WO2021227335A1 - 自移动设备与充电站对接方法、装置、自移动设备及可读存储介质 - Google Patents

自移动设备与充电站对接方法、装置、自移动设备及可读存储介质 Download PDF

Info

Publication number
WO2021227335A1
WO2021227335A1 PCT/CN2020/117445 CN2020117445W WO2021227335A1 WO 2021227335 A1 WO2021227335 A1 WO 2021227335A1 CN 2020117445 W CN2020117445 W CN 2020117445W WO 2021227335 A1 WO2021227335 A1 WO 2021227335A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
mobile device
docking
boundary
boundary line
Prior art date
Application number
PCT/CN2020/117445
Other languages
English (en)
French (fr)
Inventor
陈泓
朱绍明
任雪
Original Assignee
苏州科瓴精密机械科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州科瓴精密机械科技有限公司 filed Critical 苏州科瓴精密机械科技有限公司
Priority to EP20935049.5A priority Critical patent/EP4148525A4/en
Priority to US17/769,028 priority patent/US20240103546A1/en
Publication of WO2021227335A1 publication Critical patent/WO2021227335A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/656Interaction with payloads or external entities
    • G05D1/661Docking at a base station
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • G05D1/0251Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting 3D information from a plurality of images taken from different locations, e.g. stereo vision
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/244Arrangements for determining position or orientation using passive navigation aids external to the vehicle, e.g. markers, reflectors or magnetic means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D2101/00Lawn-mowers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2111/00Details of signals used for control of position, course, altitude or attitude of land, water, air or space vehicles
    • G05D2111/10Optical signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2111/00Details of signals used for control of position, course, altitude or attitude of land, water, air or space vehicles
    • G05D2111/30Radio signals
    • G05D2111/36Radio signals generated or reflected by cables or wires carrying current, e.g. boundary wires or leaky feeder cables

