WO2021227647A1 - 尿素泵驱动检测装置及系统 - Google Patents

尿素泵驱动检测装置及系统 Download PDF

Info

Publication number
WO2021227647A1
WO2021227647A1 PCT/CN2021/081294 CN2021081294W WO2021227647A1 WO 2021227647 A1 WO2021227647 A1 WO 2021227647A1 CN 2021081294 W CN2021081294 W CN 2021081294W WO 2021227647 A1 WO2021227647 A1 WO 2021227647A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
urea pump
drive
data
main control
Prior art date
Application number
PCT/CN2021/081294
Other languages
English (en)
French (fr)
Inventor
徐有生
杨显平
吴凯
金翔宇
Original Assignee
深圳市云伽智能技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市云伽智能技术有限公司 filed Critical 深圳市云伽智能技术有限公司
Publication of WO2021227647A1 publication Critical patent/WO2021227647A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • This application relates to the technical field of workpiece diagnosis, and in particular to a urea pump drive detection device and system.
  • the urea pump is an important part of the urea solution injection metering system. Its main function is to extract the urea solution in the urea tank, maintain a certain pressure, and deliver it to the injection unit to meet the flow and pressure requirements of the injection metering system.
  • the exhaust gas of the vehicle needs to be continuously processed, which causes a burden on the use of the urea pump and is prone to failure.
  • the urea pump separated from the vehicle cannot be independently driven and tested. Not only is there no suitable simulated drive testing environment, and it is difficult to find the failure of each component of the urea pump without disassembly.
  • the technical problem to be solved by this application is: the current driving test of the urea pump requires the help of a vehicle, and the driving test cannot be independently performed.
  • an embodiment of the present application provides a urea pump drive detection device, which includes a main control module, a drive module connected to the main control module, a data acquisition module, a first communication module, and a power supply module;
  • a communication module is connected to the host computer, and is used to receive instructions from the host computer and feed back signal data to the host computer;
  • the main control module is used to control the driving module,
  • the data acquisition module and the power module perform actions;
  • the power module is connected to the main control module, the drive module, the data acquisition module, and the urea pump;
  • the drive module communicates with the urea pump
  • the dedicated interface is connected to drive the urea pump with a drive type corresponding to the dedicated interface;
  • the data acquisition module is connected to the pin interface of the urea pump and is used to collect signals from the pin interface data.
  • a drive detection device for a urea pump disclosed in the present application includes a main control module, a drive module connected to the main control module, a data acquisition module, a first communication module, and a power supply module.
  • the first communication module will receive the instructions from the host computer and send them to the main control module, so that the main control module controls the drive module to drive the urea pump according to the instructions from the host computer, and controls the data acquisition module to collect the corresponding pin interfaces of each component of the urea pump Through the first communication module, the collected signal data is fed back to the host computer for data analysis. There is no need to use the vehicle control unit to send a driving signal to drive the urea pump.
  • the urea pump can be driven and tested separately to improve the detection efficiency.
  • the embodiment of the application provides a urea pump drive detection system, which includes an upper computer and a urea pump drive detection device; the upper computer includes an upper controller, and a second communication module, a human-computer interaction module, and a second communication module connected to the upper controller. Data analysis module;
  • the human-computer interaction module is used to receive instruction data input by the user; the second communication module is used to communicate between the upper controller and the urea pump drive detection device; the data analysis module is used to The signal data fed back by the urea pump drive detection device received by the second communication module is analyzed for failure to obtain failure information.
  • the urea pump drive detection system disclosed in the present application communicates with the urea pump drive detection device by the host computer, so that the main control module in the urea pump drive detection device can control the execution of each module according to the instructions of the host computer, and
  • the collected signal data is fed back to the upper-level controller, and the upper-level controller controls the data analysis module to analyze according to the feedback signal data, so as to judge whether there is a fault, effectively solve the current need to disassemble the urea pump, detect the fault, and can assist The maintenance personnel judge the fault and facilitate timely maintenance.
  • Figure 1 is a schematic diagram of a urea pump drive detection device in an embodiment of the present application
  • Figure 2 is an application environment diagram of the urea pump drive detection system in an embodiment of the present application
  • Fig. 3 is a schematic diagram of a urea pump driving detection system in an embodiment of the present application.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meanings of the above terms in this application can be understood under specific circumstances.
  • the present application provides a urea pump drive detection device, including a main control module, a drive module connected to the main control module, a data acquisition module, a first communication module, and a power supply module; the first communication module and the host computer Connected, used to receive instructions from the upper computer and feedback signal data to the upper computer; the main control module, used to control the drive module, data acquisition module and power module to perform actions according to the instructions of the upper computer; the power module, and the main control module,
  • the drive module, the data acquisition module and the urea pump are connected; the drive module is connected to the urea pump through a dedicated interface, and is used to drive the urea pump with a drive type corresponding to the dedicated interface; the data acquisition module is connected to the pin interface of the urea pump, Used to collect the signal data of the pin interface.
  • the urea pump drive detection device can be directly connected with the pin interfaces of each component part of the urea pump to drive and detect the urea pump.
  • the power module supplies power for each module and the urea pump.
  • the host computer is a machine used to instruct the urea pump drive detection device to perform actions.
  • the dedicated interface is the control pin interface corresponding to the driving mode, and the pin interface corresponding to each component of the urea pump is connected through the pre-designed wiring harness to realize data collection. It is understandable that different urea pumps correspond to different driving modes, and the urea pump driving detection device is compatible with different uremic pumps for driving detection, and has high versatility.
  • the driving module will sequentially execute the following driving steps to drive the urea pump to work, namely standby, build pressure, injection, stop injection, emptying, small load injection, medium load injection, heavy load injection and parts Testing etc.
  • standby means to stop the current action of the urea pump, enter the standby state, and perform self-checking whether there is a fault
  • pressure build means that the urea pump motor rotates to suck in urea, opens the nozzle to discharge air and then closes, so that the pressure in the pump reaches a certain level of satisfaction
