WO2021227549A1 - 一种接触式可伸缩导向定位的防撞保护系统与测量平台 - Google Patents

一种接触式可伸缩导向定位的防撞保护系统与测量平台 Download PDF

Info

Publication number
WO2021227549A1
WO2021227549A1 PCT/CN2021/072872 CN2021072872W WO2021227549A1 WO 2021227549 A1 WO2021227549 A1 WO 2021227549A1 CN 2021072872 W CN2021072872 W CN 2021072872W WO 2021227549 A1 WO2021227549 A1 WO 2021227549A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
sleeve
collision protection
protection system
fixed ring
Prior art date
Application number
PCT/CN2021/072872
Other languages
English (en)
French (fr)
Inventor
巫宏建
张和君
Original Assignee
深圳市中图仪器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中图仪器股份有限公司 filed Critical 深圳市中图仪器股份有限公司
Priority to EP21745673.0A priority Critical patent/EP4151882A4/en
Publication of WO2021227549A1 publication Critical patent/WO2021227549A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/06Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs
    • F16F15/067Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs using only wound springs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/047Accessories, e.g. for positioning, for tool-setting, for measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0002Arrangements for supporting, fixing or guiding the measuring instrument or the object to be measured
    • G01B5/0004Supports
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/04Measuring microscopes

