WO2021227011A1 - 一种陀螺随钻测量系统及方法 - Google Patents

一种陀螺随钻测量系统及方法 Download PDF

Info

Publication number
WO2021227011A1
WO2021227011A1 PCT/CN2020/090519 CN2020090519W WO2021227011A1 WO 2021227011 A1 WO2021227011 A1 WO 2021227011A1 CN 2020090519 W CN2020090519 W CN 2020090519W WO 2021227011 A1 WO2021227011 A1 WO 2021227011A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
gyroscope
drilling
angle
drilling system
Prior art date
Application number
PCT/CN2020/090519
Other languages
English (en)
French (fr)
Inventor
薛旭
董旸
张潇筱
杨长春
Original Assignee
中国科学院地质与地球物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院地质与地球物理研究所 filed Critical 中国科学院地质与地球物理研究所
Priority to US17/137,696 priority Critical patent/US11220899B2/en
Publication of WO2021227011A1 publication Critical patent/WO2021227011A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/022Determining slope or direction of the borehole, e.g. using geomagnetism
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C1/00Measuring angles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/567Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode
    • G01C19/5691Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially three-dimensional vibrators, e.g. wine glass-type vibrators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices

Definitions

  • the invention relates to the technical field of underground position measurement while drilling, in particular to a gyro measurement while drilling system and method.
  • Directional drilling of directional wells refers to the drilling method of drilling to the target layer along a preset well trajectory. According to the basis of steering, it can be divided into geometric steering drilling and geosteering drilling. Geometric steering drilling usually refers to the use of measurement while drilling.
  • the tool Measurement While Drilling, MWD for short
  • the geological parameters (stratum lithology, strata layer, oil layer characteristics, etc.) obtained by Logging While Drilling (LWD)
  • LWD Logging While Drilling
  • the MWD program composed of fluxgate and quartz flexible accelerometer appeared in 1978. Due to its excellent measurement accuracy and adaptability to harsh environments, it defined the basic specifications of MWD and quickly became a major oil company.
  • the breakthrough in the key technologies of these two types of core sensors has played a key role in standardized products. Fluxgate realizes azimuth measurement through sensitive geomagnetism. Because it has no moving parts, harsh environments such as vibration and shock have almost no effect on it. Coupled with the breakthrough in the high temperature resistant fluxgate core material, it becomes the preferred sensor for azimuth measurement.
  • Another core sensor is an inertial sensor.
  • the quartz flexible accelerometer is a sensor that is sensitive to inertial space acceleration. In MWD, it is mainly sensitive to gravitational acceleration.
  • RIGS Ring Laser Inertial Guidance Surveyor
  • the Keeper series gyro north finder is a representative product of Scientific Drilling. It can be used for orientation and borehole trajectory measurement. In the past ten years, it has a high market share. It can be said that there is a cable A very successful generation of products in the logging industry.
  • Keeper is divided into three operating modes, namely: self-seeking north mode (Gyro Compass), low angle high speed mode (Low Angle High Speed), high angle high speed mode (High Angle High Speed), the coordinate system is defined as northeast
  • the ground represents the XYZ axis system.
  • an accelerometer and a gyroscope are installed, an accelerometer is installed on the Y axis, and a gyroscope is installed on the Z axis.
  • the report says that a gyroscope is used, which can be judged.
  • Keeper The dynamic tuning gyroscope is used.
  • the dynamic tuning gyroscope (referred to as dynamic tuning gyroscope, DTG) is a frame type, high-speed motor rotor type dual-axis gyroscope, which provides angular rate information for the X axis and Z axis. There are three types of gyroscopes. Different combinations are used in the operating mode.
  • Keeper adopts a classic stable platform solution, which requires a complex frame structure design to cooperate with actuators such as rotation angle sensors and motors to establish inertial spaces under various well inclination angles and complete the corresponding azimuth measurement.
  • actuators such as rotation angle sensors and motors to establish inertial spaces under various well inclination angles and complete the corresponding azimuth measurement.
