WO2021227403A1 - 等径角挤压设备及其等径角挤压温度控制装置 - Google Patents

等径角挤压设备及其等径角挤压温度控制装置 Download PDF

Info

Publication number
WO2021227403A1
WO2021227403A1 PCT/CN2020/127441 CN2020127441W WO2021227403A1 WO 2021227403 A1 WO2021227403 A1 WO 2021227403A1 CN 2020127441 W CN2020127441 W CN 2020127441W WO 2021227403 A1 WO2021227403 A1 WO 2021227403A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
equal channel
blank
channel angular
angular extrusion
Prior art date
Application number
PCT/CN2020/127441
Other languages
English (en)
French (fr)
Inventor
陆建勋
伍博
伍晓宇
雷建国
伍朝志
程涛
阮双琛
Original Assignee
深圳技术大学
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳技术大学, 深圳大学 filed Critical 深圳技术大学
Publication of WO2021227403A1 publication Critical patent/WO2021227403A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C31/00Control devices, e.g. for regulating the pressing speed or temperature of metal; Measuring devices, e.g. for temperature of metal, combined with or specially adapted for use in connection with extrusion presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/001Extruding metal; Impact extrusion to improve the material properties, e.g. lateral extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C25/00Profiling tools for metal extruding
    • B21C25/02Dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C29/00Cooling or heating work or parts of the extrusion press; Gas treatment of work
    • B21C29/04Cooling or heating of press heads, dies or mandrels

