WO2021227371A1 - 一种提升芯片硬宏供电可靠性的方法 - Google Patents

一种提升芯片硬宏供电可靠性的方法 Download PDF

Info

Publication number
WO2021227371A1
WO2021227371A1 PCT/CN2020/123584 CN2020123584W WO2021227371A1 WO 2021227371 A1 WO2021227371 A1 WO 2021227371A1 CN 2020123584 W CN2020123584 W CN 2020123584W WO 2021227371 A1 WO2021227371 A1 WO 2021227371A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
hard macro
metal
wiring
chip
Prior art date
Application number
PCT/CN2020/123584
Other languages
English (en)
French (fr)
Inventor
赵少峰
Original Assignee
东科半导体(安徽)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东科半导体(安徽)股份有限公司 filed Critical 东科半导体(安徽)股份有限公司
Publication of WO2021227371A1 publication Critical patent/WO2021227371A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/392Floor-planning or layout, e.g. partitioning or placement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/32Circuit design at the digital level
    • G06F30/327Logic synthesis; Behaviour synthesis, e.g. mapping logic, HDL to netlist, high-level language to RTL or netlist

Definitions

  • the invention relates to the technical field of microelectronics, in particular to a method for improving the reliability of chip hard macro power supply.
  • the macro unit In the digital back-end integrated circuit (IC) design, the macro unit (Macro) is the most common unit in the design. Macro is a broad concept, usually we divide it into hard macro (Hard Macro) and soft macro (Soft Macro). Hard macros refer to specific functional modules, such as various IP cores including memory, phase-locked loop PLL, and phase-locked loop DLL, which are used in application-specific integrated circuits (ASIC) or field programmable logic arrays (FPGA) The pre-designed circuit function module, the logic of the hard macro has been integrated in itself, and it can be called according to the process library.
  • ASIC application-specific integrated circuits
  • FPGA field programmable logic arrays
  • the chip power network (power mesh) of the chip itself is usually used to supply power to the hard macro.
  • the purpose of the present invention is to provide a method for improving the reliability of the hard macro power supply of the chip in view of the defects of the prior art, by constructing a dedicated hard macro power supply network inside the chip at the position above the hard macro to improve the reliability of the hard macro power supply of the chip.
  • an embodiment of the present invention provides a method for improving the reliability of chip hard macro power supply, including:
  • the topological structure of the chip power supply network of the chip is determined based on the design requirements of the chip and the wiring resource constraints; the chip has multiple metal layers, and the metal lines of adjacent metal layers are perpendicular to each other; the topological structure of the chip power supply network includes: The number of metal layers, the number of general wiring layers, the layer number of the metal layer where the general wiring layer is located, the physical position, direction, line width and spacing of the metal lines on each general wiring layer;
  • a stack via is provided, and the connection between the metal wires of different layers is performed through the stack via.
  • performing the metal wire wiring of the hard macro dedicated power supply network specifically includes:
  • one or more metal layers other than the general wiring layer are selected above the metal layer where the PG PIN is located for the dedicated wiring layer of the hard macro dedicated power supply network;
  • the dedicated wiring layer of the hard macro dedicated power supply network is divided into multiple wiring units according to the pitch of the metal wires in the topological structure of the chip power supply network and the spacing of the wiring tracks;
  • Each wiring unit has at least two routing tracks;
  • At least one wiring track is selected in the wiring unit for metal wire wiring; the wiring positions of the metal wires in the multiple wiring units same.
  • the metal lines of adjacent dedicated wiring layers in the hard macro dedicated power supply network are perpendicular to each other, and the metal wires of the dedicated wiring layer in the hard macro dedicated power supply network closest to the metal layer where the power supply pin PGPIN is located The direction is perpendicular to the metal line direction of the metal layer where the power supply pin PGPIN is located.
  • the number of metal wire wirings of different dedicated wiring layers is the same or different.
  • the positions of the metal wire wiring of different dedicated wiring layers are the same or different.
  • the present invention provides a method for improving the reliability of chip hard macro power supply by performing metal wire wiring of the hard macro dedicated power supply network in one or more metal layers above the metal layer where the PG PIN is located in the hard macro, and then stacking
  • the layer via stack realizes the connection with the power ground pin PG PIN and between the chip power supply network, enhances the power supply driving capability of the chip hard macro, and effectively improves the power supply reliability of the chip hard macro.
  • FIG. 1 is a flowchart of a method for improving the reliability of chip hard macro power supply provided by an embodiment of the present invention
  • Figure 2 is a schematic diagram of a topological structure of a chip power supply network
  • FIG. 3 is a schematic diagram of the process of a method for improving the reliability of chip hard macro power supply according to an embodiment of the present invention.
  • the feature size of the chip is continuously reduced, and the number of available metal layers of the chip is also different under different processes.
  • the number of available metal layers is usually 4, 5, and 6, and in the 0.13um process, generally 4-8 layers are optional, and in the 65nm process, the available metal layers are up to 11 floors.
  • the chip power supply network will occupy several metal layers on the top of the chip.
  • the logic of the hard macro has been integrated within itself, and it can be called according to the process library. Therefore, in some processes, there may be one or several metal layers above the hard macro that are not occupied by the chip power supply network.
  • the embodiment of the present invention provides a method for improving the reliability of the hard macro power supply of a chip. Without increasing the chip area, the vacant one or more metal layers above the hard macro are fully utilized to improve the reliability of the hard macro power supply.
  • FIG. 1 The main steps of the method for improving the reliability of chip hard macro power supply provided by the embodiment of the present invention are shown in FIG. 1, and include the following steps:
  • Step 110 Determine the topological structure of the chip power supply network of the chip based on the design requirements of the chip and the wiring resource constraints;
  • the design requirements of the chip will be determined, and these requirements will be converted into various important parameter indicators of the chip, and the design architecture of the chip will be formed based on the design requirements.