Definitions

  • the present invention relates to a method and device for docking a self-mobile device with a charging station, a self-mobile device and a readable storage medium, and in particular to a method, a device, a self-mobile device and a readable storage medium for docking a self-mobile device with a charging station that improve regression efficiency .
  • the traditional method is to lay a boundary line around the grass.
  • the boundary line can be a magnetic guide line that transmits electromagnetic signals to the outside.
  • the electromagnetic signal sensor of the smart lawn mower passes the intensity of the induced electromagnetic signal.
  • the intelligent lawn mower searches for the boundary line in a random direction, and it takes a long time to find the boundary line, which is not conducive to improving the regression efficiency.
  • the invention provides a docking method, a device, a self-mobile device and a readable storage medium for a self-mobile device and a charging station that can improve the return efficiency.
  • the present invention provides a method for docking a self-mobile device with a charging station, where the charging station is connected to a boundary line, and the method includes the following steps:
  • the self-mobile device senses the boundary line signal before or when it reaches the docking boundary, the self-mobile device is controlled to move toward the charging station through the boundary line signal until the docking is successful ;
  • the self-mobile device does not sense the boundary line signal when it reaches the docking boundary, controlling the self-mobile device to move from the docking boundary toward the boundary line until the boundary line signal is sensed.
  • controlling the self-mobile device to move from the docking boundary toward the boundary line until the boundary line signal is sensed includes:
  • controlling the self-mobile device to move from the docking boundary toward the boundary line until the boundary line signal is sensed includes:
  • Control the self-mobile device to rotate a preset angle on the docking boundary and continue to walk until a boundary line signal is sensed.
  • controlling the self-mobile device to move closer to the docking boundary from the current position includes:
  • the self-mobile device is controlled to move from its current location to the docking boundary by a radio detection device.
  • the radio detection device includes a positioning base station and a positioning tag.
  • the positioning base station is set within a preset distance of the charging station, and the positioning tag is set at On the self-mobile device, according to the distance between the positioning tag and the positioning base station, the self-mobile device is controlled to move from the current position to the docking boundary.
  • the docking boundary is a docking circle centered on the positioning base station, the radius of the docking circle is D dst , and the distance between at least part of the boundary line and the positioning base station is not less than D dst .
  • controlling the self-mobile device to move closer to the docking boundary from the current position includes:
  • the self-mobile device does not reach the docking boundary, it is determined whether the distance between the self-mobile device and the positioning base station is reduced, wherein, if the distance between the self-mobile device and the positioning base station is shrinking, the self-movement is controlled The device moves forward from the current position in the current direction, and determines whether the self-mobile device senses a boundary line signal; if the distance between the self-mobile device and the positioning base station is not shrinking, the self-mobile device is controlled to rotate along the first Rotate the direction by a first predetermined angle of rotation, then control the self-mobile device to advance in the current direction from the current position, and determine whether the self-mobile device senses a boundary line signal;
  • controlling the self-mobile device to move from the docking boundary toward the boundary line until the boundary line signal is sensed.
  • controlling the self-mobile device to move closer to the docking boundary from the current position includes:
  • the self-moving device is controlled to move from the current position close to the docking boundary through a vision system, and the vision system includes a camera provided on the self-moving device and a connection mark provided on the charging station.
  • the present invention also provides a device for docking a self-mobile device with a charging station, the device comprising:
  • the boundary line searching module is used to control the self-mobile device to move closer to the docking boundary from the current position; and is used to determine whether the self-mobile device senses a boundary line signal;
  • the docking control module is used to control the self-mobile device to move from the docking boundary to the boundary line until the boundary line signal is sensed; and to control the self-mobile device to move toward the charging through the boundary line signal The station moves until the docking is successful.
  • the present invention also provides a self-mobile device, including a memory and a processor, the memory stores a computer program, and the processor implements the steps of the method for docking the self-mobile device with a charging station when the processor executes the computer program.
  • the present invention also provides a readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method for docking the self-mobile device with the charging station are realized.
  • the present invention sets a docking boundary and controls the automatic mobile device to move close to the docking boundary to find the boundary line, which can reduce the time for the automatic mobile device to find the boundary line, thereby improving the return efficiency of the automatic mobile device.
  • Figure 1 is a flowchart of a first embodiment of a method for docking a self-mobile device with a charging station according to the present invention
  • FIG. 2 is a schematic diagram of the regression of the docking method between the mobile device and the charging station of the present invention in the first use environment;
  • FIG. 3 is a schematic diagram of the regression of the self-mobile device and the charging station docking method of the present invention in the second use environment;
  • step S1 in FIG. 1 is a specific flowchart of the first embodiment of step S1 in FIG. 1;
  • FIG. 5 is a specific flowchart of the second embodiment of step S1 in FIG. 1;
  • Figure 6 is a rough positioning regression state diagram of the method for docking a self-mobile device with a charging station according to the present invention
  • Fig. 7 is a schematic block diagram of a device for docking a self-mobile device with a charging station according to the present invention.
  • the self-moving device 1 may be an automatic lawn mower, or an automatic vacuum cleaner, etc., which automatically walks in the work area to perform work such as mowing and vacuuming.
  • the self-mobile device 1 is powered by a power module (not shown).