  • the injection condition when the pressure reaches the injection condition, it can enter the stop injection state.
  • Spraying means that the urea pump enters the spraying state, and the nozzle sprays the urea solution.
  • the state of stopping injection is actually the state of waiting for injection. In this state, the injection of the urea pump is stopped to maintain a stable urea pressure, and injection can be performed at any time. Emptying means that after the urea pump finishes the injection action, the urea pump is emptied to discharge the urea solution in the pipeline and the urea pump to prevent urea crystals from clogging the pipeline and nozzles and causing malfunctions.
  • the small load is a kind of injection state, and the injection volume is small in the small load state.
  • the medium load is a kind of injection state, and the injection amount is medium in the medium load state. Large load is a kind of injection state, and the maximum injection volume is under high load state.
  • Component testing refers to the operation of individual components of the urea pump to check the quality of individual components, such as rotating the motor alone or opening the nozzle, etc. This operation is generally controlled within 10S to avoid damage to the components.
  • the urea pump drive detection device includes a main control module, a drive module connected to the main control module, a data acquisition module, a first communication module, and a power supply module.
  • the first communication module will receive the instructions from the host computer and send them to the main control module, so that the main control module controls the drive module to drive the urea pump according to the instructions from the host computer, and controls the data acquisition module to collect the corresponding leads of each component of the urea pump.
  • the signal data of the pin interface, and the collected signal data is fed back to the host computer for data analysis through the first communication module.
  • the urea pump can be driven and tested separately to improve the detection. efficient.
  • the driving module is a PWM driving module.
  • the PWM driving module is connected to the urea pump through a first dedicated interface, and is used to output a PWM driving signal to the urea pump to drive the motor, nozzles and the urea pump.
  • the reverse valve works;
  • the data acquisition module is connected to the pin interface of the urea pump and is used to collect the voltage of the pin interface.
  • the first dedicated interface refers to the dedicated interface corresponding to the PWM (Pulse Width Modulation, pulse width modulation signal) driving mode
  • the driving mode can be determined by connecting the pin interface of the urea pump with the first dedicated interface.
  • the pin interfaces of the urea pump driven by the PWM drive mode are mainly motors, nozzles, and reverse valves. Connect these pin interfaces with the first dedicated interface (such as motors, nozzles, and reverse valves, etc.).
  • the pin interface corresponding to the control pin interface is connected through the pre-designed wiring harness, and then the motor, nozzle and reverse valve of the urea pump can be driven by sending a PWM drive signal to the pin interface.
  • the PWM drive module refers to the module used to drive the motor, nozzle and reverse valve of the urea pump by means of PWM drive.
  • the PWM drive mode means that the PWM drive signal is sent to the pin interface of each component of the urea pump, that is, the specific frequency and duty cycle are realized.
  • the state of each component can be changed by adjusting the frequency and duty cycle.
  • the driving motor is through Send a specific frequency and duty cycle to the corresponding pin interface of the motor, and the speed of the motor can be controlled by adjusting the frequency and the duty cycle.
  • the PWM drive module sends a PWM drive signal to the urea pump to realize the operation of the motor, the nozzle and the reverse valve that drive the urea pump.
  • each driving step it can be realized by changing the frequency and duty cycle of the PWM driving signal. For example, for standby, it can be realized by stopping sending the PWM driving signal; for the nozzle state, it can be realized by sending the PWM driving signal ( That is, send a specific frequency and duty cycle) to open or close the nozzle; for emptying, you can send a PWM drive signal to the motor, the reverse valve and the corresponding pin interface of the nozzle to open the reverse valve to make the motor reverse , The urea can be returned to the urea tank, and at the same time, the nozzle is opened to inhale air to achieve emptying.
  • the PWM driving signal That is, send a specific frequency and duty cycle
  • the data acquisition module collects the voltage of the connected pin interface as the signal data.
  • the signal data is used to describe urea pressure, air pressure, temperature, and so on.
  • the PWM drive module includes an H-bridge motor control unit, which is used to drive the urea pump motor forward and reverse according to the rotation speed corresponding to the PWM drive signal.
  • the PWM drive module can drive the motor to work at a certain speed.
  • the speed can be adjusted by adjusting the frequency and duty cycle.
  • the H-bridge motor control unit can drive the motor forward and reverse according to the indicated frequency and duty cycle.
  • the driving module is a CAN driving module
  • the CAN driving module is connected to the urea pump through a second dedicated interface for outputting CAN driving signals to the urea pump to drive the urea pump to work
  • data acquisition module Connected with the pin interface of the urea pump, used to collect the CAN signal data of the pin interface.
  • the second dedicated interface refers to the dedicated interface corresponding to the CAN (Controller Area Network, serial communication protocol) drive mode, and the drive mode can be determined by connecting the pin interface of the urea pump with the second dedicated interface.
  • the corresponding pin interfaces that need to be driven are mainly CANH, CANL, power, ignition signal, and ground, etc., and these pin interfaces are connected with the second dedicated interface (such as CANH, CANL, etc.).
  • the control pin interface corresponding to the pin interface of the power supply, ignition signal and ground wire) is connected through the pre-designed wiring harness, and the urea pump can be driven by sending a CAN drive signal to the pin interface.
  • the CAN drive module refers to a module used to drive the urea pump in a CAN drive mode.
  • CAN drive mode means to communicate with the urea pump by sending CAN drive signals (ie CAN commands). Adjusting the sent CAN commands can make the urea pump perform different actions, such as sending standby, pressure build or emptying commands to make urea The pump executes the corresponding action. It should be noted that some pump models have no emptying indication, and the ignition signal needs to be disconnected. At this time, the urea pump will automatically enter the emptying state.
  • the communication protocol is generally CANEX or J1939 protocol. Specifically, the CAN drive module sends a CAN drive signal to the urea pump to drive the urea pump.
  • the data acquisition module collects the CAN signal data returned by the connected pin interface as the signal data.
  • the signal data is used to describe the state of the urea pump, the injection rate, the urea pressure, the air pressure, and the temperature.
  • the drive mode is determined by connecting the CAN drive module and the urea pump through the second dedicated interface, so that the CAN drive module can send a CAN drive signal to the urea pump to drive the urea pump to achieve the purpose of independently driving the urea pump .
  • the urea pump drive detection device includes a fault automatic protection module, which is connected to the data acquisition module and the main control module, and is used to perform abnormal analysis based on the signal data collected by the data acquisition module and report to the main Control module feedback abnormal signal;