  • register transfer level circuit (Register Transfer Level, RTL) code design and verification, the selection of the process library is determined, and then synthesis and timing analysis are performed to generate a circuit netlist based on the adopted process for automatic placement and routing.
  • the topological structure of the chip power supply network of the chip can be determined according to the design requirements of the chip and the wiring resource constraints.
  • the topological structure of the chip power supply network is a complex metal network.
  • Figure 2 shows an example of a chip power network. It can be seen that there are 11 layers of metal from the top package contact point (C4 BUMP) to the bottom transistor circuit (Logic). There is a through hole (Via) connection between every two layers of metal lines. Of course, the connection relationship is determined according to the chip wiring design requirements.
  • the topological structure of the chip power supply network has multiple metal layers, and the metal lines of adjacent metal layers are perpendicular to each other; the topological structure of the chip power supply network includes: the number of metal layers, the number of common wiring layers, and the metal layer where the common wiring layer is located. The layer number, the physical position, direction, line width and spacing of the metal lines on each general wiring layer.
  • the metal layer is 11 layers, and the number of general wiring layers is 3 layers, occupying 9-11 layers of metal layers.
  • M9, M10, and M11 are the layer numbers of the metal layers where the general wiring layer is located.
  • the general wiring layer is used to provide a global power supply for the entire chip.
  • Step 120 Determine the layer number of the metal layer where the power supply pin (PG PIN) in the hard macro of the chip is located;
  • Different hard macros have their own separate LEF files, that is, the layout and routing files are based on the file format file of the cell geometry information library used, which will define the shape of the hard macro and the location of the pins and other information, including the power supply pin location information.
  • the hard macro itself occupies one or several metal layers. For example, a hard macro occupies the highest metal layer M4, then the M1-M3 below M4 in the hard macro position are also occupied by the hard macro. Among these 4 layers of metal, the lead-out layer of the power supply pins will be specified according to the LEF file, such as M4.
  • the pins drawn from M4 are connected to the metal of one or more general wiring layers of M9, M10, and M11 through through holes.
  • Step 130 Perform metal wire wiring of the hard macro dedicated power supply network in one or more metal layers other than the general wiring layer above the metal layer where the power supply pins are located in the hard macro;
  • this step can be specifically executed according to the following process.
  • Step 131 selecting one or more metal layers other than the general wiring layer above the metal layer where the power supply pin (PGPIN) in the hard macro is used as the dedicated wiring layer of the hard macro dedicated power supply network;
  • Step 132 Determine the track of each dedicated wiring layer
  • the tracks are arranged at equal intervals.
  • track refers to the routing track, which can constrain the routing direction of the routing device.
  • the signal line must usually go on the track.
  • the spacing of the track is usually greater than the minimum spacing of the metal lines allowed in the design rules.
  • the minimum spacing of the metal lines is determined based on the physical design check (Design Rule Checking, DRC) rules.
  • DRC Design Rule Checking
  • Step 133 For each dedicated wiring layer, the dedicated wiring layer of the hard macro dedicated power supply network is divided into multiple wiring units according to the spacing of the metal lines and the spacing of the traces in the topological structure of the chip power supply network;
  • each wiring unit has at least two wiring tracks.
  • Step 134 For each dedicated wiring layer, at least one wiring track is selected in the wiring unit for metal wire wiring under the condition of not exceeding a preset laying ratio;
  • the wiring positions of the metal wires in the multiple wiring units are the same.
  • the number of metal wire wirings of different dedicated wiring layers is the same or different.
  • the metal wire wiring positions of different dedicated wiring layers are the same or different.
  • the metal wire directions of adjacent dedicated wiring layers in the hard macro dedicated power supply network are perpendicular to each other, and the metal wire direction of the dedicated wiring layer closest to the metal layer where the power supply pin (PG PIN) is located in the hard macro dedicated power supply network and the power supply pin (PG PIN)
  • the metal lines of the metal layer are perpendicular to each other. The selection of the dedicated wiring layer from the metal layer is performed in accordance with the above constraints.
  • Figure 3 shows a specific example, showing a schematic diagram of a specific method for improving the reliability of chip hard macro power supply to illustrate the above process intuitively. This example is only to illustrate the above process more clearly. For example.
  • the metal wires from M1 to M11 are arranged in the longitudinal direction, the transverse direction, the longitudinal direction, and the transverse direction in sequence.
  • the metal layers M5 and M6 are selected for the metal wire wiring of the hard macro dedicated power supply network.
  • the traces are shown as dashed lines in the figure, and each wiring unit has three traces.
  • the preset laying ratio is no more than 80%, and two of the routing tracks are selected in the design for metal wire routing.
  • the wiring of the metal lines on the M5 and M6 after wiring is shown in the rectangular frame on the two layers in FIG. 3.
  • M7 and M8 have no metal wires at the corresponding positions of the hard macros.
  • the dotted frame marks here only illustrate the locations of the two layers, and do not mean that there is metal wire wiring.
  • Step 140 According to the power supply logic of the hard macro, between the metal wires of two adjacent layers in the hard macro dedicated power supply network, between the metal wires of the hard macro dedicated power supply network and the power supply pins, and the metal of the hard macro dedicated power supply network Between the wire and the chip power supply network, a stack via is provided, and the metal wires of different layers are connected through the stack via.
  • the present invention provides a method for improving the reliability of chip hard macro power supply by performing metal wire wiring of the hard macro dedicated power supply network in one or more metal layers above the metal layer where the PG PIN is located in the hard macro, and then stacking
  • the layer via stack realizes the connection with the power ground pin PG PIN and between the chip power supply network, enhances the power supply driving capability of the chip hard macro, and effectively improves the power supply reliability of the chip hard macro.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

