WO2021227715A1 - 候选波束测量方法、终端、网络设备、芯片系统及介质 - Google Patents

候选波束测量方法、终端、网络设备、芯片系统及介质 Download PDF

Info

Publication number
WO2021227715A1
WO2021227715A1 PCT/CN2021/085965 CN2021085965W WO2021227715A1 WO 2021227715 A1 WO2021227715 A1 WO 2021227715A1 CN 2021085965 W CN2021085965 W CN 2021085965W WO 2021227715 A1 WO2021227715 A1 WO 2021227715A1
Authority
WO
WIPO (PCT)
Prior art keywords
candidate
measurement period
terminal
network device
measurement
Prior art date
Application number
PCT/CN2021/085965
Other languages
English (en)
French (fr)
Inventor
秦城
曾勇波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010928315.8A external-priority patent/CN113676929A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021227715A1 publication Critical patent/WO2021227715A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to a candidate beam measurement method.
  • this application also relates to a terminal, a network device, a computer-readable storage medium, and a chip system.
  • the communication between the base station and the user equipment (UE) needs to use beamforming Beamforming technology to overcome the path loss problem in high-frequency communication. Based on this, both the base station and the UE can use multiple beams of different directions for communication, and in order to achieve efficient communication between the base station and the UE, a suitable transceiver beam pair is generally selected for the base station and the UE during communication.
  • the base station configures the beam for the UE to transmit data (hereinafter referred to as the current beam), and also configures other beams that can be used as alternatives for the UE (hereinafter referred to as the current beam).
  • the base station or UE can switch the current beam to one of the candidate beams, thereby completing beam failure recovery (BFR).
  • BFR beam failure recovery
  • the base station cannot know whether the current beam has a beam failure. Therefore, the UE is required to perform a series of detections and notify the base station when it detects that the current beam has a beam failure, requesting the base station to switch the current beam.
  • the UE Before triggering the beam failure recovery procedure, the UE will continue to periodically scan candidate beams, that is, measure candidate beams, so that when the current beam fails, it can immediately request the base station to switch the current beam to a suitable candidate beam. Since the UE continuously measures the candidate beams periodically, this results in high power consumption of the UE.
  • the present application provides a candidate beam measurement method, which reduces the measurement process of some unnecessary candidate beams, reduces the power consumption of the terminal, and guarantees the communication quality of the terminal as much as possible.
  • this application provides a candidate beam measurement method, which is applied to a terminal, and the method includes:
  • At least one first RS is determined from the candidate RS; wherein, the current beam has no beam failure, and the current beam is configured by the network device for the terminal for transmission Data beam;
  • the second measurement period is the extended measurement period of the first RS, and the first measurement period is configured by the network device for the first RS The measurement period, the second measurement period is greater than the first measurement period.
  • a part of candidate RSs ie, the first RS
  • the measurement period for measuring this part of candidate RSs is extended, that is, the measurement period is reduced.
  • the measurement frequency of this part of the candidate RSs thereby reducing the power consumption of the terminal, and ensuring the communication quality of the terminal as much as possible.
  • the determining at least one first RS from the candidate RS includes:
  • the satisfaction of the third condition includes at least one of the following conditions:
  • the beam failure probability of the current beam is lower than the first threshold; or,
  • a user's operation to enter a preset mode is received, wherein when the terminal is in the preset mode, the measurement period of the at least one first RS is allowed to be extended; or,
  • the parameters of the terminal meet the first specific condition, where the parameters of the terminal include one or more of the remaining power, temperature, location, and time of the terminal; or,
  • the total number of candidate RSs configured in the configuration information of the candidate RSs is greater than the second threshold; or,
  • the first number of times configured in the failure detection configuration information is higher than the fourth threshold, wherein, when the detected BFI is greater than the first number of times, the MAC of the terminal determines that a beam failure occurs.
  • the pre-trigger condition that is, the third condition
  • the measurement period of the first RS can be extended conditionally, which is beneficial to reducing the power consumption of the terminal.
  • using this implementation manner can further reduce the influence that the extension of the measurement period of the first RS may have on normal candidate beam measurement, and ensure the communication quality, or the user can decide how to balance the power consumption and communication quality of the terminal.
  • the configuration information of the candidate RS includes: first indication information, and the first indication information is used to indicate the candidate Whether RS is configured to report content;
  • the determining at least one first RS from the candidate RS according to the configuration information of the candidate RS includes:
  • At least one first RS is determined from the candidate RS based on the first indication information of each candidate RS, and each first RS is not configured to report content.
  • part or all of the candidate RSs that are not configured to report content are determined as the first RS, and the measurement period of these first RSs is prolonged, which is beneficial to reduce the power consumption of the terminal and can avoid affecting the compliance of the protocol. , To avoid affecting the air interface interaction.
  • the configuration information of the candidate RS includes: the measurement period of the candidate RS;
  • the determining at least one first RS from the candidate RS according to the configuration information of the candidate RS includes:
  • At least one first RS is determined from candidate RSs based on the measurement period of each candidate RS, and the measurement period of each first RS is less than the third threshold; or,
  • At least one first RS is determined from candidate RSs based on the measurement period of each candidate RS, and the measurement period of each first RS is less than the measurement period of the detection RS, and the detection RS refers to detecting whether the current beam has a beam Failed RS.
  • part or all of the candidate RSs whose measurement period is less than the third threshold or less than the measurement period of the detection RS are determined as the first RS, and the measurement period of these first RSs is extended, which is beneficial to reduce the power consumption of the terminal. , And can further reduce the influence that the extension of the measurement period of the first RS may have on the measurement of the normal candidate beam, so as to ensure the communication quality.
  • the measurement result of the candidate RS includes: the reference signal received power RSRP of the candidate RS in the first preset time period value;
  • determining at least one first RS from the candidate RS includes:
  • the at least one first RS is determined from candidate RSs based on the RSRP value of each candidate RS, and the RSRP value of each first RS is lower than a fifth threshold.
  • part or all of the candidate RSs whose RSRP value is lower than the fifth threshold are determined as the first RS, and the measurement period of these first RSs is prolonged, which is beneficial to reduce the power consumption of the terminal and can further reduce Extending the measurement period of the first RS may have an impact on the measurement of normal candidate beams and guarantee the communication quality.
  • the second measurement period is N times the first measurement period, and the N is a positive integer greater than 1.
  • the terminal directly extends the measurement period of the first RS by an integer multiple of the respective first measurement period. In this way, regardless of whether the network device transmits these first RSs according to the original transmission period, the terminal can be at a specific point in time.
  • the first RS sent by the network device is measured to avoid missing a part of the number of measurements because the network device side does not send the corresponding first RS at some time points when the first RS is measured.
  • the extending a measurement period for measuring the at least one first RS includes:
  • the measurement period for measuring the at least one first RS is extended in the first time period, and the measurement period of the at least one first RS is allowed to be extended in the first time period.
  • the terminal can intermittently reduce the measurement frequency of the first RS, reduce the power consumption of the terminal, and further reduce the influence that the measurement period of the first RS may have on normal candidate beam measurement by extending the measurement period of the first RS, and ensure communication quality.
  • this method is easy to implement. Compared with other implementations that extend the measurement period of the first RS, the adoption of this implementation is beneficial to standardized implementation and reduces the complexity of implementation.
  • extending the measurement period of the at least one first RS includes:
  • the measurement period of the first RS is extended.
  • the terminal can conditionally reduce the measurement frequency of the first RS, reduce the power consumption of the terminal, and further reduce the influence that the measurement period of the first RS may have on normal candidate beam measurement by extending the measurement period of the first RS, and ensure communication quality.
  • extending the measurement period of the at least one first RS includes:
  • any first RS satisfies the second condition, start the timer; wherein, during the operation of the timer, the measurement period of the first RS is allowed to be extended, and the duration of the timer is greater than that of the timer. The duration of the first measurement period;
  • the measurement period of the first RS is extended to the second measurement period of the first RS.
  • the terminal can conditionally and intermittently reduce the measurement frequency of the first RS, further reduce the influence that the measurement period of the first RS may have on the measurement of normal candidate beams, and avoid interference in some unexpected situations.
  • the untimely measurement of the first RS results in an impact on beam failure recovery and guarantees communication quality.
  • the measurement result is an RSRP value
  • the second condition includes: M consecutive measurements of the first RS The RSRP value is higher than the thirteenth threshold, where M is a positive integer.
  • the terminal can conditionally reduce the measurement frequency of the first RS according to the measurement result of the first RS, further reducing the influence that the measurement period of the first RS may have on normal candidate beam measurement by extending the measurement period of the first RS, and ensuring communication quality.
  • the method further includes:
  • the fourth condition includes:
  • the beam failure probability of the current beam is higher than or equal to the first threshold; or,
  • the timer corresponding to the RS expires, wherein the measurement period of the RS is allowed to be extended during the operation of the timer; or,
  • One or more parameters of the terminal satisfy the second specific condition.
  • the measurement period of the first RS can be restored in time at an appropriate time, so as to better guarantee the communication quality.
  • this application provides a candidate beam measurement method, which is applied to a terminal, and the method includes:
  • the reconfiguration request is used to request the candidate reference signal RS of the terminal to be reconfigured, and the candidate RS is used to determine the candidate beam in the beam failure recovery procedure; or, the reconfiguration request
  • the terminal After the terminal and the network equipment reach an agreement on extending the measurement frequency of some candidate RSs, the terminal then reduces the receiving frequency of these candidate RSs, thereby reducing the measurement frequency of these candidate RSs, and thereby reducing the terminal's function. And ensure the communication quality of the terminal as much as possible.
  • the reconfiguration request carries: the number of candidate RSs supported by the terminal; the reconfiguration response information is used to indicate that the network device is Candidate RS configured by the terminal.
  • the network device can determine how to reconfigure candidate RSs for the terminal according to the number of candidate RSs supported by the terminal, so as to reduce the power consumption of the terminal and ensure the communication quality of the terminal as much as possible.
  • the reconfiguration request carries: the minimum measurement period supported by the terminal; the reconfiguration response information is used to indicate The fourth measurement period configured by the network device for at least one candidate RS of the terminal.
  • the network device can determine how to reconfigure candidate RSs for the terminal according to the minimum measurement period supported by the terminal, so as to reduce the power consumption of the terminal and ensure the communication quality of the terminal as much as possible.
  • the fourth measurement period is greater than the third measurement period, and the third measurement period is that the network device receives The measurement period configured for the candidate RS before the reconfiguration request.
  • the network device can reconfigure candidate RSs for the terminal and extend the measurement period of these candidate RSs, so as to reduce the power consumption of the terminal and ensure the communication quality of the terminal as much as possible.
  • the reconfiguration request is used to instruct the terminal to obtain information from candidate RSs configured by the network device for the terminal. At least one candidate RS determined; the reconfiguration response information is used to indicate whether the network device agrees to the reconfiguration request; or,
  • the reconfiguration request is used to indicate the fourth measurement period determined by the terminal for the at least one candidate RS; the reconfiguration response information is used to indicate whether the network device agrees to the reconfiguration request.
  • the UE can decide which candidate RSs to reconfigure on its own, and reach an agreement with the network equipment, extend the measurement period of these candidate RSs with the network equipment’s consent, reduce the power consumption of the terminal, and ensure the communication of the terminal as much as possible quality.
  • this application provides a method applied to a network device, and the method includes:
  • the reconfiguration request is used to request reconfiguration of the candidate reference signal RS of the terminal, the candidate RS is used to determine the candidate beam in the beam failure recovery procedure; or, the reconfiguration request
  • the configuration request is used to request configuration of the measurement period of at least one candidate RS of the terminal;
  • the reconfiguration request carries: the number of candidate RSs that the terminal supports configuration; the reconfiguration response information is used to indicate that the network device is Candidate RS configured by the terminal.
  • the reconfiguration request carries: the minimum measurement period supported by the terminal; the reconfiguration response information is used to indicate the The fourth measurement period configured by the network device for at least one candidate RS of the terminal.
  • the fourth measurement period is greater than the third measurement period, and the third measurement period is that the network device receives The measurement period configured for the candidate RS before the reconfiguration request.
  • the reconfiguration request is used to instruct the terminal to obtain information from candidate RSs configured by the network device for the terminal. Determined candidate RS; the reconfiguration response information is used to indicate whether the network device agrees to the reconfiguration request; or,
  • the reconfiguration request is used to indicate the fourth measurement period determined by the terminal for the candidate RS; the reconfiguration response information is used to indicate whether the network device agrees to the reconfiguration request.
  • the present application provides a terminal, including at least one processor and at least one memory, where the at least one memory is used to store computer program instructions, and when the computer program instructions are executed by the at least one processor, The terminal implements any one of the methods of the first aspect and the second aspect.
  • the present application provides a network device including at least one processor and at least one memory, the at least one memory is used to store computer program instructions, and when the computer program instructions are executed by the at least one processor, The network device is enabled to implement any method of the third aspect.
  • the present application provides a chip system including at least one processor; when the at least one processor executes an instruction, the at least one processor executes any one of the first aspect, the second aspect, and the third aspect kind of method.
  • the present application provides a computer-readable storage medium, the computer storage medium includes computer program instructions, when the computer program instructions are executed on a computer, the computer realizes the first aspect and the second aspect And any method of the third aspect.
  • Figure 1 is a schematic diagram of communication between a base station and a UE through beams and the beams are blocked by obstacles;
  • FIG. 2 is a schematic diagram of the architecture of an exemplary communication system provided by an embodiment of the application.
  • FIG. 3A is a schematic diagram of an exemplary user interface of a UE in an embodiment of the application
  • FIG. 3B is a schematic diagram of another exemplary user interface of the UE in an embodiment of the application.
  • FIG. 4 is a schematic flowchart of a candidate beam measurement method provided by an embodiment of this application.
  • FIG. 5 is a schematic flowchart of another candidate beam measurement method provided by an embodiment of the application.
  • FIG. 6 is a signaling flowchart of a candidate beam measurement method provided by an embodiment of this application.
  • FIG. 7 is a signaling flowchart of another candidate beam measurement method provided by an embodiment of the application.
  • FIG. 8 is a signaling flowchart of another candidate beam measurement method provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a terminal provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a chip system provided by an embodiment of the application.
  • the beam is a communication resource.
  • the beam can be a wide beam, or a narrow beam, or other types of beams.
  • the beam forming technology may be beamforming technology or other technical means.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, a hybrid digital/analog beamforming technology, etc. Different beams can be considered as different airspace resources.
  • the same information or different information can be sent through different beams.
  • multiple beams with the same or similar communication characteristics may be regarded as the same beam.
  • the beam can be used on one or more antenna ports to transmit data channels, control channels, and sounding signals.
  • the transmitting beam may refer to the distribution of directional signal strength formed after the signal is weighted and transmitted by the antenna element
  • the receiving beam may refer to the directional signal strength formed after the signal is weighted and received by the antenna element. distributed.
  • one or more antenna ports forming a beam can also be regarded as an antenna port set.
  • the embodiment of the beam in the protocol can also be a spatial filter.
  • the current beam refers to a beam configured by a network device (such as a base station, etc.) for the UE to transmit data.
  • a communication link can be established between the network device and the UE based on these beams, including a control channel for transmitting control information, or a data channel for transmitting data information. That is, the current beam is a beam configured by the network device for the UE to transmit data (which may include service data and control data, that is, including data information and control information).
  • the candidate beam refers to a candidate beam configured by a network device (such as a base station, etc.) for the UE.
  • a network device such as a base station, etc.
  • the network device may switch the current beam to a candidate beam.
  • the NR standard defines the link recovery (link recovery) process of the downlink beam.
  • the process includes beam failure detection, candidate beam scanning, beam recovery request sending, and beam recovery request response.
  • the base station defines a series of periodic reference signals (reference signals, RS), and uses the current beam to transmit these reference signals.
  • the set of these periodic detection RSs is called the q0 set in the standard.
  • these RSs transmitted through the current beam are referred to as detecting RSs in this application. That is, the detection RS refers to the RS used to detect whether the current beam has beam failure.
  • the detection RS may be one or more of a synchronization information block (synchronization signal block, SSB) and a channel state information reference signal (channel state information-reference signal, CSI-RS).
  • the UE measures these detected RSs, which is equivalent to measuring the current beam. Based on this, in the beam failure detection process, the UE periodically measures the use of these detected RSs in order to understand the current beam situation and determine whether the current beam has a beam failure.
  • the base station defines a series of periodic reference signals, and uses candidate beams in other directions that can be switched to send these reference signals.
  • the set of these periodic candidate RSs is called the q1 set in the standard.
  • these RSs that are transmitted through candidate beams in the candidate beam scanning process are referred to as candidate RSs.
  • the candidate RS may be one or more of a channel state information reference signal (CSI-RS) and a synchronization signal block (SSB).
  • CSI-RS channel state information reference signal
  • SSB synchronization signal block
  • the UE measuring these candidate RSs is equivalent to measuring the candidate beams corresponding to these candidate RSs. Based on this, in the candidate beam scanning process, the UE periodically measures these candidate RSs in order to understand the situation of the candidate beams. In this way, once a beam failure occurs in the current beam, the UE can immediately send a beam recovery request to the base station, requesting the base station to switch the current beam to a suitable candidate beam.
  • the beam failure recovery process can be triggered, including the beam recovery request sending and the beam recovery request response.
  • the UE can notify the base station to recover by initiating a random access process.
  • the base station responds with an Msg2/Msg4 message, so that the UE can switch to a candidate beam that meets the requirements.
  • the various candidate beam measurement methods provided in the embodiments of the present application can be applied to various communication systems, for example, a new radio (NR) communication system that adopts the fifth generation (5th generation, 5G) communication technology, a future evolution system, or Various communication fusion systems, etc.
  • NR new radio
  • FIG. 2 is a schematic structural diagram of an exemplary communication system provided by an embodiment of the application.
  • the communication system may include at least one network device 101 and at least one user equipment 102.
  • the network device 101 is the access device that the user equipment accesses to the communication system through wireless means. It can be the global system for mobile communication (GSM) or code division multiple access (CDMA).
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • PLMN public land mobile network
  • PLMN public land mobile network
  • the embodiment of the application is related to the network equipment 101
  • the specific technology and specific equipment form used are not limited.
  • User equipment (UE) 102 may also be referred to as a user terminal (user terminal), terminal equipment, mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), and so on.
  • UE can be a mobile phone (mobile phone), tablet computer (Pad), computer with wireless transceiver function, virtual reality (virtual reality, VR) equipment, augmented reality (Augmented Reality, AR) equipment, industrial control (industrial control) Wireless terminals, wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, wireless terminals in smart grids, wireless terminals in transportation safety, Wireless terminals in smart cities, wireless terminals in smart homes, smart meters with wireless communication functions, smart water meters, environmental sensors, device tags, location tags, etc.
  • the embodiment of this application does not limit the specific device form adopted by the UE.
  • the UE may be fixed or movable, which is not limited in this application.
  • the UE 102 and the network device 101 are connected through wireless communication.
  • the aforementioned network device is a 5G base station gNB
  • the UE is a 5G terminal device
  • a communication connection is established between the 5G base station and the 5G terminal device through a beam.
  • a communication link is established between the network device 101 and the UE 102 through the current beam, and the network device 101 may use the current beam to send the detection RS to the UE 102.
  • the network device 101 also configures multiple candidate beams for the UE 102, and the network device 101 can use the candidate beams to send the corresponding candidate RS to the UE 102.
  • the communication system may also include other network devices, for example, it may also include devices not shown in FIG. 2 such as a wireless relay device and a wireless backhaul device.
  • the UE 102 may execute the candidate beam measurement method in the embodiment of the present application when the remaining battery power is low.
  • the UE 102 will often measure candidate beams according to the measurement period configured by the network device 101, which will shorten the remaining working time of the UE 102.
  • the user often has such a demand: how to extend the working time while ensuring the communication quality as much as possible.
  • FIG. 3A is a schematic diagram of an exemplary user interface of the UE in an embodiment of the application.
  • a variety of preset modes are set in the UE 102, such as a "performance mode” and a “power saving mode” related to the battery.
  • a specific preset mode such as the "power saving mode” shown in FIG. 3A
  • the UE 102 can execute the candidate beam measurement method provided in the embodiment of the present application to reduce the power consumed by measuring the candidate beam. In this way, the UE 102 can extend the working time while ensuring the communication quality as much as possible.
  • the UE 102 may execute the candidate beam measurement method in the embodiment of the present application when it is in a specific location area or a specific time period.
  • the UE 102 still measures the candidate beam according to the measurement period configured by the system, which will consume some unnecessary power. For example, for office workers with regular activities, they may stay in a certain office building during working hours.
  • the communication quality of the UE 102 is always very good. Then, when the UE 102 enters the area or is in the time period, it can execute the candidate beam measurement method provided in the embodiment of the present application by itself to reduce the power consumed by measuring the candidate beam. In this way, the communication quality of the UE 102 can be ensured as much as possible, and its working time can also be prolonged.
  • the UE 102 may execute the candidate beam measurement method in the embodiment of the present application when the temperature is high.
  • the UE 102 In order to ensure the communication quality of the UE 102, the UE 102 often measures candidate beams according to the measurement period configured by the network device 101. However, when the temperature of the UE 102 is high, if the UE 102 still measures the candidate beam according to such a measurement period, the temperature of the UE 102 may overheat and damage the components of the UE.
  • FIG. 3B is a schematic diagram of another exemplary user interface of the UE in an embodiment of the application.
  • the UE102 When the UE102 detects that the temperature exceeds the preset threshold, the UE102 can display a dialog box on the user interface to prompt the user and ask the user whether to take corresponding protective measures, such as "! The phone temperature is too high, as shown in Figure 3B. Whether to turn on the overheating protection mode". If the user selects "Yes", the UE 102 can perform the candidate beam measurement method provided in the embodiment of the present application to reduce power consumption. In this way, it is beneficial for the UE 102 to reduce the temperature of the UE 102 while ensuring the communication quality as much as possible.
  • This application proposes a technical concept for candidate beam measurement.
  • the measurement period of these candidate beams can be prolonged, and the measurement frequency thereof can be reduced. In this way, the measurement process of some unnecessary candidate beams can be reduced, and the power consumption of the UE can be reduced.
  • it can also avoid the risk that the UE cannot quickly find a suitable candidate beam after a beam failure occurs to a certain extent, that is, to a certain extent, avoid the impact of reducing the measurement frequency of some candidate beams on the beam failure recovery, and ensure the communication quality as much as possible .
  • the UE can screen out some candidate RSs that allow the measurement period to be extended when the current beam does not have beam failure, and extend the measurement period of these candidate RSs, that is, reduce the measurement period of these candidate RSs. Measure the frequency, thereby reducing the power consumption of the UE.
  • the method can be executed independently by the terminal (for example, UE), or can be completed by the terminal and the network device through interaction.
  • the UE is used as an example to describe the candidate beam measurement method of the present application. The following will further illustrate the manner in which the UE is implemented independently through Embodiments 1 and 2, and the manner in which the UE interacts with the network device through interaction will be further described through Embodiment 3.
  • Embodiment 1 Method for UE to independently implement candidate beam measurement
  • This embodiment provides a candidate beam measurement method, which prolongs the measurement period of the first RS under the condition that no beam failure occurs in the current beam.
  • FIG. 4 is a schematic flowchart of a candidate beam measurement method provided by an embodiment of the application. This method can be executed by the UE to reduce the power consumption of the UE during candidate beam scanning. The method includes the following steps S201 to S202.
  • the foregoing current beam refers to a beam configured by a network device for the UE for data transmission. It should be understood that when the UE is moving, the network equipment it accesses may change, and the beam configured by the network equipment for the UE may also change accordingly.
  • the current beam in the embodiment of this application does not specifically refer to a certain one or several constant beams, but refers to the one configured by the network device for the UE at a certain moment to transmit data (for example, it may be service data or control data). Beam.
  • the UE After the UE accesses a certain network device, and the network device configures the current beam for transmitting data for the UE, the UE periodically detects the current beam to determine whether the current beam has a beam failure.
  • the UE can use the measurement result of detecting the RS, such as information such as signal quality.
  • RS signal quality can specifically use block error rate (BLER), signal to interference and noise ratio (SINR), reference signal receiving quality (RSRQ), etc. parameter.
  • BLER block error rate
  • SINR signal to interference and noise ratio
  • RSRQ reference signal receiving quality
  • the UE periodically measures the detection RS to determine whether the signal quality of the detection RS meets a preset first condition (for example, the BLER value of the detection RS is higher than a certain preset threshold, or the RSRP value of the detection RS is lower than a certain threshold. A threshold, etc.). If the number of times of satisfaction reaches the preset first number of times, it is considered that the current beam has a beam failure. If the number of times that the signal quality of the detected RS satisfies the first condition does not reach the preset first number of times, it is considered that no beam failure has occurred in the current beam.
  • the first number of times here refers to the critical number of times required to detect that the RS meets the first condition when determining whether the current beam has a beam failure.
  • the UE may include a physical (PHY) layer, a network (MAC) layer, and so on.
  • the foregoing step of determining whether the RS meets the preset first condition may be completed by the PHY layer.
  • the PHY layer determines that the detected RS received at a certain moment meets the first condition, the PHY layer reports a specific indication information (for example, beam failure instance indication, BFI_indication) to the MAC layer.
  • a specific indication information for example, beam failure instance indication, BFI_indication
  • There is a counter in the MAC layer for counting the number of received indication information. Exemplarily, whenever the instruction information from the PHY layer is received, the value of the counter is increased by a preset value, for example, by one.
  • the UE can determine that the current beam has a beam failure and trigger the beam failure procedure. If the value of the counter does not reach the preset first number of times, the UE can determine that no beam failure has occurred in the current beam.
  • the set of q0 configured by the base station for the UE includes two detection RSs, namely SSB 1, SSB 2, and the threshold of the BLER value of the detection RS is configured to be 0.1, and the first number of times is 5.
  • the UE performs periodic detection on SSB 1 and SSB 2.
  • the UE judges whether the BLER values of the two detected RSs exceed 0.1. If both are exceeded, the value of the counter in the MAC layer is increased by 1, and if at least one is not exceeded, the value of the counter remains unchanged. Assuming that the value of the counter in the MAC layer at time t0 is 4, which is less than the first number of times, the UE can determine that the current beam does not have beam failure.
  • first condition and the first number of times may be configured by a network device, or stored in a terminal device, or preset in other ways, which is not limited in this application.
  • the candidate RS in the embodiment of this application does not specifically refer to one or several unchanged candidate RSs, but refers to a series of candidate beam scans defined by the network device for the UE when the UE accesses a certain network device. RS.
  • the candidate RS refers to the reference signal defined by the network device for the candidate beam corresponding to the current beam.
  • the network device configures the current beam for the UE, it also configures other beams that can be used as candidates, that is, candidate beams.
  • the network device also defines one or more corresponding reference signals, namely candidate RSs, for these candidate beams, so as to use these candidate beams to transmit their corresponding candidate RSs.
  • the candidate RS may be one or more of a channel state information reference signal (CSI-RS) and a synchronization signal block (SSB).
  • CSI-RS channel state information reference signal
  • SSB synchronization signal block
  • At least one candidate RS determined from the candidate RSs in the subsequent steps of this embodiment of the present application, the measurement period of these RSs will be adjusted.
  • these RSs that are determined from candidate RSs and whose measurement period is allowed to be adjusted are referred to as first RSs. Since there may be one or more candidate RSs, there may also be one or more first RSs selected from them.
  • the determination of at least one first RS from the candidate RSs may be implemented according to the configuration information or measurement results of the candidate RSs. Several possible implementations will be further explained below.
  • the configuration information of the candidate RS refers to a series of parameters related to the candidate RS in the BFR process.
  • the configuration information of the candidate RS can be configured by the network device for the UE. In the solution of the embodiment of the present application, there may be multiple candidate RSs, and each candidate RS may correspond to its own configuration information. When the network device configures the candidate RS for the UE, there will be corresponding configuration information.
  • the configuration information can be used to configure resources, including: the location and period of time-frequency domain resources.
  • the network device can also perform reporting configuration for the UE, including: the content of the report, and on which resource to report, etc.
  • the content of the report may include Reference Signal Receive Power (RSRP), Channel Quality Indicator (CQI), Rank Indication (RI), and Precoding Matrix Indicator (PMI). ), whether to report (when not to report, that is, the report content is empty).
  • RSRP Reference Signal Receive Power
  • CQI Channel Quality Indicator
  • RI Rank Indication
  • PMI Precoding Matrix Indicator
  • the configuration information of the candidate RS may include the first indication information.
  • the UE can determine part or all of the candidate RSs that are not configured to report content as flexible RSs according to the first indication information.
  • the foregoing first indication information is used to indicate whether the corresponding candidate RS is configured to report content.
  • Different RS resources may be configured to report different content.
  • L1-RSRP Layer One-Reference Signal Receive Power
  • For another reference signal RS2, its configured report content is Layer One-Reference Signal Receive Power (L1-RSRP);
  • L1-RSRP Layer One-Reference Signal Receive Power
  • For another reference signal RS2, its configured report content is The channel state information CSI includes CQI, RI and PMI; for another reference signal RS3, its configured report content is empty, that is, no report content is configured.
  • a candidate RS configured to report content For a candidate RS configured to report content, if it is determined as the first RS and its measurement period is extended, the content that needs to be reported may not be reported normally. If some candidate RSs configured with reporting content have been specified in the agreement, then determining these candidate RSs as the first RS and extending their measurement period may affect the compliance of the agreement and affect the air interface interaction. For candidate RSs that are not configured to report content, there is an operating space that allows the measurement period to be adjusted. For this reason, in this implementation manner, part or all of the candidate RSs that are not configured to report content may be determined as the first RS.
