WO2019029749A1 - 信息上报的触发方法和装置、信号的选择方法和装置 - Google Patents

信息上报的触发方法和装置、信号的选择方法和装置 Download PDF

Info

Publication number
WO2019029749A1
WO2019029749A1 PCT/CN2018/100257 CN2018100257W WO2019029749A1 WO 2019029749 A1 WO2019029749 A1 WO 2019029749A1 CN 2018100257 W CN2018100257 W CN 2018100257W WO 2019029749 A1 WO2019029749 A1 WO 2019029749A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
threshold
communication node
reference signal
reporting
Prior art date
Application number
PCT/CN2018/100257
Other languages
English (en)
French (fr)
Inventor
陈艺戬
鲁照华
高波
李儒岳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019029749A1 publication Critical patent/WO2019029749A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present application relates to the field of communications, for example, to a method and apparatus for triggering information reporting, a method and apparatus for selecting a signal.
  • the base station utilizes the beamforming capability of multiple antennas, and the narrower beam transmission can effectively improve the transmission efficiency. Therefore, the future trend of infinite communication will be to divide the cell into multiple more dynamics by using multiple narrow beams.
  • Virtual vectors provide various services to users. The service range of each beam can be flexibly adjusted using beam weights.
  • the narrow beam transmission may be sensitive to user equipment (UE) mobile and beam link blocking.
  • UE user equipment
  • the blocking phenomenon is serious and often causes link failure. Therefore, when the wireless channel generates a channel change due to the above reasons, the communication system needs to perform beam link switching and recovery quickly to provide a good user experience.
  • the transmission of the control channel also needs to be transmitted using the SS beam or the CSI-RS beam.
  • the beam failure occurs, if the base station side cannot quickly know the situation, the downlink control signaling cannot be sent.
  • the uplink and downlink transmissions cannot be initiated, causing the embarrassment of the entire communication link.
  • the embodiment of the present application provides a method and a device for triggering information reporting, a method and a device for selecting a signal, so as to at least solve the technical problem in the related art that the link failure related process of the protocol high layer cannot be triggered.
  • a method for triggering information reporting including: the terminal reporting the first information to the base station, where the first information is used for recommending the configuration of the quality threshold; and the quality threshold is used by the terminal to determine whether the second trigger is needed.
  • the information is reported, and the second information is used to indicate downlink transmission information.
  • a method for triggering information reporting including: a first communication node determining a first threshold and a second threshold of a quality threshold, wherein the first threshold is greater than a second threshold; the first communication node Measuring a quality value of the monitored reference signal; if the quality value is greater than the second threshold and less than the first threshold, the first communication node determines, according to the additional condition, whether the beam carrying the reference signal fails, wherein the beam fails In case, the first communication node triggers the reporting of the second information.
  • a method for triggering information reporting including: a first communication node acquires multiple types of quality thresholds configured by a second communication node; and the first communication node determines according to multiple types of quality thresholds. Whether the reporting of the second information needs to be triggered, where the second information is used to indicate the downlink transmission information.
  • a method for selecting a signal including: a first communication node and a second communication node agreeing on multiple failure types of a beam; and the first communication node is used for beam selection according to multiple failure type pairs.
  • the reference signal resources are configured; the first communication node performs measurement and selection based on the reference signal resources.
  • a method for transmitting a signal including: acquiring, by a second communication node, a failure type of a beam or reference signal activation request information; and determining, by the second communication node, the failure request or the reference signal activation request information.
  • a method for reporting information including: determining indication information of a beam or a reference signal to be fed back; and acquiring a location of the reported resource indicating the information.
  • a method for detecting a channel including: indicating, by a first communication node, information about a recommended beam; and the first communication node dividing the at least one of the following resources into multiple areas: time domain transmission
  • the resource and the frequency domain transmit the resource;
  • the first communication node acquires the control channel configuration corresponding to the multiple regions according to the agreed rule;
  • the first communication node detects the control channel according to the control channel configuration.
  • a triggering device for information reporting including: a first reporting unit, configured to report first information to a second communication node, where: the first information is used to recommend a quality threshold configuration The quality threshold is used by the first communication node to determine whether it is necessary to trigger the reporting of the second information, and the second information is used to indicate the downlink transmission information.
  • a triggering device for information reporting including: a first determining unit, configured to determine a first threshold and a second threshold of a quality threshold, wherein the first threshold is greater than the second threshold; a measuring unit, configured to measure a quality value of the monitored reference signal; the first determining unit is configured to determine, according to the additional condition, whether the beam carrying the reference signal fails according to the condition that the quality value is greater than the second threshold and less than the first threshold
  • the first communication node triggers the reporting of the second information in the case that the beam failure occurs.
  • a triggering device for information reporting including: a first acquiring unit configured to acquire multiple types of quality thresholds configured by the second communication node; and a second determining unit configured to A plurality of types of quality thresholds are used to determine whether the reporting of the second information needs to be triggered.
  • the second information is used to indicate downlink transmission information.
  • a signal selection apparatus comprising: an appointment unit configured to arbitrate a plurality of failure types of a beam with a second communication node; and a configuration unit configured to use according to a plurality of failure types
  • the reference signal resources of the beam selection are configured; the selection unit is configured to perform measurement and selection based on the reference signal resources.
  • a signal sending apparatus including: a second acquiring unit configured to acquire a failure type of a beam or reference signal activation request information; and a second determining unit configured to be invalid according to a beam
  • the type or reference signal activates the request information to determine a reference signal that needs to be triggered; the transmitting unit is configured to transmit the triggered reference signal.
  • an apparatus for reporting information includes: a third determining unit configured to determine indicator information of a beam or a reference signal to be fed back; and a third obtaining unit configured to acquire the indication information The location where the resource is reported.
  • a channel detecting apparatus including: a third reporting unit configured to report indication information of a recommended beam; and a dividing unit configured to divide at least one of the following resources into multiple The area: the time domain transmission resource and the frequency domain transmission resource; the fourth acquiring unit is configured to acquire the control channel configuration corresponding to the multiple areas according to the agreed rule; and the detecting unit is configured to detect the control channel according to the control channel configuration.
  • a storage medium comprising a stored program, wherein the program executes the method of any of the above.
  • processor being arranged to run a program, wherein the program is executed while performing the method of any of the above.
  • FIG. 1 is a schematic diagram of a multi-beam communication system in the related art
  • FIG. 2 is a schematic diagram of a multi-beam in the related art
  • FIG. 3 is a block diagram showing the hardware structure of a mobile terminal for triggering information reporting according to an embodiment of the present application
  • FIG. 4 is a flowchart of a method for triggering information reporting according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of a threshold according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a threshold according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a reference signal resource set according to an embodiment of the present application.
  • FIG. 8 is a structural block diagram of a triggering device apparatus for information reporting according to an embodiment of the present application.
  • PDCCH Physical downlink control channel
  • physical downlink control channel Physical downlink control channel
  • the DCI which is called Downlink control signaling in English, is carried by the downlink physical control channel PDCCH, and the downlink control information sent by the eNB to the UE includes uplink and downlink resource allocation, HARQ information, and power control lamps.
  • CSI-RS the English full name is Channel state information reference signal, channel state information reference symbol.
  • PUCCH Physical uplink control channel, physical uplink control channel.
  • PRACH Physical random access channel, physical random access channel.
  • SINR the English name is signal to interference plus noise ratio, signal to interference plus noise ratio.
  • RSRP Reference signal receiving power, reference signal received power.
  • a multi-beam communication system is shown in FIG. 1.
  • the base station uses radio frequency or baseband precoding technology to form a plurality of directional beams (corresponding to a plurality of virtual sectors) in a channel feature space or an actual 3D space.
  • the base station transmits in the beam mode, as shown in Figure 2.
  • Multiple SS beams may exist in a cell, and each SS beam may be associated with multiple CSI-RS (predicted channel state pilots) beams in a quasi-co-location (QCL) relationship, characterized by approximate beam steering.
  • CSI-RS predicted channel state pilots
  • QCL quasi-co-location
  • CSI-RS generally uses narrow beams, and SS also uses narrow beam transmission, but the beamwidth of SS is generally slightly wider than CSI-RS.
  • the base station may use the precoding weight corresponding to the best CSI-RS beam or the precoding weight corresponding to the SS beam as the reference weight of the control or data transmission. But the premise is to be able to get the best beam information.
  • the steps of the most basic flow include: step S11, step S12, and step S13.
  • step S11 the base station transmits beam reference signals (SS or CSI-RS) in different directions, and notifies the receiving end of the configuration information of the reference signals.
  • beam reference signals SS or CSI-RS
  • step S12 the terminal measures the reception quality of the beam reference signals, and selects a reference signal of better quality, and feeds back corresponding indication information to the base station.
  • step S13 the base station transmits the data by using precoding corresponding to the reference signals reported by the terminal.
  • the beam has the following quality problems:
  • the base station After the base station acquires the beam information and the CSI information, it can be used for downlink transmission.
  • the number of antennas that can be deployed is increasing.
  • the beam used will be narrower and narrower.
  • Control channels and data channels, etc. are transmitted using beams.
  • beam transmission has a high transmission efficiency, the transmission robustness is not very good. The main reason is that due to the narrow beam, the quality of the service beam is often degraded due to terminal movement, rotation of the handheld terminal, and occlusion of the propagation path, resulting in failure to communicate normally.
  • mobile terminal 30 may include one or more (only one of which is shown in FIG. 3) processor 302 (processor 302 may include, but is not limited to, a Microcontroller Unit (MCU) or a programmable logic device.
  • processor 302 may include, but is not limited to, a Microcontroller Unit (MCU) or a programmable logic device.
  • a processing device such as a Field-Programmable Gate Array (FPGA), a memory 304 configured to store data, and a transfer device 306 provided as a communication function.
  • FPGA Field-Programmable Gate Array
  • the structure shown in FIG. 3 is merely illustrative and does not limit the structure of the above electronic device.
  • the mobile terminal 30 may also include more or fewer components than those shown in FIG. 3, or have a different configuration than that shown in FIG.
  • the memory 304 can be configured as a software program and a module for storing the application software, such as a program instruction/module corresponding to the triggering method of the information reporting in the embodiment of the present application, and the processor 302 runs the software program and the module stored in the memory 304, thereby
  • the above methods are implemented by performing various functional applications and data processing.
  • Memory 304 can include high speed random access memory and can also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 304 can further include memory remotely located relative to processor 302, which can be connected to mobile terminal 30 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 306 is arranged to receive or transmit data via a network.
  • the above-described network specific example may include a wireless network provided by a communication provider of the mobile terminal 30.
  • transmission device 306 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • NIC Network Interface Controller
  • the transmission device 306 can be a Radio Frequency (RF) module configured to communicate with the Internet wirelessly.
  • RF Radio Frequency
  • the beam recovery technique mainly includes the following steps S21 to S24.
  • step S21 beam monitoring is mainly performed to determine beam failure.
  • step S22 beam selection is performed to select a new beam for reconstructing the transmission link.
  • step S23 the information is reported, and beam recovery related information, such as terminal indication information and beam indication information, is reported.
  • step S24 the DCI detects that the DCI is detected on the control channel of the newly established link.
  • the technical solution provided mainly solves the following four aspects.
  • This application can determine whether the beam has failed by a simple threshold.
  • the terminal measures the beam quality information. If the beam quality is higher than the threshold, it is determined that the beam is not invalid, and the information is not reported to the base station. If the beam quality is lower than the threshold, the beam is determined to be a beam failure, and beam recovery is required.
  • This approach faces the problem of accuracy, because the measurement results are often affected by the interference, and the statistical impact of the reference signal is also insufficient. Moreover, the quality of the beam reference signal does not fully reflect the quality of the control or data channel transmission. Based on this, the present application also proposes the following solutions to improve the accuracy of beam failure judgment.