一种提升芯片硬宏(hard macro)供电可靠性的方法,包括:基于芯片的设计需求和走线资源约束确定芯片的芯片电源网络的拓扑结构;芯片电源网络的拓扑结构包括:金属层的层数、通用布线层的层数、通用布线层所在金属层的层号、每一层通用布线层上金属线的物理位置、方向、线宽和间距;确定芯片的硬宏(hard macro)中的供电引脚(PG PIN)所在通用布线层的层号;在硬宏(hard macro)中所在通用布线层上方除通用布线层以外的一层或多层金属层中进行硬宏(hard macro)专用电源网络的金属线布线;根据硬宏(hard macro)的逻辑功能,在硬宏(hard macro)专用电源网络中相邻两层的金属线间、硬宏(hard macro)专用电源网络的金属线与电源地引脚间以及硬宏(hard macro)专用电源网络的金属线与芯片电源网络间设置供电通孔(via),并通过供电通孔(via)进行不同层金属线之间的连通。

Description

一种提升芯片硬宏供电可靠性的方法
本申请要求于2020年05月09日提交中国专利局、申请号为202010388483.2,发明名称为“一种提升芯片硬宏供电可靠性的方法”的中国专利申请的优先权。
技术领域
本发明涉及微电子技术领域,尤其涉及一种提升芯片硬宏供电可靠性的方法。
背景技术
数字后端集成电路(IC)设计中,宏单元(Macro)是设计中最常见的单元。Macro是一个宽泛的概念,通常我们把它分为硬宏(Hard Macro)和软宏(Soft Macro)。硬宏是指特定的功能模块,例如包括存储器(Memory)、锁相环PLL、锁相环DLL等各种IP核,即用于专用集成电路(ASIC)或现场可编程逻辑阵列(FPGA)中的预先设计好的电路功能模块,硬宏的逻辑在其本身内部已经集成好,根据工艺库进行调用即可。
在常规的数字电路设计中,通常是采用芯片本身的芯片电源网络(power mesh)对硬宏进行供电,芯片电源网络平铺整个芯片,硬宏上方位置的芯片电源网络通过叠层孔(stack via)与硬宏的供电引脚PG PIN相连通。
这种供电网络结构的鲁棒性较差,在特殊或极端条件下,硬宏的供电可靠性无法得到保障,可能会因此影响整个芯片性能。
发明内容
本发明的目的是针对现有技术的缺陷,提供一种提升芯片硬宏供电可靠性的方法,通过在硬宏上方位置芯片内部构建硬宏专用电源网络,来提升芯片硬宏供电可靠性。
有鉴于此,本发明实施例提供了一种提升芯片硬宏供电可靠性的方法,包括:
基于芯片的设计需求和走线资源约束确定芯片的芯片电源网络的拓扑结构;所述芯片具有多层金属层,相邻金属层的金属线方向相互垂直;所述芯片电源网络的拓扑结构包括:金属层的层数、通用布线层的层数、通用布线层所在金属层的层号、每一层通用布线层上金属线的物理位置、方向、线宽和间距;
确定芯片的硬宏hard macro中的供电引脚PG PIN所在金属层的层号;
在所述硬宏中供电引脚PG PIN所在金属层上方,除通用布线层以外的一层或多层金属层中,进行硬宏专用电源网络的金属线布线;
根据硬宏的供电逻辑,在所述硬宏专用电源网络中相邻两层的金属线之间、所述硬宏专用电源网络的金属线与所述供电引脚PG PIN之间、以及所述硬宏专用电源网络的金属线与所述芯片电源网络之间,设置叠层孔stack via,并通过叠层孔stack via进行不同层金属线之间的连通。
优选的,所述在所述硬宏中供电引脚PG PIN所在金属层上方,除通用布线层以外的一层或多层金属层中,进行硬宏专用电源网络的金属线布线具体包括:
在所述硬宏中PG PIN所在金属层上方选定通用布线层以外的一层或多层金属层用于硬宏专用电源网络的专用布线层;
确定每层专用布线层的走线轨道track;所述走线轨道track等间距排布;