  • the configuration information of the candidate RS may also include the total number of candidate RSs. In this way, when the total number of candidate RSs is large (for example, greater than the second threshold), the UE can determine at least one of the candidate RSs for which no report content is configured as the first RS according to the first indication information.
  • the total number of candidate RSs mentioned above refers to the total number of candidate RSs configured by the network device for the UE when the UE accesses a certain network device such as a base station.
  • the foregoing second threshold may be a preset value, for example, the number of candidate RSs supported by the UE itself. This application does not limit the specific value of the second threshold.
  • the more candidate RSs it is configured with the more candidate RSs that need to be measured, and accordingly, the greater the power consumption of the UE.
  • the more candidate RSs are configured, the more candidate beams, and the greater the possibility of overlap between candidate beams. It can be seen that when the number of candidate RSs configured by the network device for the UE is large, some of the candidate beams may be unnecessary, and measurement may not be performed on these beams.
  • combining the total number of candidate RSs and the first indication information, when the total number of candidate RSs is greater than the second threshold, part or all of the candidate RSs that are not configured to report content are determined as the first RS is beneficial to reduce the power consumption of the UE, and will not affect air interface interaction.
  • the UE may determine part or all of the 5 candidate RSs as the first RS.
  • the configuration information of the candidate RS may include the measurement period of the candidate RS.
  • the UE can determine part or all of the candidate RSs whose measurement period is less than the measurement period of the detected RS or less than a certain preset threshold as the first RS.
  • the UE For a candidate RS, the UE periodically measures it, and the time interval between adjacent measurement time points is the measurement period of the candidate RS. Similarly, for a detected RS, the UE periodically measures it, and the time interval between adjacent measurement time points is the measurement period of the detected RS.
  • the detection RS needs to meet the aforementioned first condition multiple times (for example, the aforementioned first number of times, represented by K, and K is an integer> 1) before the UE can determine that the current beam has beam failure. For this reason, for some candidate RSs, if the measurement period is less than the measurement period of the detection RS, then after the UE measures that the detection RS satisfies the first condition once, or even K-1 times, the candidate beam can be measured again. Too late. Based on this, the UE may determine part or all of the candidate RSs whose measurement period is less than the measurement period of the detection RS as the first RS, and further reduce the power consumption of the UE by extending the measurement period of these first RSs.
  • the UE may determine part or all of the candidate RSs whose measurement period is less than the measurement period of the detection RS as the first RS, and further reduce the power consumption of the UE by extending the measurement period of these first RSs.
  • each detection RS has a corresponding measurement period.
  • the smallest value among the measurement periods of multiple detected RSs may be taken to compare with the measurement period of a certain candidate RS, so as to determine whether the candidate RS can be determined as the first RS.
  • the number of detection RS configurations supported in the standard is two, and the measurement periods of the two detection RSs are T1 and T2, respectively, where T1 ⁇ T2.
  • T1 can be taken as the measurement period for detecting RS in this implementation manner. In this way, for a certain candidate RS, if its measurement period X is less than T1, the candidate RS can be determined as the first RS.
  • the q0 set configured by the base station for the UE includes two detection RSs, SSB 1 and SSB 2, respectively.
  • the measurement period of SSB 1 is 40 ms
  • the measurement period of SSB 2 is 20 ms.
  • a candidate RS with a measurement period of less than 20 ms may be determined as the first RS.
  • the measurement period of a candidate RS is very small (for example, less than the third threshold), this means that the candidate RS may be measured too many times in a period of time, and measurement of some of the times may not be necessary.
  • the candidate RS it can also be determined as the first RS, and then the power consumption of the UE can be reduced by extending the measurement period of these first RSs. That is, in this implementation manner, the UE may also determine part or all of the candidate RSs whose measurement period is less than the third threshold as the first RS. For example, assuming that the third threshold is 5 ms, one or more RSs among candidate RSs whose measurement period is less than 5 ms may be determined as the first RS.
  • the above-mentioned third threshold may be a preset value, for example, may be the smallest one of the measurement periods for detecting RSs.
  • the third threshold may also be determined by the UE based on past historical data. For example, statistics of past historical data reveal that after a beam failure occurs, if a candidate beam is not found within 5ms, it may cause failure of the beam failure recovery process. Based on this, the value of the third threshold can be determined as 5ms. This application does not limit the specific value of the third threshold.
  • the third threshold may be stored locally in the terminal, or may be configured to the terminal by a network device, which is not limited in the embodiment of the present invention.
  • the configuration information of the candidate RS may include: the measurement period of the candidate RS, and the total number of the candidate RS. In this way, if the total number of candidate RSs is greater than the second threshold, the UE can determine that the measurement period is less than the third threshold or part or all of the candidate RSs in the measurement period of the detection RS are determined as the first RS, which is beneficial to reduce the UE Power consumption.
  • the configuration information of the candidate RS may include: the first indication information and the measurement period of the candidate RS.
  • the UE can determine that the report content is not configured, and the measurement period is less than the third threshold, or part or all of the candidate RSs in the measurement period of the detection RS are determined as the first RS, which is beneficial to reduce The power consumption of the UE will not affect the air interface interaction.
  • the configuration information of the candidate RS includes: the first indication information, the measurement period of the candidate RS, and the total number of the candidate RS. In this way, if the total number of candidate RSs is greater than the second threshold, the UE can report unconfigured content according to the first indication information, and the measurement period is less than the third threshold, or detect a part or part of the candidate RS in the measurement period of the RS. All of them are determined as the first RS, which is beneficial to reduce the power consumption of the UE and will not affect the air interface interaction.
  • the configuration information of the candidate RS and the failure detection configuration information may be combined to determine the first RS.
  • the failure detection configuration information refers to a series of parameters related to beam failure detection in the BFR process.
  • the failure detection configuration information may be the aforementioned first number of times, first conditions, and so on.
  • the failure detection configuration information can be configured by the network device for the UE.
  • the failure detection configuration information may include the first number of times; the configuration information of the candidate RS may include the first indication information. In this way, if the first number of times is large (for example, higher than the fourth threshold), the UE may determine part or all of the part of candidate RSs that are not configured to report content as the first RS according to the first indication information.
  • the foregoing fourth threshold may be a preset value, and this application does not limit the specific value of the fourth threshold.
  • the UE when the detected RS meets the first condition for the first number of times K, the UE will determine that the current beam has failed. If the value of K is large, then after the UE measures that the detected RS meets the first condition one or more times (less than K times), it is too late to start measuring the candidate beam, and there is no need to always measure the candidate beam with high frequency . And if the value of K is small, then the time from the first measurement to the detection of RS meeting the first condition and the Kth measurement to the detection of RS meeting the first condition may be very short, resulting in the inability to complete the candidate list in time. The beam measurement delays the recovery time of the beam failure.
  • the candidate RSs that are not configured to report content can be determined as the first RS according to the first indication information. , Which is beneficial to reduce the power consumption of the UE, and will not affect the air interface interaction.
  • the configuration information of the candidate RS may include the aforementioned measurement period of the candidate RS, the total number of the candidate RS, and the like.
  • the configuration information of these candidate RSs can also be combined with the aforementioned first number of times, so as to select the first RS from the candidate RSs. This application will not elaborate on the different combinations one by one.
  • the first RS may be determined according to the measurement result of the candidate RS.
  • the measurement result of the candidate RS may be the measurement result of the signal quality of the candidate RS, such as reference signal receive power (RSRP) of the candidate RS.
  • RSRP reference signal receive power
  • the measurement result of the candidate RS includes: the RSRP value of the candidate RS in the first preset time period. In this way, the UE may determine part or all of the candidate RSs whose RSRP value is lower than the fifth threshold as the first RS.
  • the duration of the aforementioned first preset time period may be a preset value, and this application does not limit its specific value.
  • the above-mentioned fifth threshold may be a preset value, and this application does not limit its specific value.
  • the UE may detect one or more RSRP values of the candidate RS. When only one RSRP value is detected, it can be directly compared with the fifth threshold. When multiple RSRP values are detected, the multiple RSRP values may be respectively compared with the fifth threshold to determine whether to determine the candidate RS as the first RS. Exemplarily, it may be required that the multiple RSRP values are all less than the fifth threshold before determining the candidate RS as the first RS. In addition, other comparison methods may also be used, for example, taking the average value of the multiple RSRP values, and comparing the average value with the fifth threshold to determine whether to determine the candidate RS as the first RS.
  • the first preset time period is 5s
  • the RSRP threshold of the candidate RSs that is, the fifth threshold is 0.1. If within 5s, the UE detects the RSRP values of these 16 candidate RSs 5 times each, and the RSRP values of 3 candidate RSs are all lower than 0.1, then some or all of the 3 candidate RSs are determined as the first RS. If within 5s, the UE detects the RSRP values of these 16 candidate RSs 5 times each, and the RSRP values of all candidate RSs are lower than 0.1, which means that the antenna panel of the UE may be completely blocked. At this time, All of these 16 candidate RSs can be determined as the first RS.
  • the measurement period configured by the network device for the first RS is referred to as the first measurement period.
  • the first measurement period is the measurement period of the first RS before being extended.
  • the measurement period of the first RS after being extended is referred to as the second measurement period.
  • the duration of the second measurement period should be greater than the duration of the first measurement period. This application does not limit the specific values of the first measurement period and the second measurement period.
  • the duration of the second measurement period may be an integer multiple of the duration of the first measurement period, such as 2 times, 4 times, etc., or any duration other than the integer multiple.
  • the duration of the second measurement period may be infinite.
  • the UE does not measure these first RSs at all. That is, the UE does not measure these first RSs at all, which can be regarded as a special case of extending the measurement period of the first RS.
  • first RSs may be determined from the candidate RSs.
  • their original measurement periods that is, their respective first measurement periods
  • the respective extended measurement periods that is, the respective second measurement periods
  • this application does not limit this.
  • X1 and X2 may be the same or different
  • X1' and X2' may be the same or different.
  • the measurement frequency of the first RS is reduced by extending the measurement period of the first RS, thereby reducing the power consumption of the UE.
  • the method of this embodiment can avoid the influence on the beam failure recovery process to a certain extent.
  • the method of this embodiment extends the measurement period of some candidate RSs only when the current beam does not have beam failure, which to a certain extent avoids the risk that the UE cannot quickly find a suitable candidate beam after beam failure occurs. , Avoiding the influence of extending the measurement period of the first RS on the delayed beam failure recovery time, and ensuring the communication quality of the UE as much as possible.
  • the UE when extending the measurement period, the UE only extends the measurement period of the first RS that meets the requirements, and does not extend the measurement period of other candidate RSs, so as to avoid extending the measurement period of all candidate RSs without screening, resulting in the occurrence of beams. Failure time delays the time for beam failure recovery.
  • the UE can flexibly adjust the measurement period of the first RS independently according to its own situation, avoiding repeated interaction with the base station and adding additional power consumption overhead.
  • Extending the measurement period of the first RS can be implemented in many different ways. For example, for a certain first RS, the measurement period can be directly extended, or the measurement period can be extended when the first RS meets certain conditions.
  • the measurement period can be directly extended, or the measurement period can be extended when the first RS meets certain conditions.
  • the UE can directly extend the measurement period of the first RS to the second measurement period, where the second The duration of the measurement period is N times the first measurement period, and N is a positive integer greater than 1.
  • the two first RSs are CSI-RS 1 and CSI-RS 2 respectively.
  • the first measurement period of CSI-RS 1 is 10 ms
  • the first measurement period of CSI-RS 2 is 20 ms.
  • the measurement period of CSI-RS 1 can be extended by 4 times, that is, the second measurement period after the extension is 40 ms; the measurement period of CSI-RS 2 can be extended to the original That is, the extended second measurement period is 60ms.
  • the value of N can be used to make the extended second measurement periods of these first RSs approximately the same size or the same .
  • the corresponding value of N may be different, and the specific value of N is not limited in this application.
  • the value of N may be fixed, or may be dynamically changed, which is not limited in this application. The following will exemplify several implementation ways of determining the value of N.
  • the first way of determining the value of N is that when the beam failure probability of the current beam is low, the lower the beam failure probability, the larger the value of N can be. In other words, the lower the probability of beam failure, the greater the measurement period of the first RS can be extended.
  • the frequency of measuring the candidate beam can also be reduced to a very low; when the probability of beam failure of the current beam is increasing, the frequency of the candidate beam will be measured It is also increased accordingly, which is beneficial to balance the two effects of reducing the power consumption of the UE and reducing the impact on the beam failure recovery process.
  • the UE can determine the value of N according to the measurement result of the detected RS.
  • the measurement result of the detected RS may include: a block error rate BLER value of the detected RS in the third preset time period.
  • the lower the BLER value of the detected RS the better the channel state of the current beam and the lower the probability of beam failure.
  • the value of N can be larger. That is, the UE may determine the value of N according to the difference between the BLER value of the detected RS and the preset seventh threshold.
  • the UE determines the value of N according to the difference between the BLER value of the detected RS and the preset seventh threshold, optionally, after the UE determines the value of N at a certain point in time, it may also The value of N is continuously updated according to the BLER value of the detected RS, thereby realizing dynamic adjustment.
  • the UE periodically measures the BLER value of a detected RS. If the BLER value of the detected RS is continuously lower than the eighth threshold, that is, if the BLER value of the detected RS is continuously measured to be lower than the eighth threshold, then increase The value of N.
  • This application does not limit the specific value of R. In this way, if the signal quality of the current beam is always good for a long period of time, the measurement period of the first RS can be gradually increased, thereby further reducing the power consumption of the UE.
  • the duration of the aforementioned third preset time period may be a preset value, and this application does not limit the specific value of the duration.
  • the seventh threshold mentioned above should be greater than or equal to the eighth threshold.
  • the seventh threshold and the eighth threshold may be preset values. The application does not limit the specific values of the seventh threshold and the eighth threshold.
  • the second way of determining the value of N if the signal quality of a certain first RS is always good, when determining its second measurement period, the value of N can be determined according to the degree of its signal quality.
  • the value of N can be determined according to how good or bad the signal quality is.
  • the UE can be based on the measurement result of the first RS. , To determine the value of N.
  • the measurement result of the first RS includes: the BSRP value of the first RS in the fourth preset time period.
  • the BSRP value of the RS is higher, it indicates that the signal quality of the candidate beam corresponding to the first RS is better.
  • the value of N can be larger. That is, the UE may determine the value of N according to the difference between the BSRP value of the first RS and the ninth threshold.
  • the value of N may also be determined according to The BSRP value of the first RS is used to update the value of N, thereby realizing dynamic adjustment.
  • the UE periodically measures the BSRP value of a certain first RS. If the BSRP value of the first RS is continuously higher than the tenth threshold, that is, the BSRP value of the first RS is continuously measured for T times higher than the tenth threshold. Threshold, increase the value of N. This application does not limit the specific value of T. In this way, if the signal of the candidate beam corresponding to a certain first RS has been good for a long period of time, the measurement period of the first RS can be gradually increased, thereby further reducing the power consumption of the UE.
  • the duration of the foregoing fourth preset time period may be a preset value, and this application does not limit the specific value of the duration.
  • the above-mentioned ninth threshold should be less than or equal to the tenth threshold.
  • the ninth threshold and the tenth threshold may be preset values, and the application does not limit their specific values.
  • Method 3 for determining the value of N if the signal quality of a certain first RS is always poor, when determining the second measurement period, the value of N can be determined according to the degree of poor signal quality.
  • the UE will not choose such a candidate beam to replace the current beam when the current beam fails. Therefore, even if the measurement frequency is reduced, the beam failure recovery process is normal. The impact of progress is not significant. Therefore, when the signal quality of a certain first RS is always poor, the value of N can be determined according to the degree of poor signal quality.
  • the measurement result of the first RS includes: the BSRP value of the first RS in the fifth preset time period.
  • the BSRP value of the first RS is lower, it indicates that the signal quality of the candidate beam corresponding to the first RS is worse.
  • the value of N may be larger. That is, the UE may determine the value of N according to the difference between the BSRP value of the first RS and the eleventh threshold.
  • the UE may also determine the value of N according to the first RS.
  • a BSRP value of RS is used to update the value of N, thereby realizing dynamic adjustment.
  • the UE periodically measures the BSRP value of a certain first RS. If the BSRP value of the first RS is continuously lower than the twelfth threshold, that is, it is measured for U consecutive times that the BSRP value of the first RS is lower than the first RS. Twelve thresholds, increase the value of N. This application does not limit the specific value of U. In this way, if the signal of the candidate beam corresponding to a certain first RS has been poor for a long period of time, the measurement period of the first RS can be gradually increased, thereby further reducing the power consumption of the UE.
  • the duration within the fifth preset time period described above may be a preset value, and this application does not limit the specific value of the duration.
  • the above-mentioned eleventh threshold should be greater than or equal to the twelfth threshold, and the eleventh threshold should be less than the ninth threshold.
  • the eleventh threshold and the twelfth threshold may be preset values, and this application does not limit their specific values.
  • the UE can set the activation period, and each activation period includes an activation period (that is, the first time period) and an inactive period (that is, the second time period).
  • the measurement period of the first RS is extended during the active period, that is, the second measurement period corresponding to the first RS is used, and the measurement period of the first RS is not extended during the inactive period, that is, the first RS corresponding to the first RS is used.
  • extending the measurement period of the at least one first RS includes: if the current time point of the UE is in the active period, extending the measurement period of the at least one first RS to the at least one The second measurement period of each of the first RS.
  • the activation period in the embodiment of the present application is a time period divided in the time domain, and the measurement period of the first RS during the activation period is allowed to be extended.
  • the inactive period is also a time period divided in the time domain, and the measurement period of the first RS during the inactive period is not allowed to be extended.
  • the active period and the inactive period do not overlap with each other.
  • the inactive period and the active period are alternately set in the time domain, and an adjacent active period and an inactive period can be regarded as an active period.
  • the UE can intermittently reduce the measurement frequency of the first RS and reduce the power consumption of the UE. Moreover, this method is easy to implement. Compared with other implementations that extend the measurement period of the first RS, the adoption of this implementation is beneficial to standardized implementation and reduces the complexity of implementation.
  • the duration of the active period and the inactive period may be preset, or may be determined according to the current channel situation, that is, the current beam situation, which is not limited in this application.
  • the UE may be preset, and the duration of each activation period may be 11s, where the first 10s is the active period, and the last 1s is the inactive period. In this way, every 10s, the UE can restore the measurement periods of these first RSs to their original measurement periods, and the duration is 1s.
  • the UE may set the duration of the active period to be relatively long. Otherwise, the UE can set the duration of the activation period to be relatively short.
  • conditions related to the measurement result of the first RS can be preset, and the preset conditions can be used to achieve A solution to extend the measurement period of the first RS.
  • Manner 1 If the measurement result of a certain first RS meets the preset condition (hereinafter referred to as the second condition), the measurement period of the first RS is directly extended, that is, the measurement period of the first RS is extended to the corresponding first RS. Two measurement period.
  • the second condition in the embodiment of the present application is used to describe the condition that the measurement result of the first RS needs to meet before the measurement period of the first RS is extended.
  • the second condition may be a condition that describes that the measurement result of the first RS is consistently good or poor.
  • the corresponding second condition may include: the RSRP value of the first RS measured for M consecutive times is higher than the thirteenth threshold, where M is a positive integer.
  • the above-mentioned thirteenth threshold may be a preset value, for example, the RSRP threshold configured by the base station, and the specific value thereof is not limited in this application.
  • second conditions corresponding to different first RSs may be different or the same, which is not limited in this application.
  • the UE can set a timer and set the corresponding second condition as the condition for starting the timer.
  • the measurement period of the first RS is allowed to be extended. That is, if the measurement result of a first RS meets the preset second condition, the timer is started; during the operation of the timer, the measurement period of the first RS is extended to its corresponding second measurement period.
  • the duration L of the timer is greater than the first measurement period, and it may be a preset fixed value or a variable value, which is not limited in this application. When the duration L of the timer is a fixed value, each time the timer is started, the same fixed value is used to determine whether it has timed out.
  • the value of L can be modified according to specific conditions when the timer is started. For example, if the signal quality of the current beam is good for a long time, you can gradually increase the value of L. For example, the value of L is L1 when the timer is started for the first time, and the value of L is L1 when the timer is started for the second time. + ⁇ l, the value of L is L1+2 ⁇ l when the timer is started for the third time, and so on.
  • the UE measures the first RS according to the second measurement period of the first RS. It should be noted that when the second measurement period of a first RS is greater than or equal to the duration of the timer, it is equivalent to that the UE does not measure the first RS during the running of the timer. This situation can be understood as a special situation in which the UE measures the first RS according to the second measurement period.
  • the UE may restore the measurement period of the first RS, and measure the first RS according to the first measurement period of the first RS again. If the current beam does not have a beam failure, once the measurement result of the first RS meets the aforementioned second condition, the timer can be restarted. Optionally, after the timer expires, if the current beam does not have beam failure, the UE may also directly restart the timer.
  • first RSs may each correspond to their respective timers, and some or all of the first RSs may also correspond to a common timer, which is not limited in this application.
  • the measurement frequency of the first RS can be reduced conditionally and intermittently (that is, time-limited), further reducing the influence that the measurement period of the first RS may have on the measurement of normal candidate beams, and avoiding In some emergencies, the measurement of the first RS is not timely, resulting in an impact on beam failure recovery.
  • first RSs may be determined from the candidate RSs.
  • the implementation manners of extending the measurement period of different first RSs may be the same or different, which is not limited in this application.
  • the UE selects the first RS from the candidate RSs when the current beam does not have beam failure, and then extends the measurement period of these first RSs.
  • the UE can determine at least one first RS from the candidate RSs regardless of whether the current beam has beam failure. Then, in the case where it is determined that the current beam does not have a beam failure, the UE further extends the measurement period of these first RSs.
  • the UE independently extends the measurement period of the first RS, and the network device may still send the candidate RS according to the original measurement period of each candidate RS, which is not limited in this application.
  • the network device may still send candidate RSs according to the original cycle, for the UE, it extends the measurement cycle of the first RS, so the UE may not need to receive these at some points in time.
  • the first RS that is, the UE can correspondingly reduce the receiving frequency of these first RSs, thereby further reducing the power consumption of the UE.
  • the UE may restore the measurement period of the first RS adjusted to the second measurement period to the original measurement period, that is, to the first measurement. cycle.
  • the technical solution in this embodiment may further include the following steps:
  • the foregoing fourth condition is used to describe the condition that needs to be met when the original measurement period of the first RS needs to be restored. If a first RS meets its corresponding fourth condition after the measurement period is extended, its measurement period can be restored to the first measurement period of the first RS.
  • first RSs may correspond to their respective fourth conditions, part or all of the first RSs may also correspond to the same fourth condition, and different implementation manners may be adopted when they are not used.
  • One first RS may correspond to one fourth condition, or may correspond to multiple fourth conditions, which is not limited in this application. Several possible implementations of the fourth condition will be exemplarily described below.
  • the current beam has a beam failure.
  • the UE will continue to judge whether the current beam has a beam failure, and constantly update the judgment result. After the measurement period of at least one first RS is extended, once a beam failure occurs in the current beam, the UE is required to perform beam failure recovery as soon as possible to ensure the communication quality of the UE as much as possible. Therefore, in this case, the UE may restore the measurement periods of these first RSs whose measurement periods are extended to their respective first measurement periods, so as not to delay the time for beam failure recovery.
  • the base station configures the UE for the UE in the q0 set contains two detection RSs, namely SSB 1, SSB 2, and the threshold of the BLER value of the detection RS is configured to be 0.1
  • the first time For 5 times.
  • the UE performs periodic detection on SSB 1 and SSB 2.
  • time t2 after time t0, when the UE detects that the BLER value of any one of SSB 1 and SSB 2 is higher than 0.1, the value of the counter increases by 1 and the reading is 5, reaching the first number of times.
  • the UE determines that the current beam has beam failure. Then the UE restores all the measurement periods of the first RS to their respective first measurement periods.
  • the UE can restore the measurement period of the first RS, and measure it again according to the first measurement period of the first RS.
  • the power consumption of the UE can be reduced, and the measurement frequency of the first RS can also be reduced conditionally and intermittently, so as to further reduce the influence that the extension of the measurement period of the first RS may have on the measurement of normal candidate beams.
  • Embodiment 2 Method for UE to independently implement candidate beam measurement
  • This embodiment provides a candidate beam measurement method.
  • the main difference between this method and the method in Embodiment 1 is that the step of determining at least one first RS from candidate RSs adds a pre-triggering condition (hereinafter referred to as the first RS). Three conditions). In the case that no beam failure occurs in the current beam and the third condition is met, at least one first RS is determined from the candidate RSs, and the measurement period of these first RSs is extended.
  • FIG. 5 is a schematic flowchart of another candidate beam measurement method provided by an embodiment of the application. This method can be executed by the UE to reduce the power consumption of the UE during candidate beam scanning.
  • the method includes the following steps S601 to S602.
  • the third condition can be a condition related to the configuration information of the candidate RS or failure detection configuration information, can be a condition related to the beam failure probability of the current beam, can also be a condition related to the operation of the user, or can be a condition related to the UE Parameters related conditions.
  • the third condition can be implemented in different ways. Hereinafter, several possible implementations will be described by way of example.
  • the third condition may be related to the configuration information of the candidate RS.
  • the configuration information of candidate RSs may include the total number of candidate RSs, and the third condition may be: the total number of candidate RSs is greater than the second threshold.
  • the above-mentioned configuration information of the candidate RS refers to a series of parameters related to the candidate RS in the BFR process, which can be configured by the network device for the UE.
  • the total number of candidate RSs refers to the total number of candidate RSs configured by the network device for the UE when the UE accesses a certain network device such as a base station.
  • the foregoing second threshold may be a preset value, for example, the number of candidate RSs supported by the UE itself.
  • the specific value of the second threshold is not limited in this application.
  • the more candidate RSs it is configured with the more candidate RSs that need to be measured, and accordingly, the greater the power consumption of the UE.
  • the more candidate RSs are configured, the more candidate beams, and the greater the possibility of overlap between candidate beams. It can be seen that when the number of candidate RSs configured by the network device for the UE is large, some of the candidate beams may be unnecessary, and measurement may not be performed on these beams. Based on this, in this implementation, if the total number of candidate RSs is greater than the second threshold, part or all of the candidate RSs that are not configured to report content are determined as the first RS.
  • Adopting this method is beneficial to reduce the power consumption of the UE, and it will not affect the air interface interaction. Or, if the total number of candidate RSs is greater than the second threshold, the measurement period is less than the third threshold or part or all of the candidate RSs in the measurement period of the detected RS are determined as the first RS. Adopting this method is beneficial to reduce the power consumption of the UE.
  • the third condition may be related to the failure detection configuration information.
  • the failure detection configuration information may include the first number of times, and the third condition may be: the first number of times is higher than the fourth threshold.
  • the foregoing failure detection configuration information refers to a series of parameters related to beam failure detection in the BFR process, which can be configured by the network device for the UE.
  • the first number of times refers to the critical number of times required to detect that the RS meets the first condition when determining whether the current beam has a beam failure.
  • the foregoing fourth threshold may be a preset value, and this application does not limit the specific value of the fourth threshold. If the first number of times is higher than the fourth threshold, it can be considered that the value of the first number of times is larger.
  • the UE when the detected RS meets the first condition for the first number of times K, the UE will determine that the current beam has a beam failure. If the value of K is large, then after the UE measures that the detected RS satisfies the first condition one or more times (less than K times), it is too late to start measuring the candidate beam, and there is no need to always measure the candidate beam at a high frequency. . And if the value of K is small, the time from the first measurement to the detection of RS meeting the first condition to the Kth measurement to the detection of RS meeting the first condition may be very short, resulting in the inability to complete the candidate list in time. The beam measurement delays the recovery time of the beam failure.
  • part or all of the candidate RSs that are not configured to report content may be determined as the first RS. Adopting this method is beneficial to reduce the power consumption of the UE, and it will not affect the air interface interaction.
  • the third condition may be related to the beam failure probability of the current beam.
  • the probability of beam failure is high.
  • the UE may delay the recovery time of the beam failure and affect the communication of the UE. quality. For this reason, the beam failure probability can be applied to the third condition.
  • the third condition may be: the beam failure probability of the current beam is lower than the first threshold.
  • the beam failure probability in the embodiment of the present application is used to indicate the possibility of beam failure of the current beam.
  • the beam failure probability can be represented by a numerical value, such as 50%, 15%, and so on.
  • the above-mentioned first threshold may be a preset value, and this application does not limit the specific value of the first threshold.
  • the probability of beam failure is lower than the first threshold, it is considered that the probability of beam failure of the current beam is low.
  • the UE can extend the measurement period of the first RS, thereby reducing the power of the UE. At the same time, ensure the communication quality of the UE as much as possible.
  • the beam failure probability of the current beam can be determined in a variety of ways. The following will exemplify several possible implementations for further description.
  • the first method of determining the beam failure probability is to use the prior information of the UE to determine the beam failure probability of the current beam.
  • the prior information here may be one or more of the historical movement records of the UE, the historical communication records, the historical information of the cells where it has camped, the posture record of the UE, the signal quality of the detected RS, and other information.
  • the aforementioned historical motion record of the UE is a record used to indicate the position change of the UE in the time dimension.
  • the historical movement record of the UE may be the movement track of the UE in the past period of time, or the geographic location record of the UE in the past period of time.