  • the main control module is connected to the power module and is used to receive abnormal signals and control the power module to disconnect.
  • the urea pump drive detection device includes an automatic fault protection module, which is connected to the data acquisition module and the main control module, and is used to perform abnormality analysis based on the signal data collected by the data acquisition module, and feedback the abnormality to the main control module when an abnormality occurs Signal, at this time the main control module will control the power supply module to disconnect to achieve the purpose of self-protection.
  • an automatic fault protection module which is connected to the data acquisition module and the main control module, and is used to perform abnormality analysis based on the signal data collected by the data acquisition module, and feedback the abnormality to the main control module when an abnormality occurs Signal, at this time the main control module will control the power supply module to disconnect to achieve the purpose of self-protection.
  • the fault automatic protection module can include two protection mechanisms. One is to judge whether an abnormality has occurred according to the signal data collected by the data acquisition module, that is, directly through the voltage of the pin interface; when an abnormality occurs, the main control The module feeds back abnormal signals; the other is that the host computer analyzes the feedback signal data to determine whether a fault has occurred. When a fault occurs, it sends a power-off instruction to the main control module, and the main control module uses the received power-off Instruct, control the power module to disconnect, realize the automatic protection of urea pump.
  • This application provides a urea pump drive detection system, as shown in Figures 2 and 3, including an upper computer and the urea pump drive detection device in the above-mentioned embodiment;
  • the upper computer includes an upper controller and a second connected to the upper controller Communication module, human-computer interaction module and data analysis module;
  • the human-computer interaction module is used to receive the instruction data input by the user; the second communication module is used to communicate with the upper controller and the urea pump drive detection device; the data analysis module is used to detect the drive of the urea pump received by the second communication module The signal data fed back by the device performs fault analysis to obtain fault information.
  • the host computer can input instruction data according to the human-computer interaction module, and the host controller receives the instruction data to generate an instruction signal, and sends the instruction signal to the urea pump drive detection device through the second communication module, so that the master in the urea pump drive detection device
  • the control module controls the drive module, the data acquisition module and the power supply module to perform actions according to the instruction signal, so as to drive and detect the urea pump connected to the urea pump drive detection device.
  • the human-computer interaction module includes, but is not limited to, realized by external devices such as a mouse, buttons, or keys, or realized by a touch screen, which is not limited here.
  • the second communication module is connected to the first communication module of the urea pump drive detection device to realize communication.
  • the first communication module and the second communication module may be Bluetooth communication modules at the same time.
  • This application provides a urea pump drive detection system, which communicates with an upper computer and a urea pump drive detection device, so that the main control module in the urea pump drive detection device can control each module to perform actions according to the instructions of the upper computer, and
  • the collected signal data is fed back to the upper-level controller, and the upper-level controller controls the data analysis module to analyze according to the feedback signal data, so as to determine whether there is a fault, effectively solve the current need to disassemble the urea pump, detect the fault, and assist in maintenance
  • the personnel judge the fault and repair it in time.
  • the signal data is the voltage of the pin interface of the urea pump;
  • the data analysis module includes a voltage detection unit and a data detection unit; the voltage detection unit is used to measure the voltage corresponding to the pin interface The interface connection status obtains fault analysis information; the data detection unit is used to determine whether the voltage analysis data corresponding to the pin interface is in a preset range, and obtain the fault analysis information.
  • the data analysis module will perform fault analysis according to the voltage of the pin interface fed back to obtain fault analysis information.
  • the fault analysis includes two parts.
  • One part is the voltage detection unit, which determines the interface connection status of the pin interface according to the voltage of the pin interface. For example, when the pin interface is connected normally, the voltage of the pin interface should be high at this time. Level state, and when the pin interface is not connected, the voltage of the pin interface should be in a low level state at this time, and it can be detected whether some circuits are connected or damaged.
  • the other part is the data detection unit, that is, the voltage analysis data corresponding to the pin interface can be obtained by analyzing the voltage of the pin interface through a preset analysis algorithm, such as the current urea pressure, air pressure or temperature. By detecting whether the voltage analysis data meets the preset range, it can be judged whether there is a fault. For example, when the urea pressure exceeds the upper limit of the preset range or is lower than the lower limit of the preset range, it can be judged that the urea pressure is too high or the pressure sensor is damaged. Fault analysis information, so as to locate anomalies, assist maintenance personnel to analyze the cause of the failure, and effectively improve the efficiency of detection and maintenance.
  • a preset analysis algorithm such as the current urea pressure, air pressure or temperature.
  • the signal data is CAN signal data;
  • the data analysis module includes a fault code analysis unit for analyzing the fault code in the CAN signal data.
  • the signal data is CAN signal data
  • the CAN signal data includes a fault code
  • the fault code corresponds to the fault information.
  • the fault can be judged by analyzing the fault code in the CAN signal data to assist maintenance personnel in analyzing the fault The reason is to effectively improve the efficiency of inspection and maintenance.
  • the urea pump drive detection system further includes a fault prompt module and a display module connected to the upper controller; the fault prompt module is connected to the data analysis module and is used to obtain information from the data analysis module. Fault analysis information, generating fault prompt information and fault handling suggestions; display module, connected to data analysis module and data analysis module, used to display fault analysis information, fault prompt information and fault handling suggestions.
  • the data analysis module determines that a fault has occurred, it obtains fault analysis information, and controls the fault prompt module through the upper controller to generate fault prompt information and fault handling suggestions based on the fault analysis information, and control and analyze the fault prompt module and data
  • the display module connected to the module displays the fault analysis information, fault prompt information and fault handling suggestions, so that the user can visually see the related information of the fault and the corresponding urea pump data (such as the current urea pressure).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