对于每一层专用布线层,根据所述芯片电源网络的拓扑结构中金属线的间距和所述走线轨道track的间距将所述硬宏专用电源网络的专用布线层 划分为多个布线单元;每个布线单元具有至少两条走线轨道track;
对于每一层专用布线层,在不超过预设的铺设比例条件下,在所述布线单元中选定至少一条走线轨道track进行金属线布线;所述多个布线单元中的金属线布线位置相同。
进一步优选的,所述硬宏专用电源网络中相邻专用布线层的金属线方向相互垂直,并且所述硬宏专用电源网络中最接近供电引脚PG PIN所在金属层的专用布线层的金属线方向与所述供电引脚PG PIN所在金属层的金属线方向相互垂直。
进一步优选的,不同专用布线层的金属线布线的数量相同或不同。
进一步优选的,不同专用布线层的金属线布线的位置相同或不同。
进一步优选的,相邻的专用布线层之间具有未进行金属线布线的金属层。
本发明提供了一种提升芯片硬宏供电可靠性的方法,通过在硬宏中PG PIN所在金属层上方的一层或多层金属层中进行硬宏专用电源网络的金属线布线,再通过叠层孔stack via实现与电源地引脚PG PIN之间以及芯片电源网络之间的连接,增强芯片硬宏的供电驱动能力,有效提升芯片硬宏供电可靠性。
附图说明
下面通过附图和实施例,对本发明实施例的技术方案做进一步详细描述。
图1为本发明实施例提供的提升芯片硬宏供电可靠性的方法流程图;
图2为一种芯片电源网络的拓扑结构示意图;
图3为本发明实施例提供的提升芯片硬宏供电可靠性的方法过程示意图。
具体实施方式
在集成电路设计中,随着芯片面积不断减小和芯片设计在时序、逻辑复杂性要求的不断提升,芯片的特征尺寸不断减小,采用不同的工艺下,芯片的可用金属层数也有所不同,例如典型的,在0.18um工艺下,可用金属层数通常为4、5、6层,0.13um工艺下,一般为4-8层可选,而到了65nm工艺,可供选择的金属层达到了11层。通常情况下,芯片电源网络的会占据芯片顶层的几层金属层。
在芯片中,硬宏的逻辑在其本身内部已经集成好,根据工艺库进行调用即可。因此,在一些工艺下,硬宏上方可能会存在没有芯片电源网络占据的一层或几层金属层。本发明实施例提供了一种提升芯片硬宏供电可靠性的方法,在不增加芯片面积的情况下,充分利用硬宏上方空置的一层或几层金属层进行硬宏供电可靠性的提升。
本发明实施例提供的提升芯片硬宏供电可靠性的方法,其主要步骤流程如图1所示,包括如下步骤:
步骤110,基于芯片的设计需求和走线资源约束确定芯片的芯片电源网络的拓扑结构;
具体的,在芯片设计前,芯片的设计需求就会被确定,这些需求会被转化为芯片的各项重要参数指标,并基于设计需求形成芯片的设计架构。通过寄存器转换级电路(Register Transfer Level,RTL)代码设计和验证,工艺库的选择确定,再进行综合和时序分析,生成基于所采用的工艺的电路网表,用于自动布局布线。
根据不同的工艺库,具有不同的走线资源约束,例如确定不同区域、不同层金属走线的线宽、间距、走线形式等。
因此根据芯片的设计需求和走线资源约束能够确定出芯片的芯片电源网络的拓扑结构。
芯片电源网络的拓扑结构是个复杂的金属网络。图2给出了一个芯片 电源网络的例子。可以看到,从最上面的封装接触点(C4 BUMP)到最下面的晶体管电路(Logic)之间共有11层金属。每两层金属线中间有通孔(Via)连接,当然其连接关系是根据芯片布线设计需求而定。
芯片电源网络的拓扑结构具有多层金属层,相邻金属层的金属线方向相互垂直;芯片电源网络的拓扑结构包括:金属层的层数、通用布线层的层数、通用布线层所在金属层的层号、每一层通用布线层上金属线的物理位置、方向、线宽和间距。
例如在图2中,金属层为11层,通用布线层的层数为3层,占据9-11层的金属层,M9、M10、M11就是通用布线层所在金属层的层号。通用布线层用于对整个芯片提供全局电源供应。