  • the self-mobile device 1 can be intelligently controlled to return to the charging station 2 to continue charging according to the remaining power or working time of the power module. If necessary, return to the charging station 2 through the trigger button (not shown) on the mobile device 1 to continue charging, and also send a recharge signal on the mobile terminal (not shown) to the mobile device 1 to make the mobile device 1 move.
  • Device 1 returns to charging station 2 to continue charging.
  • a boundary line 21 is set in an area close to the charging station 2, and the area covered by the boundary line 21 is smaller than the working area.
  • the self-mobile device 1 can be guided to work in the work area through a radio detection device or a vision system, and the self-mobile device 1 can also be guided by a radio detection device or a vision system to perform coarse positioning and return from the area outside the boundary line 21, so that the self-mobile device 1 is close to
  • the charging station 2 reaches the area covered by the boundary line 21, and the electromagnetic signal emitted by the boundary line 21 is induced by the mobile device 1 to guide the mobile device 1 to perform fine positioning and return, so that the mobile device 1 is docked with the charging station 2 .
  • the radio detection device may be a positioning system such as UWB, Zigbee, GPS, etc.
  • the present invention provides a method for docking a self-mobile device with a charging station.
  • the charging station 2 is connected to a boundary line 21.
  • the method includes the following steps:
  • Step S1 Control the self-mobile device 1 to move close to the docking boundary 31 from its current position, and determine whether the self-mobile device 1 senses a boundary line signal; if the self-mobile device 1 reaches the docking boundary 31 or When the boundary line signal is sensed when the docking boundary 31 is reached, step S2 is executed; if the self-mobile device 1 still does not sense the boundary line signal when the docking boundary 31 is reached, step S3 is executed;
  • Step S2 Control the self-mobile device 1 to move toward the charging station 2 through the boundary line signal until the docking is successful;
  • Step S3 Control the self-mobile device 1 to move from the docking boundary 31 toward the boundary line 21 until the boundary line signal is sensed.
  • the step S1 is a coarse positioning regression
  • the step S2 is a fine positioning regression
  • the step S3 is a converging process of the coarse positioning regression and the fine positioning regression.
  • step S1 controlling the self-mobile device 1 to move from the current position close to the docking boundary 31 through a radio detection device, so as to realize the coarse positioning return of the self-mobile device 1 .
  • the radio detection device includes a positioning base station 3 and a positioning tag.
  • the positioning base station 3 is set within a preset distance of the charging station 2, and the positioning tag is set on the mobile device 1 according to the position between the positioning tag and the positioning base station 3. The distance of controls the self-moving device 1 to move from the current position close to the docking boundary 31.
  • the positioning base station 3 may be a UWB positioning base station or a Zigbee positioning base station, the number of the positioning base station 3 may be one, and the positioning base station 3 is arranged around the charging station 2 .
  • the positioning base station 3 is located at the charging station 2 or the positioning base station 3 is located outside the charging station 2 at intervals.
  • the distance between the positioning tag and the positioning base station 3 refers to the distance between the self-mobile device 1 and the charging station 2.
  • the positioning base station 3 is arranged outside the charging station 2 at intervals
  • the distance between the positioning tag and the positioning base station 3 refers to the approximate distance between the self-mobile device 1 and the charging station 2.
  • the positioning base station 3 may be a UWB positioning base station or a Zigbee positioning base station, the number of the positioning base stations 3 may be multiple, and the multiple positioning base stations 3 are arranged in the charging station Around 2, one of the positioning base stations 3 is set at the charging station 2, and the coordinates of the current position of the mobile device 1 and the coordinates of the charging station 2 are obtained through multiple positioning base stations 3. The coordinates of the current location of the device 1 and the coordinates of the charging station 2 are controlled by the mobile device 1 to move from the current location to the docking boundary 31.
  • step S1 control the self-mobile device 1 to move from the current position close to the docking boundary 31 through a vision system, and the vision system includes a camera provided on the self-mobile device 1 And the connection mark provided at the charging station 2, the step of controlling the self-mobile device 1 to approach the docking boundary 31 from the current position further includes:
  • the camera collects environmental images
  • the self-mobile device 1 is controlled to move from the current position close to the docking boundary 31.
  • the charging station 2 is provided with a docking mark
  • the docking mark may be a special mark such as a plane/three-dimensional/light source.
  • the collected environment image has a docking mark
  • the distance between the mobile device 1 and the charging station 2 is analyzed according to the docking mark in the environment image
  • the self-mobile device 1 is controlled to move from the current position close to the docking boundary 31 according to the distance.
  • the boundary line 21 is a ring-shaped signal line connecting the charging station, and the shape enclosed by the boundary line can be set as required, for example, the rectangular boundary line 21 shown in FIG. 3 shows the arc-shaped boundary line 21.
  • the docking structure between the self-mobile device 1 and the charging station 2 can be set according to needs, for example, a charging plug or a charging pin is set at one end of the self-mobile device 1 or the charging station 2, and the self-mobile device 1 or the charging station 2 The other end of the mobile device 1 or the charging station 2 is provided with a charging socket. When the charging plug or the charging pin is electrically connected to the charging socket, the docking is successful. In addition, you can also use wireless charging for charging. Guide through the boundary line 21 to complete the precise positioning return to the charging station 2 and perform charging.
  • the step S3 may be to control the self-moving device 1 to move around the docking boundary 31 along the docking boundary 31 until a boundary line signal is sensed.
  • the charging station 2 is connected to a rectangular boundary line 21, a positioning base station 3 is set at the charging station 2, and the docking boundary 31 intersects with the rectangular boundary line 21.
  • the intersection points include intersection A and intersection B, the rectangular boundary line
  • the portion 21 outside the butting boundary 31 is C
  • the portion of the butting boundary 31 outside the rectangular boundary 21 is D.
  • the self-mobile device 1 reaches the ADB of the docking boundary 31 or the ACB of the boundary line 21.