Definitions

  • the invention belongs to the technical field of mechanical processing equipment, and in particular relates to an equal channel angular extrusion equipment and an equal channel angular extrusion temperature control device.
  • equal channel angular extrusion process is a large plastic deformation processing method that uses pure shear deformation to refine grains.
  • the existing equal channel angular extrusion processing is to force the blank by a press
  • the billet is realized through the corner channel, which is mainly used when the billet passes through the corner, the billet is subjected to extreme shear stress, resulting in shear strain and pure shear deformation; then after repeated extrusion, the billet accumulates shear
  • the total amount of deformation can significantly refine the grains and improve the properties of the blank.
  • the existing equal channel angular extrusion processing can only complete the extrusion of easily deformable billets (such as red copper, aluminum and their alloys) at room temperature; for harder billets such as magnesium alloy or titanium alloy, they cannot be extruded at room temperature. Therefore, grain refinement cannot be achieved.
  • easily deformable billets such as red copper, aluminum and their alloys
  • harder billets such as magnesium alloy or titanium alloy
  • the purpose of the present invention is to provide a constant channel angular extrusion equipment and a constant channel angular extrusion temperature control device, which aims to solve the technical problem that the harder blanks in the prior art cannot achieve constant channel angular extrusion processing at room temperature .
  • the technical solution adopted by the present invention is: a constant channel angular extrusion temperature control device, suitable for the constant channel angular extrusion die, the constant channel angular extrusion die is provided with a blank for accommodating Channel;
  • the equal channel angular extrusion temperature control device includes a heating element, a temperature detection element and a control component; the heating element is arranged on the equal channel angular extrusion die and is used to heat the blank; the temperature The detecting member is arranged on the equal channel angle extrusion die and is used to detect the temperature of the blank; the temperature detecting member is electrically connected with the control assembly, and is used to detect the equal channel angle extrusion die
  • the temperature information of the heating element is fed back to the control assembly; the heating element is electrically connected to the control assembly, and is used to control the heating value of the heating element according to the temperature information to adjust the temperature of the blank, so that the The temperature of the blank is within a preset temperature range, and the preset temperature range is from the recry
  • T 1 20 ⁇ T ⁇ T 1 +50; where T 1 is the recrystallization temperature of the blank.
  • control component includes a PID temperature adjustment instrument and a solid state relay
  • the temperature detection element is electrically connected to the PID temperature adjustment instrument
  • the PID temperature adjustment instrument is electrically connected to the heating element through the solid state relay.
  • sexual connection is electrically connected.
  • the heating element is a heating rod.
  • the equal channel angular extrusion die is provided with a first mounting hole, and the heating element is mounted in the first mounting hole.
  • the temperature detection element is a thermocouple or a temperature sensor.
  • the equal channel angular extrusion die is provided with a second mounting hole, and the temperature detecting member is mounted in the second mounting hole.
  • the heating element is located on the side of the heating element away from the passage.
  • the distance between the temperature detecting element and the heating element is equal to the distance between the passage and the heating element.
  • the above-mentioned one or more technical solutions in the equal channel angular extrusion temperature control device provided by the present invention have at least one of the following technical effects: when in use, the heating element heats the blank in the channel of the equal channel angular extrusion die, and at the same time , The control component controls the heat generation of the heating element according to the temperature information fed back by the temperature detection element, thereby controlling the temperature of the blank and ensuring that the temperature of the blank is always within the preset temperature range; this way, when processing harder material blanks, due to the preset temperature range It is the temperature range from the recrystallization temperature of the billet to the complete recrystallization temperature of the billet, that is, the temperature of the billet is within the temperature range from the recrystallization temperature of the billet to the complete recrystallization temperature of the billet, that is, the temperature of the billet is greater than or equal to the recrystallization temperature of the billet The temperature is less than or equal to the complete recrystallization temperature of the blank.
  • the harder material blank has good plasticity and good deformation performance, so that when the extrusion punch squeezes the harder material blank through the equal channel angle extrusion die After the channel and cyclic extrusion several times, the equal channel angular extrusion processing of the harder material blank can be easily realized.
  • the temperature of the blank is greater than or equal to the recrystallization temperature of the blank and less than Equal to the complete recrystallization temperature of the billet, the internal crystal structure of the billet is well homogenized, the grain refining effect is good, and it is also conducive to obtaining an ultra-fine grain structure and an ultra-fine billet.
  • an equal channel angular extrusion equipment including an equal channel angular extrusion die and the above-mentioned equal channel angular extrusion temperature control device, the equal channel angular extrusion temperature control device is arranged in the The equal channel angle extrusion die.
  • the equal channel angular extrusion equipment of the present invention due to the above-mentioned equal channel angular extrusion temperature control device, can not only realize the equal channel angular extrusion processing of the harder material blank, but also the internal crystalline structure of the blank is well homogenized.
  • the grain refining effect is good, and it is also conducive to obtaining the ultra-fine grain structure and obtaining the ultra-fine billet.
  • Fig. 1 is a schematic structural diagram of an equal channel angular extrusion device provided by an embodiment of the present invention.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present invention, “plurality” means two or more than two, unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • a temperature control device for equal channel angular extrusion is provided, which is suitable for use on an equal channel angular extrusion die 10, and the equal channel angular extrusion die 10 is provided with a container for containing
  • the channel 11 of the blank 60 is placed; the channel 11 is L-shaped.
  • the channel 11 includes a horizontal section 113, a vertical section and a curved section 112 connected between the horizontal section 113 and the vertical section.
  • the bottom of the die 10 is set and extends from the side of the equal channel angular extrusion die 10, and the vertical section extends from the bottom of the equal channel angular extrusion die 10 toward the top of the equal channel angular extrusion die 10 until from the equal channel angle extrusion die 10
  • the top surface of the pressing die 10 protrudes.
  • the blank 60 is put into the vertical section 111 from the top surface of the equal channel angle extrusion die 10, and then the extrusion punch 50 is moved from the equal channel angle extrusion die 10
  • the top surface of the blank extends into or moves out of the vertical section 111, so as to squeeze the blank 60 back and forth until the blank 60 passes through the curved section 112 and then moves out of the horizontal section 113, thereby achieving equal channel angular extrusion processing of the blank 60.