  • the previous state is the initial value. Once the power is off or large errors are caused due to environmental factors, it is necessary to return to the initial north-seeking state of the vertical well to obtain the initial attitude and azimuth.
  • Dynamically tuned gyroscopes are still based on high-speed rotating motors to achieve the gyro effect. Unlike traditional float gyroscopes, it uses a flexible support to suspend the gyro rotor, separates the gyro rotor from the drive motor, and uses the dynamic effect generated by the gimbal Torque compensates for the elastic moment of the flexible support to achieve closed-loop measurement.
  • the dynamic tuning gyroscope is designed more ingeniously. When it reaches the tuning state, it will exhibit the characteristics of a free gyro in a small angle range. It is a miniaturized two-axis gyroscope.
  • Dynamically-tuned gyroscopes are also relatively early used in (while drilling) measurement fields.
  • Gyrodata Corporation of the United States has continuously improved the design and technology of dynamic-tuned gyroscopes to continuously improve their accuracy and life under high temperature and vibration environments.
  • Type I mostly adopts tuning fork solutions, such as the early MEMS comb gyroscope of Draper laboratory, the quartz tuning fork gyroscope of BEI company, Type II
  • the fully symmetrical structure greatly improves the isotropic indicators of frequency and damping. It is precisely because of the symmetrical structure design that the gyroscope can easily realize self-calibration and self-calibration, and can realize the force balance rate mode and rate.
  • Unification of the integral full-angle mode representative products such as MEMS ring gyroscope, JPL's MEMS-Disk gyroscope, and hemispherical gyroscope HRG.
  • gyroscopes that can meet high temperature, strong vibration, small size and high precision have always been the persistent pursuit of inertial technology in the petroleum industry, especially for the magnetic flux during directional drilling.
  • door interference there is no need for a gyroscope at present, but there is no suitable gyroscope product that can work normally for a long time under harsh environments such as high temperature and strong vibration built by the magnetic MWD standard.
  • the present invention aims to develop a method that can meet the most demanding use scenarios in the field of petroleum drilling measurement: measurement while drilling (MWD), And compatible with other scenarios, such as cable measurement, gyro-guided measurement and other application areas. And to solve the problem of environmental adaptability of the gyroscope under high temperature and vibration environment, the problem of zero offset repeatability, etc., from the perspective of the system to solve the technical problems of inertial instruments in the application scenarios of deep guided drilling. That is: the gyro needs to have: high precision and good environmental adaptability in harsh environments such as high temperature, strong vibration, and large impact, and take into account the small size requirements of the probe.
  • the invention provides a gyro measurement while drilling system and method, which can meet the measurement while drilling in the field of petroleum drilling measurement and be compatible with other scenarios, and aims to solve the problem of environmental adaptability and zero-bias repeatability of the gyro under high temperature and vibration environment Etc., from the perspective of systems and methods to solve the technical problems of inertial instruments in the application scenarios of deep guided drilling.
  • a gyro MWD system which includes: a strapdown inertial combination, including a gyroscope and an accelerometer fixedly connected in a probe tube; filtering and level conversion Module, which filters and level-converts the output signal of the strapdown inertial combination, and outputs the result to the data acquisition and data communication module; the data acquisition and data communication module collects the output of the anti-aliasing filtering and level conversion module And output the processed relevant data to the navigation computer according to the received work mode instruction from the navigation computer; the drive mechanism receives the control instruction from the drive control module to drive the strapdown inertial combination to rotate; the drive control module, The module is used to respond to the control mode of the data acquisition and data communication module, and issue a control instruction to drive the driving mechanism; the navigation computer, according to the received control instruction, output a working mode instruction to the data acquisition and data communication module, Calculate and process related data, and output the processing results.
  • a strapdown inertial combination including a gyroscope and an accelerometer
  • the gyroscope is a Coriolis vibration gyroscope.
  • the output signal of the strapdown inertial combination includes the internal parameter signal output of the gyroscope
  • the internal parameter signal includes, but is not limited to: the temperature of the inertial instrument, the temperature of the circuit, the vibration amplitude of the gyroscope, and the resonance of the gyroscope. Frequency, the quadrature coupling output signal of the gyroscope.