  • the first communication node is used as the terminal (the first communication node may also be the remaining user terminals and the mobile terminal), and the second communication node is the base station (the second communication node may also be a device capable of providing user services).
  • the first communication node may also be the remaining user terminals and the mobile terminal
  • the second communication node is the base station (the second communication node may also be a device capable of providing user services). Example of application.
  • FIG. 4 is a flowchart of a method for triggering information reporting according to an embodiment of the present application. As shown in FIG. 4, the process includes the following step S402. And step S404.
  • step S402 the terminal acquires the first information.
  • the first information is used for the configuration of the recommended quality threshold (the recommendation here refers to: the first information indicates the configuration of the quality threshold to the base station, and the base station autonomously confirms whether to adopt), and the quality threshold is used by the terminal to determine whether the second trigger is needed.
  • the information is reported, and the second information is used to indicate downlink transmission information.
  • step S404 the terminal reports the first information to the base station.
  • the terminal sends the first information to the base station, where the first information is used for the configuration of the recommended quality threshold, the quality threshold is used by the terminal to determine whether the second information is to be triggered, and the second information is used to indicate the downlink transmission information.
  • the technical problem of the link failure related process of the protocol high layer cannot be triggered, and the function of triggering the link failure related process of the upper layer of the protocol is implemented.
  • the execution body of the foregoing steps may be a terminal, but is not limited thereto.
  • the downlink transmission information indicated by the second information includes at least one of: indication information of a terminal identifier (ie, a node identifier) of the terminal, indication information of the reference signal, indication information of the beam, and request information of the beam recovery.
  • indication information of a terminal identifier ie, a node identifier
  • indication information of the reference signal ie, a node identifier
  • indication information of the beam ie, a node identifier
  • request information of the beam recovery The request information transmitted by the reference signal and the indication information of the beam quality.
  • the threshold may be directly configured by the base station, but due to the different receiver capabilities of each UE, there may be different reception performance for the same RSRP or SINR and code rate parameters.
  • Some terminals can use the receiver-side interference processing algorithm to make good use of the multi-antenna at the receiving end to deal with interference and significantly improve the SINR. Therefore, the user terminal UE may recommend that the threshold parameter is set according to the receiver, so that the base station can more accurately configure the beam recovery quality threshold, and obtain a better balance between the beam recovery performance and the resource efficiency.
  • the present application also proposes a new method as shown in FIG. 6.
  • the main idea is to use multiple threshold beam failure judgment methods, which can make the beam failure judgment more accurate.
  • the embodiment of the present application provides a method for triggering information reporting on the mobile terminal, and the process includes: step S31, step S32, and step S33.
  • step S31 the terminal determines a first threshold and a second threshold of the quality threshold, wherein the first threshold is greater than the second threshold.
  • step S32 the terminal measures the quality value of the monitored reference signal.
  • step S33 if the quality value is greater than the second threshold and less than the first threshold, the terminal determines, according to the additional condition, whether the beam carrying the reference signal fails, wherein, in the case that the beam occurs, the terminal triggers the second information. Reported.
  • the determining, by the terminal, the first threshold and the second threshold of the quality threshold comprises: determining, by the terminal according to an agreement with the base station or according to the configuration of the base station, the first threshold and the second threshold.
  • the additional condition includes at least one of the following: the terminal determines whether the DCI information is detected in the measurement interval; the terminal determines whether there is a beam having a first threshold higher than the quality value of the beam; and the terminal determines the reference signal at the designated frequency. Whether the quality value at the domain location is lower than the third threshold; the terminal determines whether the difference between the quality value of the reference signal measured in the previous period and the quality value of the reference signal measured in the current period is greater than the second threshold.
  • the embodiment of the present application provides a method for triggering information reporting on the mobile terminal, and the process includes the following steps S41 and S42.
  • step S41 the terminal acquires multiple types of quality thresholds configured by the base station.
  • step S42 the terminal determines, according to the multiple types of quality thresholds, whether to trigger the reporting of the second information, where the second information is used to indicate the downlink transmission information.
  • the plurality of types of quality thresholds include at least: a reference signal received power RSRP and a signal to interference plus noise ratio SINR.
  • the quality threshold of the RSRP type includes a first threshold and a second threshold that is smaller than the first threshold, where the terminal determines, according to the multiple types of quality thresholds, whether the triggering of the second information is required to be reported, including: the RSRP is lower than In the case of the second threshold, the terminal triggers the reporting of the second information. If the RSRP is greater than the second threshold and is less than the first threshold, the terminal determines whether the reporting of the second information needs to be triggered according to the quality threshold of the SINR type.
  • the quality threshold of the RSRP type may be a threshold (RSRP threshold). If the threshold is greater than the threshold, the SINR is required to be determined. The terminal determines whether the second information needs to be triggered according to the quality threshold of the SINR type. In the case of less than the threshold, the failure is directly judged.
  • RSRP threshold a threshold
  • the terminal After the terminal finds that the beam fails, the terminal needs to select a suitable new beam to re-establish the link.
  • the following problem needs to be solved: how to determine the set of measurement reference signal resources corresponding to the beam selection, and how the terminal determines the time window and threshold of the beam selection. .
  • the time window of beam selection affects the accuracy of the measurement, beam recovery delay, and so on.
  • a window that is too small may result in the inability to measure enough beams, and it is easy to cause multiple measurements of the same beam to be measured.
  • the statistics are not sufficient enough to result in inaccurate results. Excessively large windows will result in significant delays in beam recovery, affecting link rebuilding speed and causing loss of system performance.
  • the related art only mentions that the base station configures reference signal resources, time windows, thresholds, and the like.
  • the disadvantage of this method is that the configuration is not flexible and there is a problem of low resource efficiency.
  • the measurement reference signal resource set corresponding to the beam selection affects the downlink reference signal overhead and the uplink reserved resource size, and needs to select a suitable reference signal resource set.
  • the aggregation of the assembly causes waste of overhead. If the aggregation is too small, it is easy to cause a good beam to be selected for link recovery.
  • the embodiment provides a method for selecting or transmitting a signal running on the mobile terminal side or the base station side.
  • the terminal and the base station agree on multiple failure types of the beam.
  • the following types A and B are included.
  • Type A SS beam failure, CSI-RS beam also fails.
  • Type B CSI-RS beam failure, SS beam is not invalid.
  • the number of beam failures for example, including the following types C and type D.
  • Type C Partially monitored beam failure.
  • Type D All monitored beams fail.
  • the beam failure type may also be described as a type of transmission performance degradation.
  • the terminal determines a reference signal resource for beam selection according to a plurality of failure types.
  • the terminal performs measurement and selection based on the reference signal resources.
  • the beam is a general term and the reference signal is transmitted using beams, where different reference signals represent different beams. Therefore, it is necessary to explain this matter. In the agreement, the concept of the beam may not be seen, only the concept of the reference signal. Different reference signal resource indexes actually represent the beam index. There are other ways to characterize the beam.
  • the technical problem that the link failure related process of the protocol high layer cannot be triggered in the related art can be solved, the function of the link failure related process of the trigger protocol upper layer is realized, and the reference signal resource utilization rate is optimized.
  • the base station acquires a failure type of the beam or reference signal activation request information.
  • the base station determines the reference signal that needs to be triggered according to the failure type or the reference signal activation request information.
  • the base station transmits the triggered reference signal.
  • Reference signals are typically pre-configured for multiple types of beam failures.
  • the terminal may feed back the type information of the beam failure to the base station, or directly perform the activation request of the reference signal.
  • the relationship between the type information of the beam failure and the reference signal activation request information may be M to N, and M may be greater than N, less than N, or equal to N.
  • the relevant information (including type, set size) of the candidate reference signal resource set may be associated with the type of beam failure beam failure.
  • the situation 1 may be a beam change caused by movement or rotation, and the occurrence 2 may be blocking blocking.
  • Different sets of candidate reference signal resources may be respectively corresponding. Taking FIG. 2 and FIG. 7 as an example, the following cases 1 and 2 can be used.
  • the reference signal type corresponding to the beam selection is CSI-RS; for example, CSI-RS 13-16. If SS3, SS5 and SS4 have similar time delays, consider extending to CSI-RS 11-18.
  • Case 2 serving beam, CSI-RS 15 beam failure, Serving virtual Cell, SS4 also failed.
  • the reference signal type corresponding to beam selection is SS, such as SS1-SS8.
  • the CSI-RS beams associated with other SSs are also transmitting and their configuration can be known by the UE, the CSI-RS beams can also be selected, or selected in the CSI-RS and SS hybrid beam sets.
  • CSI-RS 1-4 in FIG. 7 identifies CSI-RSs numbered 1 through 4, and so on.
  • the terminal needs to recover related information on the uplink channel or the signal, and is mainly divided into two types of information: new beam indication information and UE indication information.
  • new beam indication information When the transmit beam fails, the terminal reports the information, and the uplink may also be broken. You need to consider how to guarantee the success rate of the receive and not waste the overhead of the uplink, and the timeliness of the information. the design of.
  • the power control method may be a method for reporting information provided in this embodiment, and the flow includes the following steps S71 and S72.
  • step S71 the indication information of the beam or reference signal to be fed back is determined.
  • step S72 the location of the reporting resource (ie, the resource for uplink transmission) indicating the information is acquired.
  • the above method may further include: step S73 and step S74.
  • step S73 the transmission power is determined according to the location of the reported resource.
  • step S74 the indication information is reported at the location of the reported resource according to the transmission power.
  • obtaining the location of the reporting resource of the indication information comprises: determining a location of the reporting resource according to the type of failure of the beam.
  • determining the location of the candidate reporting resource according to the type of the failure of the beam includes: reporting the area corresponding to the PUCCH when the failure type is CSI-RS failure; and corresponding to the area of the PRACH like when the failure type is SS failure Reported.
  • determining the transmit power according to the location of the reported resource includes: acquiring the transmit power agreed with the base station when the location of the reported resource is the area to which the PRACH Like belongs; and when the location of the reported resource is the area to which the PUCCH belongs, according to the selection and The reported downlink reference signal resource determines the uplink transmit power.
  • the new beam is immediately cut to perform control information detection.
  • This method may have the following problems: the measurement result is inaccurate, the original beam can still work normally; the original beam becomes better in the beam recovery process; the new reception beam is found, the quality is improved, and the original transmission beam does not need to be changed.
  • the present application proposes a new method that does not cut off the original link but allows detection on the new link.
  • a method for detecting a channel is provided, and the flow includes the following steps S81 to S84.
  • step S81 the terminal reports the indication information of the recommended beam.
  • step S82 the terminal divides at least one of the time domain transmission resource and the frequency domain transmission resource into a plurality of regions (the division manner is configured by the base station or is pre-agreed by both).
  • step S83 the terminal acquires a control channel configuration corresponding to multiple regions according to the agreed rule.
  • step S84 the terminal detects the control channel according to the control channel configuration.
  • the terminal reports a new beam (selected reference signal resource) indication information.
  • the terminal divides at least one of the time domain and the frequency domain transmission resources into a plurality of zones according to a prescribed rule.
  • the terminal determines a control channel configuration corresponding to multiple resource areas according to the agreed rules.
  • At least one area corresponds to the original control channel configuration, and one area determines a corresponding control channel configuration according to the new beam (selected reference signal resource) indication information reported by the terminal.
  • the terminal detects the control channel according to its corresponding control channel configuration in multiple resource sets.
  • Area 1 odd-numbered symbols or Slots
  • area 2 even-numbered symbols or Slots.
  • the terminal When the terminal detects the control channel in the area 1, the terminal performs detection according to the original control channel configuration.
  • the terminal When the terminal detects the control channel in the area 2, the terminal performs detection according to the new control channel configuration.
  • the new control channel configuration can be determined based on the reported new beam (selected reference signal resource) information.
  • the terminal When the terminal detects the DCI information transmitted in the control channel resource corresponding to the original beam or the new beam, it is considered as the response of the beam recovery, and the end beam recovery is considered to be ended.