  • the equal channel angular extrusion temperature control device includes a heating element 20, a temperature detection element 30 and a control assembly 40; the heating element 20 is arranged on the equal channel angular extrusion die 10 and is used to heat the blank 60; the temperature detection element 30 It is set on the equal channel angular extrusion die 10 and used to detect the temperature of the blank 60; wherein, the heating element 20 directly heats the equal channel angular extrusion die 10, and at the same time, the heat is transferred from the heating element 20 to the channel 11, Thus, the heating of the blank 60 in the channel 11 is completed.
  • the temperature detection element 30 is electrically connected to the control assembly 40, and is used to feed back the temperature information of the detected equal channel angle extrusion die 10 to the control assembly 40;
  • the heating element 20 is electrically connected to the control assembly 40, and is used according to The temperature signal fed back by the temperature detection element 30 controls the heating value of the heating element 20 to adjust the temperature of the blank 60, so that the temperature of the blank 60 is in the preset temperature range, and the preset temperature range is from the recrystallization temperature of the blank 60 to the temperature of the blank 60 Complete recrystallization temperature.
  • the temperature T of the blank 60 satisfies the following relationship: T 1 ⁇ T ⁇ T 2 ; where T 1 is the recrystallization temperature of the blank 60 and T 2 is the complete recrystallization temperature of the blank 60.
  • the temperature detection element 30 when the temperature detection element 30 detects that the temperature is within the preset temperature range, the temperature detection element 30 feeds back a signal to the control assembly 40, and the control assembly 40 sends an instruction to control the heating element 20 to continue working, so as to ensure the blank 60
  • the temperature is within the preset temperature range; when the temperature detection element 30 detects that the temperature is less than the recrystallization temperature of the blank 60, the control component 40 issues an instruction to increase the heating element 20 to increase the heat generation of the heating element 20, so as to increase the temperature of the blank 60 until The temperature of the equal channel angular extrusion die 10 is within the preset temperature range; when the temperature detection element 30 detects that the temperature is greater than the complete recrystallization temperature of the blank 60, the control component 40 issues an instruction to turn off the heating element 20 or reduce the heating element 20 Heat, thereby reducing the temperature of the blank 60 until the temperature of the blank 60 is within the predetermined processing temperature range; in this way, it can be ensured that the blank 60 is always within the predetermined temperature
  • the heating element 20 heats the blank 60 in the channel 11 of the equal channel angular extrusion die 10, and at the same time, the control component 40 responds according to the temperature detection element 30
  • the temperature information controls the calorific value of the heating element 20, thereby controlling the temperature of the blank 60 to ensure that the temperature of the blank 60 is always within the preset temperature range; in this way, when the harder material blank 60 is processed, the preset temperature range is the second of the blank 60
  • the temperature range from the crystallization temperature to the complete recrystallization temperature of the blank 60 that is, the temperature of the blank 60 is always within the temperature range from the recrystallization temperature of the blank 60 to the complete recrystallization temperature of the blank 60, that is, the temperature of the blank 60 is greater than or equal to the blank 60
  • the recrystallization temperature is less than or equal to the complete recrystallization temperature of the blank 60.
  • the blank 60 of the harder material has good plasticity and is easy to deform, so when the extrusion punch 50 circulates the blank 60 of the harder material.
  • the equal channel angular extrusion processing of the blank 60 of harder material can be easily realized.
  • the blank 60 The temperature is greater than or equal to the recrystallization temperature of the blank 60, and less than or equal to the complete recrystallization temperature of the blank 60.
  • the internal crystal structure of the blank 60 is well homogenized, and the grain refinement is realized. It is also conducive to obtaining ultra-fine grain structure and super crystal ⁇ 60 ⁇ Fine blank 60.
  • the temperature of the blank 60 is set as T of the temperature control device for isodiametric angular extrusion, the following relationship is satisfied: T 1 +20 ⁇ T ⁇ T 1 +50; , T 1 is the recrystallization temperature of the blank 60.
  • the temperature of the blank 60 is within the above-mentioned range.
  • the blank 60 has good deformability and can meet the requirements of equal channel angular extrusion processing.
  • the temperature of the blank 60 is appropriate, which can also avoid energy waste and reduce production costs;
  • the temperature T of the blank 60 is T 1 +20, T 1 +30, T 1 +40, or T 1 +50.
  • the control component 40 of the isometric angular extrusion temperature control device includes a PID temperature adjustment instrument 41 and a solid state relay 42, a temperature detection element 30 and a PID temperature adjustment
  • the instrument 41 is electrically connected, and the PID temperature adjusting instrument 41 is electrically connected to the heating element 20 through the solid state relay 42; when the temperature detecting element 30 transmits the detected temperature to the PID temperature adjusting instrument 41, the output of the PID temperature adjusting instrument 41 is different.
  • the pulse signal of the air ratio is sent to the solid-state relay 42, and the solid-state relay 42 converts the pulse signal into a switching signal, and transmits the switching signal to the heating element 20 to control the heating value of the heating element 20, thereby controlling the temperature of the blank 60;
  • the PID temperature adjustment instrument 41, the solid state relay 42 and the heating element 20 are connected in series through the wire 70 in turn; when the PID temperature adjustment instrument 41 outputs an electrical signal, the solid state relay 42 converts the electrical signal into a turn-on signal, and the heating element 20 receives After the signal is turned on, it is in the on state for a certain period of time, thereby heating the blank 60 to increase or maintain the temperature of the blank 60.
  • the heating element 20 is in the paused state, that is, the closed state, and stops heating the blank 60, so that the temperature of the blank 60 is reduced, so as to ensure that the temperature of the blank 60 is always within the preset temperature range
  • the greater the proportion of the empty signal output per unit time the longer the time for the heating element 20 to turn off, the less the heating element 20 generates heat, and the temperature of the blank 60 will decrease; in this way, through PID temperature adjustment
  • the instrument 41 sends pulse signals with different duty cycles to control the temperature of the blank 60 and ensure that the temperature of the blank 60 is within the preset temperature range.
  • the PID temperature adjustment instrument 41 has the PID temperature adjustment instrument 41 with input function, then before the blank 60 is processed, after obtaining the preset temperature range according to the recrystallization temperature and the complete recrystallization temperature of the blank 60, the preset temperature range Input into the PID temperature adjustment instrument 41, so as to meet the equal channel angle processing requirements of the blanks 60 of different materials, and the application range is wider.
  • the PID temperature adjustment instrument 41 is an AT70X series intelligent PID temperature adjustment instrument
  • the solid state relay 42 is a SSR-40 DA 40A/250V solid state relay.