  • Coriolis vibratory gyroscope is a fully symmetrical type.
  • the measurement while drilling system further includes an angle measurement unit for measuring the rotation angle of the strapdown inertial combination.
  • the measurement while drilling system further includes a vibration and impact collection unit, which collects vibration and impact signals in the working process of the measurement while drilling system in real time, and monitors the working status of the measurement system.
  • the calculation and processing of related data performed in the navigation computer includes a full parameter compensation module, an initial alignment module, and a continuous measurement while drilling module.
  • the full-parameter compensation module refers to the compensation of drift errors of the gyroscope or accelerometer caused by temperature and vibration by collecting multiple observation points inside the gyroscope and accelerometer, and using error modeling and related algorithms.
  • the initial alignment module is under the static base of the measurement system, through the gyroscope and the accelerometer, respectively, sensitive to the information of the earth's rotation angle rate and gravitational acceleration, and through the coarse alignment algorithm, the azimuth angle and the well deviation are calculated.
  • the continuous measurement-while-drilling module refers to the real-time output of the azimuth of the measurement-while-drilling system during continuous operation based on the initial azimuth angle, the inclination angle and the tool face angle calculated by the initial alignment module and through related algorithms. Information, inclination angle information and tool face information.
  • a gyro measurement while drilling method which is used in the aforementioned measurement while drilling system, and the method includes one or several combinations of the following methods: 1) Full parameters Variable compensation method; 2) Initial alignment algorithm; 3) Continuous measurement while drilling method.
  • the full-parameter variable compensation is specifically: establishing a comprehensive model of the gyroscope zero bias and temperature related to the following formula:
  • B 0 is the fitting modeling calculation value of the comprehensive zero bias error related to temperature
  • B r refers to the original output of the gyroscope
  • It refers to the estimated value after removing the modeling error
  • the phase-locked control voltage P of the resonator the demodulation value Q of orthogonal coupling
  • T refers to the temperature of the resonator
  • Ai refers to the vibration amplitude of the resonator
  • the initial alignment algorithm includes a dual position analytical alignment algorithm.
  • the tool face angle after calibration is:
  • the azimuth angle after calibration is:
  • the positions before and after the gyroscope indexing are b 1 and b 2 , and the average value of the sampling output of the gyroscope during the alignment time is respectively Record the average value of the sampled output before and after the accelerometer indexing is as follows: with The subscripts x, y, and z respectively represent the components of the above-mentioned sample output mean value on x, y, and z respectively;
  • the estimated value of the accelerometer after dual position calibration is:
  • the estimated value of the gyroscope after two-position calibration is:
  • the accelerometer and gyroscope on the Z-axis are not observable, and the average value before and after the index is directly taken as the estimated value after calibration:
  • the initial alignment algorithm also includes a Kalman filter algorithm to further optimize the estimated azimuth angle, well inclination angle and tool face angle of the measurement system.
  • the continuous measurement while drilling method includes a well trajectory fitting algorithm under measurement while drilling.
  • the well trajectory can be calculated and fitted by the MCM method.
  • the system and method of the present invention can meet the most demanding use scenarios in the field of petroleum drilling measurement: measurement while drilling (MWD), and are compatible with other scenarios, such as cable measurement, gyro-guided measurement and other application fields; and solve the problem of gyroscope's high temperature , Environmental adaptability issues, zero offset repeatability, zero offset errors and other issues in the vibration environment, from a system perspective to solve the technical problems of inertial instruments in the application scenarios of deep guided drilling.
  • MWD measurement while drilling
  • Figure 1 is a block diagram of the gyro MWD system of the present invention
  • FIG. 2 is a signal transmission block diagram of the GMD system in the present invention.
  • Figure 3 is a block diagram of the closed-loop control system of the gyroscope in the present invention.