Definitions

  • the invention relates to a measuring instrument, in particular to a contact type telescopic guide positioning anti-collision protection system and a measuring platform.
  • Anti-collision systems are generally used in precision measurement, optics and other fields; the current anti-collision protection systems used in the field of precision optical measurement mainly include the following schemes: 1. Pulsed laser ranging transmits laser signals to the target, and it will be Reflect it back, and calculate the distance to be positioned based on the round-trip time of the received optical signal.
  • Continuous wave phase laser ranging is to irradiate the measured target with a continuously modulated laser wave. From the phase change caused by the round-trip of the measured light speed, the measured target distance can be calculated. In order to ensure measurement accuracy, a laser reflector is generally installed on the measured target.
  • Ultrasonic distance measurement uses the known propagation speed of ultrasonic waves in the air, measures the time it takes for the sound wave to reflect back from the target after launch, and calculates the actual distance from the launch point to the sample based on the time difference between launch and reception.
  • the present invention provides a contact type telescopic guide positioning anti-collision protection system and a measurement platform.
  • the invention provides a contact type telescopic guide positioning anti-collision protection system, which includes a guide shaft sleeve, a dense ball sliding sleeve, a sliding shaft, a spring, a baffle, a contact sensor assembly, a movable contact, a fixed ring and an optical
  • the dense ball sliding sleeve is installed on the inner side of the guide shaft sleeve
  • the sliding shaft passes through the dense ball sliding sleeve and is connected with the fixed ring
  • the sliding shaft is connected to the dense ball sliding sleeve
  • the optical lens is installed on the fixed ring
  • the baffle is connected to the guide sleeve
  • the spring is sandwiched between the baffle and the sliding shaft
  • the spring plays a reset function
  • the movable contact is sandwiched between the sliding shaft and the fixed ring
  • the contact sensor assembly is fixed on the guide shaft sleeve.
  • the head of the sliding shaft passes through the dense ball sliding sleeve and is threadedly connected with the tail of the fixed ring.
  • the baffle is fixed on the tail of the guide shaft sleeve, and the spring is clamped between the baffle and the tail of the sliding shaft.
  • the optical lens is threadedly connected with the head of the fixed ring, and the movable contact is sandwiched between the head of the sliding shaft and the tail of the fixed ring.
  • the tail of the sliding shaft is provided with a tapered positioning protrusion
  • the tail of the guide sleeve is provided with a tapered positioning chamfer that matches with the tapered positioning protrusion
  • the contact sensor assembly includes a trigger circuit board and a contact probe arranged on the trigger circuit board, and the movable contact is provided with a contact that matches with the contact probe Bump.
  • an anti-rotation protrusion is provided on the movable contact, an anti-rotation groove is provided on the guide sleeve, and the anti-rotation protrusion is arranged in the anti-rotation groove.
  • the present invention also provides a measurement platform, including the contact-type telescopic guide positioning anti-collision protection system as described in any one of the above.
  • the measurement platform further includes a driving system
  • the driving system includes a driving part, an execution part and a control part
  • the control part is connected with the driving part, the driving part and the execution part Connected
  • the execution part is connected with the guide shaft sleeve or the baffle plate
  • the control part is connected with the contact sensor assembly.
  • the beneficial effects of the present invention are: through the above-mentioned solution, contact-type anti-collision protection is adopted, no reflective receiving device is required, the distance between the protected device and the sample is not required, the versatility is wide, the trigger is sensitive, the power-off protection upon contact is not required, and the environment is not required. And the cost is low, because it is a mechanical structure, it is very safe and reliable, and it is not easy to damage.
  • Fig. 1 is an exploded schematic diagram of an anti-collision protection system with a contact type telescopic guide positioning according to the present invention.
  • Figure 2 is a schematic cross-sectional view of a contact-type telescopic guide positioning anti-collision protection system of the present invention.
  • Fig. 3 is an assembly schematic diagram of an anti-collision protection system with contact type telescopic guide positioning according to the present invention.
  • the present invention provides a contact type retractable guide positioning anti-collision protection system, including The guide shaft sleeve 1, the dense ball sliding sleeve 2, the sliding shaft 3, the spring 4, the baffle 5, the contact sensor assembly, the movable contact 8, the fixed ring 10 and the optical lens 11, the dense ball sliding sleeve 2 is installed in On the inner side of the guide shaft sleeve 1, the sliding shaft 3 passes through the dense ball sliding sleeve 2 and is connected to the fixed ring 10, and the sliding shaft 3 and the dense ball sliding sleeve 2 are in rolling friction,
  • the optical lens 11 is mounted on the fixed ring 10, the baffle 5 is connected to the guide shaft sleeve 1, the spring 4 is sandwiched between the baffle 5 and the sliding shaft 3, and the spring 4 plays a reset function, the movable contact 8 is sandwiched between the sliding shaft 3 and the fixed ring 10, and the contact
  • the movable contact 8 and the sliding shaft 3 move synchronously and reversely until the movable contact 8 comes into contact with the contact-type sensing component, thereby triggering a contact signal.
  • the head of the sliding shaft 3 passes through the dense ball sliding sleeve 2 and is threadedly connected to the tail of the fixed ring 10, and the tail of the sliding shaft 3 is connected to the guide shaft.