步骤120,确定芯片的硬宏(hard macro)中的供电引脚(PG PIN)所在金属层的层号;
不同硬宏有其自己单独的LEF文件,也就是布局布线根据使用的单元几何信息库的文件格式文件,里面会定义硬宏的形状以及管脚的位置等等信息,其中包括了供电引脚的位置信息。
硬宏内部本身占据一层或几层金属层,例如一个硬宏内部最高占用到了金属层M4,那么在硬宏位置上M4以下的M1-M3的也被硬宏占据。在这4层金属中,会根据LEF文件规定其中供电引脚的引出层,例如M4。M4引出的引脚,通过通孔与M9、M10、M11中的一层或几层的通用布线层的金属连通。
步骤130,在硬宏中供电引脚所在金属层上方,除通用布线层以外的一层或多层金属层中,进行硬宏专用电源网络的金属线布线;
具体的,本步骤可以具体按照如下流程执行。
步骤131,在硬宏中供电引脚(PG PIN)所在金属层上方选定通用布线层以外的一层或多层金属层用于硬宏专用电源网络的专用布线层;
步骤132,确定每层专用布线层的走线轨道(track);
其中,走线轨道(track)等间距排布。在数字后端芯片设计中,track是指走线轨道,可以约束走线器的走线方向。信号线通常必须走在track上。走线轨道(track)的间距通常会大于设计规则中允许的金属线最小间距,金属线最小间距是基于物理设计检查(Design Rule Checking,DRC)规则决定的,走线轨道(track)的间距具体结合所选用的工艺确定。
步骤133,对于每一层专用布线层,根据芯片电源网络的拓扑结构中金属线的间距和走线轨道(track)的间距将硬宏专用电源网络的专用布线层划分为多个布线单元;
其中,每个布线单元具有至少两条走线轨道。
步骤134,对于每一层专用布线层,在不超过预设的铺设比例条件下,在布线单元中选定至少一条走线轨道进行金属线布线;
其中,多个布线单元中的金属线布线位置相同。
不同专用布线层的金属线布线的数量相同或不同。
不同专用布线层的金属线布线的位置相同或不同。
相邻的专用布线层之间可以具有未进行金属线布线的金属层。
硬宏专用电源网络中相邻的专用布线层的金属线方向相互垂直,并且硬宏专用电源网络中最接近供电引脚(PG PIN)所在金属层的专用布线层的金属线方向与供电引脚(PG PIN)所在金属层的金属线方向相互垂直。从金属层中进行专用布线层的选定按照上述约束执行。
图3给出了一个具体的例子,展示了一个具体的提升芯片硬宏供电可靠性的方法过程示意图,用以对以上过程进行直观的说明,此例仅是为了更清楚的说明上述过程进行的举例。
在本例中,从M1到M11的金属线依次沿纵向、横向、纵向、横向……方向排布。选定金属层M5、M6用于硬宏专用电源网络的金属线布线。走线轨道(track)如图中虚直线所示,每个布线单元具有三条走线轨道。预设的铺设比例为不大于80%,在设计中选择其中两条走线轨道用于金属线布 线。布线后的M5、M6上的金属线布线如图3中在这两层上的长方形框体所示。M7、M8在硬宏对应位置上没有金属线,在这里用虚线框标记仅为说明这两层的位置所在,并不表示有金属线布线。
步骤140,根据硬宏的供电逻辑,在硬宏专用电源网络中相邻两层的金属线之间、硬宏专用电源网络的金属线与供电引脚之间、以及硬宏专用电源网络的金属线与芯片电源网络之间,设置叠层孔(stack via),并通过叠层孔(stack via)进行不同层金属线之间的连通。
本发明提供了一种提升芯片硬宏供电可靠性的方法,通过在硬宏中PG PIN所在金属层上方的一层或多层金属层中进行硬宏专用电源网络的金属线布线,再通过叠层孔stack via实现与电源地引脚PG PIN之间以及芯片电源网络之间的连接,增强芯片硬宏的供电驱动能力,有效提升芯片硬宏供电可靠性。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