  • the self-mobile device 1 reaches the ADB of the docking boundary 31 and is far from the intersection A or the intersection B, the Since the mobile device 1 has not sensed the boundary line signal, after the mobile device 1 reaches the ADB of the docking boundary 31, it moves in a circle on the ADB, for example, moves clockwise to the intersection point B, and then, the self-mobile device 1 The mobile device 1 moves from the intersection B around the rectangular boundary line 21 until it successfully docks with the charging station 2.
  • the step S3 may be to control the self-mobile device 1 to rotate a preset angle on the docking boundary 31 and continue to walk until a boundary line signal is sensed.
  • the charging station 2 is connected to an arc-shaped boundary line 21, a positioning base station 3 is set at the charging station 2, and the docking boundary 31 intersects with the arc-shaped boundary line 21.
  • the intersection points include intersection A and intersection B, the docking boundary 31
  • the part outside the arc boundary line 21 is E
  • the part of the arc boundary line 21 outside the butting boundary 31 is the outer boundary line
  • the part of the arc boundary line 21 inside the butting boundary 31 is the inner boundary line
  • a narrow passage is formed between the outer boundary line and the inner boundary line.
  • the AEB of the self-mobile device 1 at the docking boundary 31 is controlled to rotate a preset angle and continue to walk until it is sensed Borderline signal.
  • the positioning base station and the charging station are arranged separately, the docking boundary is a docking circle centered on the positioning base station, the radius of the docking circle is Ddst, and the charging station is connected to the boundary line Wound around the periphery of the docking boundary.
  • the self-mobile device keeps approaching the positioning base station until it reaches the boundary line.
  • step S1 further includes the following steps:
  • Step S11 Control the self-mobile device 1 to advance in the current direction from the current position, and determine whether the self-mobile device 1 senses the boundary line signal; if the self-mobile device 1 does not sense the boundary line signal, execute step S12; if the self-mobile device 1 has sensed the boundary line signal, perform step S2;
  • Step S12 Determine whether the self-mobile device 1 has reached the docking boundary 31; if the self-mobile device 1 has not reached the docking boundary 31, perform step S13; if the self-mobile device 1 has reached the docking boundary 31, perform step S3;
  • Step S13 Determine whether the distance between the self-mobile device 1 and the positioning base station 3 is reduced; if the distance between the self-mobile device 1 and the positioning base station 3 is shrinking, return to step S11; if the self-movement If the distance between the device 1 and the positioning base station 3 is not shrinking, step S14 is executed;
  • Step S14 Control the self-moving device 1 to rotate a first predetermined rotation angle along the first rotation direction, and then return to perform step S11.
  • step S1 further includes the following steps:
  • Step S11 Control the self-mobile device 1 to advance in the current direction from the current position, and determine whether the self-mobile device 1 senses the boundary line signal; if the self-mobile device 1 does not sense the boundary line signal, execute step S12; if the self-mobile device 1 has sensed the boundary line signal, perform step S2;
  • Step S12 Determine whether the self-mobile device 1 has reached the docking boundary 31; if the self-mobile device 1 has not reached the docking boundary 31, perform step S13; if the self-mobile device 1 has reached the docking boundary 31, perform step S3;
  • Step S13 Determine whether the distance between the self-mobile device 1 and the positioning base station 3 is reduced; if the distance between the self-mobile device 1 and the positioning base station 3 is shrinking, return to step S11; if the self-movement If the distance between the device 1 and the positioning base station 3 is not shrinking, step S14 is executed;
  • Step S141 Control the self-mobile device 1 to rotate along a first rotation direction by a first predetermined rotation angle, control the self-mobile device 1 to advance from the current position in the current direction, and determine whether the self-mobile device 1 and the positioning base station Whether the distance between the mobile device 1 and the positioning base station 3 is shrinking; if the distance between the mobile device 1 and the positioning base station 3 is shrinking, return to step S11; if the distance between the mobile device 1 and the positioning base station 3 is not shrinking, perform Step S15;
  • Step S15 Control the self-mobile device 1 to rotate in the opposite direction of the first rotation direction by a second predetermined rotation angle, and then control the self-mobile device 1 to advance from the current position in the current direction; then return to perform step S11.
  • the docking boundary 31 is a docking circle centered on the positioning base station 3 , and the radius of the docking circle is D dst , and at least part of the docking circle The distance between the boundary line 21 and the positioning base station 3 is not less than D dst .
  • Controlling the mobile device 31 moves from a boundary near the butt, since the mobile device 1 at point A 1, the point A i-1, the point A i, the point A i + 1, when the position of the positioning point A n of the base station 3
  • the distances between them are D 1 , D i-1 , D i , D i+1 , D n
  • the present invention also provides a device 1 for docking a self-mobile device with a charging station, and the device includes:
  • the boundary line searching module 100 is used to control the self-mobile device to move closer to the docking boundary from the current position; and to determine whether the self-mobile device senses a boundary line signal;
  • the docking control module 200 is configured to control the self-moving device to move from the docking boundary to the boundary line until the boundary line signal is sensed; and to control the self-moving device to move toward the boundary line signal through the boundary line signal.
  • the charging station moves until the docking is successful.
  • the present invention also provides a self-mobile device, including a memory and a processor, the memory stores a computer program, and the processor implements the steps of the method for docking the self-mobile device with a charging station when the computer program is executed by the processor.
  • the present invention also provides a readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method for docking the self-mobile device with the charging station are realized.
  • the present invention sets the docking boundary and controls the automatic mobile device to move close to the docking boundary to find the boundary line, which can reduce the time for the automatic mobile device to find the boundary line, thereby improving the return efficiency of the automatic mobile device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Multimedia (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种自移动设备(1)与充电站(2)对接方法,充电站(2)与边界线(21)相连,方法包括:控制自移动设备(1)从当前位置靠近对接边界(31)移动;在移动过程中判断自移动设备(1)是否感应到边界线(21)信号;如果自移动设备(1)在到达对接边界(31)前或到达对接边界(31)时感应到边界线(21)信号,则通过边界线(21)信号控制自移动设备(1)朝充电站(2)移动直至对接成功;如果自移动设备(1)在到达对接边界(31)时仍未感应到边界线(21)信号,则控制自移动设备(1)从对接边界(31)朝边界线(21)移动直至感应到边界线(21)信号,该方法通过设置对接边界(31),控制自移动设备靠近对接边界(31)移动以寻找边界线(21),从而提高了自移动设备(1)的回归效率。

