may be mounted on the cam or circular disk. The variable stroke rail 321 may have an oval shape with a variable stroke. The oval shape of the rail 321 may define a maximum stroke (a long stroke) and a minimum stroke (a short stroke) . The rotary member 280 may have any suitable shape, e.g., an oval shape, a rectangular shape, a square shape, a circular shape, a star shape, a triangle shape, a Reuleaux triangle shape (shown in FIG. 29) , a hexagon shape, etc. The variable stroke rail 321 is not limited to having an oval shape, and can have other continuous shape, such as a rhombus shape, a square shape, a trapezoid shape, a hexagon shape, etc. The first mopping plate 171 and the second mopping plate 172 may each be provided with a sliding block, sliding bar, a pin, or a roller (which are examples of the connection member 243) to operably couple with the variable stroke rail 321. The sliding blocks or rollers may fit with (e.g., snap-fit on or in) the variable stroke rail 321, and may freely move along the variable stroke rail 321 when the rotary member 280 rotates. The first mopping plate 171 and the second mopping plate 172 may be movably mounted to the bottom surface 155 through a sliding mechanism 311 and a sliding mechanism 312, as shown in FIGs. 20 and 21. Each of the sliding  mechanisms  311 and 312 may include a rail or groove and a matching roller or slider (e.g., a sliding bar, ball, block, etc. ) . In some embodiments, the rail or groove may be provided at the bottom surface 155, and the matching roller or slider may be provided at the first mopping plate 171 and the second mopping plate 172. In some embodiments, the matching roller or slider may be provided at the bottom surface 155, and the rail or groove may be provided at the first mopping plate 171 and the second mopping plate 172.
In some embodiments, the first mopping plate 171 and the second mopping plate 172 may be hinge connected to the bottom surface 155 and may rotate (or pivot, swing) relative to the bottom surface 155, as shown in FIGs. 18 and 19. The movable mounting of the first mopping plate 171 and the second mopping plate 172 on the bottom surface 155, or the hinge mounting of the first mopping plate 171 and the second mopping plate 172 on the bottom surface 155 can be configured similar to those described above in connection with other embodiments.
In this embodiment, the rotary member 280 (e.g., a cam) having the variable stroke rail 321 disposed between the first mopping plate 171 and the second mopping plate 172 is used as an example to explain the motion state of the first mopping plate 171 and the second mopping plate 172: when the rotary member 280 is in the first state (with a short axis aligned perpendicular to contacting edges of the first mopping plate 171 and the second mopping plate 172) , correspondingly, the first mopping plate 171 and the second mopping plate 172 are in their respective first positions, and the distance between the first mopping plate 171 and the second mopping plate 172 may be the smallest, as shown in FIGs. 18 and 20. The mopping assembly driving unit 195 (e.g., a variable-frequency electric motor) may be controlled to drive the rotary member 280 to rotate, such that when the rotary member 280 transitions from the first state to the second state (with the long axis aligned substantially perpendicular to the contacting edges of the first mopping plate 171 and the second mopping plate 172) , correspondingly, the first mopping plate 171 and the second mopping plate 172 reach their respective second positions. At this moment, the distance between the first mopping plate 171 and the second mopping plate 172 may be the largest. Accordingly, in this process, the first mopping plate 171 the second mopping plate 172 move away from one another. As the rotary member 280 continues to rotate in the original rotation direction from the second state to the first state, the sliding blocks or rollers (i.e., the connection members 243) provided at the first mopping plate 171 and the second mopping plate 172 are limited by the rail 321 of the rotary member 280. The distance between the first mopping plate 171 and the second mopping plate 172 reduces to a minimum distance. In this process, the first mopping plate 171 and the second mopping plate 172 move toward one another. Therefore, the present disclosure provides a second type of mopping mechanism. The second type of mopping mechanism shown in FIGs. 18-21 and 23 may also be implemented in other embodiments shown in other figures, such as the embodiment shown in FIG. 1A to FIG. 1C. By providing a rotary member 280 having a variable stroke rail 321, and by connecting the first mopping plate 171 and the second mopping plate 172 to the variable stroke rail 321 through the connection members 243, the mopping assembly driving unit 195 may drive the rotary member 280 to rotate, which may drive the first mopping plate 171 and the second mopping plate 172 through the connection members 243 and the rail 321 to perform reciprocating movements, e.g., relative to the bottom surface 155 (and in some embodiments, relative to one another, such as away from and toward one another) . As a result, the mopping efficiency and mopping effect for a surface to be cleaned can be enhanced with the disclosed mopping mechanism.