  • the main reason is to improve the beam recovery success rate in the following cases.
  • the link of the Blocking is recovered during beam recovery; the DCI can be correctly received on the original control channel by adjusting the receive beam during beam recovery; the base station can transmit DCI on the control channel of the original beam and the new beam, which has a greater chance of being correct.
  • the control information is detected.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present application which is essential or contributes to the related art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present application.
  • This application can determine whether the beam has failed by a simple threshold.
  • the terminal measures the beam quality information. If the beam quality is higher than the threshold, it is determined that the beam is not invalid, and the information is not reported to the base station. If the beam quality is lower than the threshold, it is determined that the beam is invalid, and beam recovery is required.
  • This approach faces the problem of accuracy, because the measurement results are often affected by the interference, and the statistical impact of the reference signal is also insufficient. Moreover, the quality of the beam reference signal does not fully reflect the quality of the control or data channel transmission. Based on this, the present application also proposes the following solutions to improve the accuracy of beam failure judgment.
  • the embodiment of the present application further provides a triggering device for information reporting, which is configured to implement the foregoing embodiments and application implementation manners, and has not been described again.
  • a triggering device for information reporting which is configured to implement the foregoing embodiments and application implementation manners, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the embodiment of the present application provides a triggering device for information reporting, and the device includes: a first reporting unit.
  • the first reporting unit is configured to report the first information to the base station, where: the first information is used to recommend the configuration of the quality threshold; the quality threshold is used to determine whether the terminal needs to trigger the reporting of the second information, and the second information is used to indicate the downlink transmission. information.
  • the terminal sends the first information to the base station, where the first information is used to recommend the configuration of the quality threshold, the quality threshold is used by the terminal to determine whether the second information is to be triggered, and the second information is used to indicate the downlink information.
  • the technical problem of the link failure related process of the protocol high layer cannot be triggered, and the function of triggering the link failure related process of the upper layer of the protocol is implemented.
  • the downlink transmission information indicated by the second information includes at least one of the following: indication information of the terminal identifier of the terminal, indication information of the reference signal, indication information of the beam, request information of the beam recovery, and request for sending the reference signal.
  • indication information of the terminal identifier of the terminal indicates whether the terminal is a registered device or not.
  • the threshold may be directly configured by the base station, but due to the different receiver capabilities of each UE, there may be different reception performance for the same RSRP or SINR and code rate parameters.
  • Some terminals can use the receiver-side interference processing algorithm to make good use of the multi-antenna at the receiving end to deal with interference and significantly improve the SINR. Therefore, the user terminal UE can recommend the threshold parameter according to the receiver, and can be used for the base station to more accurately configure the beam recovery quality threshold, and obtain a better balance between the performance of the beam recovery and the resource efficiency.
  • FIG. 8 is a structural block diagram of a device for triggering information reporting according to an embodiment of the present application. As shown in FIG. 8, the device includes: a first determining unit 801, a measuring unit 803, and a first determining unit 805.
  • the first determining unit 801 is configured to determine a first threshold and a second threshold of the quality threshold, wherein the first threshold is greater than the second threshold.
  • the measuring unit 803 is arranged to measure the quality value of the monitored reference signal.
  • the first determining unit 805 is configured to determine, according to the additional condition, whether the beam carrying the reference signal fails according to the additional condition, if the quality value is greater than the second threshold and less than the first threshold, where the terminal triggers in the case of a beam failure. The reporting of the second information.
  • the above-mentioned unit module can solve the technical problem that the link failure related process of the protocol high layer cannot be triggered in the related art, and realize the function of triggering the link failure related process of the upper layer of the protocol.
  • the determining, by the terminal, the first threshold and the second threshold of the quality threshold comprises: determining, by the terminal according to an agreement with the base station or according to the configuration of the base station, the first threshold and the second threshold.
  • the additional condition includes at least one of the following: the first communication node determines whether the DCI information is detected in the measurement interval; and the first communication node determines whether there is a beam having a first threshold higher than the quality value of the beam; A communication node determines whether the quality value of the reference signal at the specified frequency domain position is lower than a third threshold; the first communication node determines the quality value of the reference signal measured in the previous period and the quality value of the reference signal measured in the current period. Whether the difference between the differences is greater than the second threshold.
  • the embodiment of the present application provides a triggering device for information reporting, and the device includes the following units: a first acquiring unit and a second determining unit.
  • the first obtaining unit is configured to acquire multiple types of quality thresholds configured by the base station.
  • the second determining unit is configured to determine, according to the multiple types of quality thresholds, whether to trigger the reporting of the second information, where the second information is used to indicate the downlink transmission information.
  • the above-mentioned unit module can solve the technical problem that the link failure related process of the protocol high layer cannot be triggered in the related art, and realize the function of triggering the link failure related process of the upper layer of the protocol.
  • the plurality of types of quality thresholds include at least: a reference signal received power RSRP and a signal to interference plus noise ratio SINR.
  • the quality threshold of the RSRP type includes a first threshold and a second threshold that is smaller than the first threshold, where the terminal determines, according to the multiple types of quality thresholds, whether the triggering of the second information is required to be reported, including: the RSRP is lower than In the case of the second threshold, the terminal triggers the reporting of the second information. If the RSRP is greater than the second threshold and is less than the first threshold, the terminal determines whether the reporting of the second information needs to be triggered according to the quality threshold of the SINR type.
  • the embodiment of the present application provides a signal selection or transmitting apparatus.
  • the device includes the following units: an appointment unit, a configuration unit, and a selection unit.
  • the appointment unit is configured to align a plurality of failure types of the beam with the base station.
  • a configuration unit configured to determine a reference signal resource for beam selection based on a plurality of failure types.
  • the selection unit is set to measure and select based on reference signal resources.
  • the above-mentioned unit can solve the technical problem that the link failure related process of the protocol high layer cannot be triggered in the related technology, realizes the function of triggering the link failure related process of the upper layer of the protocol, and optimizes the utilization of the reference signal resource.
  • the embodiment of the present application provides a signal sending apparatus.
  • the apparatus includes the following units: a second acquisition unit, a second determination unit, and a transmission unit.
  • the second obtaining unit is configured to acquire a failure type of the beam or reference signal activation request information.
  • the second determining unit is configured to determine the reference signal that needs to be triggered according to the failure type or the reference signal activation request information.
  • the sending unit is set to send a triggered reference signal.
  • the reference signal is generally pre-configured for multiple types of beam failures. It should be noted that after the terminal finds that the beam fails, the terminal may feed back the type information of the beam failure to the base station, or directly request the activation of the reference signal.
  • the relationship between the type information of the beam failure and the reference signal activation request information may be M to N, and M may be greater than N, less than N, or equal to N.
  • an information reporting apparatus comprising the following units: a third determining unit and a third obtaining unit.
  • the third determining unit is configured to determine indication information of the beam or reference signal to be fed back.
  • the third obtaining unit is configured to acquire a location of the reporting resource of the indication information.
  • the apparatus may further include: a fourth determining unit and a second reporting unit.
  • the fourth determining unit is configured to determine the transmit power according to the location of the reported resource.
  • the second reporting unit is configured to report the indication information at the location of the reported resource according to the transmit power.
  • the above-mentioned unit can solve the technical problem that the link failure related process of the protocol high layer cannot be triggered in the related art, realizes the function of triggering the link failure related process of the upper layer of the protocol, and optimizes the power control.
  • obtaining the location of the reporting resource of the indication information comprises: determining a location of the reporting resource according to the type of failure of the beam.
  • determining the location of the candidate reporting resource according to the type of the failure of the beam includes: reporting the area corresponding to the PUCCH when the failure type is CSI-RS failure; and corresponding to the area of the PRACH like when the failure type is SS failure Reported.
  • determining the transmit power according to the location of the reported resource includes: acquiring the transmit power agreed with the base station when the location of the reported resource is the area to which the PRACH Like belongs; and when the location of the reported resource is the area to which the PUCCH belongs, according to the selection and The reported downlink reference signal resource determines the uplink transmit power.
  • a channel detecting apparatus includes the following units: a third reporting unit, a dividing unit, a fourth acquiring unit, and a detecting unit.
  • the third reporting unit is configured to report the indication information of the recommended beam.
  • the dividing unit is configured to divide the following at least one resource into multiple areas: a time domain transmission resource and a frequency domain transmission resource.
  • a fourth acquiring unit configured to acquire a control channel configuration corresponding to the multiple regions according to the agreed rule.
  • the detecting unit is configured to detect the control channel according to the control channel configuration.
  • the terminal reports a new beam (selected reference signal resource) indication information.
  • the terminal divides at least one of the time domain and the frequency domain transmission resources into a plurality of zones according to a prescribed rule.
  • the terminal determines a control channel configuration corresponding to multiple resource areas according to the agreed rules.
  • At least one area corresponds to the original control channel configuration, and one area determines a corresponding control channel configuration according to the new beam (selected reference signal resource) indication information reported by the terminal.
  • the terminal detects the control channel according to its corresponding control channel configuration in multiple resource sets.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • An embodiment of the present application further provides a storage medium including a stored program, wherein the program runs to perform the method of any of the above.
  • the storage medium may be configured to store program code for performing step S91, step S92, and step S93.
  • step S91 the terminal determines a first threshold and a second threshold of the quality threshold, wherein the first threshold is greater than the second threshold.
  • step S92 the terminal measures the quality value of the monitored reference signal.
  • step S93 if the quality value is greater than the second threshold and less than the first threshold, the terminal determines, according to the additional condition, whether the beam carrying the reference signal fails, wherein the terminal triggers the second information if the beam fails. Reported.
  • the storage medium is further arranged to store program code for performing the following steps S101 and S102.
  • step S101 the terminal acquires multiple types of quality thresholds configured by the base station.
  • step S102 the terminal determines, according to the multiple types of quality thresholds, whether to trigger the reporting of the second information, where the second information is used to indicate the downlink transmission information.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a read-only memory (ROM), a random access memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk.
  • ROM read-only memory
  • RAM random access memory
  • mobile hard disk a magnetic disk
  • optical disk a variety of media that can store program code.
  • Embodiments of the present application also provide a processor configured to execute a program, wherein the program executes the steps of any of the above methods when executed.
  • the above program is set to perform the following steps S91, S92, and S92.
  • the terminal determines a first threshold and a second threshold of the quality threshold, where the first threshold is greater than the second threshold.
  • the terminal measures the quality value of the monitored reference signal.
  • the terminal determines whether the beam carrying the reference signal fails according to the additional condition, where the terminal triggers the reporting of the second information if the beam fails.
  • modules or steps of the present application can be implemented by a general computing device, which can be concentrated on a single computing device or distributed in a network composed of multiple computing devices.
  • they may be implemented by program code executable by a computing device such that they may be stored in a storage device by a computing device and, in some cases, may be different from
  • the steps shown or described are performed sequentially, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the application is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信息上报的触发方法和装置、信号的选择方法和装置,通过本申请,第一通信节点向第二通信节点发送第一信息,第一信息设置为推荐质量门限的配置,质量门限设置为第一通信节点判断是否需要触发第二信息的上报,第二信息设置为指示下行传输信息。