  • the heating element 20 of the equal-diameter angular extrusion temperature control device is a heating rod.
  • the heating speed of the heating rod is fast, and the heating speed of the blank 60 is fast, which is beneficial to improve the production efficiency of the blank 60.
  • the heating rod is easy to obtain and low in cost, and it is also beneficial to reduce the manufacturing cost of the isodiametric extrusion temperature control device.
  • the heating rod is elongated. When the heating rod is arranged parallel to the vertical section 111 of the channel 11, the heating rod can evenly heat the blank 60 located in the vertical section 111, and the heating range of the blank 60 is larger. , The temperature distribution of the blank 60 is more uniform, the blank 60 is easier to be extruded, and the grain refinement performance is better.
  • the isometric angular extrusion die 10 of the isometric angular extrusion temperature control device is provided with a first mounting hole 12, and the heating element 20 is mounted on the first mounting hole 12 Inside the mounting hole 12.
  • the first mounting hole 12 provides installation space for the heating element 20, so that the heating element 20 can go deep into the equal channel angular extrusion die 10 and be closer to the channel 11, and the heating effect of the blank 60 is higher, and its energy utilization is also higher;
  • the first mounting hole 12 is located at the side of the vertical section 111 and extends along the length of the vertical section 111, so that when the heating rod is inserted into the first mounting hole 12, the heating rod is arranged parallel to the vertical section 111 In this way, the heating effect of the blank 60 is better, the blank 60 is easier to be extruded, and the grain refinement performance is better.
  • the lower end of the heating rod is flush with the bottom surface of the horizontal section 113 or lower than the bottom of the horizontal section 113, so that the heating rod realizes the heating of the entire blank 60, and the heating effect is better.
  • the temperature detecting member 30 of the isodiametric angular extrusion temperature control device is a thermocouple.
  • the thermocouple directly measures the temperature, and converts the temperature signal into a thermoelectromotive force signal, and then transmits the thermoelectromotive force signal to the PID temperature adjustment instrument 41. After the PID temperature adjustment instrument 41 receives the thermoelectromotive force signal, it sends out the corresponding pulse signal to realize Control of the temperature of the blank 60.
  • the temperature detecting member 30 of the isodiametric angular extrusion temperature control device is a temperature sensor.
  • the temperature sensor directly measures the temperature and converts the temperature signal into an electrical signal, and then transmits the electromotive force signal to the PID temperature adjustment instrument 41. After the PID temperature adjustment instrument 41 receives the electrical signal, it sends out the corresponding pulse signal to realize the temperature of the blank 60 control.
  • the output end of the temperature sensor or the output end of the thermocouple is connected to the input end of the PID temperature adjustment instrument 41 through the wire 70, so that the PID temperature adjustment instrument 41 can receive the electrical signal feedback from the temperature sensor or receive the thermocouple feedback.
  • the thermo-EMF signal is connected to the input end of the PID temperature adjustment instrument 41 through the wire 70, so that the PID temperature adjustment instrument 41 can receive the electrical signal feedback from the temperature sensor or receive the thermocouple feedback.
  • the thermo-EMF signal is connected to the input end of the PID temperature adjustment instrument 41 through the wire 70, so that the PID temperature adjustment instrument 41 can receive the electrical signal feedback from the temperature sensor or receive the thermocouple feedback.
  • the thermo-EMF signal is connected to the input end of the PID temperature adjustment instrument 41 through the wire 70, so that the PID temperature adjustment instrument 41 can receive the electrical signal feedback from the temperature sensor or receive the thermocouple feedback.
  • the isometric angular extrusion die 10 of the isometric angular extrusion temperature control device is provided with a second mounting hole 13, and the temperature detecting member 30 is mounted on the first Two mounting holes 13 inside.
  • the second mounting hole 13 provides mounting holes for the temperature detecting member 30.
  • the detecting end of the temperature detecting member 30 is installed in the second mounting hole 13, so that the detecting end can be completely set in the equal channel angle extrusion die 10 Internally, the temperature detection result is more accurate, and the temperature control of the blank 60 is more accurate, which ensures the smooth progress of the equal channel angular extrusion, and also ensures that the blank 60 after the equal channel angular extrusion has better performance.
  • the heating element 20 of the isometric angular extrusion temperature control device is provided on the side of the heating element 20 facing away from the channel 11.
  • the installation position of the heating element 20 is set away from the channel 11, which can prevent the installation structure of the heating element 20 from affecting the structural strength of the channel 11 of the equal channel angular extrusion die 10, and ensure the smooth progress of the equal channel angular extrusion.
  • the distance between the temperature detecting element 30 and the heating element 20 of the isodiametric angular extrusion temperature control device is equal to the distance between the channel 11 and the heating element 20.
  • the temperature at the same position on the equal channel angular extrusion die 10 from the heating element 20 is the same, then the temperature detected by the temperature detecting element 30 is the temperature at the channel 11, that is, the temperature detected by the temperature detecting element 30
  • the temperature is closer to the temperature of the blank 60, which can ensure that the temperature of the blank 60 is accurately within the preset temperature range, ensure the smooth progress of equal channel angular extrusion and realize the refinement of crystal grains.
  • the distance between the temperature detecting element 30 and the heating element 20 and the distance between the passage 11 and the heating element 20 are not much different, so that the temperature detected by the temperature detecting element 30
  • the temperature of the blank 60 and the temperature of the blank 60 which can be determined according to experiments, the law of temperature distribution, and the heat exchange efficiency, etc., so as to deduce the temperature of the blank 60 according to the temperature of the temperature detection part 30; of course, if it is actually During the production process, the difference is small and has little impact on the production of the blank 60, and the temperature detected by the temperature detection member 30 can also be directly used as the temperature of the blank 60.
  • an equal channel angular extrusion equipment which can be suitable for the equal channel angular extrusion processing of a blank 60 of a harder material, such as a magnesium alloy blank or a titanium alloy blank, etc.;
  • the equal channel angular extrusion equipment includes an equal channel angular extrusion die 10 and the above-mentioned equal channel angular extrusion temperature control device, and the equal channel angular extrusion temperature control device is provided in the equal channel angular extrusion die 10.
  • the equal channel angular extrusion equipment of the embodiment of the present invention adopts the above-mentioned equal channel angular extrusion temperature control device, not only can realize the equal channel angular extrusion processing of the blank 60 of harder material, but also, the internal crystal structure of the blank 60 The homogenization is good, the grain refining effect is good, and it is also conducive to obtaining the ultra-fine grain structure, and the super-crystalline fine blank 60 is obtained.