FIG. 24 –FIG. 27 illustrate a mopping mechanism 360, according to another  embodiment of the present disclosure. The mopping mechanism 360 may include structures similar to the  mopping mechanism  160 or 260 described above. The mopping mechanism 360 may include  coupling elements  333 and 334 provided on the first mopping plate 171 and the second mopping plate 172 respectively to operably couple with a rotary member 380. At least one (e.g., each) of the  coupling elements  333 and 334 may include a bearing, a pin, a roller, a slider (e.g., a sliding ball, a sliding bar, a sliding block, etc. ) , or a gear. In some embodiments, at least one (e.g., each) of the  coupling elements  333 and 334 may include a crank, a linkage, or a piston. In some embodiments, the  coupling elements  333 and 334 may be of the same type (e.g., both being a bearing) . In some embodiments, the  coupling elements  333 and 334 may be of different types (e.g., a bearing and a roller, a bearing and a slider, a roller and a slider, a pin and a roller, a pin and a slider, a bearing and a gear, etc. ) . The rotary member 380 may include matching features or structures to engage with the  coupling element  333 and 334. For example, in some embodiments, the rotary member 380 may be cap shaped (not shown) , with an inner or outer side surface of the cap coupled with the  coupling elements  333 and 334. For example, in some embodiments, when the  coupling elements  333 and 334 are bearings, the inner side surface or the outer side surface of the cap shaped rotary member 380 may be a smooth surface. When the  coupling elements  333 and 334 are pins, the inner side surface or the outer side surface of the cap shaped rotary member 380 may be a smooth surface. In some embodiments, when the  coupling elements  333 and 334 are rollers or sliders, the inner side surface or the outer side surface of the cap shaped rotary member 380 may include a groove or a rail for the rollers or sliders to roll or slide along. When the  coupling elements  333 and 334 are gears, the cap shaped rotary member 380 may be an outer gear or an inner gear, with the outer side surface or the inner side surface configured with a plurality of teeth to engage with the  gears  333 and 334. When the  coupling elements  333 and 334 are gears, and the rotary member 380 is a gear, the restoration component (s) 175 may be omitted. In some embodiments, the  coupling elements  333 and 334 may be cranks, linkages, and/or pistons that may connect the first and  second mopping plates  171 and 172 with the rotary member 380. The  coupling elements  333 and 334 shown in the figures are for illustrative purposes, and can be any other suitable elements that may function to couple the first mopping plate 171 and the second mopping plate 172 with the rotary member 380.
The rotary member 380 may be similar to the rotary member 180, which may have a shape shown in FIG. 22 or FIG. 29. When the rotary member 380 is a cam having an oval shape shown in FIG. 22, or a cam having a Reuleaux triangle shape shown in FIG. 29, the outer side surface of the rotary member 380 may be in contact with the  coupling elements  333  and 334. In some embodiments, an inner side surface of the rotary member 380 may be in contact with the coupling elements 333 and 334 (e.g., when the rotary member 380 includes a cap shape, the inner side surface of the cap may be in contact with the coupling elements 333 and 334) . In the embodiment shown in FIG. 24 and FIG. 25, when the rotary member 380 rotates, an outer side surface of the rotary member 380 may be coupled with (e.g., abutting against or engaged with) the  coupling elements  333 and 334 to drive the first mopping plate 171 and the second mopping plate 172 to move reciprocatively between their respective first positions and second positions relative to the bottom surface 155 (e.g., away from and toward one another) . In the embodiment shown in FIG. 26 and FIG. 27, an inner side surface of the rotary member 380 may be coupled with (e.g., abutting against or engaged with) the  coupling elements  333 and 334 to drive the first mopping plate 171 and the second mopping plate 172 to move reciprocatively between their respective first positions and second positions (e.g., away from and toward one another, and/or relative to the bottom surface 155) .
In the embodiments shown in FIG. 26 and FIG. 27, at least two restoration components 175 (e.g., springs) may be provided at suitable locations to provide a pulling force (or a restoration force) tending to pull the first mopping plate 171 and the second mopping plate 172 apart when the rotary member 380 is at the first state (with the short axis aligned perpendicular to the edges of the first mopping plate 171 and the second mopping plate 172) , as shown in FIG. 26. That is, when the rotary member 380 is at the first state as shown in FIG. 26 (i.e., when the first mopping plate 171 and the second mopping plate 172 are closest to one another) , the restoration components 175 may be in a state providing a pulling force to pull the first mopping plate 171 and the second mopping plate 172 away from one another. When the restoration components 175 are mounted at the locations shown in FIG. 26, the first mopping plate 171 and the second mopping plate 172 may perform rotational movements relative to the bottom surface 155. Each of the restoration components 