  • a tapered positioning structure is provided between the tails of the sleeve 1, the baffle 5 is fixed on the tail of the guide shaft sleeve 1, and the spring 4 is sandwiched between the baffle 5 and the tail of the sliding shaft 3. .
  • the optical lens 11 is threadedly connected to the head of the fixed ring 10, and the movable contact 8 is sandwiched between the head of the sliding shaft 3 and the tail of the fixed ring 10. between.
  • the tail of the sliding shaft 3 is provided with a conical positioning projection 31, and the tail of the guide sleeve 1 is provided with a conical positioning that matches with the conical positioning projection 31.
  • the contact sensor assembly includes a trigger circuit board 7 and a contact probe 71 arranged on the trigger circuit board 7, and the movable contact 8 is provided with the contact
  • the probe 71 is mated with a contact bump 82.
  • the movable contact 8 is provided with an anti-rotation protrusion 81
  • the guide sleeve 1 is provided with an anti-rotation groove 11
  • the anti-rotation protrusion 81 is provided on the Inside the anti-rotation groove 11.
  • the present invention provides a contact type telescopic guide positioning anti-collision protection system.
  • the assembly process is as follows: first install the dense ball sliding sleeve 2 on the guide shaft sleeve 1; in the second step, the sliding shaft 3 passes through the dense ball sliding sleeve. Sleeve 2, so that the sliding shaft 3 passes through the guide shaft sleeve 1; in the third step, the movable contact 8 is inserted into the sliding shaft 3, and the thread of the fixed ring 10 and the sliding shaft 3 is rotated upwards, so that the movable contact 8 is clamped.
  • the fourth step is to fix the trigger circuit board 7 to the guide shaft by the trigger circuit board fixing screw 9 Set on 1 (see Figure 3), ensure that the distance between the contact probe 71 on the trigger circuit board 7 and the movable contact 8 is about 0.5mm;
  • the fifth step is to install the spring 4 on the sliding shaft 3 (see Figure 2), Cover the baffle 5 and lock it with the fixing screw 6 (see Figure 3); finally screw the optical lens 11 through the thread to the fixing ring 10 (see Figure 2).
  • the present invention also provides a measurement platform, including the contact-type telescopic guide positioning anti-collision protection system as described in any one of the above.
  • the measurement platform also includes a driving system, the driving system includes a driving part, an execution part and a control part, the control part is connected with the driving part, the driving part is connected with the execution part, and the execution part is connected with the The guide shaft sleeve or the baffle is connected, and the control part is connected with the contact sensor assembly.
  • the present invention provides a contact type retractable guide positioning anti-collision protection system, and its working principle is as follows: because the sliding shaft 3, the movable contact 8, the fixed ring 10, and the optical lens 11 are connected as a whole, when the optical lens 11 When moving downwards, it contacts the surface of the sample. Due to the reaction of the force, it is moved upwards by a slight force, which drives the movable contact 8 to move upwards and contacts the trigger circuit board 7, which sends a signal to the drive system. The optical lens 11 stops moving downwards to achieve a protective effect.
  • the optical lens 11 When the optical lens 11 is moved away from the sample by an external driving force, the spring 4 is reversely extended, the dense ball sliding sleeve 2 is guided, and the sliding shaft 3 is pushed to make the movable contact 8 and When the trigger circuit board 7 is detached, since the guide shaft sleeve 1 and the sliding shaft 3 are matched with a conical surface, the optical lens 11 is reset to the original position, thereby achieving a positioning effect.
  • the invention provides a contact type retractable guide positioning anti-collision protection system, which is characterized by ignoring the shape and size of the sample, adjusting the collision force through the size of the spring force, and the important components can be retracted and buffered after contact, and the collision immediately triggers the signal power-off protection At the same time, it is easy to design and integrate with the protected parts; the structure is simple, so that the equipment is integrated, miniaturized, reliable, and greatly reduced in cost.
  • the present invention provides a contact type telescopic guide positioning anti-collision protection system and measurement platform, which have the following improvements: 1) Adopt the dense ball guided telescopic movement mode, and install the dense ball sliding sleeve 2 on the guide shaft sleeve 1 and the sliding shaft 3, so that it changes from traditional dry friction to rolling friction.
  • the mechanical and electronic combination triggers the power-off method (see Figure 2).
  • the trigger circuit board 7 sends a signal to the drive system to make the optical lens 11 Stop moving downwards or the entire system (equipment) is powered off to play the role of emergency stop protection.
  • the invention provides a contact type telescopic guide positioning anti-collision protection system and measurement platform, which has the following advantages: 1) Contact type anti-collision protection method is adopted, no reflection receiving device is required, and the distance between the protected device and the sample is not required, and it is universal Wide sex.
  • the protection structure can be well designed to make the equipment beautiful and increase the economic value.
  • the anti-collision protection system provided by the present invention can be used in some industrial testing instruments and high-precision platforms, such as image microscopy measuring probes, high magnification objectives, interference objectives, nano probes, and nano displacement platforms. Wait.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种接触式可伸缩导向定位的防撞保护系统,包括导向轴套(1)、密珠滑套(2)、滑动轴(3)、弹簧(4)、挡板(5)、接触式传感组件、活动触头(8)、固定圈(10)和光学镜头(11),密珠滑套安装在导向轴套的内侧面,滑动轴穿过密珠滑套并与固定圈连接,光学镜头安装在固定圈上,挡板与导向轴套连接,弹簧夹设在挡板、滑动轴之间,活动触头夹设在滑动轴、固定圈之间,接触式传感组件固定在导向轴套上。该防撞保护系统采用接触式防撞保护,无需反射接收装置,被保护器件到样品距离无要求,通用性广,触发灵敏、接触即断电保护,对环境无要求、且成本低,由于是机械结构,安全可靠。