Abstract

一种等径角挤压设备及其等径角挤压温度控制装置,该等径角挤压温度控制装置,设置有用于容置坯料的通道(11)的等径角挤压模具(10)上,该等径角挤压温度控制装置包括加热件(20)、温度检测件(30)和控制组件(40);加热件(20)设置于等径角挤压模具(10)上并用于对坯料(60)加热;温度检测件(30)设置于等径角挤压模具(10)上并用于检测坯料(60)的温度;温度检测件(30)与控制组件(40)电性连接并用于将检测到等径角挤压模具(10)的温度信息反馈给控制组件(40);加热件(20)与控制组件(40)电性连接并用于根据温度信息控制加热件(20)的发热量以调整坯料(60)的温度,从而使得坯料(60)的温度位于坯料(60)的再结晶温度到坯料(60)的完全再结晶温度之间,从而能够实现较硬材料的坯料(60)的等径角挤压加工。

Description

等径角挤压设备及其等径角挤压温度控制装置 技术领域
本发明属于机械加工设备技术领域,尤其涉及一种等径角挤压设备及其等径角挤压温度控制装置。
背景技术
等径角挤压工艺的英文全称是Equal Channel Angular Pressing,其英文缩写是ECAP;等径角挤压工艺是利用纯剪切变形细化晶粒的大塑性变形加工方法,现有的等径角挤压加工是通过压力机给予坯料挤压力迫使坯料通过转角通道实现的,其主要是利用在坯料通过转角处的时候,坯料受到极大的剪切应力,从而产生剪切应变,发生纯剪切变形;然后经过反复挤压,坯料积累剪切变形总量,能够显著地细化晶粒,改善坯料性能。
然而,现有的等径角挤压加工只能完成室温下易变形坯料(如红铜、铝及其合金)的挤压;对于镁合金或钛合金等较硬坯料无法在室温下挤压,因此无法实现晶粒细化。
技术问题
本发明的目的在于提供一种等径角挤压设备及其等径角挤压温度控制装置,旨在解决现有技术中的较硬坯料无法在室温下实现等径角挤压加工的技术问题。
技术解决方案
为实现上述目的,本发明采用的技术方案是:一种等径角挤压温度控制装置,适用于等径角挤压模具上,所述等径角挤压模具内设有用于容置坯料的通道;所述等径角挤压温度控制装置包括加热件、温度检测件和控制组件;所述加热件设置于所述等径角挤压模具上,并用于对所述坯料加热;所述温度检测件设置于所述等径角挤压模具上,并用于检测所述坯料的温度;所述温度检测件与所述控制组件电性连接,并用于将检测到所述等径角挤压模具的温度信息反馈给所述控制组件;所述加热件与所述控制组件电性连接,并用于根据所述温度信息控制所述加热件的发热量,以调整所述坯料的温度,从而使得所述坯料的温度位于预设温度范围内,所述预设温度范围为所述坯料的再结晶温度到所述坯料的完全再结晶温度。
可选地,若设所述坯料的温度为T,则满足以下关系式:
T 1+20≤T≤T 1+50;其中,T 1为所述坯料的再结晶温度。
可选地,所述控制组件包括PID温度调节仪器和固态继电器,所述温度检测件与所述PID温度调节仪器电性连接,所述PID温度调节仪器通过所述固态继电器与所述加热件电性连接。
可选地,所述加热件为加热棒。
可选地,所述等径角挤压模具设置有第一安装孔,所述加热件安装于所述第一安装孔内。
可选地,所述温度检测件为热电偶或者温度传感器。
可选地,所述等径角挤压模具设置有第二安装孔,所述温度检测件安装于所述第二安装孔内。
可选地,所述加热件位于所述加热件背向所述通道的侧方。
可选地,所述温度检测件与所述加热件之间的距离等于所述通道与所述加热件之间的距离。
本发明提供的等径角挤压温度控制装置中的上述一个或多个技术方案至少具有如下技术效果之一:使用时,加热件对等径角挤压模具的通道内的坯料进行加热,同时,控制组件根据温度检测件反馈的温度信息控制加热件的发热量,从而控制坯料的温度,保证坯料的温度始终位于预设温度范围内;这样在加工较硬材料坯料时,由于预设温度范围为坯料的再结晶温度到坯料的完全再结晶温度的温度范围,即坯料的温度处于坯料的再结晶温度到坯料的完全再结晶温度的温度范围内,也即坯料的温度大于等于坯料的再结晶温度,小于等于坯料的完全再结晶温度,一方面,此时,较硬材料坯料的塑性好,变形性能好,这样当挤压冲头将较硬材料坯料挤压通过等径角挤压模具的通道并循环挤压若干次后,能够轻松地实现较硬材料坯料的等径角挤压加工,另一方面,在等径角挤压加工中,坯料的温度大于等于坯料的再结晶温度,小于等于坯料的完全再结晶温度,坯料内部结晶组织均匀化好,晶粒细化效果好,也有利于获得超细晶粒组织,得到超晶细坯料。
在本发明的另一技术方案是:一种等径角挤压设备,包括等径角挤压模具和上述等径角挤压温度控制装置,所述等径角挤压温度控制装置设置于所述等径角挤压模具。
有益效果
本发明的等径角挤压设备,由于采用了上述的等径角挤压温度控制装置,不仅能够实现较硬材料坯料的等径角挤压加工,并且,坯料内部结晶组织均匀化好,晶粒细化效果好,也有利于获得超细晶粒组织,得到超晶细坯料。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的等径角挤压设备的结构示意图。
其中,图中各附图标记:
10—等径角挤压模具   11—通道                           12—第一安装孔
13—第二安装孔           20—加热件                      30—温度检测件
40—控制组件               41—PID温度调节仪器    42—固态继电器
50—挤压冲头               60—坯料                          70—导线
111—竖向段                 112—弯曲段                     113—水平段。
本发明的实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图1描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
如图1所示,在本发明的一个实施例中,提供一种等径角挤压温度控制装置,适用于等径角挤压模具10上,等径角挤压模具10内设有用于容置坯料60的通道11;其中,通道11呈L型状,通道11包括水平段113、竖直段和连接于水平段113和竖直段之间弯曲段112,水平段113靠近等径角挤压模具10的底部设置并从等径角挤压模具10的侧面伸出,竖直段从等径角挤压模具10的底部朝向等径角挤压模具10的顶部延伸直至从等径角挤压模具10的顶面伸出,在具体使用时,坯料60从等径角挤压模具10的顶面放入竖向段111内,再将挤压冲头50从等径角挤压模具10的顶面处伸入或者移出竖向段111内,从而对坯料60进行来回挤压,直至坯料60通过弯曲段112后从水平段113内移出,从而实现坯料60的等径角挤压加工。