175 may have one end connected with a non-movable portion of the bottom surface 155 or the main body 110, and another end connected with the first mopping plate 171 or the second mopping plate 172. Although not shown in FIG. 26 and FIG. 27, a sliding mechanism similar to the one described above in connection with FIG. 21 may be provided to facilitate the sliding movements of the first mopping plate 171 and the second mopping plate 172. When the rotary member 380 rotates from the first state to the second state shown in FIG. 27, during this process, the restoration components 175 may pull the first mopping plate 171 and the second mopping plate 172 away from one another. During a process when the rotary member 380 rotates from the second state shown in FIG. 27 back to the first state shown in FIG. 26, the  force exerted on the  coupling elements  333 and 334 by the rotary member 380 may overcome the pulling force of the restoration components 175 and the rotary member 380 may pull the first mopping plate 171 and the second mopping plate 172 toward one another. The restoration components 175 may be in other suitable forms, as long as the structure can provide a pulling force to pull the first and  second mopping plates  171 and 172 during the movement of the first and  second mopping plates  171 and 172.
Although hinge connection pins and holes are not shown in FIG. 24 –FIG. 27, hinge connection pins may be included in the embodiments shown in FIG. 24 –FIG. 27, similar to the embodiments shown in FIG. 13 or FIG. 18. The shape of the rotary member 380 may not affect the reciprocating movement between the two mopping  plates  171 and 172. Therefore, the rotary member 380 is not limited to be an oval shaped cam, a Reuleaux triangle shaped cam, or a circular disk, and can be other rotating structures having other shapes. In the embodiment shown in FIG. 24 and FIG. 25, a restoration component 175 is shown. In some embodiments, multiple restoration components 175 may be included in the embodiment shown in FIG. 24, such as those shown in FIG. 16.
In some embodiments, the rotary member disclosed herein (e.g.,  rotary member  180, 280, or 380) configured to provide a variable stroke to at least one of the first mopping plate or the second mopping plate may having a Reuleaux triangle shape (cross section) , as shown in FIG. 29. The Reuleaux triangle shape shown in FIG. 29 may be implemented in a cam. As shown in FIG. 29, the Reuleaux triangle shape may provide a variable stroke to the first mopping plate 171 and the second mopping plate 172. For example, the first mopping plate 171 and the second mopping plate 172 may be configured to be in contact with different portions of the circumferential side surface of the rotary member having the Reuleaux triangle shape. The different portions may have different distances (or strokes) from the center of the Reuleaux triangle shape (which may be a rotation center) . For example, at certain time instance, one of the first mopping plate 171 and the second mopping plate 172 may be in contact with a side surface portion where an apex point 2901 is located, and the other one of the first mopping plate 171 and the second mopping plate 172 may be in contact with an opposite or opposing side surface 2902. The apex point 2901 and the opposing side surface 2902 may have different distances (or strokes) to the rotation center of the rotary member with the Reuleaux triangle shape. The mopping plate in contact with the apex point 2901 may have a longer stroke than the mopping plate in contact with the side surface 2902. That is, the mopping plate in contact with the apex point 2901 may be at the first position of the mopping plate, and the other mopping plate in contact with the side surface 2902 may be at the second  position of the other mopping plate. This may be different from the rotary member being in an oval shaped cam, as shown in, e.g., FIG. 2 and FIG. 3, where the first mopping plate 171 and the second mopping plate 172 are at their respective first positions at the same time, or at their respective second positions at the same time. Any other suitable two portions with different distances to the rotation center may be configured to be in contact with the first and  second mopping plates  171 and 172, thereby providing a variable stroke to at least one of the first mopping plate 171 or the second mopping plate 172. In some embodiments, when the first mopping plate 171 is at the first position (e.g., closest to the center of rotation of the rotary member having the Reuleaux triangle shape) , the second mopping plate 172 may be at the second position (e.g., farthest from the center of rotation of the rotary member having the Reuleaux triangle shape) . In any of the embodiments shown in the figures, any rotary member shown as a cam shape may be replaced by the Reuleaux triangle shape shown in FIG. 29. In addition, in some embodiments, when a cam is used as a restoration component, the restoration component may instead have the Reuleaux triangle shape shown in FIG. 29.