Description

信息上报的触发方法和装置、信号的选择方法和装置
本申请要求在2017年08月11日提交中国专利局、申请号为201710687049.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,例如涉及一种信息上报的触发方法和装置、信号的选择方法和装置。
背景技术
在无线通信系统中,基站利用多根天线的波束成型能力,采用更窄波束传输能够有效提升传输效率,因此未来的无限通信发展趋势将是采用多个窄波束将小区分为多个更加动态的虚拟扇区(virtual vectors)来对用户提供各种服务。每个波束的服务范围可以利用波束权值进行灵活的调整。
但是利用窄波束传输会对用户(User Equipment,UE)移动和波束链路的阻塞会比较敏感,例如在高频中,阻塞现象比较严重,经常引起链路失效。因此当无线信道因为上述原因产生信道变化时,通信系统需要快速的进行波束链路切换和恢复,才能提供好的用户体验。
由于在多波束通信系统中,控制信道的传输也需要使用SS波束或CSI-RS波束进行传输,一旦出现波束失效时,如果基站侧无法快速的获知这一情况,就无法发送下行控制信令,上下行传输都无法发起,造成整个通信链路的瘫痪,目前还没有能够触发协议高层的链路失效相关流程、并发起重新接入的技术方案。
针对相关技术中不能触发协议高层的链路失效相关流程的技术问题,目前尚未提出有效的解决方案。
发明内容
本申请实施例提供了一种信息上报的触发方法和装置、信号的选择方法和装置,以至少解决相关技术中不能触发协议高层的链路失效相关流程的技术问题。
根据本申请的一个实施例,提供了一种信息上报的触发方法,包括:终端 向基站上报第一信息,第一信息用于推荐质量门限的配置;质量门限用于终端判断是否需要触发第二信息的上报,第二信息用于指示下行传输信息。
根据本申请的一个实施例,提供了一种信息上报的触发方法,包括:第一通信节点确定质量门限的第一门限和第二门限,其中,第一门限大于第二门限;第一通信节点测量被监控的参考信号的质量值;在质量值大于第二门限且小于第一门限的情况下,第一通信节点根据附加条件判断承载参考信号的波束是否发生失效,其中,在波束发生失效的情况下,第一通信节点触发第二信息的上报。
根据本申请的一个实施例,提供了一种信息上报的触发方法,包括:第一通信节点获取第二通信节点配置的多种类型的质量门限;第一通信节点根据多种类型的质量门限判断是否需要触发第二信息的上报,其中,第二信息用于指示下行传输信息。
根据本申请的一个实施例,提供了一种信号的选择方法,包括:第一通信节点与第二通信节点约定波束的多种失效类型;第一通信节点根据多种失效类型对用于波束选择的参考信号资源进行配置;第一通信节点基于参考信号资源进行测量和选择。
根据本申请的一个实施例,提供了一种信号的发送方法,包括:第二通信节点获取波束的失效类型或参考信号激活请求信息;第二通信节点根据失效类型或参考信号激活请求信息来确定需要触发的参考信号;第二通信节点发送触发的参考信号。
根据本申请的一个实施例,提供了一种信息的上报方法,包括:确定待反馈的波束或参考信号的指示信息;获取指示信息的上报资源的位置。
根据本申请的一个实施例,提供了一种信道的检测方法,包括:第一通信节点上报推荐的波束的指示信息;第一通信节点将以下至少一种资源划分为多个区域:时域传输资源和频域传输资源;第一通信节点根据约定的规则获取多个区域对应的控制信道配置;第一通信节点根据控制信道配置检测控制信道。
根据本申请的另一个实施例,提供了一种信息上报的触发装置,包括:第一上报单元,设置为向第二通信节点上报第一信息,其中:第一信息用于推荐质量门限的配置;质量门限用于第一通信节点判断是否需要触发第二信息的上报,第二信息用于指示下行传输信息。
根据本申请的另一个实施例,提供了一种信息上报的触发装置,包括:第 一确定单元,设置为确定质量门限的第一门限和第二门限,其中,第一门限大于第二门限;测量单元,设置为测量被监控的参考信号的质量值;第一判断单元,设置为在质量值大于第二门限且小于第一门限的情况下,根据附加条件判断承载参考信号的波束是否发生失效,其中,在波束发生失效的情况下,第一通信节点触发第二信息的上报。
根据本申请的另一个实施例,提供了一种信息上报的触发装置,包括:第一获取单元,设置为获取第二通信节点配置的多种类型的质量门限;第二判断单元,设置为根据多种类型的质量门限判断是否需要触发第二信息的上报,其中,第二信息用于指示下行传输信息。
根据本申请的另一个实施例,提供了一种信号的选择装置,包括:约定单元,设置为与第二通信节点约定波束的多种失效类型;配置单元,设置为根据多种失效类型对用于波束选择的参考信号资源进行配置;选择单元,设置为基于参考信号资源进行测量和选择。
根据本申请的另一个实施例,提供了一种信号的发送装置,包括:第二获取单元,设置为获取波束的失效类型或参考信号激活请求信息;第二确定单元,设置为根据波束的失效类型或参考信号激活请求信息来确定需要触发的参考信号;发送单元,设置为发送触发的参考信号。
根据本申请的另一个实施例,提供了一种信息的上报装置,包括:第三确定单元,设置为确定待反馈的波束或参考信号的指示信息;第三获取单元,设置为获取指示信息的上报资源的位置。
根据本申请的另一个实施例,提供了一种信道的检测装置,包括:第三上报单元,设置为上报推荐的波束的指示信息;划分单元,设置为将以下至少一种资源划分为多个区域:时域传输资源和频域传输资源;第四获取单元,设置为根据约定的规则获取多个区域对应的控制信道配置;检测单元,设置为根据控制信道配置检测控制信道。
根据本申请的又一个实施例,还提供了一种存储介质,存储介质包括存储的程序,其中,程序运行时执行上述任一项的方法。
根据本申请的又一个实施例,还提供了一种处理器,处理器设置为运行程序,其中,程序运行时执行上述任一项的方法。
附图概述
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是相关技术中的一种多波束的通信系统的示意图;
图2是相关技术中的一种多波束的示意图;
图3是本申请实施例的一种信息上报的触发方法的移动终端的硬件结构框图;
图4是根据本申请实施例的信息上报的触发方法的流程图;
图5是根据本申请实施例的一种门限的示意图;
图6是根据本申请实施例的一种门限的示意图;
图7是根据本申请实施例的一种参考信号资源集合的示意图;
图8是根据本申请实施例的信息上报的触发装置装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
下面对本申请提及的专业术语进行简单解释:
QCL,Quasi-co-location,参考信号。
PDCCH,Physical downlink control channel,物理下行控制信道。
DCI,英文全称为Downlink control signaling,由下行物理控制信道PDCCH承载,eNB发送给UE的下行控制信息,包括上下行资源分配、HARQ信息、功率控制灯。
CSI-RS,英文全称为Channel state information reference signal,信道状态信息参考符号。
PUCCH,英文全称为Physical uplink control channel,物理上行控制信道。
PRACH,英文全称为Physical random access channel,物理随机接入信道。
SS,英文全称为Synchronization signal,同步信号。
SINR,英文全称为signal to interference plus noise ratio,信号与干扰加噪声 比。
RSRP,英文全称为Reference signal receiving power,参考信号接收功率。
采用多波束的通信系统如图1所示,基站会利用射频或基带预编码技术,在信道特征空间或实际的3D空间中形成多个有着方向性的波束(对应于多个虚拟扇区),从同步信号开始,基站就采用波束方式进行发送,如图2所示。一个小区中可以存在多个SS波束,每个SS波束可以用准共位置(QCL)关系关联多个CSI-RS(估计信道状态的导频)波束,表征其有着近似的波束指向。
CSI-RS一般采用窄波束,SS也是采用窄波束发送,但SS的波束宽度一般情况相对于CSI-RS来说还是会略宽一些。基站可以采用最佳的CSI-RS波束对应的预编码权值或SS波束对应的预编码权值作为控制或数据传输的参考权值。但前提是要能够获取最佳波束信息。最基本流程的步骤包括:步骤S11、步骤S12和步骤S13。
在步骤S11中,基站发送不同方向的波束参考信号(SS或CSI-RS),并将参考信号的配置信息通知接收端。
在步骤S12中,终端测量这些波束参考信号的接收质量,并从中选择质量较好的参考信号,反馈其对应的指示信息给基站。
在步骤S13中,基站使用终端上报的这些参考信号对应的预编码对数据进行传输。
在上述技术方案中,波束存在如下的质量问题:
基站获取了波束信息和CSI信息后,可以将其用于下行传输。但随着工作频率越来越高,可部署的天线数目越来越多,为了应对高频路径损耗的增大,使用的波束会越来越窄。控制信道和数据信道等都会使用波束进行传输。虽然采用波束传输有着很高的传输效率,但是传输鲁棒性(robustness)并不是很好。主要的原因是由于波束较窄,经常会因为出现终端移动、手持终端旋转、传播路径被遮挡造成服务波束的质量明显下降,导致不能正常通信。
实施例1
本申请实施例一所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置(如用户设备和基站)中执行。以运行在移动终端上为例,图3是本申请实施例的一种信息上报的触发方法的移动终端的硬件结构框图。如图3所示,移动终端30可以包括一个或多个(图3中仅示出一个)处理器302(处理器302可以包括但不限于微处理器(Microcontroller Unit,MCU)或可编程逻 辑器件(Field-Programmable Gate Array,FPGA)等的处理装置)、设置为存储数据的存储器304、以及设置为通信功能的传输装置306。本领域普通技术人员可以理解,图3所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,移动终端30还可包括比图3中所示更多或者更少的组件,或者具有与图3所示不同的配置。
存储器304可设置为存储应用软件的软件程序以及模块,如本申请实施例中的信息上报的触发方法对应的程序指令/模块,处理器302通过运行存储在存储器304内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器304可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器304可进一步包括相对于处理器302远程设置的存储器,这些远程存储器可以通过网络连接至移动终端30。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置306设置为经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端30的通信供应商提供的无线网络。在一个实例中,传输装置306包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置306可以为射频(Radio Frequency,RF)模块,其设置为通过无线方式与互联网进行通讯。
申请人认识到,当无线信道因为前述原因产生信道变化时,通信系统需要快速的进行波束链路切换和恢复,才能提供好的用户体验。因此可引入本申请的波束恢复技术。波束恢复技术的主要包括以下步骤S21-步骤S24。
在步骤S21中,波束监测,主要是进行波束失效(beam failure)判断。
在步骤S22中,波束选择,选择新的波束用于重建传输链路。
在步骤S23中,信息上报,上报波束恢复相关信息,如终端指示信息以及波束指示信息等。