  1. 一种提升芯片硬宏供电可靠性的方法,其特征在于,所述提升芯片硬宏供电可靠性的方法包括:
    基于芯片的设计需求和走线资源约束确定芯片的芯片电源网络的拓扑结构;所述芯片具有多层金属层,相邻金属层的金属线方向相互垂直;所述芯片电源网络的拓扑结构包括:金属层的层数、通用布线层的层数、通用布线层所在金属层的层号、每一层通用布线层上金属线的物理位置、方向、线宽和间距;
    确定芯片的硬宏hard macro中的供电引脚PG PIN所在金属层的层号;
    在所述硬宏中供电引脚PG PIN所在金属层上方,除通用布线层以外的一层或多层金属层中,进行硬宏专用电源网络的金属线布线;
    根据硬宏的供电逻辑,在所述硬宏专用电源网络中相邻两层的金属线之间、所述硬宏专用电源网络的金属线与所述供电引脚PG PIN之间、以及所述硬宏专用电源网络的金属线与所述芯片电源网络之间,设置叠层孔stack via,并通过叠层孔stack via进行不同层金属线之间的连通。
  2. 根据权利要求1所述的提升芯片硬宏供电可靠性的方法,其特征在于,所述在所述硬宏中供电引脚PG PIN所在金属层上方,除通用布线层以外的一层或多层金属层中,进行硬宏专用电源网络的金属线布线具体包括:
    在所述硬宏中PG PIN所在金属层上方选定通用布线层以外的一层或多层金属层用于硬宏专用电源网络的专用布线层;
    确定每层专用布线层的走线轨道track;所述走线轨道track等间距排布;
    对于每一层专用布线层,根据所述芯片电源网络的拓扑结构中金属线的间距和所述走线轨道track的间距将所述硬宏专用电源网络的专用布线层划分为多个布线单元;每个布线单元具有至少两条走线轨道track;
    对于每一层专用布线层,在不超过预设的铺设比例条件下,在所述布线 单元中选定至少一条走线轨道track进行金属线布线;所述多个布线单元中的金属线布线位置相同。
  3. 根据权利要求2所述的提升芯片硬宏供电可靠性的方法,其特征在于,所述硬宏专用电源网络中相邻的专用布线层的金属线方向相互垂直,并且所述硬宏专用电源网络中最接近供电引脚PG PIN所在金属层的专用布线层的金属线方向与所述供电引脚PG PIN所在金属层的金属线方向相互垂直。
  4. 根据权利要求2所述的提升芯片硬宏供电可靠性的方法,其特征在于,不同专用布线层的金属线布线的数量相同或不同。
  5. 根据权利要求2所述的提升芯片硬宏供电可靠性的方法,其特征在于,不同专用布线层的金属线布线的位置相同或不同。
  6. 根据权利要求2所述的提升芯片硬宏供电可靠性的方法,其特征在于,相邻的专用布线层之间具有未进行金属线布线的金属层。
PCT/CN2020/123584 2020-05-09 2020-10-26 一种提升芯片硬宏供电可靠性的方法 WO2021227371A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010388483.2A CN111581908B (zh) 2020-05-09 2020-05-09 一种提升芯片硬宏供电可靠性的方法
CN202010388483.2 2020-05-09