In the mopping mechanisms of the present disclosure, through the rotary member and the restoration component, reciprocating movement away from or toward one another between the two mopping  plates  171 and 172 can be realized, thereby increasing the cleaning efficiency and cleaning effect of the cleaning device with respect to the surface to be cleaned. Because the rotary member and the electric motor of the mopping assembly driving unit may be directly connected, the space occupied by the mopping mechanism is small, and the cost is low. Further, in some embodiments, the reciprocating movement between the two mopping  plates  171 and 172 can be realized by using the rotary member alone without using the restoration component. Thus, the structure can be simplified, which reduces the fatigue of the mechanical structure in long term reciprocating movement processes, reduces damages to the mechanical components, increases the reliability, and extends the operational lifetime of the cleaning device.
It can be understood that the first mopping plate 171 and the second mopping plate 172 may both be provided with a mop (not shown) . The shape of the mops may be consistent with the shape of the mopping plates, or may be different. The mops may be detachably mounted on the mopping  plates  171 and 172. For example, the mops may be mounted to the mopping  plates  171 and 172 through a sticking method (e.g., through a magic tape or strip) , a tie rope or strip, a snap-fitting mechanism, a quick-release mechanism, etc., which makes it convenient to detach the mops, and convenient to replace the mops.
In some embodiments of the present disclosure, the rotary member may provide a  variable stroke, either through the shape of the rotary member or through another structure provided at the rotary member, such as the rail 321. The rotary member may at least partially drive the first mopping plate and the second mopping plate to move reciprocatively according to the variable stroke, as the rotary member rotates. In some embodiments, the reciprocating movement of the first mopping plate and the second mopping plate may be achieved by combined actions of the rotary member and a restoration component. In some embodiments, the reciprocating movement of the first mopping plate and the second mopping plate may be achieved by combined actions of the rotary member and coupling elements (e.g., 333 and 334) provided at the first mopping plate and the second mopping plate.
In some embodiments, the cleaning device may be a cleaning robot. The cleaning robot may include one, two, or more mopping mechanisms described above. If multiple mopping mechanisms are included, the multiple mopping mechanisms may be of the same type, or may be of different types. In a mopping mechanism, one or more mopping plate assemblies may be included. When multiple mopping plate assemblies are included, the mopping plate assemblies may be structurally similar, or may be structurally different. For example, the various embodiments of the mopping plate assembly shown in various figures may be combined in an embodiment. For example, the cleaning robot may be provided with two mopping  plate assemblies  161 and 162 on the bottom surface 155, as shown in FIG. 1C. Each of the first mopping plate assembly 161 and the second mopping plate assembly 162 may be any of the suitable mopping plate assemblies disclosed herein. The two  mopping plate assemblies  161 and 162 may be symmetrically or asymmetrically disposed on the bottom surface 155. For example, in one embodiment, the first mopping plate assembly 161 and the second mopping plate assembly 162 may be symmetrically disposed at the front end and the rear end of the bottom surface 155 of the main body 110. The first mopping plate assembly 161 and the second mopping plate assembly 162 may be disposed along the moving direction of the cleaning device. Each of the first mopping plate assembly 161 and the second mopping plate assembly 162 may be any embodiment shown in FIGs. 2-27.
In some embodiments, the cleaning device (e.g., cleaning robot) may include a sweeping-cleaning mechanism. In the moving direction of the cleaning device, the sweeping-cleaning mechanism may be disposed at the front end of the cleaning device, and the mopping mechanism may be disposed at the rear end of the cleaning device. When the cleaning robot moves forward, the sweeping-cleaning mechanism may sweep-clean the surface to be cleaned. Then the mopping mechanism of the present disclosure may mop the surface to be cleaned, thereby avoiding dust marks appearing after the surface to be cleaned is mopped, which  further improves the cleaning effect.
To further improve the cleaning effect, the cleaning device of the present disclosure may include a water supply device. The water supply device may be configured to provide a water source to the mop attached to the mopping  plates  171 and 172, such that the mop can maintain a moisturized state for better mopping the surface to be cleaned. The water supply device may be disposed in the main body 110 or on a handle when the cleaning device is a handheld cleaning machine. The water supply device may include a water storage tank and a water pump connected with the water storage tank. A water inlet of the water pump may be connected with the water storage tank, and a water outlet of the water pump may provide the water source to the mop through a conduit. A water supply hole may be provided on each mopping plate. The water supply hole may be connected with the water outlet of the water pump through the conduit, and may provide a suitable amount of water to moisturize the mop for mopping purposes. During the mopping, the mop may maintain a moisturized state, thereby improving the cleaning effect for the surface to be cleaned.