在步骤S24中,DCI检测,在新建立的链路的控制信道上检测DCI。
在本申请的波束恢复技术中,所提供的技术方案主要解决以下的四个方面的问题。
(1)技术问题1:波束监测中如何进行波束失效判断来避免误判。
(2)技术问题2:波束选择中如何确定候选参考信号资源(也即导频资源) 以提高资源利用率。
(3)技术问题3:终端如何上报波束恢复相关的信息才能更好的适应各种的波束问题。
(4)技术问题4,终端如何检测控制信道才能更准确的进行波束恢复。
下面逐一介绍本申请如何解决上述的问题。
(一)对于上述技术问题1
波束失效的判断会明显地影响波束恢复发起的概率,过小的触发概率容易影响波束恢复性能,而过大的触发概率则会引起不必要的波束恢复,造成一些资源浪费和传输效率的降低。相关技术并没有具体的优化方案。本申请可通过一个简单的门限来判断波束是否失效。
终端测量波束质量信息,如果波束质量高于该门限,则判断为波束未失效,无需上报信息给基站,如果波束质量低于该门限,则判断为波束失效,需要进行波束恢复。这种方式面临准确性的问题,因为测量结果往往会受到干扰的影响,还会面临参考信号的统计不充分影响。而且波束参考信号的质量也不能完全的反映控制或数据信道传输的质量。基于此,本申请还提出了以下一些方案来提高波束失效判断的准确性。
后续以第一通信节点为终端(第一通信节点还可以为其余用户终端、移动终端),第二通信节点为基站(第二通信节点还可以为能够提供用户服务的设备)为例详述本申请的实施例。
(1)方案一
本申请实施例提供了一种运行于上述移动终端的信息上报的触发方法,图4是根据本申请实施例的信息上报的触发方法的流程图,如图4所示,该流程包括如下步骤S402和步骤S404。
在步骤S402中,终端获取第一信息。
其中,第一信息用于推荐质量门限的配置(此处的推荐是指:第一信息向基站指示质量门限的配置,由基站自主确认是否采用),质量门限用于终端判断是否需要触发第二信息的上报,第二信息用于指示下行传输信息。
在步骤S404中,终端向基站上报第一信息。
通过上述步骤,终端向基站发送第一信息,第一信息用于推荐质量门限的配置,质量门限用于终端判断是否需要触发第二信息的上报,第二信息用于指示下行传输信息,解决了相关技术中不能触发协议高层的链路失效相关流程的 技术问题,实现了触发协议高层的链路失效相关流程的功能。
在一实施例中,上述步骤的执行主体可以为终端,但不限于此。
在一实施例中,第二信息指示的下行传输信息包括以下至少之一:终端的终端标识(也即节点标识)的指示信息、参考信号的指示信息、波束的指示信息、波束恢复的请求信息、参考信号发送的请求信息、以及波束质量的指示信息。
在一实施例中,可由基站直接配置门限值,但由于考虑到每个UE的接收机能力不同,对于相同的RSRP或SINR及码率参数,可能会有不同的接收性能。有的终端通过接收端干扰处理的算法可以非常好的利用接收端多天线处理掉干扰,明显提升SINR。因此用户终端UE根据接收机来推荐门限参数可以设置为基站更准确配置波束恢复质量门限,在波束恢复的性能和资源效率之间获得比较好平衡。
若采用单门限的配置方法,如图5所示。这种方式对门限的设置有非常高的要求。实际上仅仅通过一种质量门限就判断是否发生波束失效并不是一种非常准确的方式,因为参考信号的质量和控制信道的实际传输质量虽然有相关性,但并不是完全等价的。
在这里,为了更好的利用测量信息反映实际的传输质量,本申请还提出一种新的方法如图6所示。主要思想是采用多个门限的波束失效判断方式,这样可以使得波束失效的判断更准确。
(2)方案二
本申请实施例提供了一种运行于上述移动终端的信息上报的触发方法,其流程包括:步骤S31、步骤S32和步骤S33。
在步骤S31中,终端确定质量门限的第一门限和第二门限,其中,第一门限大于第二门限。
在步骤S32中,终端测量被监控的参考信号的质量值。
在步骤S33中,在质量值大于第二门限且小于第一门限的情况下,终端根据附加条件判断承载参考信号的波束是否发生失效,其中,在波束发生失效的情况下,终端触发第二信息的上报。
通过上述步骤,可解决相关技术中不能触发协议高层的链路失效相关流程的技术问题,实现了触发协议高层的链路失效相关流程的功能。
在一实施例中,终端确定质量门限的第一门限和第二门限包括:终端根据与基站的约定或按照基站的配置确定第一门限和第二门限。
在一实施例中,附加条件包括以下至少之一:终端判断是否有在测量区间内检测到DCI信息;终端判断是否存在比波束的质量值高第一阈值的波束;终端判断参考信号在指定频域位置上的质量值是否低于第三阈值;终端判断前一周期测量到的参考信号的质量值与当前周期测量到的参考信号的质量值之间的差值是否大于第二阈值。
(3)方案三
本申请实施例提供了一种运行于上述移动终端的信息上报的触发方法,其流程包括如下步骤S41和步骤S42。
在步骤S41中,终端获取基站配置的多种类型的质量门限。
在步骤S42中,终端根据多种类型的质量门限判断是否需要触发第二信息的上报,其中,第二信息用于指示下行传输信息。
通过上述步骤,可解决相关技术中不能触发协议高层的链路失效相关流程的技术问题,实现了触发协议高层的链路失效相关流程的功能。
在一实施例中,多种类型的质量门限至少包括:参考信号接收功率RSRP和信号与干扰加噪声比SINR。
在一实施例中,RSRP类型的质量门限包括第一门限和小于第一门限的第二门限,其中,终端根据多种类型的质量门限判断是否需要触发第二信息的上报包括:在RSRP低于第二门限的情况下,终端触发第二信息的上报;在RSRP大于第二门限且小于第一门限的情况下,终端根据SINR类型的质量门限来判断是否需要触发第二信息的上报。
在一实施例中,RSRP类型的质量门限可以是一个门限(RSRP门限),在大于门限的情况下,则需要SINR判断(即终端根据SINR类型的质量门限来判断是否需要触发第二信息的上报),在小于该门限的情况下,则直接判断失效。
(二)对于上述技术问题2
当终端发现波束失效后,终端需要选择合适的新的波束用于重建链路,此时需要解决以下问题:波束选择对应的测量参考信号资源集合如何确定、终端如何确定波束选择的时间窗口和门限。
波束选择的时间窗口会影响测量的准确性、波束恢复延迟等。过小的窗口可能造成不能测量足够多的波束,也容易造成不能对同一波束的多次发送进行测量,统计不够充分因而造成结果不准确。过大的窗口则会导致波束恢复的延迟明显,影响链路重建速度,造成系统性能的损失。
相关技术中只提及基站会配置参考信号资源、时间窗、门限等。这种方式的缺点是配置不灵活,存在资源效率不高问题。
波束选择对应的测量参考信号资源集合影响下行参考信号开销,以及上行预留的上报资源大小,需要选择合适大小的参考信号资源集合。集合过大会造成开销的浪费,集合过小容易造成不能准确的选到好的波束用于链路恢复。
为了优化参考信号资源利用率,本实施例提供了一种运行于上述移动终端侧或基站侧的信号的选择或发送方法。
(1)对于终端侧
在S51中,终端与基站约定波束的多种失效类型。
如按照波束失效的对应参考信号类型进行定义,例如:包括如下类型A和类型B。
类型A:SS波束失效,CSI-RS波束也失效。
类型B:CSI-RS波束失效,SS波束未失效。
再如按照波束失效的数目来定义,例如:包括如下类型C和类型D。
类型C:部分被监控波束失效。
类型D:所有被监控波束失效。
还可以按照波束失效的严重程度、波束失效的位置等来进行定义。
在一实施例中,波束失效类型也可以描述为传输性能下降类型。
在S52中,终端根据多种失效类型确定用于波束选择的参考信号资源。
在S53中,终端基于参考信号资源进行测量和选择。
在一实施例中,波束是一个笼统的称呼,参考信号会使用波束传输,此时不同的参考信号代表了不同的波束。因此需要解释一下这个事情,在协议中可能是看不到波束这个概念,只有参考信号的概念。不同的参考信号资源索引其实也就是代表了波束索引。还有其它的方式可以来表征波束。
通过上述步骤,可解决相关技术中不能触发协议高层的链路失效相关流程的技术问题,实现了触发协议高层的链路失效相关流程的功能,并优化了参考信号资源利用率。
(2)对于基站侧
在S61中,基站获取波束的失效类型或参考信号激活请求信息。
在S62中,基站根据失效类型或参考信号激活请求信息来确定需要触发的参考信号。
在S63中,基站发送触发的参考信号。
参考信号一般是针对多种类型的波束失效预配置的。在一实施例中,终端发现波束失效后,可以向基站反馈波束失效的类型信息,也可以直接进行参考信号的激活请求。波束失效的类型信息、参考信号激活请求信息之间的关系可以是M对N的,M可以大于N、小于N或者等于N。
波束选择时,候选参考信号资源集合的相关信息(包括类型,集合大小)可以与波束失效beam failure的类型关联。前面提到的CSI-RS波束和SS波束发生失效的不同情况,出现情况1可能是移动或旋转造成波束变化,出现情况2可能是阻塞Blocking。可以分别对应不同的候选参考信号资源集合。以图2和图7为例,可以是下述情况1和情况2。
这里不同的SS假设为不同的虚拟扇区virtual Cell。
情况1:Serving beam(当前使用的波束),CSI-RS 15波束失效,Serving virtual Cell(当前虚拟扇区),SS4未失效。
波束选择对应的参考信号类型为CSI-RS;比如为CSI-RS 13-16。如果SS3,SS5和SS4有比较近似的时间延迟,也可以考虑扩展到CSI-RS 11-18。
情况2:serving beam,CSI-RS 15波束失效,Serving virtual Cell,SS4也失效。
波束选择对应的参考信号类型为SS,比如SS1-SS8。
如果与其它SS关联的CSI-RS波束也在发送,且其配置可以被该UE获知,也可以选择CSI-RS波束,或者在CSI-RS和SS混合波束集合中进行选择。
在一实施例中,图7中的“CSI-RS 1-4”标识编号为1至4的CSI-RS,其余以此类推。
(三)对于上述技术问题3
终端需要在上行信道或信号上波束恢复相关的信息,主要分为两种类型的信息:新波束指示信息和UE指示信息。当发送波束失效时,终端上报这些信息,上行链路也可能是断掉的,需要考虑如何保障接收成功率同时不要浪费上 行的资源开销,以及信息及时性等多种问题,需要在上行引入全新的设计。
上报波束恢复信息时,需要考入如何进行发送。主要包括两个方面:发送功率和发送波束。
对于发送功率:目前还没有相关技术方案,可为PUCCH配置有一套专门的功控机制,但是这套功控机制有可能不适合波束恢复请求的发送。需要独立的设计功控。功控方法可以是本实施例中提供的一种信息的上报方法,其流程包括如下步骤S71和S72。
在步骤S71中,确定待反馈的波束或参考信号的指示信息。
在步骤S72中,获取指示信息的上报资源(即用于上行传输的资源)的位置。
在一实施例中,上述方法还可以包括:步骤S73和步骤S74。
在步骤S73中,根据上报资源的位置确定发射功率。
在步骤S74中,按照发射功率在上报资源的位置上报指示信息。
通过上述步骤,可解决相关技术中不能触发协议高层的链路失效相关流程的技术问题,实现了触发协议高层的链路失效相关流程的功能,并优化了功率控制。
在一实施例中,获取指示信息的上报资源的位置包括:根据波束的失效类型确定上报资源的位置。
在一实施例中,根据波束的失效类型确定候选的上报资源的位置包括:在失效类型为CSI-RS失效时,对应于PUCCH所属区域上报;在失效类型为SS失效时,对应PRACH like所属区域上报。
在一实施例中,根据上报资源的位置确定发射功率包括:在上报资源的位置为PRACH Like所属区域时,获取与基站约定的发射功率;在上报资源的位置为PUCCH所属区域时,根据选择和上报的下行参考信号资源确定上行的发射功率。
(四)对于上述技术问题4
终端判断波束失效并发起波束恢复请求后,如上报波束切换请求(t2)后,立刻切到新的波束上进行控制信息的检测。这种方式可能会产生如下的一些问题:测量结果不准确,原波束还能正常工作;原波束在波束恢复过程中信道变好;找到了新的接收波束,质量提升,无需改变原发送波束。