  • the historical motion record of the UE may be related to the beam failure probability of the current beam. For example, according to the motion trajectory of the UE, it is matched whether the UE is currently on a certain fixed path that has been saved. If the UE is on a certain fixed path, it can read the position where the beam failed on the fixed path in the historical motion record. If the current location of the UE is far away from the location where the beam failure has occurred, it indicates that the probability of the beam failure of the UE is low. Correspondingly, the current location is very close to the location where the beam failure has occurred, indicating that the UE has a higher probability of beam failure. For another example, in the historical motion record, when the UE moves near a certain position on a fixed path, beam failure has never occurred. Then, if the UE currently moves to the vicinity of the position, the probability of beam failure of the UE’s current beam Also lower. Based on this, the historical motion record of the UE can be used to determine the beam failure probability of the current beam.
  • the historical communication record of the UE is a record used to indicate the communication quality of the UE in the time dimension.
  • the historical communication record of the UE may be a record of the signal received power of the UE in a period of time in the past.
  • the historical communication record of the UE may be associated with the beam failure probability of the current beam.
  • the historical communication records of the UE are counted, and it is found that there are certain rules in the communication quality of the UE. For example, for a UE in a shopping mall area, in a certain time period of the working day, due to the small flow of people and vehicles in the shopping mall area, the frequency of the beam being blocked is low, and the communication quality of the UE is always very good. Correspondingly, the probability of beam failure of the UE is low.
  • the historical communication records of the UE can be used to help determine the beam failure probability of the current beam of the UE.
  • the historical information of the cell that has camped on can record the information of the serving cell where the UE has been in the past.
  • the cell history information of the UE may be associated with the beam failure probability of the current beam.
  • the antennas of some serving cells are installed in high places or open areas, and the communication scene is basically a direct line of sight.
  • the communication quality of the UE is always very good, and the probability of beam failure of the current beam is small.
  • Other serving cells are located in areas with complex terrain.
  • the communication scenes are basically non-line-of-sight, depending on the reflection of the beam, the probability of the beam being blocked is also greater.
  • the corresponding relationship between the serving cell and the beam failure probability can be constructed. Whenever the UE enters a serving cell, by querying information such as the cell ID, the beam failure probability corresponding to the serving cell in the above corresponding relationship can be used as the beam failure probability of the current beam of the UE.
  • the UE's posture record is a record used to indicate the change of the UE's posture in the time dimension.
  • the posture of the UE can be determined by sensors on the UE.
  • the posture record of the UE may be the changes of sensors such as a gyroscope and a gravimeter in the UE over a period of time.
  • the signal quality of the detected RS is as described above, and can be specifically characterized by parameters such as BLER, SINR, and RSRQ.
  • the posture of the UE and the signal quality of the detected RS may be related to the beam failure probability of the current beam. For example, if the UE's posture is stable for a period of time, and the signal quality of the detected RS is good (for example, the BLER value is lower than a certain threshold), it means that the UE has not been blocked during this period of time, and the channel is relatively stable. . Then, the probability of beam failure occurring in the next period of time is low.
  • the posture record of the UE and the signal quality of the detected RS can be used to determine the beam failure probability of the current beam.
  • a machine learning method such as statistical learning can be used to obtain the beam failure probability.
  • pre-training is performed using the above-mentioned one or more kinds of prior information and the results of whether beam failure occurs, etc., to construct a model between the prior information and the beam failure probability.
  • one or more of the current UE's location, cell, attitude, and signal quality are input into the model for prediction, so as to obtain the beam failure probability of the current beam.
  • a priori information may be used individually to determine the beam failure probability of the current beam, or may be combined to determine the beam failure probability of the current beam, which is not limited in this application.
  • the second method for determining the probability of beam failure is to estimate the probability of beam failure based on the number of times the RS meets the preset first condition and the aforementioned first number of times.
  • the UE when the value of the counter does not reach the first number of times, but is relatively close to the first number of times, the UE still judges that the current beam does not have beam failure, thereby extending the measurement period of a part of candidate RSs. Since the value of the counter is already relatively close to the first number of times at this time, it may reach the maximum detection value in a short period of time, thereby determining that a beam failure has occurred. In this case, the UE may not have time to complete the measurement of the candidate beams corresponding to these RSs, resulting in a delay in the time for beam failure recovery.
  • the UE can use both to calculate the beam failure probability of the current beam, and the specific calculation method can be different according to different application scenarios, which is not limited in this application.
  • a threshold of the first number of times that is less than the aforementioned first number of times may be set to measure the probability that the current beam is about to fail the beam. If the number of times the RS meets the first condition is not greater than the first number threshold, it is considered that the beam failure probability of the current beam is low, so that the steps of extending the measurement period of the first RS in the foregoing embodiment are performed.
  • the aforementioned third condition may be: the number of times the RS meets the first condition is detected to be less than the first number threshold.
  • the first number threshold is 1. Assuming that the value of the counter in the MAC layer at time t1 is 0 and is not greater than the first number threshold, the UE considers that the current beam is about to have a low probability of beam failure, and can perform the subsequent step of extending the measurement period of a part of the candidate RS.
  • the third condition may be related to the user's operation.
  • the third condition may be: the user's preset operation is received.
  • the foregoing preset operation may be an operation related to entering a certain preset mode of the UE, and the specific action of the preset operation is not limited in this application.
  • the UE may respond to This operation of the user executes any one of the candidate beam measurement methods in the foregoing embodiments.
  • the UE when the user clicks the "Yes" button in the interactive interface to instruct the UE to turn on the "overheating protection mode” shown in FIG. 3 (that is, the preset operation), the UE The step of determining at least one first RS from the candidate RSs may be performed in response to this operation of the user. .
  • the user can decide by himself whether to enter a certain preset mode, and then execute the method of determining at least one first RS from candidate RSs and prolonging the measurement period of the first RS, which reduces the UE’s power while ensuring communication quality. Consumption, and even protect some parts of the UE.
  • the third condition may be related to one or more parameters of the UE.
  • the UE can automatically determine whether to perform the method of extending the measurement period of the first RS without the occurrence of beam failure according to some conditions of the UE itself, and it does not depend on the operation of the user.
  • the parameters of the UE here may be the remaining power, temperature, location, and time of the UE.
  • the third condition may be: it is detected that the remaining power of the UE is within a certain power threshold range. For example, the remaining power of the UE is in the range of 0% to 20%.
  • the UE automatically starts to perform any of the candidate beam measurement methods in the foregoing embodiments, or the UE enters the foregoing preset mode such as "power saving mode" by itself, and then starts to execute any of the foregoing embodiments Candidate beam measurement method.
  • the third condition may be: it is detected that the temperature of the UE is within a certain temperature threshold range. For example, the temperature of the UE is above 40°C.
  • the UE automatically starts to execute any of the candidate beam measurement methods in the foregoing embodiments, or the UE enters the foregoing preset mode such as the "overheat protection mode" by itself, and then starts to execute any of the foregoing embodiments Candidate beam measurement method.
  • the third condition may be: it is detected that the location of the UE is in a specific area.
  • this condition is met, the UE automatically starts to perform any one of the candidate beam measurement methods in the foregoing embodiments.
  • the specific area here may be preset, or set by the user, or dynamically generated, which is not limited in this application.
  • the UE finds from historical statistics that the signal quality is always good when the UE is in the area where the office building A is located, and the UE can determine the area where the office building A is located as a specific area by itself. However, if the situation changes in the future, for example, a new building is built near office building A, which blocks the signal and causes the signal quality to deteriorate when the UE is in the area where office building A is located, then the UE can no longer regard it as a specific area .
  • the third condition may be: the time when the UE is detected is within a specific time period.
  • this condition is met, the UE automatically starts to perform any one of the candidate beam measurement methods in the foregoing embodiments.
  • the specific time period here may be preset, or set by the user, or dynamically generated, which is not limited in this application. For example, according to the user’s behavior habits, the UE can find from historical statistics that the signal quality of the UE is always good between 10 am and 6 pm on weekdays, so the UE can change the signal quality at 10 am on weekdays by itself. It is determined as a specific time period until 6 pm. However, if the situation changes subsequently, for example, the signal quality of the UE deteriorates between 12 noon and 1 pm on a working day, then the UE can dynamically adjust to change from 10 am to 12 noon and 1 pm on the working day. The two time periods to 6 pm are respectively determined as specific time periods.
  • the UE can automatically determine whether to implement the method of extending the measurement period of the first RS in the absence of beam failure according to some conditions of the UE itself, which reduces the power consumption of the UE while ensuring the communication quality, and even protects Some parts of UE.
  • S602 Extend the measurement period for measuring the at least one first RS.
  • step S602 For the content in step S602 that is the same as that in step S202 in the foregoing embodiment 1, reference may be made to the foregoing related description, which is not repeated here.
  • the UE may restore the measurement period of the first RS adjusted to the second measurement period to the original measurement period, that is, to the first measurement. cycle.
  • the technical solution in this embodiment may further include the following steps:
  • the UE can also continuously obtain the beam failure probability of the current beam and continuously update it. After the measurement period of at least one first RS is prolonged, once the updated beam failure probability of the current beam is higher, for example, higher than the first threshold, it indicates that the current beam is likely to be beam failure about to occur. In this case, the measurement periods of these first RSs whose measurement periods have been extended can be restored to their respective first measurement periods in advance, so as not to delay the time for beam failure recovery after beam failure occurs, so as to ensure the UE's reliability as much as possible. Communication quality.
  • the fourth condition In addition to the implementation of directly introducing the beam failure probability into the fourth condition, other parameters that can reflect the beam failure probability of the current beam can also be introduced into the fourth condition. For example, as mentioned above, when determining whether a beam failure occurs, if the detected RS meets the first condition (for example, the BLER value of the detected RS is higher than a certain threshold, or the RSRP value/SNR value of the detected RS is lower than a certain threshold ) Reaches the first number of times. At this time, it can be judged that a beam failure has occurred. If the first number of times is not reached, but it is relatively close to the first number of times, it means that the current beam has a high probability of beam failure.
  • the first condition for example, the BLER value of the detected RS is higher than a certain threshold, or the RSRP value/SNR value of the detected RS is lower than a certain threshold
  • a threshold value of the number of times less than the aforementioned first number of times may be set to measure the probability that the current beam is about to fail. If the number of times that the RS meets the first condition is greater than the first number threshold, it is considered that the beam failure probability of the current beam is high, and the measurement periods of these first RSs whose measurement periods have been extended are restored to their respective first measurement periods , So as not to delay the recovery time of the beam failure after the beam failure occurs, so as to ensure the communication quality of the UE as much as possible.
  • Manner 4 It is detected that one or several parameters of the UE satisfy a specific condition (hereinafter referred to as a second specific condition).
  • the parameters of the UE may be the current location and moving speed of the UE.
  • the UE may save the historical beam failure location in the historical motion record.
  • the UE can calculate the distance between the current position of the UE and the historical beam failure position to measure the probability of beam failure, and better The measurement period of the first RS is adjusted accordingly.
  • the UE may predict the time to reach the historical beam failure position according to the current position and moving speed of the UE, so as to measure the probability of beam failure, and then better adjust the measurement period of the first RS.
  • the UE may restore the measurement period of the first RS to the first measurement period in advance.
  • the preset mode here may be a preset mode in the UE.
  • the preset mode may be the aforementioned “power saving mode” or “overheating protection mode” and so on.
  • the measurement period of the first RS is allowed to be extended, so that the UE can perform the candidate beam measurement methods in the various embodiments of the present application.
  • the foregoing operation instructions may be input by the user operating the UE, or may be generated by the UE itself, and the source of the operation instructions is not limited in this application.
  • the UE When receiving the operation instruction to exit the preset mode, the UE measures the first RS according to the respective first measurement period of each of the first RSs. In this way, the power consumption of the UE can be reduced, and the measurement frequency of the first RS can be reduced according to the needs of the user or the situation of the UE itself, and the user experience can be improved.
  • the UE may independently extend the measurement period of the first RS or restore the measurement period of the first RS.
  • the network device may still send the candidate RS according to the original measurement period of each candidate RS, which is not limited in this application.
  • Embodiment 3 Method for UE to interact with network equipment to realize candidate beam measurement
  • the UE can interact with the network equipment to extend the measurement period of some candidate RSs. That is, after the UE and the network equipment reach an agreement on extending the measurement frequency of some candidate RSs, the UE reduces the receiving frequency of these candidate RSs, thereby reducing the measurement frequency of these candidate RSs, and thereby reducing the power consumption of the UE. As for which part of the candidate RS's measurement period is extended, it can be determined by the UE or by the network equipment. The two cases will be explained separately in the following.
  • FIG. 6 is a signaling flowchart of a candidate beam measurement method provided by an embodiment of the application. This method can be executed jointly by the UE and the network device to reduce the power consumption of the UE during candidate beam scanning.
  • the UE determines at least one candidate RS from candidate RSs configured by the network device for the UE.
  • the candidate RSs determined by the UE from the candidate RSs configured by the network device for the UE are referred to as second RSs.
  • the method for determining at least one candidate RS from the candidate RSs reference may be made to the related description of the UE determining the first RS from the candidate RSs in the first embodiment, which will not be repeated here.
  • this step may be performed before determining whether the current beam has a beam failure, or may be performed when it is determined that the current beam does not have a beam failure.
  • the third condition in the foregoing embodiment 2 can also be applied to the method of this embodiment as a trigger condition for the UE to send a reconfiguration request to the network device, that is, the step of S302 can be replaced with: in the current beam If no beam failure occurs and the third condition is met, a reconfiguration request is sent to the network device.
  • Embodiment 1 Regarding how to determine whether the current beam has a beam failure, refer to the related description of Embodiment 1, and for the third condition, refer to the related description of Embodiment 2, which will not be repeated here.
  • the foregoing reconfiguration request may be used to instruct the UE to determine at least one candidate RS from among the candidate RSs configured by the network device for the UE, that is, to instruct the UE to determine the first candidate RS from among the candidate RSs configured by the network device for the UE.
  • the reconfiguration request may carry the ID of the second RS. It should be understood that the reconfiguration request may also carry other information, which is not limited in this application.
  • the foregoing reconfiguration request may be used to indicate the fourth measurement period determined by the UE for at least one candidate RS determined from candidate RSs configured by the network device for the UE.
  • the measurement period configured for these candidate RSs before the network device receives the reconfiguration request is referred to as the third measurement period.
  • the measurement period that the network device reconfigures for these candidate RSs, that is, the extended measurement period of these candidate RSs, is called the fourth measurement period.
  • S303 The network device generates reconfiguration response information according to the reconfiguration request.
  • the network device After receiving the reconfiguration request from the UE, the network device can learn the second RS determined by the UE according to the reconfiguration request. Then, the network device can generate a reconfiguration response message and feed it back to the UE.
  • the information indicated by the reconfiguration response information may be different.
  • the network device may generate a reconfiguration response message indicating whether the network device agrees to the reconfiguration request made by the UE, including: the reconfiguration response information is used to indicate whether the network device Agree with the candidate RS determined by the terminal. The network device then sends the reconfiguration response information to the UE.
  • a network device such as a base station
  • the response signaling is used to indicate the response of the network device to the UE's reconfiguration request, such as A value of 1 indicates that the network device agrees to the UE's reconfiguration request, and a value of 0 indicates that the network device does not agree to the UE's reconfiguration request.
  • the reconfiguration response information may also be used to indicate whether the network device agrees with the candidate RSs determined by the terminal, and the terminal determines its respective fourth measurement period for these candidate RSs.
  • the network device may reconfigure the measurement period for the second RS, that is, send the new measurement period of the second RS to the UE.
  • the duration of the fourth measurement period needs to be longer than the original measurement period of the second RS, that is, longer than the third measurement period.
  • the duration of the fourth measurement period may be N times the third measurement period, or not N times the third measurement period. This application does not limit this, and only needs to meet the duration of the fourth measurement period. It is sufficient if the duration is longer than the third measurement period.
  • the network device may directly add the respective fourth measurement period of the second RS to the RRC signaling, and send it to the UE. In this way, it is possible to avoid affecting the content of the existing agreement.
  • the reconfiguration response information may also carry other information, such as the activation period and the length of the timer described in the first embodiment, which are not limited in this application.
  • S304 The UE receives reconfiguration response information from the network device.
  • the UE extends the measurement period of at least one candidate RS determined by the UE from the candidate RSs configured by the network device for the UE.
  • the UE may use different methods to extend the measurement period of the second RS according to the content carried in the response information.
  • the UE when the reconfiguration response information is used to indicate whether the network device agrees to the reconfiguration request, if the UE determines from the reconfiguration response information that the network device agrees to the reconfiguration request proposed by the UE, it can extend the measurement of these first configurations. Second, the measurement period of RS. In this case, how to extend the measurement period of the second RS can be determined by the UE itself. If the reconfiguration request does not indicate the fourth measurement period determined by the UE for the second RS, the length of the extended measurement period, that is, the fourth measurement period, can also be determined by the UE itself. For example, refer to the related description in the first embodiment. describe. If the reconfiguration request indicates that the UE agrees to the fourth measurement period determined by the UE for the second RS, the UE performs measurement according to the respective fourth measurement period of the second RS.
  • the UE may directly extend the measurement period of these second RSs to the corresponding fourth measurement period.
  • the network device may still use the corresponding candidate beam to transmit these second RSs according to the original transmission period (the same as the third measurement period), or the fourth measurement period may be used as the new transmission period.
  • These second RSs are sent in the sending period of the, which is not limited in this application.
  • the extended measurement period of the second RS on the UE side should be N times the third measurement period, so that the UE uses the candidate beam to receive the second RS every time The time point of and the sending time point of the network device side can correspond. Otherwise, the measurement period of the second RS is neither the same as the transmission period of the network equipment side, nor is it an integer multiple.
  • the network equipment side may not send the corresponding second RS and miss it.
  • the network device uses the fourth period as the new transmission period to transmit the second RS, since the extended measurement period of the second RS on the UE side is the same as the transmission period of the network device, it is not required to be the third period. N times.
  • the implementation manner of extending the measurement period may be the same or different, which is not limited in this application.
  • the UE sends a reconfiguration request to the network device when no beam failure occurs in the current beam.
  • the reconfiguration request can be used to instruct the UE to determine from the candidate RS configured by the network device for the terminal
  • At least one candidate RS may also be used to indicate the fourth measurement period of these candidate RSs.
  • the network device generates reconfiguration response information according to the reconfiguration request, and feeds it back to the UE, so that the UE and the network device reach an agreement. Thereafter, the UE can extend the measurement period of these candidate RSs according to the reconfiguration response information, thereby reducing the measurement frequency of these candidate RSs, and thereby reducing the power consumption of the UE.
  • FIG. 7 is a signaling flowchart of another candidate beam measurement method provided by an embodiment of the application. This method can be executed jointly by the UE and the network device to reduce the power consumption of the UE during candidate beam scanning.
  • the third condition in the foregoing embodiment 2 can also be applied to the method of this embodiment as a trigger condition for the UE to send a reconfiguration request to the network device, that is, the step of S302 can be replaced with: in the current beam If no beam failure occurs and the third condition is met, a reconfiguration request is sent to the network device.
  • Embodiment 1 Regarding how to determine whether the current beam has a beam failure, refer to the related description of Embodiment 1, and for the third condition, refer to the related description of Embodiment 2, which will not be repeated here.
  • the foregoing reconfiguration request may carry auxiliary information, such as the number of candidate RSs supported by the UE and the minimum measurement period supported by the UE.
  • the number of candidate RSs that it supports for configuration is often limited. If the number of candidate RSs configured by the network equipment for the UE exceeds the number of candidate RSs that the UE supports, for example, the number of candidate RSs that the UE supports is only 20. , And the number of candidate RSs configured by the network equipment for the UE is 24, then the UE may not receive part of the candidate RSs and cannot measure them. Based on this, the UE can carry the number of candidate RSs that it supports to configure in the reconfiguration request and report it to the network device, so that the network device can reconfigure the candidate RS for the UE.
  • the network device may screen out some or all of the candidate RSs configured for the UE before the network device receives the reconfiguration request, and reconfigure these candidate RSs. The measurement period.
  • the minimum measurement period supported by it often has a lower limit, and the measurement period cannot be shortened indefinitely and the measurement frequency can be increased.
  • the minimum measurement period supported by the UE is 5 ms, and the network device configures the UE for the UE.
  • One of the candidate RSs (such as CSI-RS1) has a minimum measurement period of 1ms, then the UE will not be able to receive the candidate RS sent by the network equipment at some points in time, resulting in missing some of the measurements that the network equipment originally expected the UE to detect result.
  • the UE can carry the minimum measurement period it supports in the reconfiguration request and report it to the network device so that the network device can reconfigure the candidate RS.
  • the network device may screen out some or all of the candidate RSs whose third period is less than the minimum measurement period supported by the UE according to the reconfiguration request, and reconfigure the measurement periods of these candidate RSs.
  • the reconfiguration request can also carry both the number of candidate RSs supported by the UE and the minimum measurement period supported by the UE, so that the network device can combine these two types of information to reconfigure the candidate RSs.
  • the reconfiguration request may also carry other feasible information, which is not limited in this application.
  • S402 The network device generates reconfiguration response information according to the reconfiguration request.
  • the network device may generate reconfiguration response information indicating different information.
  • the network device can determine whether the number of candidate RSs configured for the UE exceeds the number of candidate RSs supported by the UE. If it exceeds, the network device can reconfigure candidate RSs for the UE. The number of candidate RSs for reconfiguration does not exceed the number of candidate RSs supported by the UE. Exemplarily, the network device may screen out some or all of the candidate RSs configured for the UE before the network device receives the reconfiguration request according to the excess number, randomly or through other feasible methods.
  • the network device may reconfigure candidate RSs for the UE.
  • the measurement period that is, the fourth measurement period
  • the network device may respectively compare the corresponding measurement period configured for each candidate RS and the minimum measurement period supported by the UE. Part or all of the candidate RSs whose measurement period is less than the minimum measurement period supported by the UE are screened out, and the measurement period is reconfigured.
  • the reconfiguration response information may be used to indicate the candidate RS configured by the network device for the terminal.
  • the reconfiguration response information may indicate the IDs of these candidate RSs.
  • a network device such as a base station
  • the reconfiguration response information may also be used to indicate the fourth measurement period configured by the network device for at least one candidate RS of the terminal.
  • S403 The UE receives reconfiguration response information from the network device.
  • S404 The UE extends the measurement period for measuring the at least one candidate RS according to the reconfiguration response information.
  • the UE may adopt different methods to extend the measurement period of these candidate RSs according to the content indicated by the reconfiguration response information.
  • the UE may extend the measurement period of these candidate RSs.
  • the extended measurement period may be determined by the UE itself. For details, reference may be made to the foregoing description of the fourth measurement period, which will not be repeated here.
  • the extended measurement period may also be configured by the network device. For example, when the reconfiguration response information indicates the fourth measurement period configured by the network device for at least one candidate RS of the terminal, the UE may follow these candidate RSs. The fourth measurement cycle is used for measurement.
  • the method in this embodiment can be implemented on the basis of an existing protocol standard, which ensures compliance with the protocol standard, is conducive to standardized implementation of UE power consumption reduction, and reduces implementation complexity.
  • Embodiment 4 Method for UE to interact with network equipment to realize candidate beam measurement
  • an embodiment of the present application also provides a candidate beam measurement method. For those candidate beams whose beam quality has been poor for a long period of time, even if the current beam fails, the chance of switching the current beam to these candidate beams is relatively small. That is to say, no matter whether the current beam has a beam failure, or whether the probability of a beam failure is high, these candidate beams have a relatively small impact on the beam failure recovery process. Based on this, for the candidate RS corresponding to such a candidate beam, the UE can extend its measurement period after reaching an agreement with the base station, thereby reducing the power consumption of the UE.
  • FIG. 8 is a signaling flowchart of another candidate beam measurement method provided by an embodiment of the application. This method can be executed jointly by the UE and the network device to reduce the power consumption of the UE during candidate beam scanning.
  • S501 The UE determines at least one candidate RS from the candidate RS according to the measurement result of the candidate RS.
  • the measurement result of the candidate RS may reflect the beam quality of the candidate beam corresponding to the candidate RS. Therefore, according to the measurement result of the candidate RS, the UE can screen out those candidate beams whose beam quality has always been poor, and determine part or all of the candidate RSs corresponding to them as the second RS.
  • the measurement result of the candidate RS may include: the RSRP value of the candidate RS in the sixth preset time period. In this way, the UE can determine part or all of the candidate RSs whose RSRP value is lower than the fourteenth threshold as the second RS.
  • the duration of the aforementioned sixth preset time period may be a preset value, and this application does not limit its specific value.
  • the aforementioned fourteenth threshold may be a preset value, and the specific value thereof is not limited in this application.
  • S502 The UE sends a reconfiguration request to the network device.
  • the reconfiguration request is used to instruct the terminal to determine at least one candidate RS from among candidate RSs configured by the network device for the terminal, that is, to indicate the at least one second RS.
  • S503 The network device generates reconfiguration response information according to the reconfiguration request.
  • S504 The UE receives reconfiguration response information from the network device.
  • the UE extends the measurement period of the at least one candidate RS according to the reconfiguration response information.
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the application.
  • the terminal 700 includes at least one processor 701 and at least one memory 702, the at least one memory 702 is used to store computer program instructions, when the computer program instructions are executed by the at least one processor 701 At this time, the terminal is caused to implement any one of the methods in the first embodiment or the second embodiment.
  • FIG. 10 is a schematic structural diagram of a network device according to an embodiment of this application.
  • the network device 800 includes at least one processor 801 and at least one memory 802.
  • the at least one memory 802 is used to store computer program instructions.
  • the network device is made to implement any one of the methods in the third embodiment or the fourth embodiment.
  • FIG. 11 is a schematic structural diagram of a chip system provided by an embodiment of the application.
  • the chip system 1000 includes at least one processor 1001; when the at least one processor 1001 executes an instruction, the at least one processor 1001 executes any one of the methods in the first to the fourth embodiments .
  • the chip system may further include an interface 1002, and the interface 1002 is used to receive code instructions and transmit them to at least one processor 1001.
  • the aforementioned at least one memory 702, 802 stores one or more computer programs or instructions.
  • the memory 702 or 802 may include a volatile memory (volatile memory), such as a random access memory (random access memory, RAM); and may also include a non-volatile memory (non-volatile memory), such as a flash memory (flash memory). ), a hard disk drive (HDD) or a solid-state drive (SSD); the memory 702 or 802 may also include a combination of the foregoing types of memory.
  • the memory 702 or 802 may store computer executable programs or instructions.
  • the aforementioned processor 701, 801, or 1001 may include one or more processing units.
  • the processor 701, 801, or 1001 may include an application processor (AP), a modem processor, and a graphics processor (graphics processing unit). unit, GPU), image signal processor (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural network processor) -network processing unit, NPU), etc.
  • the different processing units may be independent devices or integrated in one or more processors.
  • the processor 701 or 801 may further include a hardware chip.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the aforementioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (generic array logic, GAL), or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field-programmable gate array
  • GAL general array logic
  • the processor 701 executes instructions stored in the memory 702 so as to implement the function or data processing of the electronic device.
  • the processor 701 executes a program or instruction stored in the memory 702, so that the terminal 700 implements part or all of the steps of the method executed by the terminal in the foregoing embodiment.
  • the processor 801 executes instructions stored in the memory 802, so as to implement the function or data processing of the electronic device.
  • the processor 801 executes a program or instruction stored in the memory 802, so that the network device 800 implements part or all of the steps of the method executed by the network device in the foregoing embodiment.
  • chip system may include one chip or a chip module composed of multiple chips, which is not limited in this application.
  • This embodiment also provides a computer-readable storage medium.
  • the computer-readable storage medium is used to store a computer program, and when the computer program runs on a computer, the computer executes part or all of the steps of any one of the methods executed by the terminal in the foregoing first to fourth embodiments, Alternatively, the computer is caused to execute part or all of the steps of any method executed by the network device in the third or fourth embodiment,
  • the readable storage medium here may be a magnetic disk, an optical disc, a DVD, a USB, a read-only memory (ROM) or a random access memory (RAM), etc.
  • the application does not limit the specific storage medium form.
  • the methods of the foregoing embodiments may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (such as a floppy disk, a hard disk, and a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the execution order of each step should be determined by its function and internal logic, and the size of the sequence number of each step does not mean the order of the execution order, and does not limit the implementation process of the embodiment.
  • the “plurality” in this specification refers to two or more.
  • words such as “first” and “second” are used to distinguish the same items or similar items that have substantially the same function and effect.
  • the words “first”, “second” and the like do not limit the quantity and order of execution, and the words “first” and “second” do not limit the difference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开一种候选波束测量方法,该方法可以由终端来执行,也可以由终端和网络设备来执行。由终端执行的其中一种候选波束测量方法包括:根据候选参考信号RS的配置信息或者测量结果,从所述候选RS中确定至少一个第一RS;其中,当前波束未发生波束失败,所述当前波束是网络设备为所述终端配置的用于传输数据的波束;延长测量所述至少一个第一RS的测量周期;其中,第二测量周期是所述第一RS的被延长后的测量周期,第一测量周期是所述网络设备为所述第一RS配置的测量周期,所述第二测量周期大于所述第一测量周期。采用本申请实施例中提供的方法,可以减少一些不必要的候选波束的测量过程,降低终端的功耗,同时尽可能保证终端的通信质量。