In the various embodiments shown in the figures, the first mopping plate 171 and the second mopping plate 172 are shown and described as both being movable relative to the bottom surface 155. It is understood that in some embodiments, only one of the first mopping plate 171 and the second mopping plate 172 may be movable relative to the bottom surface. Thus, in some embodiments, the rotary member may drive the movable one of the first mopping plate 171 and the second mopping plate 172 to move from its first position to second position, and the restoration component may drive the movable one of the first mopping plate 171 and the second mopping plate 172 to return from its second position to first position. When a restoration component is not included, such as in the embodiment shown in FIG. 26 and FIG. 27, the rotary member may drive the movable one of the first mopping plate 171 and the second mopping plate 172 between its first position and second position.
FIG. 28 schematically illustrates another mopping mechanism, according to an embodiment of the present disclosure. As shown in FIG. 28, the mopping  plates  171 and 172 may be connected with the driving wheels 140 through  linkages  291 and 292, in a manner similar to a wheel structure of a steam locomotive. As the driving wheels 140 moves forward, the mopping  plates  171 and 172 may be moved back and forth (reciprocating movement) in the moving direction of the cleaning device 100 by the  linkages  291 and 292. In this configuration, a separate mopping assembly driving unit may be omitted. A driving unit that drives the driving wheels 140 indirectly provides the actuation force to move the first mopping plate 171 and the second mopping plate 172. The structural complexity of the  cleaning device 100 may be reduced, and manufacturing costs may also be reduced. Because the speed of the reciprocating movement of the first and  second mopping plates  171 and 172 are proportional to the moving speed of the driving wheels 140, the cleaning efficiency may be improved and the cleaning time may be shortened when the cleaning device 100 is operated in a fast cleaning mode.
FIGs. 30 and 31 schematically illustrate another mopping mechanism, according to an embodiment of the present disclosure. The embodiment shown in FIGs. 30 and 31 is similar to the embodiment shown in FIGs. 26 and 27, except that the restoration component 175 is disposed between the first mopping plate 171 and the second mopping plate 172. FIG. 30 shows the state in which the first mopping plate 171 and the second mopping plate 172 are away from one another. In this state, when the  coupling elements  333 and 334 are bearings, pins, rollers, balls, etc., the restoration component 175 may be in a compressed state, such that the restoration component 175 pushes the first mopping plate 171 and the second mopping plate 172 away from one another. When the  coupling elements  333, 334, and the rotary member 380 are gears, the restoration component 175 may be in a state to provide a pulling force to pull the first mopping plate 171 and the second mopping plate 172 toward one another, or may be in a state to provide a pushing force to push the first mopping plate 171 and the second mopping plate 172 away from one another. FIG. 31 shows the state in which the first mopping plate 171 and the second mopping plate 172 are close to one another. In this state, the restoration component 175 may be in a state providing a pushing force, a state providing a pulling force, or a neutral state providing substantially zero force. In some embodiments, the embodiment shown in FIG. 26 and FIG. 27 may be combined, such that at least three restoration components may be included in the mopping mechanism.
It should be noted that the mopping mechanism of the present disclosure is not limited to be used in a cleaning robot, and may also be used in traditional handheld floor mopping machines. The rotary member disclosed herein may include any suitable structure configured to provide, either directly or through other coupling elements, a variable stroke to the movement of the first mopping plate and/or the second mopping plate. The restoration component disclosed herein may include any suitable structure configured to provide a restoration force to cause the first mopping plate and/or the second mopping plate to move from the second position to the first position (or from the first position to the second position) . Finally, it should be noted that the above various embodiments are only used to explain the technical solutions of the present disclosure, and are not intended to limit the scope of the present disclosure. Although the present disclosure is explained in detail with reference to the  above various embodiments, a person having ordinary skills in the art can appreciate: the technical solutions reflected in the above various embodiments can be modified, or a portion or all of the technical features can be equivalently replaced, and various features shown in various exemplary embodiments in the figures may be combined in any suitable manner. Such modifications, replacements, combinations, or variations also fall within the scope of the present disclosure.