Description

一种接触式可伸缩导向定位的防撞保护系统与测量平台 技术领域
本发明涉及测量仪器,尤其涉及一种接触式可伸缩导向定位的防撞保护系统与测量平台。
背景技术
防撞系统普遍用于精密测量、光学等领域;目前应用在精密光学测量领域的防撞保护系统主要有以下几种方案:1、脉冲式激光测距向目标发射激光信号,碰到目标就被反射回来,通过接收光信号的往返时间计算出所要定位的距离。
2、连续波相位式激光测距是用连续调制的激光波照射被测目标,从测量光速的往返中造成的相位变化,可推算出被测目标距离。为了确保测量精度,一般要在被测目标上安装激光反射器。
3、超声波测距是利用超声波在空气中的传播速度为已知,测量声波在发射后遇到目标反射回来的时间,根据发射和接受的时间差计算出发射点到样品的实际距离。
上述现有方案的缺陷如下:1)  实践中发现,激光测距由于光的漫反射问题,不同材料样品表面反射率不同等,导致测距误差较大、定位不准而发生误撞,损坏被保护部件。
2)  实践中发现,激光测距装置制作难度较大,成本较高,而且光学系统需要保持干净,对环境要求较高。
3)  超声波测距精度较低、成本高,且在最小探测区有几十毫米的盲区,根本无法保护工作距离较小的光学器件。
4)  当前的非接触测距很难满足一些体积小、反射率低、高且尖等样品表面的定位测量。
因此,如何提供一种不易损坏、成本低、对环境要求较低、应用范围广的防撞系统是本领域技术人员所亟待解决的技术问题。
技术问题
为了解决现有技术中的问题,本发明提供了一种接触式可伸缩导向定位的防撞保护系统与测量平台。
技术解决方案
本发明提供了一种接触式可伸缩导向定位的防撞保护系统,包括导向轴套、密珠滑套、滑动轴、弹簧、挡板、接触式传感组件、活动触头、固定圈和光学镜头,所述密珠滑套安装在所述导向轴套的内侧面,所述滑动轴穿过所述密珠滑套并与所述固定圈连接,所述滑动轴与所述密珠滑套为滚动摩擦,所述光学镜头安装在所述固定圈上,所述挡板与所述导向轴套连接,所述弹簧夹设在所述挡板、滑动轴之间,所述弹簧起复位作用,所述活动触头夹设在所述滑动轴、固定圈之间,所述接触式传感组件固定在所述导向轴套上,当所述防撞保护系统沿正向运动并与样品表面接触时,所述活动触头、滑动轴同步反向运动,直到所述活动触头与接触式传感组件接触,从而触发接触信号。
作为本发明的进一步改进,所述滑动轴的头部穿过所述密珠滑套并与所述固定圈的尾部螺纹连接,所述滑动轴的尾部与所述导向轴套的尾部之间设有锥面定位结构,所述挡板固定在所述导向轴套的尾部上,所述弹簧夹设在所述挡板、滑动轴的尾部之间。
作为本发明的进一步改进,所述光学镜头与所述固定圈的头部螺纹连接,所述活动触头夹设在所述滑动轴的头部、固定圈的尾部之间。
作为本发明的进一步改进,所述滑动轴的尾部设有锥面定位凸块,所述导向轴套的尾部设有与所述锥面定位凸块相配合的锥面定位倒角。
作为本发明的进一步改进,所述接触式传感组件包括触发电路板和设置在所述触发电路板上的接触探针,所述活动触头上设有与所述接触探针相配合的接触凸块。
作为本发明的进一步改进,所述活动触头上设有防转凸块,所述导向轴套上设有防转凹槽,所述防转凸块设置在所述防转凹槽之内。
本发明还提供了一种测量平台,包括如上述中任一项所述的接触式可伸缩导向定位的防撞保护系统。
作为本发明的进一步改进,所述测量平台还包括驱动系统,所述驱动系统包括驱动部分、执行部分和控制部分,所述控制部分与所述驱动部分连接,所述驱动部分与所述执行部分连接,所述执行部分与所述导向轴套或者挡板连接,所述控制部分与所述接触式传感组件连接。
本发明的有益效果是:通过上述方案,采用接触式防撞保护,无需反射接收装置,被保护器件到样品距离无要求,通用性广,触发灵敏、接触即断电保护,对环境无要求、且成本低,由于是机械结构,非常安全可靠,不易损坏。
附图说明
图1是本发明一种接触式可伸缩导向定位的防撞保护系统的分解示意图。
图2是本发明一种接触式可伸缩导向定位的防撞保护系统的剖面示意图。
图3是本发明一种接触式可伸缩导向定位的防撞保护系统的装配示意图。
本发明的实施方式
下面结合附图说明及具体实施方式对本发明作进一步说明。
如图1至图3所示,为解决目前光学设备测头中物镜或重要的测头器件受到碰撞而损坏等问题,本发明提供了一种接触式可伸缩导向定位的防撞保护系统,包括导向轴套1、密珠滑套2、滑动轴3、弹簧4、挡板5、接触式传感组件、活动触头8、固定圈10和光学镜头11,所述密珠滑套2安装在所述导向轴套1的内侧面,所述滑动轴3穿过所述密珠滑套2并与所述固定圈10连接,所述滑动轴3与所述密珠滑套2为滚动摩擦,所述光学镜头11安装在所述固定圈10上,所述挡板5与所述导向轴套1连接,所述弹簧4夹设在所述挡板5、滑动轴3之间,所述弹簧4起复位作用,所述活动触头8夹设在所述滑动轴3、固定圈10之间,所述接触式传感组件固定在所述导向轴套1上,当所述防撞保护系统沿正向运动并与样品表面接触时,所述活动触头8、滑动轴3同步反向运动,直到所述活动触头8与接触式传感组件接触,从而触发接触信号。