一种尿素泵驱动检测装置,包括主控模块以及与主控模块相连的驱动模块、数据采集模块、第一通信模块和电源模块;第一通信模块与上位机相连,用于接收上位机的指示,并向上位机反馈信号数据;主控模块,用于根据上位机的指示控制驱动模块、数据采集模块和电源模块执行动作;电源模块,与主控模块、驱动模块、数据采集模块和尿素泵相连;驱动模块,与尿素泵通过专用接口相连,用于采用与专用接口相对应的驱动类型驱动尿素泵;数据采集模块,与尿素泵的引脚接口相连,用于采集引脚接口的信号数据。该装置无需借助车辆的控制单元发送驱动信号驱动尿素泵,可单独对尿素泵进行驱动检测,提高检测效率。还公开了一种尿素泵驱动检测系统。

Description

尿素泵驱动检测装置及系统
本申请以2020年05月09日提交的申请号为202020762481.0,名称为“尿素泵驱动检测装置及系统”的中国专利申请为基础,并要求其优先权。
技术领域
本申请涉及工件诊断技术领域,尤其涉及一种尿素泵驱动检测装置及系统。
背景技术
随着经济的发展,人类对车辆的使用日益渐涨,而随之汽车尾气的污染也愈发严重,汽车尾气处理则尤为重要。目前,汽车尾气处理采用选择性催化还原技术(SCR),其主要原理是,在催化剂的作用下,喷入还原剂氨或尿素溶液,将尾气中的氮氧化物(NOx)还原成氮气(N2)和水(H2O),以减少汽车尾气对环境的污染。尿素泵是尿素溶液喷射计量系统的重要组成部分,其主要功能是抽取尿素箱内的尿素溶液,并保持一定的压力,输送到喷射单元,满足喷射计量系统对流量和压力的要求。
在车辆运行过程中,需要不断对车辆尾气进行处理,造成尿素泵的使用负担,容易发生故障。然而,脱离车辆的尿素泵无法独立驱动检测,不仅没有合适的模拟驱动检测环境并且在不拆卸的情况下很难发现尿素泵各部件所出现的故障。
申请内容
本申请所要解决的技术问题是:当前尿素泵的驱动测试需要借助车辆,无法独立进行驱动测试的问题。
为解决上述技术问题,本申请实施例提供一种尿素泵驱动检测装置,包括主控模块以及与所述主控模块相连的驱动模块、数据采集模块、第一通信模块和电源模块;所述第一通信模块与上位机相连,用于接收所述上位机的指示,并向所述上位机反馈信号数据;所述主控模块,用于根据所述上位机的指示控制所述驱动模块、所述数据采集模块和所述电源模块执行动作;所述电源模块,与所述主控模块、所述驱动模块、所述数据采集模块和尿素泵相连;所述驱动模块,与所述尿素泵通过所述专用接口相连,用于采用与所述专用接口相对应的驱动类型驱动尿素泵;所述数据采集模块,与所述尿素泵的引脚接口相连,用于采集所述引脚接口的信号数据。
本申请公开的一种尿素泵驱动检测装置,包括主控模块以及与主控模块相连的驱动模块、数据采集模块、第一通信模块和电源模块。第一通信模块会接收上位机的指示,并发送到主控模块,使主控模块根据上位机的指示控制驱动模块驱动尿素泵工作、控制数据采集模块采集尿素泵各组成部件对应的引脚接口的信号数据,并通过第一通信模块将采集到的信号数据反馈给上位机进行数据分析,无需借助车辆的控制单元发送驱动信号驱动尿素泵,可单独对尿素泵进行驱动检测,提高检测效率。
本申请实施例提供一种尿素泵驱动检测系统,包括上位机以及尿素泵驱动检测装置;所述上位机包括上位控制器以及与所述上位控制器相连的第二通信模块、人机交互模块和数据分析模块;
所述人机交互模块,用于接收用户输入的指示数据;所述第二通信模块 用于所述上位控制器与所述尿素泵驱动检测装置进行通信;所述数据分析模块,用于根据所述第二通信模块接收到的尿素泵驱动检测装置反馈的信号数据进行故障分析,得到故障信息。
本申请公开的一种尿素泵驱动检测系统,通过将上位机与尿素泵驱动检测装置进行通信,以使尿素泵驱动检测装置中的主控模块可根据上位机的指示控制各模块执行动作,并将采集到的信号数据反馈给上位控制器,上位控制器控制数据分析模块根据所反馈的信号数据进行分析,从而判断是否发生故障,有效解决目前需要拆卸尿素泵,检测故障的问题,且可辅助维修人员判断故障,便于及时维修。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例中尿素泵驱动检测装置的一示意图;
图2是本申请一实施例中尿素泵驱动检测系统的一应用环境图;
图3是本申请一实施例中尿素泵驱动检测系统的一示意图。
具体实施方式
为了使本申请所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,需要理解的是,术语“纵向”、“径向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
如图1所示,本申请提供一种尿素泵驱动检测装置,包括主控模块以及与主控模块相连的驱动模块、数据采集模块、第一通信模块和电源模块;第一通信模块与上位机相连,用于接收上位机的指示,并向上位机反馈信号数据;主控模块,用于根据上位机的指示控制驱动模块、数据采集模块和电源模块执行动作;电源模块,与主控模块、驱动模块、数据采集模块和尿素泵相连;驱动模块,与尿素泵通过专用接口相连,用于采用与专用接口相对应的驱动类型驱动尿素泵;数据采集模块,与尿素泵的引脚接口相连,用于采集引脚接口的信号数据。
其中,该尿素泵驱动检测装置可直接与尿素泵各组成部件的引脚接口连接,以驱动检测尿素泵。电源模块,为各模块和尿素泵供电。上位机是用于指示该尿素泵驱动检测装置执行动作的机器。专用接口是与驱动方式相对应 的控制脚接口,用于与尿素泵的各组成部件对应的引脚接口通过预先设计好的线束连接,从而实现数据采集。可以理解地,不同的尿素泵对应的驱动方式不同,该尿素泵驱动检测装置可兼容不同的尿毒泵,以进行驱动检测,通用性高。