  • Figure 4(a) is the relationship between the original output of the gyroscope and the temperature
  • Figure 4(b) is the gyro bias estimation of a single temperature compensation
  • Figure 4(c) is the gyro bias estimation after comprehensive temperature compensation
  • Figure 5(a) is the original zero-bias error output distribution diagram
  • Figure 5(b) is the zero-bias error distribution diagram after single compensation
  • Figure 5(c) is the zero-bias error distribution diagram after comprehensive compensation
  • Figure 6 is the Allan variance comparison chart under the temperature change environment of the gyroscope
  • Figure 7 shows the principle of zero position elimination for single-axis gyroscope rotation position
  • Figure 8 is a schematic diagram of the principle of strapdown inertial navigation
  • Figure 9 is the principle diagram of the minimum curvature method trajectory measurement.
  • the system includes: strapdown inertial combination, vibration and shock acquisition sensor, angle sensor, driving mechanism, anti Aliasing filtering and level conversion module, data acquisition and data communication module, navigation computer and secondary power supply.
  • Strapdown inertial combination means that the high-temperature gyroscope and the high-temperature accelerometer are installed orthogonally and fixedly connected in the probe tube.
  • the high-temperature gyroscope adopts full symmetry based on the principle of Coriolis vibration gyroscope.
  • Type gyroscope (called typeII), the characteristics of this type of gyroscope are:
  • the resonator uses fused silica, silicon (MEMS), elastic alloys and other materials;
  • the driving and detecting electrodes adopt contact type or non-contact type.
  • the high-temperature accelerometer uses a high-temperature quartz flexible accelerometer, or a high-temperature MEMS accelerometer.
  • a three-axis sensitive geomagnetism sensor such as a fluxgate sensor can also be installed.
  • Vibration and shock acquisition sensor It is a real-time sensitive GMD vibration and shock signal in the working process, which is used as a monitoring of the working status of the GMD, and also as an interpretation of the effectiveness of the collected data.
  • the senor can be a MEMS type or a piezoelectric type, and it is required to have a very high frequency bandwidth to satisfy the collection of high frequency 2KHz or even 5KHz vibration signals.
  • Angle measuring sensor It is a sensor that measures the rotation angle of the strapdown inertial combination. In order to eliminate the constant drift error of the gyroscope under high temperature and vibration environment, the rotation position of the strapdown inertial combination needs to be measured. This sensor measures the size of the rotation angle. , So as to serve as the basis for error elimination and data fusion.
  • Drive mechanism Receive control instructions from the drive control module, and drive the motor to drive the strap-down inertial combination to rotate.
  • Anti-aliasing filtering and level conversion module This module filters and level converts the output signal of the strapdown inertial combination, and then outputs it to the data acquisition and data communication module. At the same time, the module is also effective for vibration and shock.
  • the acquisition sensor is filtered and output to the data acquisition and data communication module.
  • the output signal of the strapdown inertial combination is filtered by using a low-pass filter to play an anti-aliasing effect, and for the filtering of the vibration and shock acquisition sensor, a band-pass filter is used.
  • a band-pass filter is used for the filtering of the vibration and shock acquisition sensor.
  • Data acquisition and data communication module First, collect the output data from the "anti-aliasing filtering and level conversion module" on the one hand, that is, strap-down inertial combination (including gyroscope and accelerometer output, gyroscope and accelerometer output) Internal key parameter output), the output of the vibration and shock sensor after filtering and level conversion.
  • the "anti-aliasing filtering and level conversion module” on the one hand, that is, strap-down inertial combination (including gyroscope and accelerometer output, gyroscope and accelerometer output) Internal key parameter output), the output of the vibration and shock sensor after filtering and level conversion.
  • the coded signal output by the angle sensor is collected and output to the drive control module as a control command.
  • the sensor data is output to the navigation computer accordingly.
  • the data includes: strapdown inertial combination data, vibration and shock sensor data, angle measurement sensor data, etc.
  • the data acquisition and data communication module is usually composed of an analog-to-digital converter (ADC) and FPGA.
  • ADC analog-to-digital converter
  • FPGA field-programmable gate array
  • the secondary power supply supplies power to the above-mentioned modules
  • a mechanical and electrical interface compatible with the standard traditional magnetic MWD is adopted, and a data communication protocol is compatible.