鉴于上述问题,本申请提出了新方法,不切断原有链路,但允许在新链路上进行检测。在本实施例中提供了一种信道的检测方法,其流程包括如下步骤S81至步骤S84。
在步骤S81中,终端上报推荐的波束的指示信息。
在步骤S82中,终端将时域传输资源和频域传输资源中的至少一种划分为多个区域(划分方式是基站配置的或者是预先由二者进行约定的)。
在步骤S83中,终端根据约定的规则获取多个区域对应的控制信道配置。
在步骤S84中,终端根据控制信道配置检测控制信道。
通过上述步骤,可解决相关技术中不能触发协议高层的链路失效相关流程的技术问题。
终端上报新波束(选择的参考信号资源)指示信息。
终端按照约定的规则将时域和频域传输资源中的至少一种划分为多个区域。
终端根据约定的规则,确定多个资源区域对应的控制信道配置。
其中至少存在一个区域对应原控制信道配置,以及一个区域根据终端上报的新波束(选择的参考信号资源)指示信息确定对应的控制信道配置。
当上报多个新波束(选择的参考信号资源)指示信息时,存在多个区域,其控制对应的控制信道配置分别根据多个新波束(选择的参考信号资源)指示信息确定。
终端在多个资源集合内分别按照其对应的控制信道配置检测控制信道。
一种简单的方式是在时域划分多个区域。
区域1:奇数编号的符号或Slot,区域2:偶数编号的符号或Slot。
终端在区域1内检测控制信道时,按照原来的控制信道配置进行检测。
终端在区域2内检测控制信道时,按照新的控制信道配置进行检测。新的控制信道配置可以根据上报的新波束(选择的参考信号资源)信息来确定。
当终端检测到原来波束上或新波束对应的控制信道资源内传输的DCI信息,则会认为是波束恢复的响应,认为结束波束恢复结束。主要是在以下几种情况下提高波束恢复成功率。
波束测量的结果不准确,不能正确的反映控制信道的质量。
在波束恢复期间Blocking的链路被恢复;在波束恢复期间通过调整接收波束能够正确的在原控制信道上收到DCI;基站在原波束、新波束的控制信道均 能发送DCI,有更大的机会正确的检测到控制信息。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
实施例2
波束失效的判断会明显地影响波束恢复发起的概率,过小的触发概率容易影响波束恢复性能,而过大的触发概率则会引起不必要的波束恢复,造成一些资源浪费和传输效率的降低。相关技术并没有具体的优化方案。本申请可通过一个简单的门限来判断波束是否失效。
终端测量波束质量信息,如果波束质量高于该门限,则判断为波束未失效,无需上报信息给基站,如果波束质量低于该门限,在判断为波束失效,需要进行波束恢复。这种方式面临准确性的问题,因为测量结果往往会受到干扰的影响,还会面临参考信号的统计不充分影响。而且波束参考信号的质量也不能完全的反映控制或数据信道传输的质量。基于此,本申请还提出了以下一些方案来提高波束失效判断的准确性。
(1)方案一
本申请实施例还提供了一种信息上报的触发装置,该装置设置为实现上述实施例及应用实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
本申请实施例提供了一种信息上报的触发装置,该装置包括:第一上报单元。
第一上报单元,设置为向基站上报第一信息,其中:第一信息用于推荐质量门限的配置;质量门限用于终端判断是否需要触发第二信息的上报,第二信息用于指示下行传输信息。
通过上述单元,终端向基站发送第一信息,第一信息用于推荐质量门限的配置,质量门限用于终端判断是否需要触发第二信息的上报,第二信息用于指示下行传输信息,解决了相关技术中不能触发协议高层的链路失效相关流程的技术问题,实现了触发协议高层的链路失效相关流程的功能。
在一实施例中,第二信息指示的下行传输信息包括以下至少之一:终端的终端标识的指示信息、参考信号的指示信息、波束的指示信息、波束恢复的请求信息、参考信号发送的请求信息、以及波束质量的指示信息。
在一实施例中,可由基站直接配置门限值,但由于考虑到每个UE的接收机能力不同,对于相同的RSRP或SINR及码率参数,可能会有不同的接收性能。有的终端通过接收端干扰处理的算法可以非常好的利用接收端多天线处理掉干扰,明显提升SINR。因此用户终端UE根据接收机来推荐门限参数可以用于基站更准确配置波束恢复质量门限,在波束恢复的性能和资源效率之间获得比较好平衡。
(2)方案二
图8是根据本申请实施例的信息上报的触发装置装置的结构框图,如图8所示,该装置包括:第一确定单元801、测量单元803和第一判断单元805。
第一确定单元801,设置为确定质量门限的第一门限和第二门限,其中,第一门限大于第二门限。
测量单元803,设置为测量被监控的参考信号的质量值。
第一判断单元805,设置为在质量值大于第二门限且小于第一门限的情况下,根据附加条件判断承载参考信号的波束是否发生失效,其中,在波束发生失效的情况下,终端触发第二信息的上报。
通过上述单元模块,可解决相关技术中不能触发协议高层的链路失效相关流程的技术问题,实现了触发协议高层的链路失效相关流程的功能。
在一实施例中,终端确定质量门限的第一门限和第二门限包括:终端根据与基站的约定或按照基站的配置确定第一门限和第二门限。
在一实施例中,附加条件包括以下至少之一:第一通信节点判断是否有在测量区间内检测到DCI信息;第一通信节点判断是否存在比波束的质量值高第一阈值的波束;第一通信节点判断参考信号在指定频域位置上的质量值是否低于第三阈值;第一通信节点判断前一周期测量到的参考信号的质量值与当前周期测量到的参考信号的质量值之间的差值是否大于第二阈值。
本申请实施例提供了一种信息上报的触发装置,其装置包括如下单元:第一获取单元和第二判断单元。
第一获取单元,设置为获取基站配置的多种类型的质量门限。
第二判断单元,设置为根据多种类型的质量门限判断是否需要触发第二信息的上报,其中,第二信息用于指示下行传输信息。
通过上述单元模块,可解决相关技术中不能触发协议高层的链路失效相关流程的技术问题,实现了触发协议高层的链路失效相关流程的功能。
在一实施例中,多种类型的质量门限至少包括:参考信号接收功率RSRP和信号与干扰加噪声比SINR。
在一实施例中,RSRP类型的质量门限包括第一门限和小于第一门限的第二门限,其中,终端根据多种类型的质量门限判断是否需要触发第二信息的上报包括:在RSRP低于第二门限的情况下,终端触发第二信息的上报;在RSRP大于第二门限且小于第一门限的情况下,终端根据SINR类型的质量门限来判断是否需要触发第二信息的上报。
本申请实施例提供了一种信号的选择或发送装置。
(1)对于终端侧,其装置包括如下单元:约定单元、配置单元和选择单元。
约定单元,设置为与基站约定波束的多种失效类型。
配置单元,设置为根据多种失效类型确定用于波束选择的参考信号资源。
选择单元,设置为基于参考信号资源进行测量和选择。
通过上述单元,可解决相关技术中不能触发协议高层的链路失效相关流程的技术问题,实现了触发协议高层的链路失效相关流程的功能,并优化了参考信号资源利用率。
本申请实施例提供了一种信号的发送装置。
(2)对于基站侧,其装置包括如下单元:第二获取单元、第二确定单元和发送单元。
第二获取单元,设置为获取波束的失效类型或参考信号激活请求信息。
第二确定单元,设置为根据失效类型或参考信号激活请求信息来确定需要触发的参考信号。
发送单元,设置为发送触发的参考信号。
参考信号一般是针对多种类型的波束失效预配置的,需要说明的是,终端发现波束失效后,可以向基站反馈波束失效的类型信息,也可以直接进行参考信号的激活请求。波束失效的类型信息、参考信号激活请求信息之间的关系可以是M对N的,M可以大于N、小于N或者等于N。
在本实施例中提供了一种信息的上报装置,其装置包括如下单元:第三确定单元和第三获取单元。
第三确定单元,设置为确定待反馈的波束或参考信号的指示信息。
第三获取单元,设置为获取指示信息的上报资源的位置。
在一实施例中,该装置还可包括:第四确定单元和第二上报单元。
第四确定单元,设置为根据上报资源的位置确定发射功率。
第二上报单元,设置为按照发射功率在上报资源的位置上报指示信息。
通过上述单元,可解决相关技术中不能触发协议高层的链路失效相关流程的技术问题,实现了触发协议高层的链路失效相关流程的功能,并优化了功率控制。
在一实施例中,获取指示信息的上报资源的位置包括:根据波束的失效类型确定上报资源的位置。
在一实施例中,根据波束的失效类型确定候选的上报资源的位置包括:在失效类型为CSI-RS失效时,对应于PUCCH所属区域上报;在失效类型为SS失效时,对应PRACH like所属区域上报。
在一实施例中,根据上报资源的位置确定发射功率包括:在上报资源的位置为PRACH Like所属区域时,获取与基站约定的发射功率;在上报资源的位置为PUCCH所属区域时,根据选择和上报的下行参考信号资源确定上行的发射功率。
在本实施例中提供了一种信道的检测装置,其装置包括如下单元:第三上报单元、划分单元、第四获取单元和检测单元。
第三上报单元,设置为上报推荐的波束的指示信息。
划分单元,设置为将以下至少一种资源划分为多个区域:时域传输资源和频域传输资源。
第四获取单元,设置为根据约定的规则获取多个区域对应的控制信道配 置。
检测单元,设置为根据控制信道配置检测控制信道。
通过上述单元,可解决相关技术中不能触发协议高层的链路失效相关流程的技术问题。
终端上报新波束(选择的参考信号资源)指示信息。
终端按照约定的规则将时域和频域传输资源中的至少一种划分为多个区域。
终端根据约定的规则,确定多个资源区域对应的控制信道配置。
其中至少存在一个区域对应原控制信道配置,以及一个区域根据终端上报的新波束(选择的参考信号资源)指示信息确定对应的控制信道配置。
当上报多个新波束(选择的参考信号资源)指示信息时,存在多个区域,其控制对应的控制信道配置分别根据多个新波束(选择的参考信号资源)指示信息确定。
终端在多个资源集合内分别按照其对应的控制信道配置检测控制信道。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本申请的实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述任一项的方法。
在一实施例中,在本实施例中,上述存储介质可以被设置为存储用于执行步骤S91、步骤S92以及步骤S93的程序代码。
在步骤S91中,终端确定质量门限的第一门限和第二门限,其中,第一门限大于第二门限。
在步骤S92中,终端测量被监控的参考信号的质量值。
在步骤S93中,在质量值大于第二门限且小于第一门限的情况下,终端根据附加条件判断承载参考信号的波束是否发生失效,其中,在波束发生失效的情况下,终端触发第二信息的上报。
在一实施例中,存储介质还被设置为存储用于执行以下步骤S101和步骤 S102的程序代码。
在步骤S101中,终端获取基站配置的多种类型的质量门限。
在步骤S102中,终端根据多种类型的质量门限判断是否需要触发第二信息的上报,其中,第二信息用于指示下行传输信息。
在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、移动硬盘、磁碟或者光盘等多种可以存储程序代码的介质。
本申请的实施例还提供了一种处理器,该处理器设置为运行程序,其中,该程序运行时执行上述任一项方法中的步骤。
在本实施例中,上述程序设置为执行以下步骤S91、步骤S92、以及步骤S92。
S91,终端确定质量门限的第一门限和第二门限,其中,第一门限大于第二门限。
S92,终端测量被监控的参考信号的质量值。
S93,在质量值大于第二门限且小于第一门限的情况下,终端根据附加条件判断承载参考信号的波束是否发生失效,其中,在波束发生失效的情况下,终端触发第二信息的上报。
在一实施例中,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,在一实施例中,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。