Publications (1)

Publication Number Publication Date
WO2021227371A1 true WO2021227371A1 (zh) 2021-11-18

Family

ID=72123532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123584 WO2021227371A1 (zh) 2020-05-09 2020-10-26 一种提升芯片硬宏供电可靠性的方法

Country Status (2)

Country Link
CN (1) CN111581908B (zh)
WO (1) WO2021227371A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116502590A (zh) * 2023-06-29 2023-07-28 芯耀辉科技有限公司 芯片电源连接网络组件及集成电路模组

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111581908B (zh) * 2020-05-09 2021-06-25 安徽省东科半导体有限公司 一种提升芯片硬宏供电可靠性的方法
CN113778216B (zh) * 2021-09-17 2022-07-05 东科半导体(安徽)股份有限公司 一种降低芯片功耗的方法
CN113935273A (zh) * 2021-09-17 2022-01-14 东科半导体(安徽)股份有限公司 一种低功耗模块的控制信号连接方法
CN114068522A (zh) * 2021-11-12 2022-02-18 杭州广立微电子股份有限公司 一种晶体管网格状绕线的方法
CN114781318B (zh) * 2022-06-16 2022-09-13 飞腾信息技术有限公司 芯片的模块引脚布线方法、装置、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070033562A1 (en) * 2005-08-05 2007-02-08 International Business Machines Corporation Integrated circuit power distribution layout with sliding grids
US7240314B1 (en) * 2004-06-04 2007-07-03 Magma Design Automation, Inc. Redundantly tied metal fill for IR-drop and layout density optimization
CN102237356A (zh) * 2010-05-06 2011-11-09 台湾积体电路制造股份有限公司 集成电路及其电源布局与电源布局方法
CN102280446A (zh) * 2010-06-09 2011-12-14 Lsi公司 电源网格的最优化
CN106356371A (zh) * 2015-07-16 2017-01-25 三星电子株式会社 半导体装置、片上系统、移动装置和半导体系统
US10380308B2 (en) * 2018-01-10 2019-08-13 Qualcomm Incorporated Power distribution networks (PDNs) using hybrid grid and pillar arrangements
CN111581908A (zh) * 2020-05-09 2020-08-25 安徽省东科半导体有限公司 一种提升芯片硬宏供电可靠性的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100956891B1 (ko) * 2008-03-19 2010-05-11 삼성전기주식회사 전자기 밴드갭 구조물 및 인쇄회로기판
JP6700665B2 (ja) * 2015-03-10 2020-05-27 キヤノン株式会社 情報処理装置、情報処理装置の制御方法、及びプログラム
US10672709B2 (en) * 2016-12-12 2020-06-02 Taiwan Semiconductor Manufacturing Co., Ltd Power grid, IC and method for placing power grid
CN210199696U (zh) * 2019-09-17 2020-03-27 上海铼钠克数控科技股份有限公司 电源管理模块