Description

自移动设备与充电站对接方法、装置、自移动设备及可读存储介质 技术领域
本发明涉及自移动设备与充电站对接方法、装置、自移动设备及可读存储介质,尤其涉及一种提高回归效率的自移动设备与充电站对接方法、装置、自移动设备及可读存储介质。
背景技术
随着科技的发展,室外机器人的应用越来越广泛。如智能割草机可以自动地帮助人们维护草坪,将人们从草坪维护的枯燥且费时费力的家务工作中解放出来,因此受到极大欢迎。室外机器人执行功能任务过程中,无需用户的操作,这就要求室外机器人有很好地定位功能,使其能够在工作区域内自移动。
为实现智能割草机准确到达充电站,传统的方法为在草地的四周布设边界线,边界线可为对外发射电磁信号的磁引导线,智能割草机的电磁信号传感器通过感应的电磁信号强度,使边界线纵向地位于智能割草机的中心位置,从而使智能割草机沿所布设的边界线移动至充电站。该方法中,智能割草机按照随机方向寻找边界线,寻找边界线占用的时间较长,不利于提高回归效率。
发明内容
本发明提供一种可提高回归效率的自移动设备与充电站对接方法、装置、自移动设备及可读存储介质。
本发明提供一种自移动设备与充电站对接方法,所述充电站与边界线相连, 所述方法包括以下步骤:
控制所述自移动设备从当前位置靠近对接边界移动;
在移动过程中判断所述自移动设备是否感应到边界线信号;
如果所述自移动设备在到达所述对接边界前或到达所述对接边界时感应到所述边界线信号,则通过所述边界线信号控制所述自移动设备朝所述充电站移动直至对接成功;
如果所述自移动设备在到达所述对接边界时仍未感应到所述边界线信号,则控制所述自移动设备从所述对接边界朝所述边界线移动直至感应到所述边界线信号。
可选地,所述控制所述自移动设备从所述对接边界朝所述边界线移动直至感应到所述边界线信号,包括:
控制所述自移动设备在所述对接边界沿着对接边界绕圈移动直至感应到边界线信号。
可选地,所述控制所述自移动设备从所述对接边界朝所述边界线移动直至感应到所述边界线信号,包括:
控制所述自移动设备在所述对接边界旋转预设角度并继续行走直至感应到边界线信号。
可选地,所述控制所述自移动设备从当前位置靠近对接边界移动,包括:
通过无线电探测装置控制所述自移动设备从当前位置靠近对接边界移动,所述无线电探测装置包括定位基站与定位标签,所述定位基站设于充电站的预设距离内,所述定位标签设于自移动设备上,根据定位标签与定位基站之间的距离控制所述自移动设备从当前位置靠近对接边界移动。
可选地,所述对接边界是以所述定位基站为圆心的对接圆,所述对接圆的半径为D dst,且至少部分所述边界线与所述定位基站的距离不小于D dst
可选地,所述控制所述自移动设备从当前位置靠近对接边界移动,包括:
控制所述自移动设备从当前位置沿当前方向前进,并判断所述自移动设备是否感应到边界线信号,并在所述自移动设备未感应到边界线信号时,判断所述自移动设备是否到达对接边界;
其中,
如果自移动设备未到达对接边界,则判断所述自移动设备与所述定位基站的距离是否缩小,其中,如果所述自移动设备与所述定位基站的距离在缩小,则控制所述自移动设备从当前位置沿当前方向前进,并判断所述自移动设备是否感应到边界线信号;如果所述自移动设备与所述定位基站的距离不在缩小,则控制所述自移动设备沿第一旋转方向旋转第一预定旋转角度,再控制所述自移动设备从当前位置沿当前方向前进,并判断所述自移动设备是否感应到边界线信号;
如果自移动设备已到达对接边界,则控制所述自移动设备从所述对接边界朝所述边界线移动直至感应到所述边界线信号。
可选地,所述控制所述自移动设备从当前位置靠近对接边界移动,包括:
通过视觉系统控制所述自移动设备从当前位置靠近对接边界移动,所述视觉系统包括设于自移动设备的摄像头及设于充电站的以接标识。
本发明还提供一种自移动设备与充电站对接装置,所述装置包括:
边界线寻找模块,用于控制所述自移动设备从当前位置靠近对接边界移动;并用于判断自移动设备是否感应到边界线信号;
对接控制模块,用于控制所述自移动设备从所述对接边界朝所述边界线移动直至感应到所述边界线信号;并用于通过所述边界线信号控制所述自移动设备朝所述充电站移动直至对接成功。
本发明还提供一种自移动设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现所述自移动设备与充电站对接方法的步骤。
本发明还提供一种可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现所述自移动设备与充电站对接方法的步骤。
相较于现有技术,本发明设置对接边界,控制自动移动设备靠近对接边界移动以寻找边界线,可减少自动移动设备寻找边界线的时间,从而提高了自动移动设备的回归效率。
附图说明
图1为本发明自移动设备与充电站对接方法的第一实施例的流程图;
图2为本发明自移动设备与充电站对接方法在第一使用环境中的回归示意图;
图3为本发明自移动设备与充电站对接方法在第二使用环境中的回归示意图;
图4为图1中步骤S1的第一实施例的具体流程图;
图5为图1中步骤S1的第二实施例的具体流程图;
图6为本发明自移动设备与充电站对接方法的粗定位回归状态图;
图7为本发明自移动设备与充电站对接装置的原理方框图。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
请参阅图1-图7所示,自移动设备1可以是自动割草机,或者自动吸尘器等,其自动行走于工作区域以进行割草、吸尘等工作。所述自移动设备1通过电源模块(未图示)供电,为了确保电源模块正常供电,可根据电源模块的剩余电量或工作时间智能控制自移动设备1返回充电站2进行充电续能,也可根据需要通过自移动设备1上的触发按钮(未图示)返回充电站2进行充电续能,还可通过在移动终端(未图示)上发送回充信号给自移动设备1以使自移动设备1返回充电站2进行充电续能。
在靠近充电站2的区域设置边界线21,边界线21所覆盖的区域小于工作区域。通过无线电探测装置或视觉系统引导自移动设备1在工作区域工作,也可通过无线电探测装置或视觉系统引导自移动设备1从边界线21以外的区域进行粗定位回归,从而使得自移动设备1靠近充电站2,并到达边界线21所覆盖的区域,再通过自移动设备1感应边界线21发出的电磁信号以引导自移动设备1进行精定位回归,从而使得自移动设备1与充电站2对接。其中,所述无线电探测装置可为UWB、Zigbee、GPS等定位系统。
请参阅图1-图3所示,本发明提供一种自移动设备与充电站对接方法,所述充电站2与边界线21相连,所述方法包括以下步骤:
步骤S1:控制所述自移动设备1从当前位置靠近对接边界31移动,并判断所述自移动设备1是否感应到边界线信号;如果所述自移动设备1在到达所述对接边界31前或到达所述对接边界31时感应到所述边界线信号,则执行步骤S2;如果所述自移动设备1在到达所述对接边界31时仍未感应到所述边界线信号,则执行步骤S3;
步骤S2:通过所述边界线信号控制所述自移动设备1朝所述充电站2移动直至对接成功;
步骤S3:控制所述自移动设备1从所述对接边界31朝所述边界线21移动直至感应到所述边界线信号。
其中,所述步骤S1为粗定位回归,所述步骤S2为精定位回归,所述步骤S3为粗定位回归与精定位回归的衔接过程。