如图1至图3所示,所述滑动轴3的头部穿过所述密珠滑套2并与所述固定圈10的尾部螺纹连接,所述滑动轴3的尾部与所述导向轴套1的尾部之间设有锥面定位结构,所述挡板5固定在所述导向轴套1的尾部上,所述弹簧4夹设在所述挡板5、滑动轴3的尾部之间。
如图1至图3所示,所述光学镜头11与所述固定圈10的头部螺纹连接,所述活动触头8夹设在所述滑动轴3的头部、固定圈10的尾部之间。
如图1至图3所示,所述滑动轴3的尾部设有锥面定位凸块31,所述导向轴套1的尾部设有与所述锥面定位凸块31相配合的锥面定位倒角12。
如图1至图3所示,所述接触式传感组件包括触发电路板7和设置在所述触发电路板7上的接触探针71,所述活动触头8上设有与所述接触探针71相配合的接触凸块82。
如图1至图3所示,所述活动触头8上设有防转凸块81,所述导向轴套1上设有防转凹槽11,所述防转凸块81设置在所述防转凹槽11之内。
本发明提供的一种接触式可伸缩导向定位的防撞保护系统,其装配过程如下:首先把密珠滑套2装到导向轴套1上;第二步把滑动轴3穿过密珠滑套2,使滑动轴3在导向轴套1穿出;第三步活动触头8套入滑动轴3,通过固定圈10与滑动轴3的螺纹向上旋,使活动触头8被夹紧,并使活动触头8的防转凸块81与导向轴套1的防转凹槽11相配合(见图1);第四步通过触发电路板固定螺丝9把触发电路板7固定到导向轴套1上(见图3),保证触发电路板7上的接触探针71与活动触头8的距离约为0.5mm;第五步把弹簧4装到滑动轴3上(见图2),在把挡板5盖上,并通过固定螺丝6锁紧(见图3);最后把光学镜头11通螺纹旋到固定圈10上(见图2)。本发明还提供了一种测量平台,包括如上述中任一项所述的接触式可伸缩导向定位的防撞保护系统。
所述测量平台还包括驱动系统,所述驱动系统包括驱动部分、执行部分和控制部分,所述控制部分与所述驱动部分连接,所述驱动部分与所述执行部分连接,所述执行部分与所述导向轴套或者挡板连接,所述控制部分与所述接触式传感组件连接。
本发明提供的一种接触式可伸缩导向定位的防撞保护系统,其工作原理如下:由于滑动轴3、活动触头8、固定圈10、光学镜头11是连成一体的,当光学镜头11向下运动时,与样品表面接触,由于力的反作用,受到轻微的力而向上运动,就带动活动触头8向上运动,与触发电路板7接触,触发电路板7发信号到驱动系统,使光学镜头11停止向下运动达到保护作用,在通过外部驱动力,使光学镜头11远离样品,通过弹簧4反向伸长、密珠滑套2导向、推动滑动轴3,使活动触头8与触发电路板7脱离,由于导向轴套1与滑动轴3通过锥面配合的方式,使光学镜头11复位到原来的位置,从而达到定位效果。
本发明提供的一种接触式可伸缩导向定位的防撞保护系统,其特点是无视样品形状大小,通过弹簧力大小调节碰撞力大小,接触后重要器件可伸缩缓冲,碰撞立即触发信号断电保护,同时易于设计与被保护件一体;结构简单,使设备整体化、小型化、可靠性强、大幅降低成本。
本发明提供的一种接触式可伸缩导向定位的防撞保护系统与测量平台,具有以下改进:1)  采用密珠导向伸缩运动方式,通过密珠滑套2装在导向轴套1和滑动轴3之间导向,使其由传统的干摩擦变成滚动摩擦,在光学镜头11上下运动时带动滑动轴3运动,并通过弹簧4的压缩力(或拉伸力)使滑动轴3复位(见图2),解决由干摩擦引起磨损、摩擦力增大,导致防撞失效问题;2)  锥面定位方式(见图2),当导向轴套1与滑动轴3相对运动,在回到原来位置时,通过彼此的锥面导向定位,解决设备碰撞后定位问题;3)  防转机械结构方式(见图1),当固定圈10与滑动轴3的螺纹向上旋,使活动触头8被夹紧,并使活动触头8的凸台与导向轴套1的凹处相配合,使光学镜头11、固定圈10、滑动轴3连成一体的结构件(见图2)不会转动,解决定位轴旋转问题;4)  机械电子结合触发断电方式(见图2),当活动触头8向上运动,与触发电路板7接触,触发电路板7发信号到驱动系统,使光学镜头11停止向下运动或整个系统(设备)断电,起到急停保护作用。
本发明提供的一种接触式可伸缩导向定位的防撞保护系统与测量平台,具有以下优点:1)  采用接触式防撞保护方式、无需反射接收装置,被保护器件到样品距离无要求,通用性广。
2)  触发灵敏、接触即断电保护,对环境无要求、且成本低,由于是机械结构,非常安全可靠。
3)  无论样品体积大小、高低、反射率都可以很灵敏的起到防撞保护作用。
4)  可根据本接触式防撞设计原理,很好的设计保护结构,使设备美观,提高经济价值。
本发明提供的一种接触式可伸缩导向定位的防撞保护系统可用于一些工业检测仪器、高精密平台,比如说影像显微测量测头、高倍物镜、干涉物镜、纳米测头、纳米位移台等。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (8)