Description

候选波束测量方法、终端、网络设备、芯片系统及介质 技术领域
本申请涉及通信技术领域,具体涉及一种候选波束测量方法。此外,本申请还涉及一种终端,一种网络设备、一种计算机可读存储介质以及一种芯片系统。
背景技术
在第五代(5th generation,5G)新空口(New radio,NR)的高频(6GHz以上,如毫米波)通信中,基站和用户设备(User Equipment,UE)之间的通信需要使用波束赋形(Beamforming)技术,以克服高频通信中的路径损耗问题。基于此,基站和UE均能够应用多个不同指向的波束进行通信,并且,为了实现基站和UE之间的高效通信,在通信时一般会为基站和UE选择合适的收发波束对。
在毫米波频段中,无线信号的绕射能力弱。如果基站和UE之间受到阻挡,如图1所示,基站901和UE902之间被障碍物903阻挡,则可能导致当前正在通信的波束对的信号质量出现严重下降甚至中断,即发生波束失败(beam failure)。为了避免波束失败造成频繁的无线链路失败,基站在为UE配置用于传输数据的波束(以下称之为当前波束)的同时,也为UE配置其他可以作为备选的波束(以下称之为候选波束)。这样,当检测到当前波束发生波束失败时,基站或者UE就可以将当前波束切换为其中一个候选波束,从而完成波束失败恢复(beam failure recovery,BFR)。其中,在下行通信时,基站无法得知当前波束是否发生波束失败,因此需要UE进行一系列检测,并在检测到当前波束发生波束失败时通知基站,请求基站切换当前波束。
在触发波束失败恢复流程之前,UE会持续周期性地进行候选波束扫描,即测量候选波束,以便在当前波束发生波束失败时,可以立刻请求基站将当前波束切换为合适的候选波束。由于UE持续周期性地测量候选波束,这导致UE的功耗较高。
发明内容
本申请提供一种候选波束测量方法,减少一些不必要的候选波束的测量过程,降低终端的功耗,同时尽可能保证终端的通信质量。
第一方面,本申请提供一种候选波束测量方法,应用于终端,所述方法包括:
根据候选参考信号RS的配置信息或者测量结果,从所述候选RS中确定至少一个第一RS;其中,当前波束未发生波束失败,所述当前波束是网络设备为所述终端配置的用于传输数据的波束;
延长测量所述至少一个第一RS的测量周期;其中,第二测量周期是所述第一RS的被延长后的测量周期,第一测量周期是所述网络设备为所述第一RS配置的测量周期,所述第二测量周期大于所述第一测量周期。
采用本实现方式,在当前波束未发生波束失败的情况下,从候选RS中确定出一 部分允许被延长测量周期的候选RS(即第一RS),延长测量这部分候选RS的测量周期,即降低这部分候选RS的测量频率,从而降低终端的功耗,并尽可能保证终端的通信质量。
结合第一方面,在第一方面第一种可能的实现方式中,所述从所述候选RS中确定至少一个第一RS,包括:
在满足第三条件的情况下从所述候选RS中确定出所述至少一个第一RS;
所述满足第三条件包括以下至少一种条件:
当前波束的波束失败概率低于第一阈值;或者,
接收到用户的进入预设模式的操作,其中,当所述终端处于所述预设模式时,所述至少一个第一RS的测量周期允许被延长;或者,
检测到所述终端的参数满足第一特定条件,其中,所述终端的参数包括终端的剩余电量、温度、位置和时间中的一个或多个;或者,
所述候选RS的配置信息中配置的候选RS的总数量大于第二阈值;或者,
所述失败检测配置信息中配置的第一次数高于第四阈值,其中,在检测到的BFI大于第一次数时,所述终端的MAC确定发生波束失败。
采用本实现方式,增加了前置的触发条件(即第三条件),可以有条件地延长第一RS的测量周期,有利于降低终端的功耗。并且,采用本实现方式可以进一步减小延长第一RS的测量周期可能对正常候选波束测量产生的影响,保障通信质量,或者,由用户来自行决定如何平衡终端的功耗和通信质量。
结合第一方面及上述可能的实现方式,在第一方面第二种可能的实现方式中,所述候选RS的配置信息包括:第一指示信息,所述第一指示信息用于指示所述候选RS是否配置上报内容;
所述根据候选RS的配置信息,从所述候选RS中确定至少一个第一RS,包括:
基于每个候选RS的所述第一指示信息从候选RS中确定出至少一个第一RS,每个第一RS未被配置上报内容。
采用本实现方式,将未配置上报内容的候选RS中的一部分或者全部,确定为第一RS,延长这些第一RS的测量周期,有利于降低终端的功耗,并且可以避免影响协议的遵从性,避免影响空口交互。
结合第一方面及上述可能的实现方式,在第一方面第三种可能的实现方式中,所述候选RS的配置信息包括:所述候选RS的测量周期;
所述根据候选RS的配置信息,从所述候选RS中确定至少一个第一RS,包括:
基于每个候选RS的测量周期从候选RS中确定出至少一个第一RS,每个第一RS的测量周期小于第三阈值;或者,
基于每个候选RS的测量周期从候选RS中确定出至少一个第一RS,每个第一RS 的测量周期小于检测RS的测量周期,所述检测RS指的是用于检测当前波束是否发生波束失败的RS。
采用本实现方式,将测量周期小于第三阈值或者小于检测RS的测量周期的候选RS中的一部分或者全部,确定为第一RS,延长这些第一RS的测量周期,有利于降低终端的功耗,并且可以进一步减小延长第一RS的测量周期可能对正常候选波束测量产生的影响,保障通信质量。
结合第一方面及上述可能的实现方式,在第一方面第四种可能的实现方式中,所述候选RS的测量结果包括:第一预设时间段内所述候选RS的参考信号接收功率RSRP值;
根据所述候选RS的测量结果,从所述候选RS中确定至少一个第一RS,包括:
基于每个候选RS的所述RSRP值从候选RS中确定出所述至少一个第一RS,每个第一RS的所述RSRP值低于第五阈值。
采用本实现方式,将RSRP值低于第五阈值的候选RS中的一部分或者全部,确定为第一RS,延长这些第一RS的测量周期,有利于降低终端的功耗,并且可以进一步减小延长第一RS的测量周期可能对正常候选波束测量产生的影响,保障通信质量。
结合第一方面及上述可能的实现方式,在第一方面第五种可能的实现方式中,所述第二测量周期为第一测量周期的N倍,所述N为大于1的正整数。
采用本实现方式,终端直接将第一RS的测量周期由各自第一测量周期延长整数倍,这样,无论网络设备是否按照原本的发送周期来发送这些第一RS,终端都可以在特定的时间点测量到网络设备发送的第一RS,避免在某些测量第一RS的时间点,由于网络设备侧没有发送对应的第一RS而漏掉部分次数的测量。
结合第一方面及上述可能的实现方式,在第一方面第六种可能的实现方式中,所述延长测量所述至少一个第一RS的测量周期,包括:
在第一时间段延长测量所述至少一个第一RS的测量周期,在所述第一时间段内所述至少一个第一RS的测量周期允许被延长。
采用本实现方式,终端可以在间歇性地减少第一RS的测量频率,降低终端的功耗,进一步减小延长第一RS的测量周期可能对正常候选波束测量产生的影响,保障通信质量。并且,该方式易于实现,与其他延长第一RS的测量周期的实现方式相比,采用该实现方式有利于规范化实现,降低了实现的复杂度。
结合第一方面及上述可能的实现方式,在第一方面第七种可能的实现方式中,延长所述至少一个第一RS的测量周期,包括:
如果任一第一RS的测量结果满足第二条件,则延长所述第一RS的测量周期。
采用本实现方式,终端可以有条件地减少第一RS的测量频率,降低终端的功耗,进一步减小延长第一RS的测量周期可能对正常候选波束测量产生的影响,保障通信质量。
结合第一方面及上述可能的实现方式,在第一方面第八种可能的实现方式中,延长所述至少一个第一RS的测量周期,包括:
如果任一第一RS的测量结果满足第二条件,则启动定时器;其中,在所述定时器的运行期间所述第一RS的测量周期允许被延长,所述定时器的时长大于所述第一测量周期的时长;
在所述定时器的运行期间,将所述第一RS的测量周期延长为所述第一RS的第二测量周期。
采用本实现方式,终端可以有条件地、间歇性地减少第一RS的测量频率,进一步减小延长第一RS的测量周期可能对正常候选波束测量产生的影响,避免在一些突发情况下对第一RS测量不及时,导致对波束失败恢复造成影响,保障通信质量。
结合第一方面及上述可能的实现方式,在第一方面第九种可能的实现方式中,所述测量结果为RSRP值,所述第二条件包括:连续M次测量到所述第一RS的RSRP值高于第十三阈值,其中,M为正整数。
采用本实现方式,终端可以根据第一RS的测量结果有条件地减少第一RS的测量频率,进一步减小延长第一RS的测量周期可能对正常候选波束测量产生的影响,保障通信质量。
结合第一方面及上述可能的实现方式,在第一方面第十种可能的实现方式中,所述方法还包括:
如果满足第四条件,则将所述至少一个第一RS的测量周期恢复为所述至少一个第一RS的第一测量周期;其中,所述第四条件包括:
发生波束失败;或者,
所述当前波束的波束失败概率高于或等于第一阈值;或者,
接收到用户的退出预设模式的操作;或者,
所述RS对应的定时器超时,其中,在所述定时器的运行期间所述RS的测量周期允许被延长;或者,
所述终端的一个或多个参数满足第二特定条件。
采用本实现方式,可以在合适的时候及时恢复第一RS的测量周期,以便更好地保障通信质量。
第二方面,本申请提供一种候选波束测量方法,应用于终端,所述方法包括:
向网络设备发送重配请求,所述重配请求用于请求重配所述终端的候选参考信号RS,所述候选RS用于确定波束失败恢复流程中的候选波束;或者,所述重配请求用于请求配置所述终端的至少一个候选RS的测量周期,当前波束未发生波束失败,所述当前波束是网络设备为所述终端配置的用于传输数据的波束;
接收来自所述网络设备的重配响应信息。
采用本实现方式,在终端与网络设备就延长一部分候选RS的测量频率的问题达成一致后,终端再降低这部分候选RS的接收频率,从而降低这部分候选RS的测量频率,进而降低终端的功耗,并尽可能保证终端的通信质量。
结合第二方面,在第二方面第一种可能的实现方式中,所述重配请求中携带:所述终端支持配置的候选RS数量;所述重配响应信息用于指示所述网络设备为所述终端配置的候选RS。
采用本实现方式,可以由网络设备根据终端支持配置的候选RS数量来决定如何为终端重配候选RS,以便降低终端的功耗,并尽可能保证终端的通信质量。
结合第二方面及上述可能的实现方式,在第二方面第二种可能的实现方式中,所述重配请求中携带:所述终端支持的最小测量周期;所述重配响应信息用于指示所述网络设备为所述终端的至少一个候选RS配置的第四测量周期。
采用本实现方式,可以由网络设备根据终端支持的最小测量周期来决定如何为终端重配候选RS,以便降低终端的功耗,并尽可能保证终端的通信质量。
结合第二方面及上述可能的实现方式,在第二方面第三种可能的实现方式中,所述第四测量周期大于所述第三测量周期,所述第三测量周期是所述网络设备接收到所述重配请求之前为所述候选RS配置的测量周期。
采用本实现方式,网络设备可以重新为终端配置候选RS,延长这些候选RS的测量周期,以便降低终端的功耗,并尽可能保证终端的通信质量。
结合第二方面及上述可能的实现方式,在第二方面第四种可能的实现方式中,所述重配请求用于指示所述终端从所述网络设备为所述终端配置的候选RS中所确定的至少一个候选RS;所述重配响应信息,用于指示所述网络设备是否同意所述重配请求;或者,
所述重配请求用于指示所述终端为所述至少一个候选RS确定的所述第四测量周期;所述重配响应信息,用于指示所述网络设备是否同意所述重配请求。
采用本实现方式,UE可以自行决定重配哪些候选RS,并与网络设备达成一致,在网络设备同意的情况下延长这些候选RS的测量周期,降低终端的功耗,并尽可能保证终端的通信质量。
第三方面,本申请提供一种应用于网络设备,所述方法包括:
接收来自用户设备终端的重配请求,所述重配请求用于请求重配所述终端的候选参考信号RS,所述候选RS用于确定波束失败恢复流程中的候选波束;或者,所述重配请求用于请求配置所述终端的至少一个候选RS的测量周期;
根据所述重配请求,生成响应信息;
向所述终端发送所述响应信息。
结合第三方面,在第三方面第一种可能的实现方式中,所述重配请求中携带:所述终端支持配置的候选RS数量;所述重配响应信息用于指示所述网络设备为所述终 端配置的候选RS。
结合第三方面及上述可能的实现方式,在第二方面第二种可能的实现方式中,所述重配请求中携带:终端支持的最小测量周期;所述重配响应信息用于指示所述网络设备为所述终端的至少一个候选RS配置的第四测量周期。
结合第三方面及上述可能的实现方式,在第二方面第三种可能的实现方式中,所述第四测量周期大于所述第三测量周期,所述第三测量周期是所述网络设备接收到所述重配请求之前为所述候选RS配置的测量周期。
结合第三方面及上述可能的实现方式,在第二方面第四种可能的实现方式中,所述重配请求用于指示所述终端从所述网络设备为所述终端配置的候选RS中所确定的候选RS;所述重配响应信息,用于指示所述网络设备是否同意所述重配请求;或者,
所述重配请求用于指示所述终端为所述候选RS确定的所述第四测量周期;所述重配响应信息,用于指示所述网络设备是否同意所述重配请求。
第四方面,本申请提供一种终端,包括至少一个处理器和至少一个存储器,所述至少一个存储器用于存储计算机程序指令,当所述计算机程序指令被所述至少一个处理器执行时,使得所述终端实现第一方面和第二方面的任一种方法。
第五方面,本申请提供一种网络设备,包括至少一个处理器和至少一个存储器,所述至少一个存储器用于存储计算机程序指令,当所述计算机程序指令被所述至少一个处理器执行时,使得所述网络设备实现第三方面的任一种方法。
第六方面,本申请提供一种芯片系统,包括至少一个处理器;当所述至少一个处理器执行指令时,所述至少一个处理器执行第一方面、第二方面和第三方面的任一种方法。
第七方面,本申请提供一种计算机可读存储介质,所述计算机存储介质中包括计算机程序指令,当所述计算机程序指令在计算机上执行时,使得所述计算机实现第一方面、第二方面和第三方面的任一种方法。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中的附图作简单地介绍。
图1基站和UE之间通过波束进行通信以及波束被障碍物阻挡的示意图;
图2为本申请实施例提供的一种示例性的通信系统的架构示意图;
图3A为本申请实施例中UE的一种示例性的用户界面示意图;
图3B为本申请实施例中UE的另一种示例性的用户界面示意图;
图4为本申请实施例提供的一种候选波束测量方法的流程示意图;
图5为本申请实施例提供的另一种候选波束测量方法的流程示意图;
图6为本申请实施例提供的一种候选波束测量方法的信令流程图;
图7为本申请实施例提供的另一种候选波束测量方法的信令流程图;
图8为本申请实施例提供的另一种候选波束测量方法的信令流程图;
图9为本申请实施例提供的一种终端的结构示意图;
图10为本申请实施例提供的一种网络设备的结构示意图;
图11为本申请实施例提供的一种芯片系统的结构示意图。
具体实施方式
为便于理解,下面首先对本申请实施例涉及到的几个技术术语作简单介绍。
波束(beam)是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术等。不同的波束可以认为是不同的空域资源。通过不同的波束可以发送相同的信息或者不同的信息。可选地,可以将具有相同或者类似的通信特征的多个波束视为同一个波束。可以在一个或多个天线端口上使用波束,用于传输数据信道,控制信道和探测信号等。例如,发射波束可以是指信号经天线阵元加权并发送后形成的具有指向性的信号强度的分布,接收波束可以是指信号经天线阵元加权并接收后形成的具有指向性的信号强度的分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。波束在协议中的体现还可以是空域滤波器(spatial filter)。
当前波束,指的是网络设备(例如基站等)为UE配置的用于传输数据的波束。网络设备和UE之间可以基于这些波束来建立通信链路,包括传输控制信息的控制信道,或者传输数据信息的数据信道。即,当前波束是网络设备为UE配置的用于传输数据(可以包括业务数据和控制数据,即包括数据信息和控制信息)的波束。
候选波束,指的是网络设备(例如基站等)为UE配置的备选波束。当前波束发生波束失败时,网络设备可以将当前波束切换为候选波束。
在NR标准中定义了下行波束的链路恢复(link recovery)流程。该流程包括波束失败检测、候选波束扫描、波束恢复请求发送以及波束恢复请求响应等过程。
针对波束失败检测过程,基站定义了一系列周期性参考信号(reference signal,RS),并使用当前波束来发送这些参考信号。这些周期性的检测RS的集合在标准中被称为q0集合。为便于区分,在本申请中将这些通过当前波束发送的RS称为检测RS。即,检测RS指的是用于检测当前波束是否发生波束失败的RS。示例性地,检测RS可以是同步信息块(synchronization signal block,SSB)、信道状态信息参考信号(channel state information-reference signal,CSI-RS)中的一个或多个。
UE对这些检测RS进行测量,等效于对当前波束进行测量。基于此,在波束失败检测过程中,UE周期性地对使用这些检测RS进行测量,以便了解当前波束的情况,判断当前波束是否发生波束失败。
针对候选波束扫描过程,基站定义了一系列周期性参考信号,并使用其他方向的、可供切换的候选波束来发送这些参考信号。这些周期性的候选RS的集合在标准中被称为q1集合。为便于区分,在本申请中将这些在候选波束扫描过程中通过候选波束发送的RS称为候选RS。示例性地,候选RS可以是信道状态信息参考信号(channel state information-reference signal,CSI-RS)、同步信息块(synchronization signal block,SSB)中的一个或多个。
UE对这些候选RS进行测量,等效于对这些候选RS对应的候选波束进行测量。基于此,在候选波束扫描过程中,UE周期性地对这些候选RS进行测量,以便了解候选波束的情况。这样,一旦当前波束发生波束失败,UE就可以立刻向基站发送波束恢复请求,请求基站将当前波束切换为合适的候选波束。
当检测到当前波束发生波束失败时,就可以触发波束失败恢复流程,包括波束恢复请求发送以及波束恢复请求响应。在这个过程中,UE可以通过发起随机接入过程通知基站进行恢复。基站通过Msg2/Msg4消息进行响应,使得UE可以切换到符合要求的候选波束。
下面结合上述技术术语和附图对本申请提供的技术方案所涉及的系统架构和应用场景进行示例性说明。
本申请实施例提供的多种候选波束测量方法可以应用于各种通信系统,例如,采用第五代(5th generation,5G)通信技术的新空口(new radio,NR)通信系统,未来演进系统或者多种通信融合系统等。
请参见图2,图2为本申请实施例提供的一种示例性的通信系统的架构示意图。该通信系统可以包括至少一个网络设备101和至少一个用户设备102。
网络设备101是用户设备通过无线方式接入到该通信系统中的接入设备,可以是全球移动通信系统(global system for mobile communication,GSM),码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),宽带码分多址(wideband code division multiple access,WCDMA)中的基站(node B),长期演进(long term evolution,LTE)中的演进型基站(evolutional node B,eNB或e-NodeB),物联网(internet of things,IoT)或者窄带物联网(narrow band-internet of things,NB-IoT)中的eNB,5G移动通信网络中的基站,未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,未来移动通信系统中的基站,WiFi系统、LTE-U或其他免授权频谱无线系统中的接入节点等,本申请实施例对网络设备101所采用的具体技术和具体设备形态不作限定。
用户设备(user equipment,UE)102,也可以称为用户终端(user terminal)、终端设备、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。UE可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)设备、增强现实(Augmented Reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、具有无线通信功能的智能电表、智能水表、环境感应器、设备标签、定位标签等。本申请实施例对UE所采用的具体设备形态不作限定。UE可以是固定的,也可以是可移动的,本申请对此不作限定。
UE102与网络设备101通过无线通信的方式连接。示例性地,在5G通信技术中, 上述网络设备为5G基站gNB,UE为5G终端设备,5G基站和5G终端设备之间通过波束来建立通信连接。
示例性地,在图2中,网络设备101和UE102之间通过当前波束建立了通信链路,网络设备101可以使用当前波束将检测RS发送给UE102。并且,网络设备101还为UE102配置了多个候选波束,网络设备101可以使用候选波束将对应的候选RS发送给UE102。
需要说明的是,该通信系统中还可以包括其它网络设备,例如还可以包括无线中继设备和无线回传设备等未在图2中示出的设备。
在一种可能的应用场景中,UE102可以在电池剩余电量较少的时候执行本申请实施例中的候选波束测量方法。为了保证UE102的通信质量,UE102往往会按照网络设备101配置的测量周期来测量候选波束,这会缩短UE102的剩余的工作时间。尤其是在UE102的电池剩余电量较少的时候,用户往往会有这样的需求:如何在尽可能保证通信质量的同时延长工作时间。请参见图3A,图3A为本申请实施例中UE的一种示例性的用户界面示意图。在UE102中设置有多种预设模式,例如与电池相关的“性能模式”、“省电模式”等。当用户开启某一种特定的预设模式,例如图3A所示的“省电模式”时,UE102可以执行本申请实施例提供的候选波束测量方法来降低测量候选波束所消耗的电量。采用这样的方式,UE102可以在尽可能保证通信质量的同时延长工作时间。
在另一种可能的应用场景中,UE102可以在处于特定位置区域或者特定时间段时执行本申请实施例中的候选波束测量方法。假设从UE的历史统计数据中发现,每当UE102处于某一个区域或者某一个时间段时,其通信质量往往非常好,即当前波束的发生波束失败的概率很低,进行波束失败恢复流程的几率相应地很低。在这种情况下,UE102仍然按照系统配置的测量周期来测量候选波束,会消耗掉一些没必要消耗的电量。例如,对于活动规律的上班族而言,其在工作日的工作时间可能一直待在某个办公楼里。如果从历史统计数据中发现,只要UE102处在该办公楼所处的区域中,或在工作日的工作时间段,UE102的通信质量总是很好。那么,当UE102进入该区域或处于该时间段内时,其可以自行执行本申请实施例提供的候选波束测量方法来降低测量候选波束所消耗的电量。采用这样的方式,既可以尽量保证UE102的通信质量,也可以延长其工作时间。
在又一种可能的应用场景中,UE102可以在温度较高的时候执行本申请实施例中的候选波束测量方法。为了保证UE102的通信质量,UE102往往会按照网络设备101配置的测量周期来测量候选波束。但是,当UE102的温度较高的时候,如果UE102仍然按照这样的测量周期来测量候选波束,可能会使得UE102的温度过热而损坏UE的零部件。请参见图3B,图3B为本申请实施例中UE的另一种示例性的用户界面示意图。当UE102检测到温度超过了预设的阈值时,UE102可以在用户界面上显示对话框,以便提示用户,并询问用户是否采取相应的保护措施,例如图3B所示的“!手机温度过高,是否开启过热保护模式”。如果用户选择“是”,则UE102可以执行本申请实施例提供的候选波束测量方法来降低功耗。采用这样的方式,有利于UE102在尽可 能保证通信质量的同时降低UE102的温度。