进一步地,本实施例中,驱动模块会按顺序执行以下驱动步骤,驱动尿素泵工作,即待机、建压、喷射、停止喷射、排空、小负荷喷射、中负荷喷射、大负荷喷射和部件测试等。
其中,待机即停止尿素泵当前动作,进入待机状态,同时进行自检是否存在故障;建压是指尿素泵电机转动吸入尿素,打开喷嘴排出空气后关闭,使得泵内的压力达到一定的程度满足喷射条件,当压力达到喷射条件之后即可进入停止喷射状态。喷射即指尿素泵进入喷射状态,喷嘴喷出尿素溶液。当尿素泵建压完成进入停止喷射状态时,同时需转动尿素泵电机维持尿素压力稳定。停止喷射状态实际也是等待喷射状态,此状态下会停止尿素泵的喷射,维持尿素压力稳定,随时可以进行喷射。排空是指当尿素泵执行完喷射动作后,对尿素泵进行排空操作,排出管路和尿素泵里的尿素溶液,防止尿素结晶堵塞管路和喷嘴,引起故障。小负荷是喷射状态的一种,小负荷状态下喷射量较小。中负荷是喷射状态的一种,中负荷状态下喷射量中等。大负荷是喷射状态的一种,大负荷状态下喷射量最大。部件测试即指对尿素泵的单独的部件进行操作,检验单个部件的好坏,如单独转动电机或打开喷嘴等,此操作一般控制在10S内,以免损坏部件。
本申请提供的尿素泵驱动检测装置,包括主控模块以及与主控模块相连的驱动模块、数据采集模块、第一通信模块和电源模块。其中,第一通信模块会接收上位机的指示,并发送到主控模块,使主控模块根据上位机的指示 控制驱动模块驱动尿素泵工作、控制数据采集模块采集尿素泵各组成部件对应的引脚接口的信号数据,并通过第一通信模块将采集到的信号数据反馈给上位机进行数据分析,无需借助车辆的控制单元发送驱动信号驱动尿素泵,可单独对尿素泵进行驱动检测,提高检测效率。
在一实施例中,如图1所示,驱动模块为PWM驱动模块,PWM驱动模块与尿素泵通过第一专用接口相连,用于向尿素泵输出PWM驱动信号,驱动尿素泵的电机、喷嘴和反向阀工作;数据采集模块,与尿素泵的引脚接口相连,用于采集引脚接口的电压。
其中,第一专用接口即指PWM(Pulse Width Modulation,脉宽调制信号)驱动方式对应的专用接口,通过将尿素泵的引脚接口与第一专用接口连接,即可确定其驱动方式。可以理解地,PWM驱动方式驱动的尿素泵,其对应驱动的引脚接口主要为电机、喷嘴和反向阀等,将这些引脚接口与第一专用接口(如电机、喷嘴和反向阀等引脚接口对应的控制脚接口)通过预先设计好的线束连接,即可通过向该引脚接口发送PWM驱动信号驱动尿素泵的电机、喷嘴和反向阀工作。
PWM驱动模块是指用于采用PWM驱动方式驱动尿素泵的电机、喷嘴和反向阀工作的模块。PWM驱动方式是指对尿素泵各组成部件的引脚接口发送PWM驱动信号即特定的频率和占空比实现,通过调整频率和占空比即可改变各组成部件的状态,如驱动电机是通过对电机对应的引脚接口发送特定的频率和占空比实现,通过调整频率和占空比即可控制电机的转速。具体地,PWM驱动模块对向尿素泵发送PWM驱动信号,即可实现驱动尿素泵的电机、喷嘴和反向阀工作。
具体地,针对每一驱动步骤,可通过改变PWM驱动信号的频率和占空比 实现,示例性地,对于待机,可通过停止发送PWM驱动信号实现;对于喷嘴状态,可通过发送PWM驱动信号(即发送特定的频率和占空比)实现打开或关闭喷嘴;对于排空,可通过向电机、反向阀以及喷嘴对应的引脚接口发送PWM驱动信号,以打开反向阀以使电机反转,尿素即可回流至尿素箱内,同时打开喷嘴吸入空气,实现排空。
进一步地,当尿素泵的驱动方式为PWM驱动方式时,数据采集模块通过采集所连接的引脚接口的电压作为信号数据。示例性地,此时该信号数据用于描述尿素压力、空气压力以及温度等。
在一实施例中,PWM驱动模块包括H桥电机控制单元,用于根据PWM驱动信号对应的转速驱动尿素泵电机正反转。
其中,PWM驱动模块可驱动电机按照一定的转速工作,通过调整频率和占空比即可实现调整转速,再通过H桥电机控制单元即可按照指示的频率和占空比驱动电机正反转。
在一实施例中,如图1所示,驱动模块为CAN驱动模块,CAN驱动模块与尿素泵通过第二专用接口相连,用于向尿素泵输出CAN驱动信号,驱动尿素泵工作;数据采集模块,与尿素泵的引脚接口相连,用于采集引脚接口的CAN信号数据。
其中,第二专用接口即指CAN(Controller Area Network,串行通信协议)驱动方式对应的专用接口,通过将尿素泵的引脚接口与第二专用接口连接,即可确定其驱动方式。可以理解地,CAN驱动方式驱动的尿素泵,其对应需要驱动的引脚接口主要为CANH、CANL、电源、点火信号以及地线等,将这些引脚接口与第二专用接口(如CANH、CANL、电源、点火信号以及地线等引脚接口对应的控制脚接口)通过预先设计好的线束连接,即可通过向该引脚接口 发送CAN驱动信号驱动尿素泵工作。
CAN驱动模块是指用于采用CAN驱动方式驱动尿素泵工作的模块。CAN驱动方式是指对尿素泵发送CAN驱动信号(即CAN命令)进行通讯,调整发送的CAN命令即可使尿素泵执行不同的动作,例如发送待机、建压或排空等命令即可使尿素泵执行对应的动作,需要说明的是,部分泵型无排空指示,则需要断开点火信号,此时尿素泵会自动进入排空状态。其通信协议一般为CANEX或J1939协议。具体地,CAN驱动模块对向尿素泵发送CAN驱动信号,即可实现驱动尿素泵工作。