  1. 一种接触式可伸缩导向定位的防撞保护系统,其特征在于:包括导向轴套、密珠滑套、滑动轴、弹簧、挡板、接触式传感组件、活动触头、固定圈和光学镜头,所述密珠滑套安装在所述导向轴套的内侧面,所述滑动轴穿过所述密珠滑套并与所述固定圈连接,所述滑动轴与所述密珠滑套为滚动摩擦,所述光学镜头安装在所述固定圈上,所述挡板与所述导向轴套连接,所述弹簧夹设在所述挡板、滑动轴之间,所述弹簧起复位作用,所述活动触头夹设在所述滑动轴、固定圈之间,所述接触式传感组件固定在所述导向轴套上,当所述防撞保护系统沿正向运动并与样品表面接触时,所述活动触头、滑动轴同步反向运动,直到所述活动触头与接触式传感组件接触,从而触发接触信号。
  2. 根据权利要求1所述的接触式可伸缩导向定位的防撞保护系统,其特征在于:所述滑动轴的头部穿过所述密珠滑套并与所述固定圈的尾部螺纹连接,所述滑动轴的尾部与所述导向轴套的尾部之间设有锥面定位结构,所述挡板固定在所述导向轴套的尾部上,所述弹簧夹设在所述挡板、滑动轴的尾部之间。
  3. 根据权利要求2所述的接触式可伸缩导向定位的防撞保护系统,其特征在于:所述光学镜头与所述固定圈的头部螺纹连接,所述活动触头夹设在所述滑动轴的头部、固定圈的尾部之间。
  4. 根据权利要求2所述的接触式可伸缩导向定位的防撞保护系统,其特征在于:所述滑动轴的尾部设有锥面定位凸块,所述导向轴套的尾部设有与所述锥面定位凸块相配合的锥面定位倒角。
  5. 根据权利要求1所述的接触式可伸缩导向定位的防撞保护系统,其特征在于:所述接触式传感组件包括触发电路板和设置在所述触发电路板上的接触探针,所述活动触头上设有与所述接触探针相配合的接触凸块。
  6. 根据权利要求5所述的接触式可伸缩导向定位的防撞保护系统,其特征在于:所述活动触头上设有防转凸块,所述导向轴套上设有防转凹槽,所述防转凸块设置在所述防转凹槽之内。
  7. 一种测量平台,其特征在于:包括如权利要求1至6中任一项所述的接触式可伸缩导向定位的防撞保护系统。
  8. 根据权利要求7所述的测量平台,其特征在于:所述测量平台还包括驱动系统,所述驱动系统包括驱动部分、执行部分和控制部分,所述控制部分与所述驱动部分连接,所述驱动部分与所述执行部分连接,所述执行部分与所述导向轴套或者挡板连接,所述控制部分与所述接触式传感组件连接。
PCT/CN2021/072872 2020-05-11 2021-01-20 一种接触式可伸缩导向定位的防撞保护系统与测量平台 WO2021227549A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21745673.0A EP4151882A4 (en) 2020-05-11 2021-01-20 COLLISION PROTECTION SYSTEM USING CONTACT RETRACTION AND GUIDED POSITIONING, AND MEASUREMENT PLATFORM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010393246.5A CN111609082A (zh) 2020-05-11 2020-05-11 一种接触式可伸缩导向定位的防撞保护系统与测量平台
CN202010393246.5 2020-05-11