在本发明的另一个实施例中,所述步骤S1的具体过程:通过无线电探测装置控制所述自移动设备1从当前位置靠近对接边界31移动,以实现所述自移动设备1的粗定位回归。所述无线电探测装置包括定位基站3与定位标签,所述定位基站3设于充电站2的预设距离内,所述定位标签设于自移动设备1上,根据定位标签与定位基站3之间的距离控制所述自移动设备1从当前位置靠近对接边界31移动。
在本发明的另一个实施例中,所述定位基站3可为UWB定位基站或Zigbee定位基站,所述定位基站3的数量可为一个,所述定位基站3布设于所述充电站2的周围。例如,所述定位基站3设于所述充电站2处,或者所述定位基站3间隔设于所述充电站2外。当所述定位基站3设于所述充电站2处,则定位标签与定位基站3之间的距离是指所述自移动设备1与所述充电站2之间的距 离。当所述定位基站3间隔设于所述充电站2外,则定位标签与定位基站3之间的距离是指所述自移动设备1与所述充电站2之间的大致距离。
在本发明的另一个实施例中,所述定位基站3可为UWB定位基站或Zigbee定位基站,所述定位基站3的数量可为多个,所述多个定位基站3布设于所述充电站2的周围,所述定位基站3之一设于所述充电站2处,通过多个定位基站3获得自移动设备1于当前位置的坐标与所述充电站2的坐标,也可根据自移动设备1于当前位置的坐标与所述充电站2的坐标控制自移动设备1从当前位置靠近对接边界31移动。
在本发明的另一个实施例中,所述步骤S1的具体过程:通过视觉系统控制所述自移动设备1从当前位置靠近对接边界31移动,所述视觉系统包括设于自移动设备1的摄像头及设于充电站2的以接标识,所述控制所述自移动设备1从当前位置靠近对接边界31的步骤进一步包括:
所述摄像头采集环境图像;
根据环境图像判断所述自移动设备1与所述充电站2的位置关系;
根据所述自移动设备1与所述充电站2的位置关系控制所述自移动设备1从当前位置靠近对接边界31移动。
例如,所述充电站2上设有对接标识,对接标识可以是平面/立体/灯源等特殊的标识物。采集到的环境图像中具有对接标识,根据环境图像中的对接标识分析自移动设备1与充电站2的距离,根据所述距离控制所述自移动设备1从当前位置靠近对接边界31移动。
在本发明的另一个实施例中,所述边界线21为连接充电站的环形信号线,边界线所围成的形状可根据需要设置,例如,图2所示的矩形的边界线21,图 3所示的弧形的边界线21。可根据需要设置所述自移动设备1与所述充电站2的对接结构,例如,在所述自移动设备1或所述充电站2之一端设置充电插片或充电插针,在所述自移动设备1或所述充电站2之另一端设置充电插口,当所述充电插片或充电插针与充电插口电连接,则对接成功。此外,也可以用无线充电的方式进行充电。通过边界线21引导完成与充电站2的精定位回归,进行充电。
在本发明的另一个实施例中,所述步骤S3可为控制所述自移动设备1在所述对接边界31沿着对接边界31绕圈移动直至感应到边界线信号。
请参阅图2所示,充电站2连接矩形的边界线21,充电站2处设置定位基站3,对接边界31与矩形的边界线21相交设置,交点包括交点A和交点B,矩形的边界线21在对接边界31外的部分为C,对接边界31在矩形的边界线21外的部分为D。粗定位回归后,自移动设备1到达对接边界31的ADB上或边界线21的ACB上,若所述自移动设备1到达对接边界31的ADB上且距离交点A或交点B较远,所述自移动设备1仍未感应到所述边界线信号,则所述自移动设备1到达对接边界31的ADB后,在ADB上绕圈移动,例如,顺时针移动至交点B,然后,所述自移动设备1从交点B围绕矩形的边界线21移动,直至与所述充电站2对接成功。
在本发明的另一个实施例中,所述步骤S3可为控制所述自移动设备1在所述对接边界31旋转预设角度并继续行走直至感应到边界线信号。
请参阅图3所示,充电站2连接弧形的边界线21,充电站2处设置定位基站3,对接边界31与弧形的边界线21相交设置,交点包括交点A和交点B,对接边界31位于弧形的边界线21之外的部分为E,弧形的边界线21在对接边 界31外的部分为外侧边界线,弧形的边界线21在对接边界31内的部分为内侧边界线,所述外侧边界线与所述内侧边界线之间形成狭窄通道。粗定位回归后,自移动设备1到达外侧边界线并感应到所述边界线信号,所述自移动设备1围绕弧形的边界线21移动,直至与所述充电站2对接成功。自移动设备1到达对接边界31的AEB,若此时,自移动设备1未感应到所述边界线信号,则控制自移动设备1在对接边界31的AEB旋转预设角度并继续行走直至感应到边界线信号。
在本发明的另一个实施例中,定位基站与充电站分隔设置,所述对接边界是以所述定位基站为圆心的对接圆,所述对接圆的半径为Ddst,所述充电站连接边界线绕设于对接边界的外围。通过对接边界粗定位回归过程中,所述自移动设备不断靠近定位基站,直至到达边界线。
请参阅图4所示,在本发明的另一个实施例中,所述步骤S1进一步包括以下步骤:
步骤S11:控制所述自移动设备1从当前位置沿当前方向前进,并判断所述自移动设备1是否感应到边界线信号;如果所述自移动设备1未感应到边界线信号,则执行步骤S12;如果所述自移动设备1已感应到边界线信号,则执行步骤S2;
步骤S12:判断所述自移动设备1是否到达对接边界31;如果自移动设备1未到达对接边界31,则执行步骤S13;如果自移动设备1已到达对接边界31,则执行步骤S3;
步骤S13:判断所述自移动设备1与所述定位基站3的距离是否缩小;如果所述自移动设备1与所述定位基站3的距离在缩小,则返回执行步骤S11; 如果所述自移动设备1与所述定位基站3的距离不在缩小,则执行步骤S14;
步骤S14:控制所述自移动设备1沿第一旋转方向旋转第一预定旋转角度,然后再返回执行步骤S11。
请参阅图5所示,在本发明的另一个实施例中,所述步骤S1进一步包括以下步骤:
步骤S11:控制所述自移动设备1从当前位置沿当前方向前进,并判断所述自移动设备1是否感应到边界线信号;如果所述自移动设备1未感应到边界线信号,则执行步骤S12;如果所述自移动设备1已感应到边界线信号,则执行步骤S2;
步骤S12:判断所述自移动设备1是否到达对接边界31;如果自移动设备1未到达对接边界31,则执行步骤S13;如果自移动设备1已到达对接边界31,则执行步骤S3;
步骤S13:判断所述自移动设备1与所述定位基站3的距离是否缩小;如果所述自移动设备1与所述定位基站3的距离在缩小,则返回执行步骤S11;如果所述自移动设备1与所述定位基站3的距离不在缩小,则执行步骤S14;
步骤S141:控制所述自移动设备1沿第一旋转方向旋转第一预定旋转角度,控制所述自移动设备1从当前位置沿当前方向前进,并判断所述自移动设备1与所述定位基站3的距离是否缩小;如果所述自移动设备1与所述定位基站3的距离在缩小,则返回执行步骤S11;如果所述自移动设备1与所述定位基站3的距离不在缩小,则执行步骤S15;
步骤S15:控制所述自移动设备1沿第一旋转方向的反方向旋转第二预定旋转角度,再控制所述自移动设备1从当前位置沿当前方向前进;然后再返回 执行步骤S11。
请参阅图6所示,在本发明的另一个实施例中,所述对接边界31是以所述定位基站3为圆心的对接圆,所述对接圆的半径为D dst,且至少部分所述边界线21与所述定位基站3的距离不小于D dst
控制所述自移动设备1靠近对接边界31移动,所述自移动设备1在点A 1、点A i-1、点A i、点A i+1、点A n位置时与定位基站3之间的距离分别为D 1、D i-1、D i、D i+1、D n,所述自移动设备1从当前位置A 1(D 1>D dst),依次经过点A i-1(D i-1>D dst)、点A i(D i>D dst)、点A i+1(D i+1>D dst)后到达对接边界31上的点A n(D n=D dst)。