  • the signal collection and data communication includes the collection and transmission of gyroscope signals, accelerometer signals, sensor signals sensitive to geomagnetism, vibration monitoring signals, temperature signals, angle signals, etc.; the signal processing unit is carried out in the navigation computer, including but not limited to all Parameter compensation module, initial alignment module, continuous measurement while drilling module, filtering (such as anti-aliasing filter) module, etc.
  • the full-parameter compensation module refers to the compensation of drift errors of the gyroscope or accelerometer caused by temperature, vibration, etc. by collecting multiple observation points inside the gyroscope and accelerometer, and by error modeling and related algorithms.
  • the initial alignment module realizes that the GMD is under a static base, through the gyroscope and accelerometer, respectively, sensitive to the information of the earth's rotation angle rate and gravitational acceleration, and usually through the coarse alignment algorithm to calculate the azimuth angle, the inclination angle, and the tool
  • the initial value of the face angle is then combined with external auxiliary information, such as zero-speed correction information, and the Kalman optimal estimation algorithm is used to calculate the azimuth angle, well inclination angle and tool face angle of the GMD.
  • the continuous measurement-while-drilling module refers to the real-time output of the azimuth information and the inclination information of the GMD during continuous operation based on the initial azimuth angle, the inclination angle and the tool face angle calculated by the initial alignment, and the related algorithm. And tool face information.
  • the above-mentioned strapdown inertial combination, vibration and shock acquisition sensors together form a sensor combination unit.
  • the strapdown inertial combination contains a three-axis accelerometer, a three-axis gyroscope and an internal temperature sensor.
  • the temperature sensor is built-in with the gyroscope and accelerometer. Or placed inside the strapdown inertial combination, close to the accelerometer and gyroscope to minimize the temperature gradient.
  • the gyroscope includes two major parts, a sensitive unit and a closed-loop control circuit.
  • the block diagram of the closed-loop control system of the gyroscope is shown in Figure 3.
  • the description of the closed-loop control circuit is as follows:
  • C x and Cy are the quadrature components of the demodulation value of the fixed drive shaft
  • S x and Sy are the quadrature components of the demodulation value of the fixed measurement axis
  • C x represents the amplitude of the drive shaft
  • S x Characterization of phase correlation of the drive shaft C y associated with Coriolis force detection axis
  • S y characterization quadrature couplers four four coefficients as closed loop control system inputs, respectively, to achieve:
  • Amplitude closed-loop control Automatic gain control loop (AGC) is usually used to make the resonator oscillate at the same amplitude on the drive shaft and maintain the oscillation amplitude to the preset value, namely:
  • Phase closed loop control usually phase locked loop circuit (PLL) is used to make the phase difference through PID control Tends to zero, similar to amplitude control, set Realize that the resonator works at the natural operating frequency ⁇ x ;
  • PLL phase locked loop circuit
  • loop control similar to Coriolis force, characterized by coupling the quadrature error amount S y as an input signal, PID control, closed-loop control, coupled achieve orthogonality error amount
  • GMD gyroscope technology
  • the compensation method is offline Calibrate and test, establish the error model that affects the gyroscope's zero offset, calculate the correlation coefficient of the compensation model through related algorithms, and embed the coefficient into the navigation computer to realize real-time zero offset compensation under working conditions; and after compensation
  • the output of shows a normal distribution.
  • External reference input signals such as zero-speed information under static conditions, can achieve the best estimation and elimination of the gyroscope's zero-bias error through optimal control such as Kalman.
  • the above-mentioned data acquisition and data communication module (ADC+FPGA) not only collects the output of the gyroscope and accelerometer, but also collects the output of the temperature sensor and the key parameters inside the gyroscope: as an embodiment,
  • the demodulator outputs of the above four closed-loop control systems are collected, including: phase-locked control voltage P, quadrature coupled demodulation value Q, drive shaft control voltage A, temperature sensor output T, or a combination of the above parameters.