具体地,等径角挤压温度控制装置包括加热件20、温度检测件30和控制组件40;加热件20设置于等径角挤压模具10上,并用于对坯料60加热;温度检测件30设置于等径角挤压模具10上,并用于检测坯料60的温度;其中,加热件20对直接对等径角挤压模具10加热,同时,热量从加热件20处传递到通道11处,从而完成对通道11内的坯料60进行加热。
进一步地,温度检测件30与控制组件40电性连接,并用于将检测到等径角挤压模具10的温度信息反馈给控制组件40;加热件20与控制组件40电性连接,并用于根据温度检测件30反馈的温度信号控制加热件20的发热量,以调整坯料60的温度,从而使得坯料60的温度位于预设温度范围,预设温度范围为坯料60的再结晶温度到坯料60的完全再结晶温度。其中,坯料60的温度T,满足以下关系式:T 1≤T≤T 2;其中,T 1为坯料60的再结晶温度,T 2为坯料60的完全再结晶温度。
本实施例中,当温度检测件30检测到温度位于预设温度范围内时,温度检测件30反馈信号给控制组件40,控制组件40发出指令控制加热件20继续工作,以保证该坯料60的温度位于预设温度范围内;当温度检测件30检测到温度小于坯料60的再结晶温度时,控制组件40发出指令增加加热件20提高加热件20的发热量,以提高坯料60的温度,直至等径角挤压模具10的温度处于预设温度范围内;当温度检测件30检测到温度大于坯料60的完全再结晶温度时,控制组件40发出指令关闭加热件20或者降低加热件20的发热量,从而降低坯料60的温度,直至坯料60的温度处于预定加工温度范围内;如此,便能保证坯料60在加工制作中,始终处于预设温度范围内。
使用本发明实施例提供的等径角挤压温度控制装置时,加热件20对等径角挤压模具10的通道11内的坯料60进行加热,同时,控制组件40根据温度检测件30反馈的温度信息控制加热件20的发热量,从而控制坯料60的温度,保证坯料60的温度始终位于预设温度范围内;这样在加工较硬材料坯料60时,由于预设温度范围为坯料60的再结晶温度到坯料60的完全再结晶温度的温度范围,即坯料60的温度始终处于坯料60的再结晶温度到坯料60的完全再结晶温度的温度范围内,也即坯料60的温度大于等于坯料60的再结晶温度,小于等于坯料60的完全再结晶温度,一方面,此时,较硬材料的坯料60的塑性好,易于变形,这样当挤压冲头50将较硬材料的坯料60循环挤压若干次后通过等径角挤压模具10的通道11后,能够轻松地实现较硬材料的坯料60的等径角挤压加工,另一方面,在等径角挤压加工中,坯料60的温度大于等于坯料60的再结晶温度,小于等于坯料60的完全再结晶温度,坯料60内部结晶组织均匀化好,实现了晶粒细化,也有利于获得超细晶粒组织,得到超晶细坯料60。
在本发明的另一个实施例中,提供的该等径角挤压温度控制装置的若设坯料60的温度为T,则满足以下关系式:T 1+20≤T≤T 1+50;其中,T 1为坯料60的再结晶温度。坯料60的温度位于上述范围,一方面,坯料60的变形性能好,可以满足等径角挤压加工的要求,另一方面,坯料60的温度合适,也可避免能源的浪费,降低制作成本;具体地,坯料60的温度T为T 1+20、T 1+30、T 1+40或者T 1+50。
在本发明的另一个实施例中,如图1所示,提供的该等径角挤压温度控制装置的控制组件40包括PID温度调节仪器41和固态继电器42,温度检测件30与PID温度调节仪器41电性连接,PID温度调节仪器41通过固态继电器42与加热件20电性连接;当温度检测件30将检测到的温度传递PID温度调节仪器41后,PID温度调节仪器41输出产生不同占空比的脉冲信号给固态继电器42,固态继电器42将脉冲信号转换为开关信号,并将开关信号传递给加热件20,以控制加热件20的发热量,从而控制坯料60的温度;在具体的应用中,PID温度调节仪器41、固态继电器42和加热件20依次通过导线70串联起来;当PID温度调节仪器41输出电信号后,固态继电器42将电信号转换为开启信号,加热件20收到开启信号后,在一定的时间内处于开启状态,从而对坯料60加热,以增加或者保持坯料60的温度,当然在单位时间内电信号输出占比越多,加热件20开启加热的时间也就越长,加热件20的发热量也就越大,坯料60的加热时间也就越长,坯料60的温度也就越高;当PID温度调节仪器41输出空信号后,固态继电器42将空信号转换为关闭信号,加热件20收到关闭信号后,加热件20处于暂停状态,即关闭状态,停止对坯料60加热,使得坯料60的温度得到降低,从而保证坯料60温度始终位于预设温度范围,当然在单位时间内空信号输出占比越多,加热件20关闭的时间也就越长,加热件20的发热量也就越少,坯料60的温度就会降低;如此,通过PID温度调节仪器41发出的不同占空比的脉冲信号,从而控制坯料60的温度,保证坯料60的温度处于预设温度范围内。
进一步地,PID温度调节仪器41具有输入功能的PID温度调节仪器41,那么在坯料60加工前,根据坯料60的再结晶温度和完全再结晶温度得到预设温度范围后,在将预设温度范围输入到PID温度调节仪器41内,从而满足不同材质的坯料60的等径角加工需求,应用范围更为广泛。
优选地,PID温度调节仪器41为AT70X系列智能PID温度调节仪器,固态继电器42选用SSR-40 DA 40A/250V的固态继电器。
在本发明的另一个实施例中,提供的该等径角挤压温度控制装置的加热件20为加热棒。加热棒的加热速度快,坯料60加热速度快,有利于提高坯料60的生产效率,同时,加热棒易于获取,成本低廉,也有利于降低该等径角挤压温度控制装置的制作成本。在具体的应用中,加热棒呈长条状,当加热棒与通道11竖向段111平行设置,这样加热棒可以均匀地加热位于竖向段111内的坯料60,坯料60的加热范围更大,坯料60的温度分布更为均匀,坯料60更容易挤压成型,且晶粒细化性能更好。
在本发明的另一个实施例中,如图1所示,提供的该等径角挤压温度控制装置的等径角挤压模具10设置有第一安装孔12,加热件20安装于第一安装孔12内。第一安装孔12为加热件20提供安装空间,这样加热件20可以深入等径角挤压模具10的内部,与通道11更为靠近,坯料60的加热效果,其能量利用也更高;在具体的应用中,第一安装孔12位于竖向段111的侧方并沿竖向段111的长度延伸,这样加热棒插入第一安装孔12内时,使得加热棒平行于竖向段111设置,这样坯料60的加热效果更好,坯料60更容易挤压成型,且晶粒细化性能更好。进一步地,加热棒的下端与水平段113的底部面齐平或者低于水平段113的底部,这样加热棒实现整个坯料60的加热,加热效果更好。