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7240314B1 (en) * 2004-06-04 2007-07-03 Magma Design Automation, Inc. Redundantly tied metal fill for IR-drop and layout density optimization
US20070033562A1 (en) * 2005-08-05 2007-02-08 International Business Machines Corporation Integrated circuit power distribution layout with sliding grids
CN102237356A (zh) * 2010-05-06 2011-11-09 台湾积体电路制造股份有限公司 集成电路及其电源布局与电源布局方法
CN102280446A (zh) * 2010-06-09 2011-12-14 Lsi公司 电源网格的最优化
CN106356371A (zh) * 2015-07-16 2017-01-25 三星电子株式会社 半导体装置、片上系统、移动装置和半导体系统
US10380308B2 (en) * 2018-01-10 2019-08-13 Qualcomm Incorporated Power distribution networks (PDNs) using hybrid grid and pillar arrangements
CN111581908A (zh) * 2020-05-09 2020-08-25 安徽省东科半导体有限公司 一种提升芯片硬宏供电可靠性的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116502590A (zh) * 2023-06-29 2023-07-28 芯耀辉科技有限公司 芯片电源连接网络组件及集成电路模组
CN116502590B (zh) * 2023-06-29 2023-09-22 芯耀辉科技有限公司 芯片电源连接网络组件及集成电路模组

Also Published As

Publication number Publication date
CN111581908A (zh) 2020-08-25
CN111581908B (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
WO2021227371A1 (zh) 一种提升芯片硬宏供电可靠性的方法
WO2021227372A1 (zh) 一种提升芯片硬宏供电能力的方法
US7426707B2 (en) Layout design method for semiconductor integrated circuit, and semiconductor integrated circuit
US8516428B2 (en) Methods, systems, and media to improve manufacturability of semiconductor devices
CN107066681B (zh) 集成电路和制造集成电路的计算机实现方法
US6725439B1 (en) Method of automated design and checking for ESD robustness
US10796060B2 (en) Method and system for pin layout
US7900178B2 (en) Integrated circuit (IC) design method, system and program product
US6505333B1 (en) Automatic placement and routing of semiconductor integrated circuits
Chuang et al. Unified methodology for heterogeneous integration with CoWoS technology
JP3747968B2 (ja) 集積回路装置
TWI718245B (zh) 積體電路、製造其的電腦實施方法以及定義其的標準元件
US20080250379A1 (en) Logic circuit synthesis device
US10424518B2 (en) Integrated circuit designing system and a method of manufacturing an integrated circuit
US9183343B1 (en) Methods, systems, and articles of manufacture for implementing high current carrying interconnects in electronic designs
JP2008310527A (ja) 半導体集積回路のレイアウト設計装置及びレイアウト設計方法
JP2007103662A (ja) 半導体集積回路およびその製造方法
JP2000057175A (ja) 半導体集積回路装置の自動配線方式
JP3651654B2 (ja) 機能マクロ及びその設計方法、及び半導体装置の設計方法
JP4561036B2 (ja) 半導体装置及び半導体装置のレイアウト設計方法
Chakravarthi et al. SoC Physical Design Flow and Algorithms
JPH06216249A (ja) Icチップ自動レイアウト設計システム
WO2024005939A1 (en) Through silicon via macro with dense layout for placement in an integrated circuit floorplan
JP3130891B2 (ja) 配線方法
JP2000332117A (ja) 半導体集積回路の設計方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935710

Country of ref document: EP

Kind code of ref document: A1