  • B 0 is the temperature-related comprehensive zero-bias error fitting modeling calculation value
  • B r refers to the original output of the gyroscope
  • It refers to the estimated value after removing the modeling error
  • the phase-locked control voltage P of the resonator the demodulation value Q of orthogonal coupling
  • T refers to the temperature of the resonator
  • A refers to the vibration amplitude of the resonator
  • the temperature of the incubator was cycled from -40°C to 85°C.
  • the temperature sensor built in the gyroscope was used to collect the actual temperature inside the sensitive unit, and the original output of the gyroscope and the output curve of the built-in temperature sensor were tested.
  • Figure 4(a) one of the temperature cycle data shows that the zero bias output of the gyroscope is obviously related to the temperature, but it can also be seen that there is a significant hysteresis in the heating and cooling process characteristic.
  • the sampling result is modeled by a single temperature field, and the compensated zero bias estimate is obtained.
  • the output of the gyroscope is no longer affected by the linearity of temperature, which improves the temperature characteristics.
  • the standard deviation is often used in engineering to evaluate the quality of the bias stability.
  • Figure 5(a) is the original gyroscope output
  • Figure 5(b) is the output distribution diagram after single temperature compensation. After single compensation , The output of the gyroscope still has the influence of non-Gaussian characteristics, that is, the physical factors that affect the zero-bias error have not been "mined”.
  • the distribution diagram after comprehensive compensation is drawn as shown in Figure 5(c), which shows ideal Gaussian distribution characteristics. Prove the effectiveness of compensation.
  • the zero-bias instability value is 0.28deg/h at 0.15s, and a rate ramp with a slope of +1 is generated at the time constant of 0.4s.
  • the zero-bias is not stable. The stability is improved to 0.2deg/h, and the "bottoming" holding time is extended, and part of the rate ramp trend is compensated.
  • the rate ramp drift is almost eliminated, ensuring the entire sampling time Allan variance value is less than 1.4deg/h.
  • ⁇ 0 is the azimuth accuracy of the initial alignment
  • ⁇ (t) refers to the drift error of the gyroscope.
  • the error model of the inertial instrument is given. Under the static base, ignoring the scale factor error and installation error, the output model of the gyro in the carrier coordinate system can be expressed as:
  • ⁇ b is the real angular rate input value of the gyroscope
  • ⁇ 0 is the constant drift of the gyroscope
  • ⁇ r is the slow-varying drift
  • ⁇ w is the fast-varying drift
  • ⁇ 0 is mainly the repeatability error of successive start-ups, which can be expressed by random constants.
  • the error model is:
  • the slow-varying drift ⁇ r represents the trend term of the gyroscope and represents the rate ramp term in the Allan variance. It can usually be described by a first-order Markov process, namely:
  • ⁇ g is the correlation time of the Markov process
  • w r is white noise
  • the Allan variance of the high-temperature hemispheric gyroscope prototype is available. Through comprehensive error compensation, the gyroscope and time-related trend term errors are suppressed, and the Allan variance of the gyroscope can be maintained for a long time after the "bottoming" time. Therefore, In fact, the Markov correlation time is relatively long and can be ignored during the alignment time.
  • the output model of the gyroscope can be simplified as:
  • the zero bias error of the gyroscope is:
  • the angle random walk coefficient ARW is usually used to represent the term ⁇ w related to white noise.
  • the accelerometer output model can be simplified to:
  • the average value of the accelerometer sampling output, f b is the true acceleration value of the accelerometer, Is the constant drift of the accelerometer, It is the random error of white noise.
  • the power spectral density (PSD) value within a certain bandwidth of the accelerometer is usually used to express the terms related to white noise
  • Gyro guidance is based on the Gyrocompass principle, which mainly uses inertial devices (accelerometers and gyroscopes) to measure the earth's rotation angular rate vector and gravitational acceleration vector, so as to calculate the angle between the carrier and the geographic north direction.
  • inertial devices accelerelerometers and gyroscopes
  • ⁇ ie is the rotation rate of the earth, which is a fixed value of 15.041067°/h (approximately 0.0042°/s).