应理解,本申请实施例描述的系统架构以及应用场景,是为了更加清楚地说明本申请的技术方案而采用的示例性说明,并不对本申请的保护范围构成限定。本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的情况,同样可以适用。
以下将对本申请所提出的技术构思,以及实现该技术构思的几种方案作详细说明。
本申请提出一种关于候选波束测量的技术构思,对于候选波束中那些对波束失败恢复流程的影响比较小的候选波束,可以延长这些候选波束的测量周期,降低其测量频率。通过这样的方式,可以减少一些不必要的候选波束的测量过程,降低UE的功耗。同时,也可以在一定程度上避免UE在发生波束失败后无法快速找到合适的候选波束的风险,即在一定程度上避免降低部分候选波束的测量频率对波束失败恢复的影响,尽可能保证通信质量。
基于上述技术构思,UE可以在当前波束未发生波束失败的情况下,从候选RS中筛选出一部分允许被延长测量周期的候选RS,延长这部分候选RS的测量周期,即降低这部分候选RS的测量频率,从而降低UE的功耗。该方法可以由终端(例如UE)独立执行,也可以由终端与网络设备通过交互来完成。示例性地,以下实施例中将以UE为例对本申请的候选波束测量方法作说明。以下将通过实施例一和二来对UE独立实现的方式作进一步说明,通过实施例三对UE与网络设备交互来实现的方式作进一步说明。
实施例一 UE独立实现候选波束测量的方法
本实施例提供一种候选波束测量方法,在当前波束未发生波束失败的情况下,延长第一RS的测量周期。请参见图4,图4为本申请实施例提供的一种候选波束测量方法的流程示意图。该方法可以由UE执行,以降低UE在候选波束扫描时的功耗。该方法包括以下S201至S202的步骤。
S201:在当前波束未发生波束失败的情况下,从候选RS中确定至少一个第一RS。
上述当前波束,指的是网络设备为UE配置的用于数据传输的波束。应理解,当UE在移动时,其接入的网络设备可能会发生变化,相应地网络设备为UE配置的波束也会发生变化。本申请实施例中的当前波束并不是特指某一个或几个不变的波束,而是指在某个时刻网络设备为UE配置的用来传输数据(例如可以是业务数据或者控制数据)的的波束。
在UE接入某一个网络设备,网络设备为UE配置了用于传输数据的当前波束之后,UE会周期性地检测当前波束,以便判断当前波束是否发生波束失败。
在一种判断当前波束是否发生波束失败的实现方式中,UE可以利用检测RS的测量结果,例如信号质量等信息来实现。
这里的检测RS的信号质量,具体可以采用误块率(block error rate,BLER)、信干噪比(signal to interference and noise ratio,SINR)、参考信号接收质量(reference signal receiving quality,RSRQ)等参数。
可选地,UE周期性地测量检测RS,判断检测RS的信号质量是否满足预设第一条件(例如检测RS的BLER值高于某一个预设的阈值,或者检测RS的RSRP值低于某一个阈值等)。如果满足的次数达到预设的第一次数,则认为当前波束发生波束失败。如果检测RS的信号质量满足第一条件的次数未达到预设的第一次数,则认为当前波束未发生波束失败。这里的第一次数是指在判断当前波束是否发生波束失败时,检测RS满足第一条件所需达到的临界次数。
可选地,UE可以包括物理(PHY)层、网络(MAC)层等。上述判断检测RS是否满足预设的第一条件的步骤,可以由PHY层来完成。每当PHY层确定某一时刻接收到的检测RS满足第一条件,则PHY层向MAC层上报一个特定的指示信息(例如波束失败实例指示,beam failure instance indication,BFI_indication)。在MAC层中存在一个计数器,用于统计接收到的指示信息的个数。示例性地,每当接收到来自PHY层的该指示信息,则计数器的数值加一个预设的数值,例如加1。当计数器的数值达到预设的第一次数时,UE就可以确定出当前波束发生波束失败,触发波束失败流程。如果计数器的数值没有达到预设的第一次数,UE就可以确定出当前波束未发生波束失败。
例如,假设基站为UE配置的q0集合中包含两个检测RS,分别为SSB 1,SSB 2,并配置了检测RS的BLER值的阈值为0.1,第一次数为5次。UE对SSB 1和SSB 2进行周期性检测。在t0时刻,UE判断这两个检测RS的BLER值是否超过0.1。如果均超过,则MAC层中的计数器的数值加1,如果至少一个没有超过,则计数器的数值维持不变。假设在t0时刻MAC层中的计数器的数值为4,小于第一次数,则UE可以判断出当前波束未发生波束失败。
需要说明的是,上述第一条件、第一次数可以由网络设备来进行配置,也可以存储在终端设备,还通过其他方式来进行预设,本申请对此不作限定。
本申请实施例中的候选RS可以有一个或多个。应理解,当UE接入的网络设备发生变化,或者,网络设备为UE配置的当前波束发生变化时,网络设备为UE配置的候选波束也可能会发生变化,相应地候选RS也可能发生变化。本申请实施例中的候选RS并不是特指某一个或者几个不变的候选RS,而是指在UE接入某一个网络设备时,该网络设备为UE定义的一系列用于候选波束扫描的RS。
候选RS,指的是网络设备为与当前波束对应的候选波束定义的参考信号。网络设备为UE配置当前波束时,也为UE配置其他可以作为备选的波束,即候选波束。网络设备还为这些候选波束定义了对应的一个或多个参考信号,即候选RS,以便使用这些候选波束来发送其对应的候选RS。示例性地,候选RS可以为信道状态信息参考信号(channel state information-reference signal,CSI-RS)、同步信息块(synchronization signal block,SSB)中的一个或多个。
从候选RS中确定出的至少一个候选RS,在本申请实施例的后续步骤中,将调整这些RS的测量周期。为便于说明,在本申请实施例中将这些从候选RS中确定出的允许被调整测量周期的RS,称为第一RS。由于候选RS可以有一个或多个,因此从中筛选出的第一RS也可以有一个或者多个。
从候选RS中确定至少一个第一RS,可以根据候选RS的配置信息或测量结果来实现。以下将对其中几种可能的实现方式作进一步说明。
(一)在确定第一RS的第一类实现方式中,可以根据候选RS的配置信息来实现。
候选RS的配置信息,指的是在BFR流程中与候选RS相关的一系列参数。候选RS的配置信息可以由网络设备为UE配置。在本申请实施例的方案中,候选RS可以有多个,每个候选RS可以对应各自的配置信息,在网络设备为UE配置候选RS的时候就会有对应的配置信息。配置信息可以用于配置资源,包括:时频域资源的位置、周期等。网络设备还可以为UE进行上报的配置,包括:上报的内容,以及在哪个资源上上报等。其中,上报的内容可以包括参考信号接收功率(Reference Signal Receive Power,RSRP)、信道质量指示(Channel Quality Indicator,CQI)、秩指示(rank indication,RI)和预编码矩阵指示(Precoding Matrix Indicator,PMI)、是否上报(当不上报时,即上报内容为空)。上述资源的配置和上报的配置可以配在不同的字段。以下示例性地给出了候选RS的配置信息的几种可选的实现方式以及相应的确定第一RS的实现方式。
方式一,候选RS的配置信息可以包括第一指示信息。这样,UE就可以根据第一指示信息,将未配置上报内容的候选RS中的部分或者全部,确定为灵活RS。
上述第一指示信息用于指示对应的候选RS是否配置上报内容。不同的RS资源可能会被配置以用于上报不同的内容。例如,对于某一个参考信号RS1,其被配置的上报内容为层一参考信号接收功率(Layer One-Reference Signal Receive Power,L1-RSRP);对于另一个参考信号RS2,其被配置的上报内容为信道状态信息CSI,包括CQI、RI和PMI;对于又一个参考信号RS3,其被配置的上报内容为空,即不配置上报内容。
对于被配置了上报内容的候选RS来说,如果将其确定为第一RS,延长其测量周期,可能会导致需要其上报的内容无法正常上报。如果某些被配置了上报内容的候选RS已经在协议中有所规定,那么将这些候选RS确定为第一RS,延长它们的测量周期,可能会影响协议的遵从性,影响空口交互。而对于未配置上报内容的候选RS,则存在允许调整其测量周期的操作空间。为此,在本实现方式中,可以将未配置上报内容的候选RS中的一部分或者全部,确定为第一RS。
方式二,除第一指示信息以外,候选RS的配置信息还可以包括候选RS的总数量。这样,当候选RS的总数量较大(例如大于第二阈值)时,UE就可以根据第一指示信息,将未配置上报内容的候选RS中的至少一个,确定为第一RS。
上述候选RS的总数量,指的是UE接入基站等某一个网络设备时,该网络设备为UE配置的候选RS的总数量。上述第二阈值可以是一个预设的数值,例如UE自身支 持配置的候选RS数量,本申请对于第二阈值的具体取值不作限定。
对于一个UE来说,一方面,其被配置的候选RS越多,需要测量的候选RS就越多,相应地UE的功耗就越大。另一方面,被配置的候选RS越多,候选波束就越多,候选波束之间存在重叠的可能性就越大。由此可知,当网络设备为UE配置的候选RS的数量较大时,其中一部分候选波束可能是不必要的,对于这些波束可以不进行测量。基于此,在本实现方式中,结合候选RS的总数量和第一指示信息,在候选RS的总数量大于第二阈值时,将未配置上报内容的候选RS中的一部分或全部确定为第一RS,有利于降低UE的功耗,并且也不会影响空口交互。
例如,假设UE支持配置的候选RS数量最多为20个,即第二阈值为20,而当前基站为UE配置的候选RS的总数量为24个,其中未配置CSI上报的候选RS有5个。由于候选RS的总数量超过了第二阈值,因此UE可以将这5个候选RS中的部分或者全部确定为第一RS。
方式三,候选RS的配置信息可以包括候选RS的测量周期。这样,UE就可以将测量周期小于检测RS的测量周期或小于某一个预设阈值的部分或者全部候选RS,确定为第一RS。
对一个候选RS而言,UE周期性地对其进行测量,相邻的测量时间点之间的时间间隔,就是该候选RS的测量周期。类似地,对于一个检测RS而言,UE周期性地对其进行测量,相邻的测量时间点之间的时间间隔,就是该检测RS的测量周期。
在目前的标准协议中,检测RS需要满足前述的第一条件多次(例如前述的第一次数,以K表示,K为>1的整数),UE才会确定当前波束发生波束失败。为此,对于一部分候选RS而言,如果其测量周期小于检测RS的测量周期,那么,在UE测量到检测RS满足第一条件1次,甚至K-1次之后,再对候选波束进行测量也来得及。基于此,UE可以将测量周期小于检测RS的测量周期的这部分候选RS中的部分或者全部,确定为第一RS,进而通过延长这些第一RS的测量周期来降低UE的功耗。
需要说明的是,某个网络设备为UE配置的检测RS可能存在多个,每一个检测RS都具有对应的测量周期。在这种情况下,可选地,可以取多个检测RS的测量周期中最小的值,来与某一个候选RS的测量周期相比较,从而确定是否可以将该候选RS确定为第一RS。例如,在标准中支持的检测RS的配置个数为两个,两个检测RS的测量周期分别为T1和T2,其中,T1<T2。此时,可以取T1作为本实现方式中检测RS的测量周期。这样,对于某一个候选RS而言,如果其测量周期X小于T1,则可以将该候选RS确定为第一RS。
例如,基站为UE配置的q0集合中包含两个检测RS,分别为SSB 1和SSB 2。SSB 1的测量周期为40ms,SSB 2的测量周期为20ms。在这种情况下,可以将测量周期小于20ms的候选RS确定为第一RS。
如果一个候选RS的测量周期非常小(例如小于第三阈值),这说明一段时间内测量该候选RS的次数可能过多,其中一部分次数的测量可能是没有必要的。对于这样的候选RS,也可以将其确定为第一RS,进而通过延长这些第一RS的测量周期来 降低UE的功耗。即,在本实现方式中,UE还可以将测量周期小于第三阈值的候选RS中的部分或全部,确定为第一RS。例如,假设第三阈值为5ms,则可以将测量周期小于5ms的候选RS中的一个或多个RS,确定为第一RS。
上述第三阈值可以是一个预设的数值,例如可以是多个检测RS的测量周期中最小的一个。第三阈值也可以由UE根据以往的历史数据来确定。例如,统计以往的历史数据,发现当发生波束失败之后,如果5ms之内未能找到候选波束,则可能导致波束失败恢复流程的失败,基于此,可以将第三阈值的取值确定为5ms。本申请对于第三阈值的具体取值不作限定。第三阈值可以存储终端本地,也可以由网络设备配置给终端,本发明实施例不作限制。
需要说明得到是,上述根据候选RS的配置信息确定第一RS的实现方式可以单独实施,也可以相互结合,例如以下实现方式(4)至(6)所示。
方式四,候选RS的配置信息可以包括:候选RS的测量周期,以及,候选RS的总数量。这样,如果候选RS的总数量大于第二阈值,UE就可以将测量周期小于第三阈值或者检测RS的测量周期的这部分候选RS中的部分或全部,确定为第一RS,有利于降低UE的功耗。
方式五,候选RS的配置信息可以包括:第一指示信息,以及,候选RS的测量周期。这样,UE就可以根据第一指示信息,将未配置上报内容,并且测量周期小于第三阈值或者检测RS的测量周期的这部分候选RS中的部分或全部,确定为第一RS,有利于降低UE的功耗,并且也不会影响空口交互。
方式六,候选RS的配置信息包括:第一指示信息、候选RS的测量周期,以及,候选RS的总数量。这样,如果候选RS的总数量大于第二阈值,UE就可以根据第一指示信息,将未配置上报内容,并且测量周期小于第三阈值或者检测RS的测量周期的这部分候选RS中的部分或全部,确定为第一RS,有利于降低UE的功耗,并且也不会影响空口交互。
(二)在确定第一RS的第二类实现方式中,可以将候选RS的配置信息和失败检测配置信息结合起来确定第一RS。
候选RS的配置信息可以参考前述相关描述,此处不再赘述。失败检测配置信息,指的是在BFR流程中与波束失败检测相关的一系列参数,示例性地,失败检测配置信息可以是前述的第一次数、第一条件等。失败检测配置信息可以由网络设备为UE配置。
在一种实现方式中,失败检测配置信息可以包括第一次数;候选RS的配置信息可以包括第一指示信息。这样,如果第一次数较大(例如高于第四阈值),则UE可以根据第一指示信息,将未配置上报内容的这部分候选RS中的部分或者全部,确定为第一RS。
上述第四阈值可以是一个预设的数值,本申请对于第四阈值的具体取值不作限定。
如前所述,当检测RS满足第一条件达到第一次数K时,UE才会确定当前波束发 生波束失败。如果K的取值较大,那么在UE测量到检测RS满足第一条件一次或多次(小于K次)之后,再开始对候选波束进行测量也来得及,无需一直高频率地对候选波束进行测量。而如果K的取值较小,那么从第一次测量到检测RS满足第一条件,到第K次测量到检测RS满足第一条件之间相隔的时间可能很短,导致无法及时完成对候选波束的测量,进而延误波束失败恢复的时间。基于此,在本实现方式中,如果第一次数高于第四阈值,则可以再根据第一指示信息,将未配置上报内容的所述候选RS中的部分或全部,确定为第一RS,有利于降低UE的功耗,并且也不会影响空口交互。
应理解,除了第一指示信息以外,候选RS的配置信息可以包括前述的候选RS的测量周期、候选RS的总数量等。这些候选RS的配置信息也可以与前述第一次数结合,以便从候选RS中筛选出第一RS,本申请对不同的组合方式不再一一赘述。
(三)在确定第一RS的第三类实现方式中,可以根据候选RS的测量结果来确定第一RS。
候选RS的测量结果,可以采用候选RS的信号质量的测量结果,例如候选RS的参考信号接收功率(reference signal receive power,RSRP)等。
如果一个候选RS的RSRP值一直比较低,说明该候选RS对应的候选波束的波束质量较差,即便当前波束发生波束失败,将当前波束切换为该候选波束的机会也比较小。对于这样的候选RS可以减少测量次数甚至无需进行测量,因此,可以延长其测量周期,以降低UE的功耗。同时,这也可以进一步避免降低部分候选波束的测量频率对波束失败恢复的影响,尽可能保证通信质量。出于这样的考虑,在一种实现方式中,候选RS的测量结果包括:第一预设时间段内候选RS的RSRP值。这样,UE就可以将RSRP值低于第五阈值的这部分候选RS中的部分或者全部,确定为第一RS。
上述第一预设时间段的时长可以是一个预设的数值,本申请对其具体数值不作限定。上述第五阈值可以是一个预设的数值,本申请对其具体取值不作限定。
需要说明的是,在第一预设时间段内,UE可能会检测到该候选RS的一个或者多个RSRP值。当仅检测到一个RSRP值时,可以直接将其与第五阈值进行比较。当检测到多个RSRP值时,可以将这多个RSRP值分别与第五阈值进行比较,来决定是否将该候选RS确定为第一RS。示例性地,可以要求这多个RSRP值均小于第五阈值才将该候选RS确定为第一RS。此外,也可以采用其他的比较方法,例如取这多个RSRP值的平均值,用该平均值来与第五阈值进行比较,以决定是否将该候选RS确定为第一RS。
例如,假设基站为UE配置的q1集合中包含16个候选RS,第一预设时间段为5s,候选RS的RSRP阈值,即第五阈值为0.1。如果在5s内,UE分别检测到这16个候选RS的RSRP值各5次,其中3个候选RS的RSRP值均低于0.1,则将这3个候选RS中的部分或者全部确定为第一RS。如果在5s内,UE分别检测到这16个候选RS的RSRP值各5次,所有的候选RS的RSRP值均低于0.1,这说明UE的天线面板可能整个都被遮挡住了,此时,可以将这16个候选RS都确定为第一RS。
S202:延长测量所述至少一个第一RS的测量周期。
在本实施例中将网络设备为第一RS配置的测量周期,称为第一测量周期。对于一个第一RS而言,第一测量周期是该第一RS在被延长之前的测量周期。在本申请实施例中将被延长之后第一RS的测量周期,称为第二测量周期。对于一个第一RS而言,其第二测量周期的时长应大于第一测量周期的时长。本申请对于第一测量周期、第二测量周期的具体数值不作限定。第二测量周期的时长可以是第一测量周期的时长的整数倍,例如2倍、4倍等,也可以是除整数倍以外的任意时长。
需要说明的是,第二测量周期的时长可以为无穷大。在这种情况下,UE完全不测量这些第一RS。也就是说,UE完全不测量这些第一RS,可以视为延长第一RS的测量周期的一种特殊情况。
还需要说明的是,从候选RS中可能确定出多个第一RS,对于这多个第一RS,其各自原本的测量周期,即各自的第一测量周期,可以相同,也可以不同;其各自的被延长后的测量周期,即各自的第二测量周期,可以相同,也可以不同,本申请对此均不作限定。示例性地,假设一个第一RS的第一测量周期为X1,第二测量周期为X1’,另一个第一RS的第一测量周期为X2,第二测量周期为X2’,那么,X1与X2可能相同,也可能不同,X1’与X2’可能相同,也可能不同。
采用本实施例的方法,通过延长第一RS的测量周期,降低第一RS的测量频率,从而减少UE的功耗。并且,采用本实施例的方法,在一定程度上避免了对波束失败恢复流程造成影响。一方面,本实施例的方法是在当前波束未发生波束失败的情况下才延长一部分候选RS的测量周期,这就在一定程度上避免UE在发生波束失败后无法快速找到合适的候选波束的风险,避免了延长第一RS的测量周期对延误波束失败恢复时间的影响,尽可能保证了UE的通信质量。另一方面,在延长测量周期时,UE仅延长符合要求的第一RS的测量周期,而不延长其他候选RS的测量周期,避免不加筛选地延长所有候选RS的测量周期,导致在发生波束失败时延误波束失败恢复的时间。此外,采用本实施例的方法,UE可以独立地根据自身的情况,灵活地调整第一RS的测量周期,避免反复与基站交互而增加额外的功耗开销。
延长第一RS的测量周期,可以有多种不同的实现方式。例如,对于某个第一RS而言,可以直接延长其测量周期,也可以在该第一RS满足一定条件的情况下再延长其测量周期。以下将示例性地对其中几种可能的实现方式作说明。
(一)在延长第一RS的测量周期的第一种实现方式中,对于某一个第一RS而言,UE可以直接将该第一RS的测量周期延长为第二测量周期,其中,第二测量周期的时长为第一测量周期的N倍,N为大于1的正整数。
例如,假设其中两个第一RS分别为CSI-RS 1和CSI-RS 2。CSI-RS 1的第一测量周期为10ms,CSI-RS 2的第一测量周期为20ms。在当前波束未发生波束失败的情况下,可以将CSI-RS 1的测量周期延长为原本的4倍,即其延长后的第二测量周期为40ms;将CSI-RS 2的测量周期延长为原本的3倍,即其延长后的第二测量周期为60ms。
可选地,对于不同的第一RS而言,如果他们各自的第一测量周期不同,那么可以通过N的取值,来使得这些第一RS的被延长后的第二测量周期差不多大或者相同。
对于一个第一RS而言,在不同的应用场景中,其对应的N的取值可以不同,本申请对N的具体取值不作限定。N的取值可以是固定不变的,也可以是动态变化的,本申请对此也不作限定。以下将示例性地说明几种确定N的取值的实现方式。
确定N的取值的方式一,在当前波束的波束失败概率较低时,波束失败概率越低,则N的取值可以越大。也就是说,发生波束失败的概率越低,第一RS的测量周期就可以被延长得越大。
采用这样的方式,在当前波束发生波束失败的概率很低的时候,就可以将测量候选波束的频率也降得很低;在当前波束发生波束失败概率上升的时候,则将测量候选波束的频率也相应地增加,从而有利于平衡降低UE的功耗和减少对波束失败恢复流程的影响这两个效果。
由于检测RS的测量结果在一定程度上可以反映出波束失败概率的高低,故而在确定N的取值的一种具体实现方式中,UE可以根据检测RS的测量结果,来确定N的取值。
可选地,检测RS的测量结果可以包括:第三预设时间段内所述检测RS的误块率BLER值。在一段时间内,检测RS的BLER值越低,说明当前波束的信道状态越好,发生波束失败的概率越低,此时N的取值可以越大。也就是说,UE可以根据检测RS的BLER值与预设的第七阈值的差值,确定所述N的取值。
在UE根据检测RS的BLER值与预设的第七阈值的差值,确定N的取值的方案的基础上,可选地,UE在某一个时间点确定了N的取值之后,还可以持续根据检测RS的BLER值来更新N的取值,从而实现动态调整。示例性地,UE周期性地测量某个检测RS的BLER值,如果检测RS的BLER值持续低于第八阈值,即连续R次测量到该检测RS的BLER值低于第八阈值,则增加N的取值。本申请对R的具体取值不作限定。通过这样的方式,如果当前波束的信号质量在很长一段时间内一直都很好,那么可以逐渐增大第一RS的测量周期,从而进一步减小UE的功耗。
上述第三预设时间段的时长可以是预设的数值,本申请对该时长的具体取值不作限定。上述的第七阈值应当大于或等于第八阈值,第七阈值、第八阈值可以是预设的数值,本申请对于第七阈值、第八阈值的具体取值也不作限定。
确定N的取值的方式二,如果某个第一RS的信号质量一直很好时,在确定其第二测量周期的时候,可以根据其信号质量好的程度,来确定N的取值。
如果某一个第一RS对应的候选波束在一段时间内的信号质量一直都很高,那么即便降低该候选波束的测量频率,对于波束失败恢复流程的正常进行的影响也不大。因此,当某个第一RS的信号质量一直很好的时候,可以根据其信号质量好的程度或者差的程度,来确定N的取值。
由于一段时间内第一RS的测量结果在一定程度上可以反映出其对应的候选波束 的信号质量,故而在确定N的取值的一种具体实现方式中,UE可以根据第一RS的测量结果,来确定N的取值。
可选地,第一RS的测量结果包括:第四预设时间段内所述第一RS的BSRP值。在一段时间内,如果RS的BSRP值越高,说明该第一RS对应的候选波束的信号质量越好,此时N的取值可以越大。也就是说,UE可以根据第一RS的BSRP值与第九阈值的差值,确定所述N的取值。