Claims (20)

  1. A mopping mechanism, comprising:
    a first mopping plate;
    a second mopping plate;
    a rotary member coupled with the first mopping plate and the second mopping plate and configured to provide a variable stroke for at least one of the first mopping plate or the second mopping plate; and
    a mopping assembly driving unit connected with the rotary member and configured to drive the rotary member to rotate,
    wherein when rotating, the rotary member drives at least one of the first mopping plate or the second mopping plate to move reciprocatively between a first position and a second position.
  2. The mopping mechanism of claim 1, wherein the rotary member includes a cam having at least one of an oval shape or a Reuleaux triangle shape.
  3. The mopping mechanism of claim 2, wherein the cam includes a circumferential side surface abutting against contacting edges of the first mopping plate and the second mopping plate respectively.
  4. The mopping mechanism of claim 1, further comprising:
    one or more restoration components coupled with at least one of the first mopping plate or the second mopping plate, and configured to provide a restoration force to drive the at least one of the first mopping plate or the second mopping plate coupled with the one or more restoration components to move from the second position to the first position or from the first position to the second position.
  5. The mopping mechanism of claim 4, wherein the one or more restoration components are disposed between the first mopping plate and the second mopping plate.
  6. The mopping mechanism of claim 4,
    wherein the first mopping plate and the second mopping plate are mountable to a bottom surface of a cleaning device, and
    wherein at least one of the one or more restoration components is disposed between:
    the first mopping plate and a first non-movable portion of the bottom surface, or
    the second mopping plate and a second non-movable portion of the bottom surface.
  7. The mopping mechanism of claim 6, wherein at least one of the one or more restoration components is disposed between the first mopping plate and the second mopping plate.
  8. The mopping mechanism of claim 4, wherein at least one of the one or more restoration components includes a spring, an elastic strip, an elastic plate, an elastic rope, a cam, or a magnetic blocks assembly including at least two magnetic elements with same poles facing one another.
  9. The mopping mechanism of claim 1, wherein the first mopping plate and the second mopping plate are mountable to a bottom surface of a cleaning device through a hinge connection, and wherein the first mopping plate and the second mopping plate are rotatable relative to the bottom surface.
  10. The mopping mechanism of claim 1, wherein the first mopping plate and the second mopping plate are mountable to a bottom surface of a cleaning device through a sliding mechanism, and the first mopping plate and the second mopping plate are slidable relative to the bottom surface.
  11. The mopping mechanism of claim 1, wherein the rotary member includes a variable stroke rail coupled with the first mopping plate and the second mopping plate.
  12. The mopping mechanism of claim 11, wherein the rotary member includes an oval shape or a Reuleaux triangle shape.
  13. The mopping mechanism of claim 1, wherein the first mopping plate and the second mopping plate are each coupled with the rotary member through a coupling element.
  14. The mopping mechanism of claim 13, wherein the rotary member is coupled with the coupling elements at an outer side surface or an inner side surface of the rotary member.
  15. The mopping mechanism of claim 13, wherein the coupling element includes at least one of a bearing, a pin, a roller, a slider, a gear, a crank, a linkage, or a piston.
  16. A cleaning device, comprising:
    a main body including a bottom surface; and
    a mopping mechanism mounted to the bottom surface, the mopping mechanism comprising:
    a first mopping plate;
    a second mopping plate;
    a rotary member coupled with the first mopping plate and the second mopping plate and configured to provide a variable stroke for at least one of the first mopping plate or the second mopping plate; and
    a mopping assembly driving unit connected with the rotary member and configured to drive the rotary member to rotate,
    wherein when rotating, the rotary member drives at least one of the first mopping plate or the second mopping plate to move reciprocatively between a first position and a second position.
  17. The cleaning device of claim 16, wherein the rotary member includes a cam having at least one of an oval shape or a Reuleaux triangle shape.
  18. The cleaning device of claim 16, further comprising:
    one or more restoration components coupled with at least one of the first mopping plate or the second mopping plate, and configured to provide a restoration force to drive the at least one of the first mopping plate or the second mopping plate coupled with the one or more restoration components to move from the second position to the first position or from the first position to the second position.
  19. The cleaning device of claim 16, wherein the rotary member includes a cam having at least one of an oval shape or a Reuleaux triangle shape.
  20. The cleaning device of claim 16, wherein the rotary member includes a variable stroke rail coupled with the first mopping plate and the second mopping plate.
PCT/CN2020/119691 2019-09-30 2020-09-30 Mopping mechanism and cleaning device WO2021063415A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910944823.2A CN112568772A (en) 2019-09-30 2019-09-30 Mop mechanism and cleaning robot
CN201910944823.2 2019-09-30
US201962916841P 2019-10-18 2019-10-18
US62/916,841 2019-10-18