自移动设备1位于点A i位置进行随机方向原地旋转第一预定旋转角度θ(如向左旋转90度),旋转后前进;如果所述自移动设备1与所述定位基站3的距离不在缩小,停止前进(如图6点A i+1位置),自移动设备1原地反方向旋转第二预定旋转角度2*θ,(如向右旋转180度),旋转后前进到达点A n位置。
请参阅图7所示,本发明还提供一种自移动设备与充电站对接装置1,所述装置包括:
边界线寻找模块100,用于控制所述自移动设备从当前位置靠近对接边界移动;并用于判断自移动设备是否感应到边界线信号;
对接控制模块200,用于控制所述自移动设备从所述对接边界朝所述边界线移动直至感应到所述边界线信号;并用于通过所述边界线信号控制所述自移动设备朝所述充电站移动直至对接成功。
本发明还提供一种自移动设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现所述自移动设备与充电站 对接方法的步骤。
本发明还提供一种可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现所述自移动设备与充电站对接方法的步骤。
综上所述,本发明设置对接边界,控制自动移动设备靠近对接边界移动以寻找边界线,可减少自动移动设备寻找边界线的时间,从而提高了自动移动设备的回归效率。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种自移动设备与充电站对接方法,所述充电站与边界线相连,其特征在于,所述方法包括以下步骤:
    控制所述自移动设备从当前位置靠近对接边界移动;
    在移动过程中判断所述自移动设备是否感应到边界线信号;
    如果所述自移动设备在到达所述对接边界前或到达所述对接边界时感应到所述边界线信号,则通过所述边界线信号控制所述自移动设备朝所述充电站移动直至对接成功;
    如果所述自移动设备在到达所述对接边界时仍未感应到所述边界线信号,则控制所述自移动设备从所述对接边界朝所述边界线移动直至感应到所述边界线信号。
  2. 根据权利要求1所述的自移动设备与充电站对接方法,其特征在于,所述控制所述自移动设备从所述对接边界朝所述边界线移动直至感应到所述边界线信号,包括:
    控制所述自移动设备在所述对接边界沿着对接边界绕圈移动直至感应到边界线信号。
  3. 根据权利要求1所述的自移动设备与充电站对接方法,其特征在于,所述控制所述自移动设备从所述对接边界朝所述边界线移动直至感应到所述边界线信号,包括:
    控制所述自移动设备在所述对接边界旋转预设角度并继续行走直至感应到边界线信号。
  4. 根据权利要求2或3所述的自移动设备与充电站对接方法,其特征在于,所述控制所述自移动设备从当前位置靠近对接边界移动,包括:
    通过无线电探测装置控制所述自移动设备从当前位置靠近对接边界移动,所述无线电探测装置包括定位基站与定位标签,所述定位基站设于充电站的预设距离内,所述定位标签设于自移动设备上,根据定位标签与定位基站之间的距离控制所述自移动设备从当前位置靠近对接边界移动。
  5. 根据权利要求4所述的自移动设备与充电站对接方法,其特征在于,所述对接边界是以所述定位基站为圆心的对接圆,所述对接圆的半径为D dst,且至少部分所述边界线与所述定位基站的距离不小于D dst
  6. 根据权利要求1所述的自移动设备与充电站对接方法,其特征在于,所述控制所述自移动设备从当前位置靠近对接边界移动,包括:
    控制所述自移动设备从当前位置沿当前方向前进,并判断所述自移动设备是否感应到边界线信号,并在所述自移动设备未感应到边界线信号时,判断所述自移动设备是否到达对接边界;
    其中,
    如果自移动设备未到达对接边界,则判断所述自移动设备与所述定位基站的距离是否缩小,其中,如果所述自移动设备与所述定位基站的距离在缩小,则控制所述自移动设备从当前位置沿当前方向前进,并判断所述自移动设备是否感应到边界线信号;如果所述自移动设备与所述定位基站的距离不在缩小,则控制所述自移动设备沿第一旋转方向旋转第一预定旋转角度,再控制所述自移动设备从当前位置沿当前方向前进,并判断所述自移动设备是否感应到边界线信号;
    如果自移动设备已到达对接边界,则控制所述自移动设备从所述对接边界朝所述边界线移动直至感应到所述边界线信号。
  7. 根据权利要求1所述的自移动设备与充电站对接方法,其特征在于,所述控制所述自移动设备从当前位置靠近对接边界移动,包括:
    通过视觉系统控制所述自移动设备从当前位置靠近对接边界移动,所述视觉系统包括设于自移动设备的摄像头及设于充电站的以接标识。
  8. 一种自移动设备与充电站对接装置,其特征在于,所述装置包括:
    边界线寻找模块,用于控制所述自移动设备从当前位置靠近对接边界移动;并用于判断自移动设备是否感应到边界线信号;
    对接控制模块,用于控制所述自移动设备从所述对接边界朝所述边界线移动直至感应到所述边界线信号;并用于通过所述边界线信号控制所述自移动设备朝所述充电站移动直至对接成功。
  9. 一种自移动设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1-7中任一项所述自移动设备与充电站对接方法的步骤。
  10. 一种可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1-7中任一项所述自移动设备与充电站对接方法的步骤。
PCT/CN2020/117445 2020-05-09 2020-09-24 自移动设备与充电站对接方法、装置、自移动设备及可读存储介质 WO2021227335A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20935049.5A EP4148525A4 (en) 2020-05-09 2020-09-24 METHOD AND APPARATUS FOR ATTACHING A SELF-PROPELLED DEVICE TO A CHARGING STATION, AND ELECTRONIC DEVICE AND READABLE STORAGE MEDIUM
US17/769,028 US20240103546A1 (en) 2020-05-09 2020-09-24 Method and Apparatus for Docking Self-Moving Device to Charging Station, and Self-Moving Device and Readable Storage Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010387092.9 2020-05-09
CN202010387092.9A CN113703431A (zh) 2020-05-09 2020-05-09 自移动设备与充电站对接方法、装置、自移动设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2021227335A1 true WO2021227335A1 (zh) 2021-11-18