在本发明的另一个实施例中,提供的该等径角挤压温度控制装置的温度检测件30为热电偶。热电偶直接测量温度,并把温度信号转换成热电动势信号,再把热电动势信号传递给PID温度调节仪器41,PID温度调节仪器41收到热电动势信号后,从而发出对应的脉冲信号,进而实现坯料60温度的控制。
在本发明的另一个实施例中,提供的该等径角挤压温度控制装置的温度检测件30为温度传感器。温度传感器直接测量温度,并把温度信号转换成电信号,再把电动势信号传递给PID温度调节仪器41,PID温度调节仪器41收到电信号后,从而发出对应的脉冲信号,进而实现坯料60温度的控制。
在具体应用中,温度传感器的输出端或者热电偶的输出端通过导线70与PID温度调节仪器41的输入端连接,从而便于PID温度调节仪器41接收温度传感器反馈的电信号,或者接收热电偶反馈的热电动势信号。
在本发明的另一个实施例中,如图1所示,提供的该等径角挤压温度控制装置的等径角挤压模具10设置有第二安装孔13,温度检测件30安装于第二安装孔13内。第二安装孔13为温度检测件30提供安装孔件,在具体使用时,温度检测件30的检测端安装于第二安装孔13内,这样检测端可以完全设置于等径角挤压模具10内,其温度检测结果更为准确,坯料60的温度控制更为准确,保证等径角挤压的顺利进行,也保证经过等径角挤压的坯料60具有更好的性能。
在本发明的另一个实施例中,如图1所示,提供的该等径角挤压温度控制装置的加热件20位于加热件20背向通道11的侧方。加热件20的安装位置远离通道11设置,这样可以防止加热件20的安装结构对等径角挤压模具10的通道11处的结构强度的影响,保证等径角挤压的顺利进行。
在本发明的另一个实施例中,提供的该等径角挤压温度控制装置的温度检测件30与加热件20之间的距离等于通道11与加热件20之间的距离。根据温度分布规律,在等径角挤压模具10上距离加热件20相同的位置处的温度相同,那么温度检测件30检测到的温度即是通道11处的温度,即温度检测件30检测到温度更为接近坯料60的温度,这样可以保证坯料60的温度准确地位于预设温度范围内,保证等径角挤压的顺利进行以及实现晶粒的细化。
在其他实施例中,如图1所示,温度检测件30与加热件20之间的距离和通道11与加热件20之间的距离之间相差不大,这样温度检测件30检测到的温度与坯料60的温度存在一定的差值,该差值可以根据实验、温度分布规律以及热交换效率等方式得到而确定,从而根据温度检测件30的温度推出坯料60的温度;当然,若在实际的生产过程中,该差值较小且对坯料60的生产影响较小,也可以将温度检测件30检测到的温度直接作为坯料60的温度使用。
在本发明的另一个实施例中,提供了一种等径角挤压设备,其可以适用于较硬材料的坯料60的等径角挤压加工,例如:镁合金坯料或者钛合金坯料等;该等径角挤压设备包括等径角挤压模具10和上述等径角挤压温度控制装置,等径角挤压温度控制装置设置于等径角挤压模具10。
本发明实施例的等径角挤压设备,由于采用了上述的等径角挤压温度控制装置,不仅能够实现较硬材料的坯料60的等径角挤压加工,并且,坯料60内部结晶组织均匀化好,晶粒细化效果好,也有利于获得超细晶粒组织,得到超晶细坯料60。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种等径角挤压温度控制装置,适用于等径角挤压模具上,所述等径角挤压模具内设有用于容置坯料的通道;其特征在于:
    所述等径角挤压温度控制装置包括加热件、温度检测件和控制组件;所述加热件设置于所述等径角挤压模具上,并用于对所述坯料加热;所述温度检测件设置于所述等径角挤压模具上,并用于检测所述坯料的温度;
    所述温度检测件与所述控制组件电性连接,并用于将检测到所述等径角挤压模具的温度信息反馈给所述控制组件;
    所述加热件与所述控制组件电性连接,并用于根据所述温度信息控制所述加热件的发热量,以调整所述坯料的温度,从而使得所述坯料的温度位于预设温度范围内,所述预设温度范围为所述坯料的再结晶温度到所述坯料的完全再结晶温度。
  2. 根据权利要求1所述的等径角挤压温度控制装置,其特征在于:若设所述坯料的温度为T,则满足以下关系式:
    T 1+20≤T≤T 1+50;其中,T 1为所述坯料的再结晶温度。
  3. 根据权利要求1所述的等径角挤压温度控制装置,其特征在于:所述控制组件包括PID温度调节仪器和固态继电器,所述温度检测件与所述PID温度调节仪器电性连接,所述PID温度调节仪器通过所述固态继电器与所述加热件电性连接。
  4. 根据权利要求1所述的等径角挤压温度控制装置,其特征在于:所述加热件为加热棒。
  5. 根据权利要求1所述的等径角挤压温度控制装置,其特征在于:所述等径角挤压模具设置有第一安装孔,所述加热件安装于所述第一安装孔内。
  6. 根据权利要求1~5任一项所述的等径角挤压温度控制装置,其特征在于:所述温度检测件为热电偶或者温度传感器。
  7. 根据权利要求1~5任一项所述的等径角挤压温度控制装置,其特征在于:所述等径角挤压模具设置有第二安装孔,所述温度检测件安装于所述第二安装孔内。
  8. 根据权利要求1~5任一项所述的等径角挤压温度控制装置,其特征在于:所述加热件位于所述加热件背向所述通道的侧方。
  9. 根据权利要求1~5任一项所述的等径角挤压温度控制装置,其特征在于:所述温度检测件与所述加热件之间的距离等于所述通道与所述加热件之间的距离。
  10. 一种等径角挤压设备,其特征在于:包括等径角挤压模具和权利要求1~9任一项所述等径角挤压温度控制装置,所述等径角挤压温度控制装置设置于所述等径角挤压模具。
PCT/CN2020/127441 2020-05-09 2020-11-09 等径角挤压设备及其等径角挤压温度控制装置 WO2021227403A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010387034.6A CN111496001A (zh) 2020-05-09 2020-05-09 等径角挤压设备及其等径角挤压温度控制装置
CN202010387034.6 2020-05-09