在根据第一RS的BSRP值与第九阈值的差值确定所述N的取值的实现方式的基础上,可选地,UE在某一个时间点确定了N的取值之后,还可以根据第一RS的BSRP值来更新N的取值,从而实现动态调整。示例性地,UE周期性地测量某个第一RS的BSRP值,如果该第一RS的BSRP值持续高于第十阈值,即连续T次测量到该第一RS的BSRP值高于第十阈值,则增加N的取值。本申请对T的具体取值不作限定。通过这样的方式,如果某一个第一RS对应的候选波束的信号在很长一段时间内一直都很好,那么可以逐渐增大该第一RS的测量周期,从而进一步减小UE的功耗。
需要说明的是,上述第四预设时间段的时长可以是预设的数值,本申请对该时长的具体取值不作限定。上述的第九阈值应当小于或等于第十阈值。第九阈值、第十阈值可以是预设的数值,本申请对于其具体取值均不作限定。
确定N的取值的方式三,如果某个第一RS的信号质量一直很差,在确定其第二测量周期的时候,可以根据其信号质量差的程度,来确定N的取值。
如果其在一段时间内信号质量一直都很差,那么在当前波束发生波束失败的时候UE基本不会选用这样的候选波束来替换当前波束,故而即便降低其测量频率,对于波束失败恢复流程的正常进行的影响也不大。因此,当某个第一RS的信号质量一直很差的时候,可以根据其信号质量差的程度,来确定N的取值。
可选地,第一RS的测量结果包括:第五预设时间段内所述第一RS的BSRP值。在一段时间内,如果第一RS的BSRP值越低,说明该第一RS对应的候选波束的信号质量越差,此时N的取值可以越大。也就是说,UE可以根据第一RS的BSRP值与第十一阈值的差值,确定所述N的取值。
在UE根据第一RS的BSRP值与第十一阈值的差值确定N的取值的方案的基础上,可选地,UE在某一个时间点确定了N的取值之后,还可以根据第一RS的BSRP值来更新N的取值,从而实现动态调整。示例性地,UE周期性地测量某个第一RS的BSRP值,如果该第一RS的BSRP值持续低于第十二阈值,即连续U次测量到该第一RS的BSRP值低于第十二阈值,则增加N的取值。本申请对U的具体取值不作限定。通过这样的方式,如果某一个第一RS对应的候选波束的信号在很长一段时间内一直都很差,那么可以逐渐增大该第一RS的测量周期,从而进一步减小UE的功耗。
需要说明的是,上述第五预设时间段内的时长可以是预设的数值,本申请对该时长的具体取值不作限定。上述第十一阈值应当大于或等于第十二阈值,第十一阈值应当小于第九阈值。第十一阈值、第十二阈值可以是预设的数值,本申请对于其具体取值均不作限定。
(二)在延长第一RS的测量周期的第二种实现方式中,UE可以设置激活周期,每一个激活周期包括一个激活期(即第一时间段)和一个非激活期(即第二时间段),在激活期内延长第一RS的测量周期,即采用第一RS对应的第二测量周期,在非激活期内则不延长第一RS的测量周期,即采用第一RS对应的第一测量周期。
具体来说,延长所述至少一个第一RS的测量周期,包括:如果所述UE的当前时间点处于激活期内,则将所述至少一个第一RS的测量周期分别延长为所述至少一个第一RS各自的第二测量周期。
本申请实施例中的激活期为在时域上划分出的时间段,在激活期内第一RS的测量周期允许被延长。相应地,非激活期也是在时域上划分出的时间段,在非激活期内第一RS的测量周期不允许被延长。激活期与非激活期彼此不重叠。一般地,非激活期与激活期在时域上交替设置,相邻的一个激活期与一个非激活期可以视作一个激活周期。
通过这样的方式,UE可以在间歇性地减少第一RS的测量频率,降低UE的功耗。并且,该方式易于实现,与其他延长第一RS的测量周期的实现方式相比,采用该实现方式有利于规范化实现,降低了实现的复杂度。
需要说明的是,激活期和非激活期的时长可以是预设的,也可以是根据当前信道的情况,即当前波束的情况来决定的,本申请对此不作限定。例如,UE可以预先设定,每一个激活周期的时长可以为11s,其中前10s为激活期,后1s为非激活期。这样,每隔10s,UE就可以将这些第一RS的测量周期恢复为其各自原本的测量周期,持续的时间为1s。又例如,如果在一定时间段内当前波束的检测RS的BLER值持续低于一个预设阈值,说明当前信道的通信质量较好,则UE可以将激活期的时长设置地比较长。否则,UE就可以将激活期的时长设置地比较短。
(三)在延长第一RS的测量周期的第三种实现方式中,对于某个第一RS而言,可以预设与第一RS的测量结果相关的条件,利用该预设的条件来实现延长该第一RS的测量周期的方案。
方式一,如果某个第一RS的测量结果满足预设的条件(以下称为第二条件),则直接延长该第一RS的测量周期,即将该第一RS的测量周期延长为对应的第二测量周期。
本申请实施例中的第二条件用于描述延长第一RS的测量周期之前,该第一RS的测量结果所需要满足的条件。如前所述,对于某一个第一RS而言,如果其在一段时间内的多次测量结果都较好,那么即便降低其测量频率,对于波束失败恢复流程的正常进行的影响也不大。因此,第二条件可以是描述第一RS的测量结果一直较好或者较差的条件。
可选地,对于某个灵活而言,其对应的第二条件可以包括:连续M次测量到第一RS的RSRP值高于第十三阈值,其中,M为正整数。上述第十三阈值可以是一个预设的数值,例如由基站配置的RSRP阈值,本申请对其具体取值不作限定。
需要说明的是,不同的第一RS各自对应的第二条件可以不同,也可以相同,本申请对此不作限定。
方式二,UE可以设置一个定时器,设置对应的第二条件作为定时器启动的条件。在定时器的运行期间,第一RS的测量周期允许被延长。即,如果一个第一RS的测量结果满足预设的第二条件,则启动定时器;在所述定时器的运行期间,将该第一RS的测量周期延长为其对应的第二测量周期。定时器的时长L大于第一测量周期,其可以是一个预设的固定值,也可以是一个可变的值,本申请对此不作限定。当定时器的时长L为固定值时,在每次启动定时器的时候都按照同一个固定值来判断是否超时。当定时器的时长为可变的值时,在启动定时器的时候可以按照特定的条件来修改L的取值。例如,如果当前波束的信号质量长时间都很好,则可以逐渐增大L的取值,比如第一次启动定时器时L取值为L1,第二次启动定时器时L取值为L1+Δl,第三次启动定时器时L取值为L1+2Δl,以此类推。
在定时器的运行期间,UE按照一个第一RS的第二测量周期来测量该第一RS。需要说明的是,当一个第一RS的第二测量周期大于或等于定时器的时长的时候,相当于UE在定时器运行期间不对该第一RS进行测量。这种情况可以理解为UE按照第二测量周期来测量该第一RS的一种特殊情况。
可选地,在定时器超时之后,UE可以恢复第一RS的测量周期,重新按照第一RS的第一测量周期来对该第一RS进行测量。如果当前波束未发生波束失败,那么一旦该第一RS的测量结果又满足了前述的第二条件,就可以再重新启动定时器。可选地,在定时器超时之后,如果当前波束未发生波束失败,UE也可以直接重启定时器。
需要说明的是,不同的第一RS可以各自对应各自的定时器,部分或全部第一RS也可以对应一个共同的定时器,本申请对此不作限定。
通过这样的方式,可以有条件地、间歇性地(即有时限性地)减少第一RS的测量频率,进一步减小延长第一RS的测量周期可能对正常候选波束测量产生的影响,避免在一些突发情况下对第一RS测量不及时,导致对波束失败恢复造成影响。
应理解,从候选RS中可能确定出多个第一RS,对于这多个第一RS,不同第一RS的延长测量周期的实现方式可以相同,也可以不同,本申请对此不作限定。
需要说明的是,在前述S201至S202的步骤中,UE是在当前波束未发生波束失败的情况下再从候选RS中筛选出第一RS,然后延长这些第一RS的测量周期。在另一种可行的方案中,无论当前波束是否发生波束失败,UE都可以从候选RS中确定至少一个第一RS。然后在判断出当前波束未发生波束失败的情况下,UE再延长这些第一RS的测量周期。前述判断当前波束是否发生波束失败的实现方式、延长第一RS的测量周期的实现方式,以及恢复第一RS原本的测量周期的实现方式,均可以结合应用在该方案中,此处不再赘述。
还需要说明的是,在本实施例中,UE独立地延长第一RS的测量周期,而网络设备则可以仍然按照各个候选RS原本的测量周期来发送候选RS,本申请对此不作限定。
应理解,在实际应用中,尽管网络设备可能仍然按照原本的周期来发送候选RS,但对于UE来说,其延长了第一RS的测量周期,故而在部分时间点上UE可以无需再接收这些第一RS,即UE可以相应降低对这些第一RS的接收频率,从而进一步降低了UE的功耗。
可选地,在特定的触发条件(以下称为第四条件)下,UE可以将调整为第二测量周期的第一RS的测量周期,重新恢复为原本的测量周期,即恢复为第一测量周期。在本实施例的技术方案还可以包括以下步骤:
S203:如果满足第四条件,则将所述至少一个第一RS的测量周期恢复为所述至少一个第一RS各自的第一测量周期。
上述第四条件用于描述需要恢复第一RS原本的测量周期时所需要满足的条件。如果一个第一RS在被延长测量周期之后,满足其对应的第四条件,则可以将其测量周期恢复成该第一RS的第一测量周期。
不同的第一RS可以对应各自的第四条件,部分或者全部第一RS也可以对应同一个第四条件,在不用的情况下可以采用不同的实现方式。一个第一RS可以对应一个第四条件,也可以对应多个第四条件,本申请对此不作限定。以下将示例性地对第四条件的几种可能的实现方式作说明。
方式一,当前波束发生波束失败。
UE会持续判断当前波束是否发生波束失败,不断更新判断结果。在至少一个第一RS的测量周期被延长之后,一旦当前波束发生波束失败,需要UE尽快进行波束失败恢复,以尽可能保证UE的通信质量。因此,在这种情况下,UE可以将被延长测量周期的这些第一RS的测量周期都恢复为其各自的第一测量周期,以免延误波束失败恢复的时间。
例如,沿用前述S201步骤中的例子,假设基站为UE配置的q0集合中包含两个检测RS,分别为SSB 1,SSB 2,并配置了检测RS的BLER值的阈值为0.1,第一次数为5次。UE对SSB 1和SSB 2进行周期性检测。在t0时刻之后的t2时刻,当UE检测到SSB 1和SSB 2中任一个的BLER值高于0.1时,计数器的数值加1之后的读数为5,达到了第一次数。此时,UE判断出当前波束发生波束失败。则UE将第一RS的测量周期都恢复为其各自对应的第一测量周期。
方式二,定时器超时。
当采用前述定时器的方案时,在一个第一RS对应的定时器超时之后,UE可以恢复该第一RS的测量周期,重新按照该第一RS的第一测量周期来对其进行测量。通过这样的方式,既可以降低UE的功耗,也可以有条件地、间歇性地减少第一RS的测量频率,进一步减小延长第一RS的测量周期可能对正常候选波束测量产生的影响。
实施例二 UE独立实现候选波束测量的方法
本实施例提供一种候选波束测量方法,该方法与实施例一的方法的主要区别在于,对从候选RS中确定至少一个第一RS的步骤,增加了前置的触发条件(以下称为第三条件)。在当前波束未发生波束失败,且满足第三条件的情况下,从候选RS中确定至少一个第一RS,延长这些第一RS的测量周期。请参见图5,图5为本申请实施例提供的另一种候选波束测量方法的流程示意图。该方法可以由UE执行,以降低UE在候选波束扫描时的功耗。该方法包括以下S601至S602的步骤。
S601:在当前波束未发生波束失败,并且满足第三条件的情况下,从候选RS中确定至少一个第一RS。
该第三条件可以是与候选RS的配置信息或失败检测配置信息相关的条件,可以是与当前波束的波束失败概率相关的条件,也可以是用户的操作相关的条件,还可以是与UE的参数相关的条件。在不同的应用场景中,第三条件可以有不同的实现方式。以下将示例性地对其中几种可能的实现方式作说明。
(一)第三条件可以与候选RS的配置信息相关。
在一种实现方式中,候选RS的配置信息可以包括候选RS的总数量,第三条件可以为:候选RS的总数量大于第二阈值。
上述候选RS的配置信息指的是在BFR流程中与候选RS相关的一系列参数,可以由网络设备为UE配置。候选RS的总数量,指的是UE接入基站等某一个网络设备时,该网络设备为UE配置的候选RS的总数量。
上述第二阈值可以是一个预设的数值,例如UE自身支持配置的候选RS数量,本申请对于第二阈值的具体取值不作限定。
对于一个UE来说,一方面,其被配置的候选RS越多,需要测量的候选RS就越多,相应地UE的功耗就越大。另一方面,被配置的候选RS越多,候选波束就越多,候选波束之间存在重叠的可能性就越大。可见,当网络设备为UE配置的候选RS的数量较大时,其中一部分候选波束可能是不必要的,对于这些波束可以不进行测量。基于此,在本实现方式中,如果候选RS的总数量大于第二阈值,则将未配置上报内容的候选RS中的一部分或全部确定为第一RS。或者,如果候选RS的总数量大于第二阈值,则将未配置上报内容,并且测量周期小于第三阈值或者检测RS的测量周期的这部分候选RS中的部分或全部,确定为第一RS。采用这样的方式有利于降低UE的功耗,并且也不会影响空口交互。又或者,如果候选RS的总数量大于第二阈值,则将测量周期小于第三阈值或者检测RS的测量周期的这部分候选RS中的部分或全部,确定为第一RS。采用这样的方式有利于降低UE的功耗。
(二)第三条件可以与失败检测配置信息相关。
在一种实现方式中,失败检测配置信息可以包括第一次数,第三条件可以为:第一次数高于第四阈值。
上述失败检测配置信息指的是在BFR流程中与波束失败检测相关的一系列参数, 可以由网络设备为UE配置。第一次数是指在判断当前波束是否发生波束失败时,检测RS满足第一条件所需达到的临界次数。
上述第四阈值可以是一个预设的数值,本申请对于第四阈值的具体取值不作限定。如果第一次数高于第四阈值,可以认为第一次数的取值较大。
如前所述,当检测RS满足第一条件达到第一次数K时,UE才会确定当前波束发生波束失败。如果K的取值较大,那么在UE测量到检测RS满足第一条件一次或多次(小于K次)之后,再开始对候选波束进行测量也来得及,无需一直高频率地对候选波束进行测量。而如果K的取值较小,那么从第一次测量到检测RS满足第一条件,到第K次测量到检测RS满足第一条件之间相隔的时间可能很短,导致无法及时完成对候选波束的测量,进而延误波束失败恢复的时间。基于此,在本实现方式中,如果第一次数高于第四阈值,则可以将未配置上报内容的所述候选RS中的部分或全部,确定为第一RS。采用这样的方式,有利于降低UE的功耗,并且也不会影响空口交互。
(三)第三条件可以与当前波束的波束失败概率相关。
在有的情况下,虽然当前波束没有发生波束失败,但是其即将发生波束失败的概率很高,这个时候如果UE延长一部分候选RS的测量周期,可能会延误波束失败恢复的时间,影响UE的通信质量。为此,可以将波束失败概率应用到第三条件中来。
在一种实现方式中,该第三条件可以是:当前波束的波束失败概率低于第一阈值。
本申请实施例中的波束失败概率,用于指示当前波束发生波束失败的可能性。示例性地,波束失败概率可以采用数值来表示,例如50%、15%等。
上述第一阈值可以是一个预设的数值,本申请对于第一阈值的具体取值不作限定。当波束失败概率低于第一阈值时,即认为当前波束发生波束失败的概率较低。
当满足上述条件时,即在当前波束的波束失败概率较低的情况下(应理解,此时当前波束必然未发生波束失败),UE可以延长第一RS的测量周期,从而在降低UE的功耗的同时尽可能保证UE的通信质量。
当前波束的波束失败概率可以通过多种方式来确定,以下将示例性地对几种可能的实现方式作进一步说明。
确定波束失败概率的方式一,利用UE的先验信息来确定当前波束的波束失败概率。这里的先验信息,可以是UE的历史运动记录、历史通信记录、驻留过的小区历史信息、UE的姿态记录、检测RS的信号质量等信息中的一种或者多种信息。
上述UE的历史运动记录,是用于表示UE在时间维度上的位置变化情况的记录。例如,UE的历史运动记录可以是UE在过去的一段时间内的运动轨迹,或在过去的一段时间内的地理位置记录等。
UE的历史运动记录与当前波束的波束失败概率可能存在关联。例如,根据UE的运动轨迹,匹配UE当前是否处于以保存的某一条固定路径上。如果UE处在某一条固定路径上,则可以读取历史运动记录中在该条固定路径上曾经发生波束失败的位置。 如果UE的当前位置距离曾经发生波束失败的位置较远,说明UE发生波束失败的概率较低。相应地,当前位置距离曾经发生波束失败的位置很近,说明UE发生波束失败的概率较高。又例如,在历史运动记录中,UE在某一条固定路径上的某一位置附近移动时从没有发生波束失败,那么,如果UE当前移动至该位置附近,则UE的当前波束发生波束失败的概率也较低。基于此,可以利用UE的历史运动记录来确定当前波束的波束失败概率。
UE的历史通信记录,是用于表示UE在时间维度上的通信质量情况的记录。例如,UE的历史通信记录可以是UE在过去一段时间内的信号接收功率的记录等。
UE的历史通信记录与当前波束的波束失败概率可能存在关联。例如,统计UE的历史通信记录,发现其通信质量存在一定的规律。比如对于一个处于商场区域中的UE,在工作日的某一个特定时间段,由于商场区域中人流量和车流量较小,波束被遮挡的频率较低,UE的通信质量总是很好,则相应地,UE发生波束失败的概率较低。反之,在周末的某一个时间段,商场区域中人流量和车流量较大,波束可能被频繁遮挡,信号质量变化幅度较大,则相应地,UE发生波束失败的概率较高。基于此,可以利用UE的历史通信记录来帮助确定UE的当前波束的波束失败概率。
驻留过的小区历史信息,可以记录UE过去所处的服务小区的信息。UE的小区历史信息与当前波束的波束失败概率可能存在关联。当UE接入不同的网络设备,处于对应的服务小区中时,其通信质量可能存在差异。例如,一些服务小区的天线架设在高处或开阔地,通信的场景基本为直视径,当处于这样的服务小区中时UE的通信质量总是很好,当前波束发生波束失败的概率较小。而另一些服务小区处于地形复杂的区域,通信场景基本为非直视径,依赖于波束的反射,则波束被遮挡的概率也较大,当处于这样的服务小区中时UE的通信质量总是很差,当前波束发生波束失败的概率较大。基于此,在一种实现方式中,可以构建服务小区与波束失败概率的对应关系。每当UE进入到一个服务小区,通过查询小区ID等信息,就可以将上述对应关系中与该服务小区对应的波束失败概率,作为UE当前波束的波束失败概率。
UE的姿态记录,是用于表示UE在时间维度上的姿态变化情况的记录。UE的姿态可以通过UE上的传感器来确定。例如,UE的姿态记录可以是在一段时间内UE中的陀螺仪、重力计等传感器的变化情况。
检测RS的信号质量则如前所述,具体可以采用BLER、SINR、RSRQ等参数来表征。
UE的姿态、检测RS的信号质量与当前波束的波束失败概率可能存在关联。例如,如果在一段时间内UE的姿态稳定,且检测RS的信号质量较好(例如BLER值低于某个特定阈值),说明在这一段时间内并未发生UE被遮挡的情况,信道较为稳定。那么,在接下来的一段时间内发生波束失败的概率较低。又例如,如果在一段时间内UE的姿态变化较快,且检测RS的信号质量逐渐变差(例如BLER值逐渐上升),说明UE可能很快要发生波束失败,也就是即将发生波束失败的概率较高。基于此,可以利用UE的姿态记录和检测RS的信号质量来确定当前波束的波束失败概率。
在一个示例中,可以采用统计学习等机器学习方法来得到波束失败概率。首先,利用上述一种或者多种先验信息以及是否发生波束失败等结果进行预先训练,构建先验信息和波束失败概率之间的模型。然后,将当前UE的位置、小区、姿态、信号质量中的一种或多种信息输入到模型中进行预测,从而得到当前波束的波束失败概率。
需要说明的是,上述先验信息可以各自单独用于确定当前波束的波束失败概率,也可以结合起来用于确定当前波束的波束失败概率,本申请对此不作限定。
确定波束失败概率的方式二,基于检测RS满足预设的第一条件的次数,以及前述第一次数,来估算波束失败概率。
在前述实施例一中,在计数器的数值没有达到第一次数,但比较接近第一次数的情况下,UE仍然会判断当前波束未发生波束失败,进而延长一部分候选RS的测量周期。由于此时计数器的数值已经比较接近第一次数了,其可能在很短的时间内就会达到最大检测数值,从而判断为发生波束失败。在这种情况下,UE可能来不及完成对这些RS对应的候选波束的测量,导致延误波束失败恢复的时间。
如果检测RS满足预设的第一条件的次数远远小于第一次数,说明当前波束发生波束失败的概率较小;如果检测RS满足预设的第一条件的次数接近第一次数,说明当前波束发生波束失败的概率较大。基于此,UE可以利用二者来计算当前波束的波束失败概率,具体的计算方法可以根据应用场景的不同而不同,本申请对此不作限定。
除了直接将波束失败概率引入到第三条件中的实现方式以外,还可以将其他能够体现当前波束的波束失败概率的参数引入到第三条件中。示例性地,可以设置一个小于前述第一次数的第一次数阈值,以此来衡量当前波束即将发生波束失败的概率的高低。如果检测RS满足第一条件的次数不大于第一次数阈值,就认为当前波束的波束失败概率较低,从而执行前述实施例中的延长第一RS的测量周期的各个步骤。如果检测RS满足第一条件的次数大于第一次数阈值,就认为当前波束的波束失败概率较高,不适合延长一部分候选RS的测量周期。也就是说,前述第三条件可以是:检测RS满足第一条件的次数小于第一次数阈值。
例如,沿用前述的例子,假设第一次数仍然为5次,第一次数阈值为1。假设在t1时刻MAC层中的计数器的数值为0,不大于第一次数阈值,则UE认为当前波束即将发生波束失败的概率较低,可以执行后续的延长一部分候选RS的测量周期的步骤。
(四)第三条件可以与用户的操作相关。
在一种实现方式中,第三条件可以是:接收到用户的预设操作。
上述预设操作可以是进入UE的某个预设模式相关的操作,本申请对于预设操作的具体动作不作限定。示例性地,在前述图3A涉及的应用场景中,当用户通过点击“省电模式”的开启按钮来开启图3A所示的“省电模式”(即预设操作)时,UE可以响应于用户的该操作,执行前述实施例中任意一种候选波束测量方法。又示例性地,在前述图3B涉及的应用场景中,当用户通过点击交互界面中的“是”按钮来指示UE开启图3所示的“过热保护模式”(即预设操作)时,UE可以响应于用户的该操作,执行从候选 RS中确定至少一个第一RS的步骤。。
通过该方式,用户可以自行决定是否要进入某个预设模式,进而执行从候选RS中确定至少一个第一RS,延长第一RS的测量周期的方法,在保证通信质量的同时降低UE的功耗,甚至保护UE的一些零部件。
(五)第三条件可以与UE的一个或者多个参数相关。
当UE的这一个或者多个参数满足特定条件(以下称为第一特定条件)时,就认为满足第三条件。UE可以自动根据UE自身的一些情况来决定是否要执行在未发生波束失败的情况下延长第一RS的测量周期的方法,可以不依赖用户的操作。这里的UE的参数可以是UE的剩余电量、温度、位置、时间等。
示例性地,第三条件可以是:检测到UE的剩余电量处于某个电量阈值范围之内。比如,UE的剩余电量处于0%至20%的范围之内。当满足该条件时,UE自行地开始执行前述实施例中任意一种候选波束测量方法,或者UE自行地进入前述的“省电模式”等预设模式,进而开始执行前述实施例中任意一种候选波束测量方法。
示例性地,第三条件可以是:检测到UE的温度处于某个温度阈值范围之内。比如,UE的温度处于40℃以上。当满足该条件时,UE自行地开始执行前述实施例中任意一种候选波束测量方法,或者UE自行地进入前述的“过热保护模式”等预设模式,进而开始执行前述实施例中任意一种候选波束测量方法。
示例性地,第三条件可以是:检测到UE的位置处于特定区域中。当满足该条件时,UE自行地开始执行前述实施例中任意一种候选波束测量方法。
这里的特定区域可以是预设的,也可以是用户自行设置的,还可以是动态生成的,本申请对此不做限定。例如,UE从历史统计数据中发现,UE处于A办公楼所处的区域中时信号质量总是很好,那么UE就可以自行将A办公楼所处的区域确定为一个特定区域。而后续如果情况发生改变,比如A办公楼附近建造了一个新的大楼,遮挡了信号导致UE处于A办公楼所处的区域中时信号质量变差,那么UE可以不再将其作为一个特定区域。