Family

ID=78526258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117445 WO2021227335A1 (zh) 2020-05-09 2020-09-24 自移动设备与充电站对接方法、装置、自移动设备及可读存储介质

Country Status (4)

Country Link
US (1) US20240103546A1 (zh)
EP (1) EP4148525A4 (zh)
CN (1) CN113703431A (zh)
WO (1) WO2021227335A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140379196A1 (en) * 2013-06-20 2014-12-25 Deere & Company Robotic mower navigation system
CN108345297A (zh) * 2017-01-24 2018-07-31 苏州宝时得电动工具有限公司 自动工作系统
CN108664014A (zh) * 2017-03-29 2018-10-16 苏州宝时得电动工具有限公司 一种自动行走设备回归充电的控制方法及装置
CN109038724A (zh) * 2018-08-01 2018-12-18 安克创新科技股份有限公司 机器人充电装置
CN109690436A (zh) * 2018-02-07 2019-04-26 常州格力博有限公司 用于将机器人割草机与充电站对接的系统和系统执行方法
CN210202476U (zh) * 2019-04-29 2020-03-31 苏州科瓴精密机械科技有限公司 自动割草机
CN210442682U (zh) * 2019-06-16 2020-05-01 宁波祈禧智能科技股份有限公司 一种双光束电子围栏

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111601497B (zh) * 2018-02-13 2023-09-12 苏州宝时得电动工具有限公司 自动工作系统、自移动设备及其控制方法
KR102090649B1 (ko) * 2018-02-28 2020-03-18 엘지전자 주식회사 이동로봇과 이동로봇 시스템
WO2020041985A1 (en) * 2018-08-28 2020-03-05 Tti (Macao Commercial Offshore) Limited An autonomous lawn mower and a system for navigating thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140379196A1 (en) * 2013-06-20 2014-12-25 Deere & Company Robotic mower navigation system
CN108345297A (zh) * 2017-01-24 2018-07-31 苏州宝时得电动工具有限公司 自动工作系统
CN108664014A (zh) * 2017-03-29 2018-10-16 苏州宝时得电动工具有限公司 一种自动行走设备回归充电的控制方法及装置
CN109690436A (zh) * 2018-02-07 2019-04-26 常州格力博有限公司 用于将机器人割草机与充电站对接的系统和系统执行方法
CN109038724A (zh) * 2018-08-01 2018-12-18 安克创新科技股份有限公司 机器人充电装置
CN210202476U (zh) * 2019-04-29 2020-03-31 苏州科瓴精密机械科技有限公司 自动割草机
CN210442682U (zh) * 2019-06-16 2020-05-01 宁波祈禧智能科技股份有限公司 一种双光束电子围栏

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4148525A4 *

Also Published As

Publication number Publication date
US20240103546A1 (en) 2024-03-28
EP4148525A4 (en) 2024-05-08
EP4148525A1 (en) 2023-03-15
CN113703431A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
CN109669457B (zh) 一种基于视觉标识的机器人回充方法及芯片
WO2021082659A1 (zh) 一种机器人通用的回充控制方法、芯片及机器人
KR20200018218A (ko) 이동 로봇, 이동 로봇 시스템 및 이동 로봇의 충전대 이동 방법
US20110046784A1 (en) Asymmetric stereo vision system
JP2011128158A (ja) 可搬型ランドマークの配備システムおよび方法
WO2022246901A1 (zh) 变电站巡检机器人的自动充电系统及方法
WO2018127209A1 (zh) 自移动设备及其定位系统、定位方法和控制方法
WO2021212738A1 (zh) 自动设备的控制方法、系统、自动设备及可读存储介质
WO2023025028A1 (zh) 充电方法、充电装置及机器人
WO2020159277A2 (ko) 이동 로봇 및 이의 제어 방법
WO2021227335A1 (zh) 自移动设备与充电站对接方法、装置、自移动设备及可读存储介质
CN114937258A (zh) 割草机器人的控制方法、割草机器人以及计算机存储介质
WO2021232650A1 (zh) 自移动设备与充电站对接方法、装置、自移动设备、系统及可读存储介质
US20230210050A1 (en) Autonomous mobile device and method for controlling same
US20240184310A1 (en) Self-Moving Robot Charging System and Self-Moving Robot Charging Method
WO2019223720A1 (zh) 自动工作系统和自移动设备控制方法
WO2022134735A1 (zh) 自移动设备及其回归控制方法、自动工作系统
WO2021218013A1 (zh) 自移动设备与充电站对接方法、装置、自移动设备及可读存储介质
WO2022099756A1 (zh) 机器人自动充电方法、系统,机器人及存储介质
WO2020103696A1 (zh) 自动行走设备及其控制方法
WO2023124625A1 (zh) 自移动机器人回归基站的方法、系统及自移动机器人
US20240168483A1 (en) Mobile robot and method of controlling the same
WO2023104087A1 (zh) 自动工作系统、自动工作方法和计算机可读存储介质
US20240053760A1 (en) Self-moving device, moving trajectory adjusting method, and computer-readable storage medium
WO2021101090A1 (ko) 이동 로봇 시스템 및 이동 로봇 시스템의 경계 정보 생성 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935049

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17769028

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2020935049

Country of ref document: EP

Effective date: 20221209

NENP Non-entry into the national phase

Ref country code: DE