Publications (1)

Publication Number Publication Date
WO2021063415A1 true WO2021063415A1 (en) 2021-04-08

Family

ID=75116603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119691 WO2021063415A1 (en) 2019-09-30 2020-09-30 Mopping mechanism and cleaning device

Country Status (2)

Country Link
CN (1) CN112568772A (en)
WO (1) WO2021063415A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115227148A (en) * 2022-06-30 2022-10-25 佛山市银星智能制造有限公司 Front collision device and cleaning robot
EP4245202A1 (en) * 2022-03-15 2023-09-20 BSH Hausgeräte GmbH Robot vacuum cleaner and method for wiping the floor using robot vacuum cleaner

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114587201A (en) * 2020-12-03 2022-06-07 美智纵横科技有限责任公司 Mopping assembly of cleaning device and cleaning device with mopping assembly
CN114176460B (en) * 2021-11-19 2023-04-07 科大讯飞股份有限公司 Cleaning control method, related device, cleaning method, cleaning equipment and cleaning system
CN114190832B (en) * 2021-12-01 2023-05-09 深圳市杉川机器人有限公司 Floor mopping machine
CN114190833B (en) * 2021-12-01 2023-05-09 深圳市杉川机器人有限公司 Floor mopping machine
CN115153354A (en) * 2022-08-18 2022-10-11 无锡睿米信息技术有限公司 Robot of sweeping floor with water spray water route