示例性地,第三条件可以是:检测到UE的时间处于处于特定时间段内。当满足该条件时,UE自行地开始执行前述实施例中任意一种候选波束测量方法。
这里的特定时间段可以是预设的,也可以是用户自行设置的,还可以是动态生成的,本申请对此不做限定。例如,根据用户的行为习惯,UE可以从历史统计数据中发现,UE在工作日的早上10点至下午6点之间信号质量总是很好,那么UE就可以自行将工作日的早上10点至晚上6点确定为一个特定时间段。而后续如果情况发生改变,比如UE在工作日的中午12点至下午1点之间信号质量变差,那么UE可以动态地调整,将工作日的早上10点至中午12点,以及下午1点至下午6点这两个时间段分别确定为特定时间段。
通过上述方式,UE可以自动根据UE自身的一些情况来决定是否要执行在未发生波束失败的情况下延长第一RS的测量周期的方法,在保证通信质量的同时降低UE的 功耗,甚至保护UE的一些零部件。
需要说明的是,上述多种实现方式,可以单独应用在第三条件中,也可以结合应用在测量周期改变条件中,本申请对此不做限定。
S602:延长测量所述至少一个第一RS的测量周期。
步骤S602中与前述实施例一中S202的步骤相同的内容,可以参考前述的相关描述,此处不再赘述。
可选地,在特定的触发条件(以下称为第四条件)下,UE可以将调整为第二测量周期的第一RS的测量周期,重新恢复为原本的测量周期,即恢复为第一测量周期。在本实施例的技术方案还可以包括以下步骤:
S603:如果满足第四条件,则将所述至少一个RS的测量周期恢复为所述至少一个第一RS各自的第一测量周期。
上述第四条件可以参见实施例一的相关描述。除了实施例一示出的两种实现方式以外,以下还示例性地对第四条件的另外几种可能的实现方式作说明。
方式三,当前波束的波束失败概率高于第一阈值。
UE也可以持续获取当前波束的波束失败概率,不断进行更新。在至少一个第一RS的测量周期被延长之后,一旦当前波束的更新后的波束失败概率较高,例如高于第一阈值,说明当前波束很有可能在即将发生波束失败。在这种情况下,可以提前将被延长测量周期的这些第一RS的测量周期恢复为其各自的第一测量周期,以免在发生波束失败之后延误波束失败恢复的时间,从而尽可能保证UE的通信质量。
除了直接将波束失败概率引入到第四条件中的实现方式以外,还可以将其他能够体现当前波束的波束失败概率的参数引入到第四条件中。例如,如前所述,在判断是否发生波束失败时,如果检测RS满足第一条件(例如检测RS的BLER值高于某一个阈值,或者,检测RS的RSRP值/SNR值低于某一个阈值)的次数达到第一次数,此时可以判断发生波束失败。如果未达到第一次数,但已经比较接近第一次数,说明当前波束发生波束失败的概率较高,此时可以提前将被延长测量周期的这些第一RS的测量周期恢复为其各自的第一测量周期。在一种实现方式中,可以设置一个小于前述第一次数的次数阈值(例如前述的第一次数阈值),以此来衡量当前波束即将发生波束失败的概率的高低。如果检测RS满足第一条件的次数大于第一次数阈值,就认为当前波束的波束失败概率较高,从而将被延长测量周期的这些第一RS的测量周期恢复为其各自的第一测量周期,以免在发生波束失败之后延误波束失败恢复的时间,从而尽可能保证UE的通信质量。
方式四,检测到UE的一个或几个参数满足特定条件(以下称为第二特定条件)。
上述第二特定条件用于表征当前波束发生波束失败概率较高。这里UE的参数可以是UE的当前位置、移动速度等。
例如,如果UE多次在某一个位置发生波束失败,UE可以在历史运动记录中保存该历史波束失败位置。这样,当UE进入到该历史波束失败位置的一定阈值范围内时,UE就可以计算UE的当前位置与该历史波束失败位置之间的距离,以此来衡量波束失败概率的高低,进而更好地调整第一RS的测量周期。或者,UE可以根据UE的当前位置、移动速度等来预测到达该历史波束失败位置的时间,以此来衡量波束失败概率的高低,进而更好地调整第一RS的测量周期。
示例性地,对于某一个曾经发生波束失败的位置A点,当UE移动到A点附近(比如距离A点的距离d小于某一特定的距离阈值)时,或者,预测UE移动至A点的时间较短(比如预测UE到达A点的时间t小于某一特定的时间阈值)时,说明UE即将发生波束失败的概率较高(例如高于前述的第一阈值)。此时,UE可以提前将第一RS的测量周期恢复为第一测量周期。
方式五,接收到用户的退出预设模式的操作。
这里的预设模式,可以是在UE中预先设定好的模式。示例性地,预设模式可以是前述的“省电模式”或者“过热保护模式”等。当UE处于预设模式时,第一RS的测量周期允许被延长,从而使UE可以执行本申请各个实施例中的候选波束测量方法。
上述操作指令,可以是由用户对UE进行操作而输入的,也可以是UE自行生成的,本申请对于操作指令的来源不作限定。
当接收到到退出预设模式的操作指令时,UE重新按照这些第一RS各自的第一测量周期来对其进行测量。通过这样的方式,既可以降低UE的功耗,也可以根据用户的需求或者UE自身的情况来减少第一RS的测量频率,提升用户体验。
应理解,在本实施例中,UE可以独立地延长第一RS的测量周期,或者恢复第一RS的测量周期。而网络设备则可以仍然按照各个候选RS原本的测量周期来发送候选RS,本申请对此不作限定。
实施例三 UE与网络设备交互以实现候选波束测量的方法
UE可以与网络设备进行交互,来延长一部分候选RS的测量周期。即,UE与网络设备在就延长一部分候选RS的测量频率的问题达成一致后,UE再降低这部分候选RS的接收频率,从而降低这部分候选RS的测量频率,进而降低UE的功耗。至于延长哪一部分候选RS的测量周期,可以由UE来确定,也可以由网络设备来确定,以下将分别对这两种情况作说明。
(一)在UE和网络设备通过交互实现降功耗的一种实现方式中,UE可以自行从候选RS中筛选出一部分作为第二RS,然后将筛选出来的第二RS的信息携带在重配请求中,上报给网络设备,以便与网络设备之间达成一致。请参见图6,图6为本申请实施例提供的一种候选波束测量方法的信令流程图。该方法可以由UE和网络设备共同执行,以降低UE在候选波束扫描时的功耗。
S301:UE从网络设备为所述UE配置的候选RS中确定至少一个候选RS。
为便于说明,在本申请实施例中将UE从网络设备为所述UE配置的候选RS中确定出的这些候选RS,称为第二RS。关于从候选RS中确定至少一个候选RS的方法,可以参考实施例一中UE从候选RS中确定第一RS的相关描述,此处不再赘述。
需要说明的是,该步骤可以在判断出当前波束是否发生波束失败之前进行,也可以在判断出当前波束未发生波束失败的情况下进行。
S302:在当前波束未发生波束失败的情况下,UE向网络设备发送重配请求。
需要说明的是,前述实施例二中的第三条件也可以应用到本实施例的方法中,作为UE向网络设备发送重配请求的触发条件,即,S302的步骤可以替换为:在当前波束未发生波束失败,并且满足第三条件的情况下,向网络设备发送重配请求。
关于如何判断当前波束是否发生波束失败,可以参考实施例一的相关描述,关于第三条件,可以参考实施例二的相关描述,此处均不再赘述。
可选地,上述重配请求可以用于指示UE从网络设备为UE配置的候选RS中所确定的至少一个候选RS,即用于指示UE从网络设备为UE配置的候选RS中确定出来的第二RS,以便请求重配这些第二RS的测量周期。例如,重配请求可以携带第二RS的ID。应理解,重配请求中还可以携带其他信息,本申请对此不作限定。
可选地,上述重配请求可以用于指示UE为从网络设备为UE配置的候选RS中所确定的至少一个候选RS确定的第四测量周期。为了便于区分,本申请中将网络设备接收到所述重配请求之前为这些候选RS配置的测量周期,称为第三测量周期。将网络设备重新为这些候选RS配置的测量周期,即这些候选RS的被延长后的测量周期,称为第四测量周期。
S303:网络设备根据所述重配请求,生成重配响应信息。
网络设备在接收到来自UE的重配请求之后,根据重配请求就可以了解到UE所确定的第二RS。然后,网络设备可以生成一个重配响应信息,反馈给UE。
在不同的应用场景中,重配响应信息所指示的信息可以不同。
在一种实现方式中,网络设备可以生成一个重配响应信息,该重配响应信息指示网络设备是否同意UE提出的重配请求,包括:所述重配响应信息用于指示所述网络设备是否同意所述终端所确定出的候选RS。网络设备再将该重配响应信息发送给UE。
例如,以MAC信令作为重配响应信息,网络设备(比如基站)可以在MAC信令中增加1bit的应答信令,该应答信令用于指示网络设备对UE的重配请求的应答,比如取值为1表示网络设备同意UE的重配请求,取值为0表示网络设备不同意UE的重配请求。
可选地,所述重配响应信息还可以用于指示所述网络设备是否同意所述终端所确定出的候选RS,以及终端为这些候选RS确定的其各自的第四测量周期。
在另一种实现方式中,网络设备可以重新为第二RS配置测量周期,即,将这些第二RS的新的测量周期发送给UE。
关于本实施例中的第三测量周期,可以参考前述实施例一中的第一测量周期,此处不再赘述。对于一个第二RS而言,其第四测量周期的时长需要大于该第二RS原本的测量周期,即大于其第三测量周期。在本实施例的方法中,第四测量周期的时长可以是第三测量周期的N倍,也可以不是第三测量周期的N倍,本申请对此不作限定,只需要满足第四测量周期的时长比第三测量周期更大即可。
示例性地,以RRC信令作为重配响应信息,网络设备(比如基站)可以直接将第二RS各自的第四测量周期添加在RRC信令中,将其发送给UE。通过这样的方式,可以避免影响现有协议的内容。
需要说明的是,重配响应信息还可以携带其他信息,例如实施例一所述的激活周期、定时器长度等,本申请对此不作限定。
S304:UE接收来自所述网络设备的重配响应信息。
S305:UE根据所述重配响应信息,延长测量UE从网络设备为所述UE配置的候选RS中确定出的至少一个候选RS的测量周期。
在接收到重配响应信息之后,根据响应信息中携带的内容的不同,UE可以采用不同的方式来延长第二RS的测量周期。
在第一种实现方式中,当重配响应信息用于指示网络设备是否同意重配请求时,如果UE根据重配响应信息确定网络设备同意了UE提出的重配请求,就可以延长测量这些第二RS的测量周期。在这种情况下,具体如何来延长第二RS的测量周期,可以由UE自己决定。如果重配请求中没有指示UE为第二RS确定的第四测量周期,则延长后的测量周期的时长,即第四测量周期,也可以由UE自行确定,例如可以参见前述实施例一的相关描述。如果重配请求中指示UE同意了UE为第二RS确定的第四测量周期,则UE按照这些第二RS各自的第四测量周期来进行测量。
在第二种实现方式中,当重配响应信息用于指示网络设备确定的第二RS各自的第四周期时,UE可以直接将这些第二RS的测量周期延长至对应的第四测量周期。
需要说明的是,在本实施例中,网络设备可以仍然按照原本的发送周期(与第三测量周期相同),使用对应的候选波束来发送这些第二RS,也可以将第四测量周期作为新的发送周期,来发送这些第二RS,本申请对此不作限定。当网络设备仍然按照原本的发送周期来发送第二RS时,UE侧第二RS被延长后的测量周期应当为第三测量周期的N倍,从而使UE每一次使用候选波束来接收第二RS的时间点与网络设备侧的发送时间点可以对应上。否则,第二RS的测量周期与网络设备侧的发送周期既不相同,也非整数倍,UE在某些测量第二RS的时间点,会由于网络设备侧没有发送对应的第二RS而漏掉部分次数的测量。而当网络设备以第四周期作为新的发送周期,来发送第二RS时,由于UE侧第二RS被延长后的测量周期与网络设备的发送周期相同,故而不要求其是第三周期的N倍。
还需要说明的是,对于不同的第二RS而言,延长其测量周期的实现方式可以相同,也可以不同,本申请对此不作限定。
采用本实施例的候选波束测量方法,UE在当前波束未发生波束失败的情况下,向网络设备发送重配请求,重配请求可以用于指示UE从网络设备为终端配置的候选RS中所确定的至少一个候选RS,还可以用于指示这些候选RS的第四测量周期。网络设备根据该重配请求,生成重配响应信息,反馈给UE,这样UE和网络设备就达成了一致。此后,UE可以根据重配响应信息,来延长这些这些候选RS的测量周期,从而降低这部分候选RS的测量频率,进而降低UE的功耗。
(二)在UE和网络设备通过交互实现降功耗的另一种实现方式中,UE可以将一些能够辅助信息携带在重配请求中,上报给网络设备,然后由网络设备根据这些辅助信息重配UE的候选参考信号RS,再反馈给UE,从而使交互双方达成一致。请参见图7,图7为本申请实施例提供的另一种候选波束测量方法的信令流程图。该方法可以由UE和网络设备共同执行,以降低UE在候选波束扫描时的功耗。
S401:在当前波束未发生波束失败的情况下,UE向网络设备发送重配请求。
需要说明的是,前述实施例二中的第三条件也可以应用到本实施例的方法中,作为UE向网络设备发送重配请求的触发条件,即,S302的步骤可以替换为:在当前波束未发生波束失败,并且满足第三条件的情况下,向网络设备发送重配请求。
关于如何判断当前波束是否发生波束失败,可以参考实施例一的相关描述,关于第三条件可以参考实施例二的相关描述,此处均不再赘述。
上述重配请求中可以携带辅助信息,例如UE支持配置的候选RS数量、UE支持的最小测量周期等。
对于UE而言,其支持配置的候选RS数量是往往是有限的,如果网络设备为UE配置的候选RS数量超过了UE支持配置的候选RS数量,例如,UE支持配置的候选RS数量只有20个,而网络设备为UE配置的候选RS数量为24个,那么UE可能无法接收到部分候选RS,无法对其进行测量。基于此,UE可以将其支持配置的候选RS数量携带在重配请求中,上报给网络设备,以便网络设备为UE重配候选RS。示例性地,网络设备可以在UE支持配置的候选RS数量小于候选RS的总数量时,从网络设备接收到重配请求之前为UE配置的候选RS中筛选出部分或者全部,重配这些候选RS的测量周期。
对于UE而言,其支持的最小测量周期往往是有下限的,不能无限度的缩短测量周期,提高测量频率。对于某一个候选RS而言,如果网络设备为UE配置的该候选RS的测量周期过小,小于UE支持的最小测量周期,例如,UE支持的最小测量周期是5ms,而网络设备为UE配置的其中一个候选RS(例如CSI-RS1),的最小测量周期为1ms,那么UE将无法接收到网络设备在部分时间点发送的该候选RS,导致漏掉了一部分网络设备原本期望UE检测到的测量结果。基于此,UE可以将其支持的最小测量周期携带在重配请求中,上报给网络设备,以便网络设备重配候选RS。示例性地,网络设备可以根据重配请求,从第三周期小于UE支持的最小测量周期的候选RS中筛选出部分或者全部,重配这些候选RS的测量周期。
需要说明的是,重配请求也可以同时携带UE支持配置的候选RS数量和UE支持 的最小测量周期,使网络设备能够结合这两种信息来重配候选RS。此外,重配请求中也可以携带其他可行的信息,本申请对此不作限定。
S402:网络设备根据所述重配请求,生成重配响应信息。
根据重配请求中携带的辅助信息的不同,网络设备可以生成指示不同信息的重配响应信息。
在一种实现方式中,当重配请求中携带UE支持配置的候选RS数量时,网络设备可以判断其为UE配置的候选RS数量是否超过该UE支持配置的候选RS数量。如果超过,则网络设备可以重新为UE配置候选RS。重配的候选RS的数量不超过UE支持配置的候选RS数量。示例性地,网络设备可以根据超过的数量,从网络设备接收到重配请求之前为UE配置的候选RS中随机地或者通过其他可行的方法筛选出部分或者全部。
在另一种实现方式中,当重配请求中携带UE支持的最小测量周期时,网络设备可以重新为UE配置候选RS。重配的候选RS的测量周期(即第四测量周期)不超过UE支持的最小测量周期。示例性地,网络设备可以分别比较其为每一个候选RS配置的对应的测量周期,以及UE支持的最小测量周期。从测量周期小于UE支持的最小测量周期的候选RS中筛选出部分或全部,重新配置其测量周期。
该重配响应信息可以用于指示网络设备为终端配置的候选RS。例如,重配响应信息可以指示这些候选RS的ID。示例性地,以MAC信令作为重配响应信息,网络设备(比如基站)可以在MAC信令中携带这些候选RS的ID的集合。该重配响应信息还可以用于指示网络设备为终端的至少一个候选RS配置的第四测量周期。
S403:UE接收来自所述网络设备的重配响应信息。
S404:UE根据所述重配响应信息,延长测量所述至少一个候选RS的测量周期。
UE接收到重配响应信息之后,根据重配响应信息指示的内容的不同,可以采用不同的方式来延长这些候选RS的测量周期。
在一种实现方式中,当重配响应信息指示网络设备为终端重新配置的候选RS时,UE可以延长这些候选RS的测量周期。可选地,延长后的测量周期可以是由UE自行确定的,具体可以参考前述第四测量周期相关的描述,此处不再赘述。可选地,延长后的测量周期也可以是由网络设备配置的,例如,当重配响应信息指示了网络设备为终端的至少一个候选RS配置的第四测量周期时,UE可以按照这些候选RS的第四测量周期来进行测量。
本实施例中的方法可以在现有协议标准的基础上来实现,保证了协议标准的遵从性,并且有利于规范化实现UE的降功耗,降低了实现的复杂度。
实施例四 UE与网络设备交互以实现候选波束测量的方法
基于前述的发明构思,本申请实施例还提供一种候选波束测量方法。对于那些波 束质量在很长一段时间内一直都很差的候选波束而言,即便当前波束发生波束失败,将当前波束切换为这些候选波束的机会也比较小。也就是说,无论当前波束是否发生波束失败,或者发生波束失败的概率是否较高,这些候选波束对于波束失败恢复流程的影响都比较小。基于此,对于这样的候选波束对应的候选RS,UE可以在与基站达成一致之后,延长其测量周期,从而降低UE的功耗。
请参见图8,图8为本申请实施例提供的另一种候选波束测量方法的信令流程图。该方法可以由UE和网络设备共同执行,以降低UE在候选波束扫描时的功耗。
S501:UE根据候选RS的测量结果,从所述候选RS中确定至少一个候选RS。
候选RS的测量结果可以反映出候选RS对应的候选波束的波束质量。因此,根据候选RS的测量结果,UE可以筛选出波束质量一直都比较差的那些候选波束,从其对应的候选RS中确定出部分或全部,作为第二RS。
在一种实现方式中,候选RS的测量结果可以包括:第六预设时间段内候选RS的RSRP值。这样,UE就可以将RSRP值低于第十四阈值的这部分候选RS中的部分或全部,确定为第二RS。
上述第六预设时间段的时长可以是一个预设的数值,本申请对其具体数值不作限定。上述第十四阈值可以是一个预设的数值,本申请对其具体取值不作限定。
需要说明的是,第六预设时间段内候选RS的RSRP值与第十四阈值比较的过程,可以参考前述实施例一中第一预设时间段内候选RS的RSRP值与第五阈值比较的过程,此处不再赘述。
S502:UE向网络设备发送重配请求。
所述重配请求用于指示所述终端从所述网络设备为所述终端配置的候选RS中所确定的至少一个候选RS,即指示所述至少一个第二RS。
S503:网络设备根据所述重配请求,生成重配响应信息。
S504:UE接收来自所述网络设备的重配响应信息。
S505:UE根据所述重配响应信息,延长所述至少一个候选RS的测量周期。
上述S503至S505的步骤可以参考前述实施例中的相关描述,此处不再赘述。
实施例五
前述实施例从终端以及网络设备的角度对本申请提供的候选波束测量方法的各方案进行了介绍。本领域技术人员应该很容易意识到,结合前述各个实施例中描述的步骤,本申请中的方法不仅能够以硬件或计算机软件的形式来实现,还可以以硬件和计算机软件结合的形式来实现。某个功能究竟以何种形式来实现,取决于技术方案的特定应用和设计约束条件。
本实施例提供一种终端。请参见图9,图9为本申请实施例提供的一种终端的结 构示意图。在一种实现方式中,该终端700包括至少一个处理器701和至少一个存储器702,所述至少一个存储器702用于存储计算机程序指令,当所述计算机程序指令被所述至少一个处理器701执行时,使得所述终端实现实施例一或实施例二中的任一种方法。
本实施例提供一种网络设备。请参见图10,图10为本申请实施例提供的一种网络设备的结构示意图。在一种实现方式中,该网络设备800包括至少一个处理器801和至少一个存储器802,所述至少一个存储器802用于存储计算机程序指令,当所述计算机程序指令被所述至少一个处理器801执行时,使得所述网络设备实现实施例三或实施例四中的任一种方法。
本实施例提供一种芯片系统。请参见图11,图11为本申请实施例提供的一种芯片系统的结构示意图。在一种实现方式中,该芯片系统1000包括至少一个处理器1001;当所述至少一个处理器1001执行指令时,所述至少一个处理器1001执行实施例一至实施例四中的任一种方法。该芯片系统还可以包括接口1002,接口1002用于接收代码指令,并传输至至少一个处理器1001。
上述至少一个存储器702、802存储有一个或多个计算机程序或指令。存储器702或802可以包括易失性存储器(volatile memory),例如随机存取内存(random access memory,RAM);还可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器702或802还可以包括上述种类的存储器的组合。所述存储器702或802中可以存储计算机可执行程序或指令。
上述处理器701、801或1001可以包括一个或多个处理单元,例如:处理器701、801或1001可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。所述处理器701或801还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,简称GAL)或其任意组合。
处理器701通过执行存储在存储器702中的指令,从而可以实现电子设备的功能或者数据处理。例如,处理器701通过执行存储器702中存储的程序或指令,使得所述终端700实现前述实施例中终端所执行的方法的部分或者全部步骤。处理器801通过执行存储在存储器802中的指令,从而可以实现电子设备的功能或者数据处理。例如,处理器801通过执行存储器802中存储的程序或指令,使得所述网络设备800实 现前述实施例中网络设备所执行的方法的部分或者全部步骤。
应理解,上述芯片系统可以包括一个芯片,也可以包括多个芯片组成的芯片模组,本申请对此不作限定。
本实施例还提供一种计算机可读存储介质。该计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行前述实施例一至实施例四中终端所执行的任一种方法的部分或全部步骤,或者,使得所述计算机执行前述实施例三或实施例四中网络设备所执行的任一种方法的部分或全部步骤,
这里的可读存储介质可为磁碟、光盘、DVD、USB、只读存储记忆体(ROM)或随机存储记忆体(RAM)等,本申请对具体的存储介质形式不作限定。
上述实施例的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如软盘、硬盘、磁带)、光介质(例如DVD)或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
应理解,在本申请的各种实施例中,各步骤的执行顺序应以其功能和内在逻辑确定,各步骤序号的大小并不意味着执行顺序的先后,不对实施例的实施过程构成限定。
除非另外说明,本说明书中的“多个”,指的是两个或者两个以上。在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解,“第一”、“第二”等字样并不对数量和执行次序构成限定,并且“第一”、“第二”等字样也并不限定一定不同。
还应理解,本说明书中各个实施例中的实现方式,只要逻辑上不矛盾,均可以相互结合。各个实施例之间相同相似的部分互相参见即可。尤其,对于终端、网络设备、芯片系统、计算机可读存储介质和计算机程序产品的实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例中的说明即可。以上的实施方式并不构成对本申请保护范围的限定。