Publications (1)

Publication Number Publication Date
WO2021227549A1 true WO2021227549A1 (zh) 2021-11-18

Family

ID=72194895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072872 WO2021227549A1 (zh) 2020-05-11 2021-01-20 一种接触式可伸缩导向定位的防撞保护系统与测量平台

Country Status (3)

Country Link
EP (1) EP4151882A4 (zh)
CN (1) CN111609082A (zh)
WO (1) WO2021227549A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114786049A (zh) * 2022-05-10 2022-07-22 南京嘉浩科技有限公司 一种双通道智能电视遥控设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111609082A (zh) * 2020-05-11 2020-09-01 深圳市中图仪器股份有限公司 一种接触式可伸缩导向定位的防撞保护系统与测量平台

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103256891A (zh) * 2012-02-20 2013-08-21 特莎有限公司 接触式探针
CN206223981U (zh) * 2016-11-08 2017-06-06 铁将军汽车电子有限公司 防撞传感组件
CN109154494A (zh) * 2016-03-16 2019-01-04 海克斯康测量技术有限公司 具有防撞保护的探针和探针夹
CN109489564A (zh) * 2018-12-29 2019-03-19 东莞市兆丰精密仪器有限公司 一种具有自动防撞功能的影像测量仪及其防撞方法
US10365087B2 (en) * 2012-11-30 2019-07-30 Mitutoyo Corporation Orthogonal state measuring device
CN209928128U (zh) * 2019-05-24 2020-01-10 福建省福联集成电路有限公司 一种具有防撞功能的光学显微镜装置
CN111609082A (zh) * 2020-05-11 2020-09-01 深圳市中图仪器股份有限公司 一种接触式可伸缩导向定位的防撞保护系统与测量平台
CN212480002U (zh) * 2020-05-11 2021-02-05 深圳市中图仪器股份有限公司 一种接触式可伸缩导向定位的防撞保护系统与测量平台