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202843524U (en) * 2012-09-24 2013-04-03 苏州市洁宝王电器有限公司 Electric cleaning device
CN203042145U (en) * 2013-01-11 2013-07-10 苏州市洁宝王电器有限公司 Motor-driven mop head and power-driven mop using motor-driven mop head
CN204889885U (en) * 2015-08-07 2015-12-23 嘉兴捷顺旅游制品有限公司 Flexible tie is dragged
KR20150142938A (en) * 2014-06-12 2015-12-23 김진만 Functional floor cloth
CN207721772U (en) * 2017-04-17 2018-08-14 嘉兴捷顺旅游制品有限公司 The deformable mop of mophead
CN211022430U (en) * 2019-09-30 2020-07-17 速感科技(北京)有限公司 Mop mechanism and cleaning robot

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202843524U (en) * 2012-09-24 2013-04-03 苏州市洁宝王电器有限公司 Electric cleaning device
CN203042145U (en) * 2013-01-11 2013-07-10 苏州市洁宝王电器有限公司 Motor-driven mop head and power-driven mop using motor-driven mop head
KR20150142938A (en) * 2014-06-12 2015-12-23 김진만 Functional floor cloth
CN204889885U (en) * 2015-08-07 2015-12-23 嘉兴捷顺旅游制品有限公司 Flexible tie is dragged
CN207721772U (en) * 2017-04-17 2018-08-14 嘉兴捷顺旅游制品有限公司 The deformable mop of mophead
CN211022430U (en) * 2019-09-30 2020-07-17 速感科技(北京)有限公司 Mop mechanism and cleaning robot

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4245202A1 (en) * 2022-03-15 2023-09-20 BSH Hausgeräte GmbH Robot vacuum cleaner and method for wiping the floor using robot vacuum cleaner
WO2023174665A1 (en) * 2022-03-15 2023-09-21 BSH Hausgeräte GmbH Robot vacuum cleaner and method for wiping the floor using robot vacuum cleaner
CN115227148A (en) * 2022-06-30 2022-10-25 佛山市银星智能制造有限公司 Front collision device and cleaning robot
CN115227148B (en) * 2022-06-30 2023-11-14 佛山市银星智能制造有限公司 Front collision device and cleaning robot

Also Published As

Publication number Publication date
CN112568772A (en) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2021063415A1 (en) Mopping mechanism and cleaning device
KR101857295B1 (en) Mobile robot cleaner
US20220296068A1 (en) Mopping mechanism and cleaning device
CN113287975B (en) Cleaning robot, control method and movable cleaner assembly
JP2003250727A (en) Suction brush assembly for vacuum cleaner having rotating roller for beating
CN209360574U (en) A kind of mobile rag sweeper
CN112315391B (en) Scrubbing brush and cleaning device
CN107997695A (en) A kind of floor cleaning apparatus
US20160081525A1 (en) Robot cleaner
CN210931158U (en) Suction head for dust collector
CN108720732A (en) A kind of sweeping robot of energy the dead ends of cleanning and big object
CN217610851U (en) Cleaning robot, swing subassembly
US11344172B2 (en) Roller brush assembly and cleaning device
CN219560553U (en) Campus monitoring camera is with clearance structure based on 5G monitoring network
CN216256884U (en) Dust collector floor brush with rolling brush capable of being adjusted in multiple directions
CN212729642U (en) Double-sided scraping device
CN112842140B (en) Self-cleaning robot with self-cleaning rolling brush and intelligent self-cleaning robot
CN113925379A (en) Double-sided scraping device
CN216724448U (en) Cleaning device
CN219763219U (en) Cleaning apparatus
CN219070138U (en) Rolling brush and cleaning robot
CN221205274U (en) Cleaning apparatus
CN220045785U (en) Floor sweeping machine and floor sweeping machine system
CN113768409A (en) Dust collector floor brush with rolling brush capable of being adjusted in multiple directions
CN213282745U (en) Cleaning assembly and cleaning robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20870535

Country of ref document: EP

Kind code of ref document: A1