Claims (26)

  1. 一种信息上报的触发方法,包括:
    第一通信节点向第二通信节点上报第一信息,其中,
    所述第一信息用于推荐质量门限的配置;
    所述质量门限用于所述第一通信节点判断是否需要触发第二信息的上报,所述第二信息用于指示下行传输信息。
  2. 根据权利要求1所述的方法,其中,所述第二信息用于指示的下行传输信息包括以下至少之一:
    所述第一通信节点的节点标识的指示信息、参考信号的指示信息、波束的指示信息、波束恢复的请求信息、参考信号发送的请求信息、以及波束质量的指示信息。
  3. 一种信息上报的触发方法,包括:
    第一通信节点确定质量门限的第一门限和第二门限,其中,所述第一门限大于所述第二门限;
    所述第一通信节点测量被监控的参考信号的质量值;
    在所述质量值大于所述第二门限且小于所述第一门限的情况下,所述第一通信节点根据附加条件判断承载所述参考信号的波束是否发生失效,其中,在所述波束发生失效的情况下,所述第一通信节点触发第二信息的上报。
  4. 根据权利要求3所述的方法,其中,所述第一通信节点确定质量门限的第一门限和第二门限包括:
    所述第一通信节点根据与第二通信节点的约定或按照所述第二通信节点的配置确定所述第一门限和所述第二门限。
  5. 根据权利要求3所述的方法,其中,所述附加条件包括以下至少之一:
    所述第一通信节点判断是否有在测量区间内检测到下行控制信息DCI信息;
    所述第一通信节点判断是否存在比所述波束的质量值高第一阈值的波束;
    所述第一通信节点判断所述参考信号在指定频域位置上的质量值是否低于第三阈值;
    所述第一通信节点判断前一周期测量到的所述参考信号的质量值与当前周期测量到的所述参考信号的质量值之间的差值是否大于第二阈值。
  6. 一种信息上报的触发方法,包括:
    第一通信节点获取第二通信节点配置的多种类型的质量门限;
    所述第一通信节点根据所述多种类型的质量门限判断是否需要触发第二信 息的上报,其中,所述第二信息用于指示下行传输信息。
  7. 根据权利要求6所述的方法,其中,所述多种类型的质量门限包括:参考信号接收功率RSRP和信号与干扰加噪声比SINR。
  8. 根据权利要求7所述的方法,其中,所述RSRP的质量门限包括第一门限和小于所述第一门限的第二门限,其中,所述第一通信节点根据所述多种类型的质量门限判断是否需要触发第二信息的上报包括:
    在所述RSRP低于所述第二门限的情况下,所述第一通信节点触发所述第二信息的上报;
    在所述RSRP大于所述第二门限且小于所述第一门限的情况下,所述第一通信节点根据所述SINR的质量门限来判断是否需要触发所述第二信息的上报。
  9. 一种信号的选择方法,包括:
    第一通信节点与第二通信节点约定波束的多种失效类型;
    所述第一通信节点根据所述多种失效类型确定用于波束选择的参考信号资源;
    第一通信节点基于所述参考信号资源进行测量和选择。
  10. 一种信号的发送方法,包括:
    第二通信节点获取波束的失效类型或参考信号激活请求信息;
    所述第二通信节点根据所述失效类型或所述参考信号激活请求信息来确定需要触发的参考信号;
    所述第二通信节点发送所述触发的参考信号。
  11. 一种信息的上报方法,包括:
    确定待反馈的波束或参考信号的指示信息;
    获取所述指示信息的上报资源的位置。
  12. 根据权利要求11所述的方法,在获取所述指示信息的上报资源的位置之后,还包括:
    根据所述上报资源的位置确定发射功率;
    按照所述发射功率在所述上报资源的位置上,上报所述指示信息。
  13. 根据权利要求11所述的方法,其中,所述获取所述指示信息的上报资源的位置包括:
    根据所述待反馈的波束的失效类型确定所述上报资源的位置。
  14. 根据权利要求11所述的方法,其中,获取所述指示信息的上报资源的 位置包括:
    在所述待反馈的波束的失效类型为信道状态信息参考符号CSI-RS失效时,对应于物理上行控制信道PUCCH所属区域上报;
    在所述待反馈的波束的失效类型为同步信号SS失效时,对应于物理随机接入信道PRACH所属区域上报。
  15. 根据权利要求12所述的方法,其中,根据所述上报资源的位置确定发射功率包括:
    在所述上报资源的位置为PRACH Like所属区域时,获取与第二通信节点约定的所述发射功率;
    在所述上报资源的位置为物理上行控制信道PUCCH所属区域时,根据选择和上报的下行参考信号资源确定上行的所述发射功率。
  16. 一种信道的检测方法,包括:
    第一通信节点上报推荐的波束的指示信息;
    所述第一通信节点将以下至少一种资源划分为多个区域:时域传输资源和频域传输资源;
    所述第一通信节点根据约定的规则获取所述多个区域对应的控制信道配置;
    所述第一通信节点根据所述控制信道配置检测控制信道。
  17. 一种信息上报的触发装置,包括:
    第一上报单元,设置为向第二通信节点上报第一信息,其中,
    所述第一信息用于推荐质量门限的配置,
    所述质量门限用于第一通信节点判断是否需要触发第二信息的上报,所述第二信息用于指示下行传输信息。
  18. 一种信息上报的触发装置,包括:
    第一确定单元,设置为确定质量门限的第一门限和第二门限,其中,所述第一门限大于所述第二门限;
    测量单元,设置为测量被监控的参考信号的质量值;
    第一判断单元,设置为在所述质量值大于所述第二门限且小于所述第一门限的情况下,根据附加条件判断承载所述参考信号的波束是否发生失效,其中,在所述波束发生失效的情况下,第一通信节点触发第二信息的上报。
  19. 一种信息上报的触发装置,包括:
    第一获取单元,设置为获取第二通信节点配置的多种类型的质量门限;
    第二判断单元,设置为根据所述多种类型的质量门限判断是否需要触发第二信息的上报,其中,所述第二信息设置为指示下行传输信息。
  20. 一种信号的选择装置,包括:
    约定单元,设置为与第二通信节点约定波束的多种失效类型;
    配置单元,设置为根据所述多种失效类型确定用于波束选择的参考信号资源;
    选择单元,设置为基于所述参考信号资源进行测量和选择。
  21. 一种信号的发送装置,包括:
    第二获取单元,设置为获取波束的失效类型或参考信号激活请求信息;
    第二确定单元,设置为根据所述波束的失效类型或所述参考信号激活请求信息来确定需要触发的参考信号;
    发送单元,设置为发送所述触发的参考信号。
  22. 一种信息的上报装置,包括:
    第三确定单元,设置为确定待反馈的波束或参考信号的指示信息;
    第三获取单元,设置为获取所述指示信息的上报资源的位置。
  23. 根据权利要求22所述的装置,还包括:
    第四确定单元,设置为根据所述上报资源的位置确定发射功率;
    第二上报单元,设置为按照所述发射功率在所述上报资源的位置上,上报所述指示信息。
  24. 一种信道的检测装置,包括:
    第三上报单元,设置为上报推荐的波束的指示信息;
    划分单元,设置为将以下至少一种资源划分为多个区域:时域传输资源和频域传输资源;
    第四获取单元,设置为根据约定的规则获取所述多个区域对应的控制信道配置;
    检测单元,设置为根据所述控制信道配置检测控制信道。
  25. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至16中任一项所述的方法。
  26. 一种处理器,所述处理器设置为运行程序,其中,所述程序运行时执行权利要求1至16中任一项所述的方法。
PCT/CN2018/100257 2017-08-11 2018-08-13 信息上报的触发方法和装置、信号的选择方法和装置 WO2019029749A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710687049.2 2017-08-11
CN201710687049.2A CN108112030B (zh) 2017-08-11 2017-08-11 信息上报的触发方法和装置、信号的选择方法和装置