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109786A (ja) * 2007-10-31 2009-05-21 Olympus Corp 顕微鏡対物レンズ
JP6530974B2 (ja) * 2015-06-10 2019-06-12 株式会社ミツトヨ 測定機の衝突防止装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103256891A (zh) * 2012-02-20 2013-08-21 特莎有限公司 接触式探针
US10365087B2 (en) * 2012-11-30 2019-07-30 Mitutoyo Corporation Orthogonal state measuring device
CN109154494A (zh) * 2016-03-16 2019-01-04 海克斯康测量技术有限公司 具有防撞保护的探针和探针夹
CN206223981U (zh) * 2016-11-08 2017-06-06 铁将军汽车电子有限公司 防撞传感组件
CN109489564A (zh) * 2018-12-29 2019-03-19 东莞市兆丰精密仪器有限公司 一种具有自动防撞功能的影像测量仪及其防撞方法
CN209928128U (zh) * 2019-05-24 2020-01-10 福建省福联集成电路有限公司 一种具有防撞功能的光学显微镜装置
CN111609082A (zh) * 2020-05-11 2020-09-01 深圳市中图仪器股份有限公司 一种接触式可伸缩导向定位的防撞保护系统与测量平台
CN212480002U (zh) * 2020-05-11 2021-02-05 深圳市中图仪器股份有限公司 一种接触式可伸缩导向定位的防撞保护系统与测量平台

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4151882A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114786049A (zh) * 2022-05-10 2022-07-22 南京嘉浩科技有限公司 一种双通道智能电视遥控设备

Also Published As

Publication number Publication date
EP4151882A1 (en) 2023-03-22
CN111609082A (zh) 2020-09-01
EP4151882A4 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
WO2021227549A1 (zh) 一种接触式可伸缩导向定位的防撞保护系统与测量平台
AU595937B2 (en) Laser probe for determining distance
US6115128A (en) Multi-dimensional position sensor using range detectors
EP2006633A2 (en) Tracking type laser interferometer and method for resetting the same
US5315372A (en) Non-contact servo track writing apparatus having read/head arm and reference arm
EP1750085A2 (en) Laser tracking interferometer
SG169987A1 (en) Plane position detecting apparatus, exposure apparatus and device manufacturing method
EP2806251B1 (en) Fiber optic position sensor and method for using
CN105676229A (zh) 一种适用于低量程的激光测距结构
CN203324296U (zh) 转速精密在线测量系统
CN212480002U (zh) 一种接触式可伸缩导向定位的防撞保护系统与测量平台
RU159150U1 (ru) Оптико-электронное устройство для измерения размеров обечаек
CN109798883B (zh) 一种高精度二维平移台垂直度检测方法及装置
CN111879242B (zh) 一种用于微位移平台的纳米定位控制系统
EP2131143A2 (en) Optical measuring instrument
CN101776453B (zh) 一种光学成像对中测量装置
US10101451B2 (en) Distance measuring device and distance measuring method thereof
CN101133298A (zh) 用于检测机械部件的位置和/或形状的设备和方法
JP2002107142A (ja) 歯車測定機
JP2015040731A (ja) 磁界測定装置
US8189183B2 (en) Optical inspection apparatus
CN104907889A (zh) 一种基于psd原理的二维测力主轴夹具
JP2009198178A (ja) 位置検出装置、これを用いた開閉動作特性計測装置及び遮断器
TWI834273B (zh) 距離調整量測方法以及量測裝置
US10495441B2 (en) Probing element and coordinate measuring machine for measuring at least one measurement object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21745673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021745673

Country of ref document: EP

Effective date: 20221212