进一步地,当尿素泵的驱动方式为CAN驱动方式时,数据采集模块通过采集所连接的引脚接口返回的CAN信号数据作为信号数据。示例性地,此时该信号数据用于描述尿素泵状态、喷射速率、尿素压力、空气压力以及温度等。
本实施例中,通过将CAN驱动模块与尿素泵通过第二专用接口相连,确定驱动方式,从而使CAN驱动模块可向尿素泵发送CAN驱动信号驱动尿素泵的工作,实现独立驱动尿素泵的目的。
在一实施例中,如图1所示,该尿素泵驱动检测装置包括故障自动防护模块,与数据采集模块和主控模块相连,用于根据数据采集模块采集的信号数据进行异常分析,向主控模块反馈异常信号;
主控模块与电源模块相连,用于接收异常信号,控制电源模块断开。
具体地,该尿素泵驱动检测装置包括故障自动防护模块,与数据采集模块和主控模块相连,用于根据数据采集模块采集的信号数据进行异常分析,当出现异常时,向主控模块反馈异常信号,此时主控模块会控制电源模块断开连接,实现自我防护的目的。
可以理解地,该故障自动防护模块可包括两种保护机制,一种是可根据数据采集模块采集的信号数据,即直接通过引脚接口的电压判断是否发生异常;当发生异常时,向主控模块反馈异常信号;另一种是,上位机通过针对反馈的信号数据进行分析,判断是否发生故障,当发生故障时,通过发送断电指示给主控模块,主控模块根据接收到的断电指示,控制电源模块断开,实现尿素泵的自动防护。
本申请提供一种尿素泵驱动检测系统,如图2和图3所示,包括上位机以及上述实施例中的尿素泵驱动检测装置;上位机包括上位控制器以及与上位控制器相连的第二通信模块、人机交互模块和数据分析模块;
人机交互模块,用于接收用户输入的指示数据;第二通信模块用于上位控制器与尿素泵驱动检测装置进行通信;数据分析模块,用于根据第二通信模块接收到的尿素泵驱动检测装置反馈的信号数据进行故障分析,得到故障信息。
具体地,上位机可根据人机交互模块输入指示数据,上位控制器接收该指示数据生成指示信号,并通过第二通信模块发送至尿素泵驱动检测装置,以使尿素泵驱动检测装置中的主控模块根据该指示信号控制驱动模块、数据采集模块和电源模块执行动作,以对与尿素泵驱动检测装置连接的尿素泵进行驱动检测。该人机交互模块包括但不限于通过鼠标、按钮或按键等外部设备实现,或者通过触摸屏实现,此处不做限定。
可以理解地,该第二通信模块与尿素泵驱动检测装置的第一通信模块相连,即可实现通信。作为一示例,第一通信模块和第二通信模块可以同时为蓝牙通信模块。
本申请提供一种尿素泵驱动检测系统,通过将上位机与尿素泵驱动检测 装置进行通信,以使尿素泵驱动检测装置中的主控模块可根据上位机的指示控制各模块执行动作,并将采集到的信号数据反馈给上位控制器,上位控制器控制数据分析模块根据所反馈的信号数据进行分析,从而判断是否发生故障,有效解决目前需要拆卸尿素泵,检测故障的问题,且可辅助维修人员判断故障,及时维修。
在一实施例中,如图3所示,信号数据为尿素泵的引脚接口的电压;数据分析模块包括电压检测单元和数据检测单元;电压检测单元,用于根据引脚接口的电压对应的接口连接状态,得到故障分析信息;数据检测单元,用于判断引脚接口对应的电压解析数据,是否处于预设范围,得到故障分析信息。
具体地,当信号数据为尿素泵的引脚接口的电压时,数据分析模块会根据反馈的引脚接口的电压进行故障分析,得到故障分析信息。该故障分析包括两部分,一部分是电压检测单元,即根据引脚接口的电压,确定引脚接口的接口连接状态,例如当引脚接口正常连接时,此时该引脚接口的电压应处于高电平状态,而当引脚接口未连接时,此时该引脚接口的电压应处于低电平状态,可以检测出部分电路是否连接或者损坏。
另一部分是数据检测单元,即通过预设解析算法对引脚接口的电压进行解析即可得到该引脚接口对应的电压解析数据,如当前的尿素压力,空气压力或温度等。通过检测该电压解析数据是否满足预设范围,即可判断是否出现故障,例如当尿素压力超过预设范围的上限或者低于预设范围的下限时,可判断尿素压力过高或者压力传感器损坏的故障分析信息,从而定位异常,辅助维修人员分析故障原因,有效提高检测和维修的效率。
在一实施例中,信号数据为CAN信号数据;数据分析模块包括故障码分 析单元,用于根据CAN信号数据中的故障码进行分析。
具体地,当信号数据为CAN信号数据时,该CAN信号数据中包括故障码,该故障码与故障信息对应,通过针对CAN信号数据中的故障码进行分析即可判断故障,辅助维修人员分析故障原因,有效提高检测和维修的效率。
在一实施例中,如图3所示,该尿素泵驱动检测系统还包括与上位控制器相连的故障提示模块以及显示模块;故障提示模块,连接数据分析模块,用于根据数据分析模块得到的故障分析信息,生成故障提示信息和故障处理建议;显示模块,连接数据分析模块和数据分析模块,用于显示故障分析信息、故障提示信息和故障处理建议。
具体地,当数据分析模块判断出故障发生时,得到故障分析信息,并通过上位控制器控制故障提示模块根据故障分析信息,生成故障提示信息和故障处理建议,并控制与故障提示模块和数据分析模块相连的显示模块显示该故障分析信息、故障提示信息和故障处理建议,以使用户可直观看到故障的相关信息以及对应的尿素泵数据(如当前的尿素压力)。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种尿素泵驱动检测装置,其中,包括主控模块以及与所述主控模块相连的驱动模块、数据采集模块、第一通信模块和电源模块;所述第一通信模块与上位机相连,用于接收所述上位机的指示,并向所述上位机反馈信号数据;所述主控模块,用于根据所述上位机的指示控制所述驱动模块、所述数据采集模块和所述电源模块执行动作;所述电源模块,与所述主控模块、所述驱动模块、所述数据采集模块和尿素泵相连;所述驱动模块,与所述尿素泵通过专用接口相连,用于采用与所述专用接口相对应的驱动类型驱动尿素泵;所述数据采集模块,与所述尿素泵的引脚接口相连,用于采集所述引脚接口的信号数据。