Publications (1)

Publication Number Publication Date
WO2019029749A1 true WO2019029749A1 (zh) 2019-02-14

Family

ID=62206412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100257 WO2019029749A1 (zh) 2017-08-11 2018-08-13 信息上报的触发方法和装置、信号的选择方法和装置

Country Status (2)

Country Link
CN (1) CN108112030B (zh)
WO (1) WO2019029749A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511638A (zh) * 2020-12-04 2021-03-16 河南工学院 基于物联网的处理有机固废的远程控制方法及系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108112030B (zh) * 2017-08-11 2022-06-07 中兴通讯股份有限公司 信息上报的触发方法和装置、信号的选择方法和装置
CN110572854B (zh) * 2018-06-06 2021-10-22 中国电信股份有限公司 波束恢复方法、系统、基站、终端和计算机可读存储介质
CN110677928B (zh) * 2018-07-03 2021-05-28 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US11805436B2 (en) 2018-09-13 2023-10-31 Beijing Xiaomi Mobile Software Co., Ltd. Method, and device for reporting beam measurement report
CN112929147A (zh) * 2018-09-13 2021-06-08 北京小米移动软件有限公司 Rs集合的配置方法、装置、设备及存储介质
BR112021004440A2 (pt) * 2018-09-27 2021-05-25 Nokia Technologies Oy recuperação de falha de feixe para célula de serviço
US20210258811A1 (en) * 2018-09-27 2021-08-19 Intel Corporation Apparatus and method for user equipment panel selection
CN110972272B (zh) * 2018-09-28 2022-11-25 北京紫光展锐通信技术有限公司 信息上报方法及用户终端、计算机可读存储介质
CN111294970B (zh) * 2019-03-29 2022-11-29 北京紫光展锐通信技术有限公司 调度方法及用户终端、基站、计算机可读存储介质
CN111836293B (zh) * 2019-04-23 2023-05-09 中国移动通信有限公司研究院 波束失败恢复bfr的上报方法、终端及网络侧设备
CN113891490A (zh) * 2019-06-06 2022-01-04 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
WO2022077337A1 (en) * 2020-10-15 2022-04-21 Zte Corporation System and method for beam failure recovery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102387525A (zh) * 2010-08-27 2012-03-21 中国移动通信集团公司 载波配置方法、装置及系统
US20130059619A1 (en) * 2011-09-01 2013-03-07 Samsung Electronics Co. Ltd. Apparatus and method for selecting best beam in wireless communication system
CN103379536A (zh) * 2012-04-25 2013-10-30 中兴通讯股份有限公司 测量上报方法、通知方法、装置以及系统
CN104734754A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种波束赋形权值训练方法及基站、终端
CN106856612A (zh) * 2015-12-09 2017-06-16 中国联合网络通信集团有限公司 一种多点协同通信方法及基站
CN108112030A (zh) * 2017-08-11 2018-06-01 中兴通讯股份有限公司 信息上报的触发方法和装置、信号的选择方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5069740B2 (ja) * 2007-03-01 2012-11-07 株式会社エヌ・ティ・ティ・ドコモ 基地局装置及び通信制御方法
CN101742605B (zh) * 2008-11-21 2012-10-10 中兴通讯股份有限公司 终端及其切换控制方法
CN102130708B (zh) * 2010-01-15 2014-04-30 华为技术有限公司 多小区信道状态信息的反馈方法和用户设备
KR102140298B1 (ko) * 2012-03-27 2020-07-31 삼성전자주식회사 무선 통신 시스템에서 빔 정보 송신 방법 및 장치
CN106470078B (zh) * 2015-08-19 2019-04-26 中国移动通信集团公司 一种信道状态信息测量和反馈的方法、设备及系统
CN106982111B (zh) * 2016-01-18 2020-11-03 中兴通讯股份有限公司 上行控制信息uci的上报方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102387525A (zh) * 2010-08-27 2012-03-21 中国移动通信集团公司 载波配置方法、装置及系统
US20130059619A1 (en) * 2011-09-01 2013-03-07 Samsung Electronics Co. Ltd. Apparatus and method for selecting best beam in wireless communication system
CN103379536A (zh) * 2012-04-25 2013-10-30 中兴通讯股份有限公司 测量上报方法、通知方法、装置以及系统
CN104734754A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种波束赋形权值训练方法及基站、终端
CN106856612A (zh) * 2015-12-09 2017-06-16 中国联合网络通信集团有限公司 一种多点协同通信方法及基站
CN108112030A (zh) * 2017-08-11 2018-06-01 中兴通讯股份有限公司 信息上报的触发方法和装置、信号的选择方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511638A (zh) * 2020-12-04 2021-03-16 河南工学院 基于物联网的处理有机固废的远程控制方法及系统
CN112511638B (zh) * 2020-12-04 2022-11-08 河南工学院 基于物联网的处理有机固废的远程控制方法及系统

Also Published As

Publication number Publication date
CN108112030A (zh) 2018-06-01
CN108112030B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2019029749A1 (zh) 信息上报的触发方法和装置、信号的选择方法和装置
US10743321B2 (en) Default beam for uplink transmission after beam failure recovery
TWI702861B (zh) 波束故障恢復請求傳輸之方法及其使用者設備
KR102381771B1 (ko) 통신 빔 복구를 위한 시스템 및 방법
US10499390B2 (en) Base station, user equipment, transmission control method for base station and data transmission method for user equipment
US10667159B2 (en) Method, user equipment, base station, and system for enhancing reliability of wireless communication
US11949485B2 (en) Secondary cell beam recovery
US20190268790A1 (en) System and Method for Periodic Beam Failure Measurements
US11943037B2 (en) Method and apparatus for beam failure recovery in a wireless communication system
WO2018068724A1 (zh) 通信方法、装置及系统
JP2021524724A (ja) 端末デバイスで実施される方法、端末デバイス及びプログラム
JP2020511872A (ja) 検出方法及びユーザ装置
CN111447636A (zh) 一种波束失败恢复方法、终端及基站
TWI729754B (zh) 用於波束故障偵測之方法及ue
US11399325B2 (en) High-gain beam handover
CN111479326A (zh) 一种信息发送、检测方法及装置
US20220224394A1 (en) Methods for controlling beam failure detection, wireless devices and network nodes
JP2023526530A (ja) セカンダリセルアクティブ化におけるビーム失敗リカバリ
US20240235655A1 (en) Method and apparatus for beam failure recovery in a wireless communication system
CN112236954B (zh) 用于高效链路重配置的客户端设备、网络接入节点和方法
WO2023132830A1 (en) Ue operation for multi-trp system for wireless networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18842895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18842895

Country of ref document: EP

Kind code of ref document: A1