Claims (25)

  1. 一种候选波束测量方法,其特征在于,应用于终端,所述方法包括:
    根据候选参考信号RS的配置信息或者测量结果,从所述候选RS中确定至少一个第一RS;其中,当前波束未发生波束失败,所述当前波束是网络设备为所述终端配置的用于传输数据的波束;
    延长测量所述至少一个第一RS的测量周期;其中,第二测量周期是所述第一RS的被延长后的测量周期,第一测量周期是所述网络设备为所述第一RS配置的测量周期,所述第二测量周期大于所述第一测量周期。
  2. 根据权利要求1所述的方法,其特征在于,所述从所述候选RS中确定至少一个第一RS,包括:
    在满足第三条件的情况下从所述候选RS中确定出所述至少一个第一RS;
    所述满足第三条件包括以下至少一种条件:
    当前波束的波束失败概率低于第一阈值;或者,
    接收到用户的进入预设模式的操作,其中,当所述终端处于所述预设模式时,所述至少一个第一RS的测量周期允许被延长;或者,
    检测到所述终端的参数满足第一特定条件,其中,所述终端的参数包括终端的剩余电量、温度、位置和时间中的一个或多个;或者,
    所述候选RS的配置信息中配置的候选RS的总数量大于第二阈值;或者,
    所述失败检测配置信息中配置的第一次数高于第四阈值,其中,在检测到的波束失败实例BFI大于第一次数时,所述终端的MAC确定发生波束失败。
  3. 根据权利要求1至2任一项所述的方法,其特征在于,所述候选RS的配置信息包括:第一指示信息,所述第一指示信息用于指示所述候选RS是否配置上报内容;
    所述根据候选RS的配置信息,从所述候选RS中确定至少一个第一RS,包括:
    基于每个候选RS的所述第一指示信息从候选RS中确定出至少一个第一RS,每个第一RS未被配置上报内容。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述候选RS的配置信息包括:所述候选RS的测量周期;
    所述根据候选RS的配置信息,从所述候选RS中确定至少一个第一RS,包括:
    基于每个候选RS的测量周期从候选RS中确定出至少一个第一RS,每个第一RS的测量周期小于第三阈值;或者,
    基于每个候选RS的测量周期从候选RS中确定出至少一个第一RS,每个第一RS的测量周期小于检测RS的测量周期,所述检测RS指的是用于检测当前是否发生波束失败的RS。
  5. 根据权利要求1至3任一项所述的方法,其特征在于,所述候选RS的测量结果包括:第一预设时间段内所述候选RS的参考信号接收功率RSRP值;
    根据所述候选RS的测量结果,从所述候选RS中确定至少一个第一RS,包括:
    基于每个候选RS的所述RSRP值从候选RS中确定出所述至少一个第一RS,每个第一RS的所述RSRP值低于第五阈值。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述第二测量周期为所述第一测量周期的N倍,所述N为大于1的正整数。
  7. 根据权利要求1至5任一项所述的方法,其特征在于,所述延长测量所述至少一个第一RS的测量周期,包括:
    在第一时间段延长测量所述至少一个第一RS的测量周期,在所述第一时间段内所述至少一个第一RS的测量周期允许被延长。
  8. 根据权利要求1至5任一项所述的方法,其特征在于,延长所述至少一个第一RS的测量周期,包括:
    如果任一第一RS的测量结果满足第二条件,则延长所述第一RS的测量周期。
  9. 根据权利要求1至5任一项所述的方法,其特征在于,延长所述至少一个第一RS的测量周期,包括:
    如果任一第一RS的测量结果满足第二条件,则启动定时器;其中,在所述定时器的运行期间所述第一RS的测量周期允许被延长,所述定时器的时长大于所述第一测量周期的时长;
    在所述定时器的运行期间,将所述第一RS的测量周期延长为所述第一RS的第二测量周期。
  10. 根据权利要求8或9所述的方法,其特征在于,所述测量结果为RSRP值,所述第二条件包括:连续M次测量到所述第一RS的RSRP值高于第十三阈值,其中,M为正整数。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述方法还包括:
    如果满足第四条件,则将所述至少一个第一RS的测量周期恢复为所述至少一个第一RS的第一测量周期;其中,所述第四条件包括:
    发生波束失败;或者,
    所述当前波束的波束失败概率高于或等于第一阈值;或者,
    接收到用户的退出预设模式的操作;或者,
    所述RS对应的定时器超时,其中,在所述定时器的运行期间所述RS的测量周期允许被延长;或者,
    所述终端的一个或多个参数满足第二特定条件。
  12. 一种候选波束测量方法,其特征在于,应用于终端,所述方法包括:
    向网络设备发送重配请求,所述重配请求用于请求重配所述终端的候选参考信号RS,所述候选RS用于确定波束失败恢复流程中的候选波束;或者,所述重配请求用于请求配置所述终端的至少一个候选RS的测量周期,当前波束未发生波束失败,所述当前波束是网络设备为所述终端配置的用于传输数据的波束;
    接收来自所述网络设备的重配响应信息。
  13. 根据权利要求12所述的方法,其特征在于,所述重配请求中携带:所述终端支持配置的候选RS数量;所述重配响应信息用于指示所述网络设备为所述终端配置的候选RS。
  14. 根据权利要求12所述的方法,其特征在于,所述重配请求中携带:所述终端支持的最小测量周期;所述重配响应信息用于指示所述网络设备为所述终端的至少一个候选RS配置的第四测量周期。
  15. 根据权利要求14所述的方法,其特征在于,所述第四测量周期大于第三测量周期,所述第三测量周期是所述网络设备接收到所述重配请求之前为所述候选RS配置的测量周期。
  16. 根据权利要求12所述的方法,其特征在于,所述重配请求用于指示所述终端从所述网络设备为所述终端配置的候选RS中所确定的至少一个候选RS;所述重配响应信息,用于指示所述网络设备是否同意所述重配请求;或者,
    所述重配请求用于指示所述终端为所述至少一个候选RS确定的第四测量周期;所述重配响应信息,用于指示所述网络设备是否同意所述重配请求。
  17. 一种候选波束测量方法,其特征在于,应用于网络设备,所述方法包括:
    接收来自用户设备终端的重配请求,所述重配请求用于请求重配所述终端的候选参考信号RS,所述候选RS用于确定波束失败恢复流程中的候选波束;或者,所述重配请求用于请求配置所述终端的至少一个候选RS的测量周期;
    根据所述重配请求,生成响应信息;
    向所述终端发送所述响应信息。
  18. 根据权利要求17所述的方法,其特征在于,所述重配请求中携带:所述终端支持配置的候选RS数量;所述重配响应信息用于指示所述网络设备为所述终端配置的候选RS。
  19. 根据权利要求18所述的方法,其特征在于,所述重配请求中携带:终端支持的最小测量周期;所述重配响应信息用于指示所述网络设备为所述终端的至少一个候选RS配置的第四测量周期。
  20. 根据权利要求19所述的方法,其特征在于,所述第四测量周期大于第三测量周期,所述第三测量周期是所述网络设备接收到所述重配请求之前为所述候选RS配置的测量周期。
  21. 根据权利要求17所述的方法,其特征在于,所述重配请求用于指示所述终端从所述网络设备为所述终端配置的候选RS中所确定的候选RS;所述重配响应信息,用于指示所述网络设备是否同意所述重配请求;或者,
    所述重配请求用于指示所述终端为所述候选RS确定的第四测量周期;所述重配响应信息,用于指示所述网络设备是否同意所述重配请求。
  22. 一种终端,其特征在于,包括至少一个处理器和至少一个存储器,所述至少一个存储器用于存储计算机程序指令,当所述计算机程序指令被所述至少一个处理器执行时,使得所述终端实现权利要求1至11,以及12至16中任一项所述的方法。
  23. 一种网络设备,其特征在于,包括至少一个处理器和至少一个存储器,所述至少一个存储器用于存储计算机程序指令,当所述计算机程序指令被所述至少一个处理器执行时,使得所述网络设备实现权利要求17至21中任一项所述的方法。
  24. 一种芯片系统,其特征在于,包括至少一个处理器;当所述至少一个处理器执行指令时,所述至少一个处理器执行权利要求1至21中任一项所述的方法。
  25. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中包括计算机程序指令,当所述计算机程序指令在计算机上执行时,使得所述计算机实现权利要求1至21中任一项所述的方法。
PCT/CN2021/085965 2020-05-14 2021-04-08 候选波束测量方法、终端、网络设备、芯片系统及介质 WO2021227715A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010405497 2020-05-14
CN202010405497.0 2020-05-14
CN202010928315.8 2020-09-07
CN202010928315.8A CN113676929A (zh) 2020-05-14 2020-09-07 候选波束测量方法、终端、网络设备、芯片系统及介质

Publications (1)

Publication Number Publication Date
WO2021227715A1 true WO2021227715A1 (zh) 2021-11-18

Family

ID=78525360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085965 WO2021227715A1 (zh) 2020-05-14 2021-04-08 候选波束测量方法、终端、网络设备、芯片系统及介质

Country Status (1)

Country Link
WO (1) WO2021227715A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023098346A1 (zh) * 2021-11-30 2023-06-08 华为技术有限公司 用于传输信息的方法和通信装置
WO2023202505A1 (zh) * 2022-04-20 2023-10-26 维沃移动通信有限公司 信道状态信息测量和上报方法、终端及网络侧设备
WO2023234838A1 (en) * 2022-05-31 2023-12-07 Telefonaktiebolaget Lm Ericsson (Publ) Reporting measurement of reference signal (rs) ports
WO2024035324A1 (en) * 2022-08-11 2024-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Method for data collection for spatial domain beam predictions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190268061A1 (en) * 2018-05-14 2019-08-29 Intel Corporation Systems and methods for l1-rsrp measurement accuracy for beam detection
CN110366827A (zh) * 2018-02-09 2019-10-22 华为技术有限公司 用于周期性波束故障测量的系统和方法
US20200107337A1 (en) * 2018-09-28 2020-04-02 Mediatek Inc. Measurement for Layer-1 Reference Signal Received Power (L1-RSRP)
CN111149306A (zh) * 2017-08-09 2020-05-12 Idac控股公司 用于波束恢复和管理的方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111149306A (zh) * 2017-08-09 2020-05-12 Idac控股公司 用于波束恢复和管理的方法和系统
CN110366827A (zh) * 2018-02-09 2019-10-22 华为技术有限公司 用于周期性波束故障测量的系统和方法
US20190268061A1 (en) * 2018-05-14 2019-08-29 Intel Corporation Systems and methods for l1-rsrp measurement accuracy for beam detection
US20200107337A1 (en) * 2018-09-28 2020-04-02 Mediatek Inc. Measurement for Layer-1 Reference Signal Received Power (L1-RSRP)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023098346A1 (zh) * 2021-11-30 2023-06-08 华为技术有限公司 用于传输信息的方法和通信装置
WO2023202505A1 (zh) * 2022-04-20 2023-10-26 维沃移动通信有限公司 信道状态信息测量和上报方法、终端及网络侧设备
WO2023234838A1 (en) * 2022-05-31 2023-12-07 Telefonaktiebolaget Lm Ericsson (Publ) Reporting measurement of reference signal (rs) ports
WO2024035324A1 (en) * 2022-08-11 2024-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Method for data collection for spatial domain beam predictions

Similar Documents

Publication Publication Date Title
WO2021227715A1 (zh) 候选波束测量方法、终端、网络设备、芯片系统及介质
JP7395575B2 (ja) 信号送信方法および通信装置
TWI730268B (zh) 用於無線通訊之觸發量測報告
JP7136797B2 (ja) 端末、無線通信方法及びシステム
CN114466420B (zh) 进行测量报告的方法及其设备
EP3433954B1 (en) Configuration and reporting of mobility measurements
US20200178194A1 (en) Measurement gap parameter configuration method, reference signal measurement method, and device
JP2022518400A (ja) ビーム障害検出を管理する装置、システム、コンピュータプログラム製品および方法
US20140247731A1 (en) Application-based radio-access technology switching
US11197185B2 (en) NR CSI-RS based beam failure detection/radio link monitoring in FR2
WO2019029749A1 (zh) 信息上报的触发方法和装置、信号的选择方法和装置
US20220407639A1 (en) Information communication method and device
US11089499B2 (en) Candidate beam detection in DRX mode
WO2019228614A1 (en) Reporting an indication of one or more estimated signal parameters
WO2020134984A1 (zh) 一种波束失败恢复方法及装置
WO2019223696A1 (zh) 通信方法及装置
US10911968B2 (en) Method for wireless communication, terminal, and non-transitory computer-readable storage medium
US20210013952A1 (en) Communication Devices for Efficient Beam Management
CN108668372B (zh) 一种上行传输方法和装置
CN113676929A (zh) 候选波束测量方法、终端、网络设备、芯片系统及介质
US9713023B2 (en) Techniques for measurement filtering for wireless systems
CN112533224A (zh) 波束切换方法、测量方法、装置、终端及网络侧设备
US11096041B2 (en) Allocation of a 5G radio base station to a group of radio base stations cooperating to constitute a system area
US20240137783A1 (en) Signalling support for split ml-assistance between next generation random access networks and user equipment
US10225752B2 (en) First network node, method therein, computer program and computer-readable medium comprising the computer program for detecting outage of a radio cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803332

Country of ref document: EP

Kind code of ref document: A1