  2. 如权利要求1所述的尿素泵驱动检测装置,其中,所述驱动模块为PWM驱动模块,所述PWM驱动模块与所述尿素泵通过第一专用接口相连,用于向所述尿素泵输出PWM驱动信号,驱动所述尿素泵的电机、喷嘴和反向阀工作;
    所述数据采集模块,与所述尿素泵的引脚接口相连,用于采集所述引脚接口的电压。
  3. 如权利要求1所述的尿素泵驱动检测装置,其中,所述驱动模块为CAN驱动模块,所述CAN驱动模块与所述尿素泵通过第二专用接口相连,用于向所述尿素泵输出CAN驱动信号,驱动所述尿素泵工作;
    所述数据采集模块,与所述尿素泵的引脚接口相连,用于采集所述引脚接口的CAN信号数据。
  4. 如权利要求2所述的尿素泵驱动检测装置,其中,所述PWM驱动模块包括H桥电机控制单元,用于根据所述PWM驱动信号对应的转速驱动尿素泵 电机正反转。
  5. 如权利要求1所述的尿素泵驱动检测装置,其中,还包括故障自动防护模块,与所述数据采集模块和所述主控模块相连,用于根据所述数据采集模块采集的信号数据进行异常分析,向所述主控模块反馈异常信号;
    所述主控模块与所述电源模块相连,用于接收所述异常信号,控制所述电源模块断开。
  6. 一种尿素泵驱动检测系统,其中,包括上位机、尿素泵驱动检测装置;所述上位机包括上位控制器以及与所述上位控制器相连的第二通信模块、人机交互模块和数据分析模块;
    所述人机交互模块,用于接收用户输入的指示数据;所述第二通信模块用于所述上位控制器与所述尿素泵驱动检测装置进行通信;所述数据分析模块,用于根据所述第二通信模块接收到的所述尿素泵驱动检测装置反馈的信号数据进行故障分析,得到故障信息。
  7. 如权利要求6所述的尿素泵驱动检测系统,其中,所述信号数据为尿素泵的引脚接口的电压;所述数据分析模块包括电压检测单元和数据检测单元;所述电压检测单元,用于根据所述引脚接口的电压对应的接口连接状态,得到故障分析信息;所述数据检测单元,用于判断所述引脚接口的对应的电压解析数据,是否处于预设范围,得到故障分析信息。
  8. 如权利要求6所述的尿素泵驱动检测系统,其中,所述信号数据为CAN信号数据;所述数据分析模块包括故障码分析单元,用于根据所述CAN信号数据中的故障码进行分析。
  9. 如权利要求6所述的尿素泵驱动检测系统,其中,还包括故障提示模块以及显示模块;所述故障提示模块,连接所述数据分析模块,用于根据所 述数据分析模块得到的故障分析信息,生成故障提示信息和故障处理建议;所述显示模块,连接所述数据分析模块和所述故障提示模块,用于显示所述故障分析信息、所述故障提示信息和所述故障处理建议。
  10. 如权利要求6所述的尿素泵驱动检测系统,其中,所述尿素泵驱动检测装置包括主控模块以及与所述主控模块相连的驱动模块、数据采集模块、第一通信模块和电源模块;所述第一通信模块与上位机相连,用于接收所述上位机的指示,并向所述上位机反馈信号数据;所述主控模块,用于根据所述上位机的指示控制所述驱动模块、所述数据采集模块和所述电源模块执行动作;所述电源模块,与所述主控模块、所述驱动模块、所述数据采集模块和尿素泵相连;所述驱动模块,与所述尿素泵通过专用接口相连,用于采用与所述专用接口相对应的驱动类型驱动尿素泵;所述数据采集模块,与所述尿素泵的引脚接口相连,用于采集所述引脚接口的信号数据。
  11. 如权利要求10所述的尿素泵驱动检测系统,其中,所述驱动模块为PWM驱动模块,所述PWM驱动模块与所述尿素泵通过第一专用接口相连,用于向所述尿素泵输出PWM驱动信号,驱动所述尿素泵的电机、喷嘴和反向阀工作;
    所述数据采集模块,与所述尿素泵的引脚接口相连,用于采集所述引脚接口的电压。
  12. 如权利要求10所述的尿素泵驱动检测系统,其中,所述驱动模块为CAN驱动模块,所述CAN驱动模块与所述尿素泵通过第二专用接口相连,用于向所述尿素泵输出CAN驱动信号,驱动所述尿素泵工作;
    所述数据采集模块,与所述尿素泵的引脚接口相连,用于采集所述引脚接口的CAN信号数据。
  13. 如权利要求11所述的尿素泵驱动检测系统,其中,所述PWM驱动模块包括H桥电机控制单元,用于根据所述PWM驱动信号对应的转速驱动尿素泵电机正反转。
  14. 如权利要求10所述的尿素泵驱动检测系统,其中,所述尿素泵驱动检测装置还包括故障自动防护模块,与所述数据采集模块和所述主控模块相连,用于根据所述数据采集模块采集的信号数据进行异常分析,向所述主控模块反馈异常信号;
    所述主控模块与所述电源模块相连,用于接收所述异常信号,控制所述电源模块断开。
PCT/CN2021/081294 2020-05-09 2021-03-17 尿素泵驱动检测装置及系统 WO2021227647A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020762481.0 2020-05-09
CN202020762481.0U CN212867869U (zh) 2020-05-09 2020-05-09 尿素泵驱动检测装置及系统