Publications (1)

Publication Number Publication Date
WO2021227403A1 true WO2021227403A1 (zh) 2021-11-18

Family

ID=71865191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127441 WO2021227403A1 (zh) 2020-05-09 2020-11-09 等径角挤压设备及其等径角挤压温度控制装置

Country Status (2)

Country Link
CN (1) CN111496001A (zh)
WO (1) WO2021227403A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111496001A (zh) * 2020-05-09 2020-08-07 深圳技术大学 等径角挤压设备及其等径角挤压温度控制装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090116137A (ko) * 2008-05-06 2009-11-11 한국생산기술연구원 ECAP법에 의한 Bi-Te계 열전재료의 제조방법
CN101637785A (zh) * 2009-07-21 2010-02-03 西北工业大学 超塑性微成形装置及其控制系统以及成形微型件的方法
CN204700076U (zh) * 2015-06-24 2015-10-14 郑州磨料磨具磨削研究所有限公司 一种等径角挤压模具
CN107282674A (zh) * 2016-04-05 2017-10-24 中国石油大学(华东) 一种高效多试样自加热等通道转角挤压模具
CN108913970A (zh) * 2018-09-20 2018-11-30 贵州大学 一种we43镁合金及其制备方法
CN110479785A (zh) * 2019-09-30 2019-11-22 吉林大学 脉冲电流辅助的等径角挤压设备及方法
CN111496001A (zh) * 2020-05-09 2020-08-07 深圳技术大学 等径角挤压设备及其等径角挤压温度控制装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2865895Y (zh) * 2006-01-11 2007-02-07 重庆工学院 镁合金等温成形模具
CN103252377A (zh) * 2013-04-25 2013-08-21 南京航空航天大学 纯钛等通道径角挤压的模具及工艺方法
CN104550296B (zh) * 2014-11-20 2016-08-17 天津理工大学 镁合金材料的等通道转角冷挤压成形装置
CN205413954U (zh) * 2016-03-22 2016-08-03 中国石油大学(华东) 一种高效多试样自加热等通道转角挤压模具
CN205816444U (zh) * 2016-07-28 2016-12-21 常州信息职业技术学院 一种等径角挤压模具
CN206854387U (zh) * 2017-04-25 2018-01-09 苏州罗普斯金铝业股份有限公司 一种型材的等温挤压装置
CN207965684U (zh) * 2018-06-01 2018-10-12 北京铂阳顶荣光伏科技有限公司 一种控温加热装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090116137A (ko) * 2008-05-06 2009-11-11 한국생산기술연구원 ECAP법에 의한 Bi-Te계 열전재료의 제조방법
CN101637785A (zh) * 2009-07-21 2010-02-03 西北工业大学 超塑性微成形装置及其控制系统以及成形微型件的方法
CN204700076U (zh) * 2015-06-24 2015-10-14 郑州磨料磨具磨削研究所有限公司 一种等径角挤压模具
CN107282674A (zh) * 2016-04-05 2017-10-24 中国石油大学(华东) 一种高效多试样自加热等通道转角挤压模具
CN108913970A (zh) * 2018-09-20 2018-11-30 贵州大学 一种we43镁合金及其制备方法
CN110479785A (zh) * 2019-09-30 2019-11-22 吉林大学 脉冲电流辅助的等径角挤压设备及方法
CN111496001A (zh) * 2020-05-09 2020-08-07 深圳技术大学 等径角挤压设备及其等径角挤压温度控制装置

Also Published As

Publication number Publication date
CN111496001A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
CN201837486U (zh) 一种短型热电偶校准装置
WO2021227403A1 (zh) 等径角挤压设备及其等径角挤压温度控制装置
CN102601143B (zh) 调短坯料摩擦流动路径的挤压装置
CN108621430A (zh) 一种加热式3d打印机挤出喷头
CN105618480B (zh) 轧制铝箔厚薄差精度的控制系统
CN109500121A (zh) 电脉冲辅助热挤压成形装置及成形方法
CN210819261U (zh) 一种带有检测功能的模具夹具
CN107081344A (zh) 一种用于薄壁挤压金属材的电磁防弯装置
CN208721939U (zh) 一种fpc热压邦定机
CN1876584A (zh) 电子温控装置
CN110509544A (zh) 一种四入两出式复合材料3d打印头
CN112692090B (zh) 一种轻合金宽幅薄板的成型装置及其加工方法
CN109698606A (zh) 一种智能散热变频器
CN101456045A (zh) 利用材料热膨胀性能进行板材成形的方法及装置
CN2865895Y (zh) 镁合金等温成形模具
CN210254072U (zh) 一种用于生产销轴冷镦机的冷却装置
CN106493185B (zh) 直角通道连续挤压装置
CN202238985U (zh) 一种连续挤压设备
CN205033578U (zh) 一种热压机
CN109807298B (zh) 一种铜杆上引连铸冷却水流速自动控制方法
CN201041519Y (zh) 铝电解质初晶温度现场测量装置
CN204630373U (zh) 一种新型熔炼装置
CN203389977U (zh) 一种挂车轴头的挤压成型系统
CN106734303B (zh) 双直角通道连续挤压装置
CN109746278A (zh) 一种铝型材等温挤压系统及其挤压方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935580

Country of ref document: EP

Kind code of ref document: A1