Publications (1)

Publication Number Publication Date
WO2021227647A1 true WO2021227647A1 (zh) 2021-11-18

Family

ID=75204375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081294 WO2021227647A1 (zh) 2020-05-09 2021-03-17 尿素泵驱动检测装置及系统

Country Status (2)

Country Link
CN (1) CN212867869U (zh)
WO (1) WO2021227647A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114033567A (zh) * 2021-11-30 2022-02-11 中船动力研究院有限公司 一种发动机的电控系统
CN114215629A (zh) * 2021-12-02 2022-03-22 江铃汽车股份有限公司 一种电控式尿素喷射系统的排空方法
CN114837784A (zh) * 2022-04-22 2022-08-02 一汽解放汽车有限公司 气驱系统故障测试方法、装置、计算机设备和介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101334662A (zh) * 2008-07-25 2008-12-31 重庆邮电大学 基于asap标准的汽车电控单元标定系统及方法
DE102010030853A1 (de) * 2010-07-02 2012-01-05 Robert Bosch Gmbh Verfahren zur Ansteuerung einer Förderpumpe einer Dosiereinrichtung für ein flüssiges Medium
CN106050380A (zh) * 2016-06-23 2016-10-26 俞潮军 SCR系统中尿素泵和NOx传感器诊断测试装置
JP2017082633A (ja) * 2015-10-27 2017-05-18 株式会社デンソー 診断装置
CN206903851U (zh) * 2017-06-22 2018-01-19 北京一雄信息科技有限公司 一种尿素泵检测系统
CN207301140U (zh) * 2017-05-24 2018-05-01 北京一雄信息科技有限公司 带有过流及过载复位的尿素泵检测装置
CN108051224A (zh) * 2017-10-19 2018-05-18 潍柴动力股份有限公司 Scr系统测试装置
CN109184862A (zh) * 2018-09-25 2019-01-11 深圳市道通科技股份有限公司 尿素泵的型号识别方法、尿素泵诊断仪及其诊断系统
CN110243614A (zh) * 2019-07-12 2019-09-17 上海星融汽车科技有限公司 汽车尾气scr的检测系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101334662A (zh) * 2008-07-25 2008-12-31 重庆邮电大学 基于asap标准的汽车电控单元标定系统及方法
DE102010030853A1 (de) * 2010-07-02 2012-01-05 Robert Bosch Gmbh Verfahren zur Ansteuerung einer Förderpumpe einer Dosiereinrichtung für ein flüssiges Medium
JP2017082633A (ja) * 2015-10-27 2017-05-18 株式会社デンソー 診断装置
CN106050380A (zh) * 2016-06-23 2016-10-26 俞潮军 SCR系统中尿素泵和NOx传感器诊断测试装置
CN207301140U (zh) * 2017-05-24 2018-05-01 北京一雄信息科技有限公司 带有过流及过载复位的尿素泵检测装置
CN206903851U (zh) * 2017-06-22 2018-01-19 北京一雄信息科技有限公司 一种尿素泵检测系统
CN108051224A (zh) * 2017-10-19 2018-05-18 潍柴动力股份有限公司 Scr系统测试装置
CN109184862A (zh) * 2018-09-25 2019-01-11 深圳市道通科技股份有限公司 尿素泵的型号识别方法、尿素泵诊断仪及其诊断系统
CN110243614A (zh) * 2019-07-12 2019-09-17 上海星融汽车科技有限公司 汽车尾气scr的检测系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114033567A (zh) * 2021-11-30 2022-02-11 中船动力研究院有限公司 一种发动机的电控系统
CN114215629A (zh) * 2021-12-02 2022-03-22 江铃汽车股份有限公司 一种电控式尿素喷射系统的排空方法
CN114215629B (zh) * 2021-12-02 2023-01-31 江铃汽车股份有限公司 一种电控式尿素喷射系统的排空方法
CN114837784A (zh) * 2022-04-22 2022-08-02 一汽解放汽车有限公司 气驱系统故障测试方法、装置、计算机设备和介质
CN114837784B (zh) * 2022-04-22 2023-08-18 一汽解放汽车有限公司 气驱系统故障测试方法、装置、计算机设备和介质

Also Published As

Publication number Publication date
CN212867869U (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
WO2021227647A1 (zh) 尿素泵驱动检测装置及系统
CN207249480U (zh) 一种scr设备故障检测系统
WO2015117114A1 (en) Diesel exhaust fluid filter permeability detection strategy and machine using same
CN103809471B (zh) 一种新型自动切换应急处理装置及实现方法
CN201891592U (zh) 机油泵检测系统
CN204677269U (zh) 一种柴油发动机后处理故障诊断仪
WO2021142969A1 (zh) 一种尿素喷嘴的监测方法、装置及系统
CN211314332U (zh) 尿素喷射系统检测及清洗设备
CN103425124B (zh) 基于电流检测的汽车电器连接性检测装置及方法
CN104405484A (zh) 相对独立的选择性催化还原系统
CN104483921A (zh) 一种基于arm的通风机设备检测远程监控系统及方法
CN107562037A (zh) 一种车辆上下电的控制方法及设备
CN105422231B (zh) 一种离线的多工位通用型scr系统耐久试验装置及方法
CN201037905Y (zh) 小型汽轮机数字电液控制器
CN110243614B (zh) 汽车尾气scr的检测系统
CN211841568U (zh) 抛丸清理机物联网远程运维系统
CN205353754U (zh) 电机对拖测试系统
CN111287824B (zh) 空气辅助scr系统中尿素泵的控制方法、装置及系统
CN212898666U (zh) 一种尿素喷嘴检测装置
CN209855881U (zh) 一种scr尿素喷射系统
CN112627976A (zh) 汽车燃油清洗控制系统和清洗设备及其操作方法
CN106812691A (zh) 一种空压机性能检测系统及检测方法
CN205679735U (zh) 测试工装及测试系统
CN215830571U (zh) 一种尿素泵用电压适配器
CN113653631A (zh) 尿素泵清洗检测装置、系统及清洗检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21805106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21805106

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 (1) EPC - (EPO FORM 1205A) - 04.05.2023

122 Ep: pct application non-entry in european phase

Ref document number: 21805106

Country of ref document: EP

Kind code of ref document: A1