  • the longitude and latitude of the measured carrier are ⁇ and L respectively, using the "Northeast Sky" geographic coordinate system.
  • the horizontal component of the earth's rotation angular rate is ⁇ N , and its magnitude depends on the latitude L of the measurement location:
  • the horizontal component of the earth's rotation is about 11.52°/h. The higher the latitude, the smaller the horizontal component, and the horizontal component tends to zero near the pole.
  • the output value of the gyroscope is obtained:
  • ⁇ ob is the output value of the gyroscope, that is, the observation value, and B is the zero bias of the gyroscope.
  • the azimuth angle ⁇ of the carrier can be calculated.
  • the measurement data of the gyroscope includes the bias B of the gyroscope itself, and its value will directly affect the calculation of the azimuth angle. As a result, it is usually eliminated through multi-point indexing or continuous rotation modulation.
  • Figure 7 shows the working principle of a single-axis gyroscope changing its sensitive direction through the rotation of the indexing mechanism. In order to facilitate the mechanical design of the indexing mechanism, a simple 0 is used. °, 180° two position indexing methods, the output of the gyroscope are:
  • SF 1 , SF 2 , U 1 , U 2 , B 1 , B 2 refer to the scale factor and output (analog or Digital value) and zero offset.
  • ⁇ B is the residual drift error after indexing compensation.
  • Equation (17) gives the basic formula for the estimation accuracy error of the gyroscope north-seeking. It can be seen that the north-seeking accuracy of the two-position indexing is related to the residual drift error of the gyroscope and the local latitude.
  • the gyroscope and accelerometer in the GMD system measure the projection of the gravity vector and the angular velocity of the earth’s rotation under the carrier system, respectively. The influence of mud sloshing interference is ignored.
  • the measured value of component acceleration is:
  • the rough alignment time is generally very short.
  • the measured value of the inertial meter is generally a smooth average value over a period of time.
  • the longer the smoothing time the better the accuracy can be obtained.
  • the length of the smoothing time can be judged and analyzed on the Allan variance test data. The optimal time for smoothing is selected based on the time when the Allan variance "bottoms out”.
  • Equations (22), (23), (25) constitute the basic algorithm of Euler angle coarse alignment. The following analyzes the ultimate accuracy of Euler's analytical method for alignment on static base.
  • Equations (27), (28) and (29) determine the ultimate accuracy of the static base alignment.
  • the attitude alignment accuracy under static base conditions mainly depends on the drift error of the east and north accelerometers, while the azimuth alignment accuracy mainly depends on the drift error of the east gyro and the east accelerometer.
  • the IMU is rotated in one direction to construct the attitude transfer matrix at two positions, increasing the constant value zero Partial observability.
  • the design of the indexing mechanism can only be around the axis of the probe, that is, around the direction of the input axis of the Z-axis gyroscope.
  • the positions before and after the gyroscope indexing are b 1 and b 2 , and the sample output average values of the corresponding gyroscope during the alignment time are respectively Record the average value of the sampled output before and after the accelerometer indexing is as follows: with Assuming the angle ⁇ between the positions of b 1 and b 2 , the resulting state transition matrix is
  • Equation (31) can get the horizontal gyro output at position b 2 as:
  • the output of the horizontal accelerometer at position b 2 can also be obtained as:
  • Equations (32) and (33) can be concluded that theoretically any small rotation angle ⁇ can separate the constant drift of the horizontal inertial instrument.
  • the rotation angle ⁇ is 180°, The largest, the separation of the constant drift error is the least affected by the random drift, and the random drift of the indexing process is not considered.
  • the estimated value of the constant drift of the horizontal gyro is:
  • the estimated zero offset of the horizontal accelerometer is:
  • the estimated value of the accelerometer after dual-position calibration is:
  • the estimated value of the gyroscope after two-position calibration is:
  • the accelerometer and gyroscope on the Z-axis are not observable, and the average value before and after the index is directly taken as the estimated value after calibration:
  • the calibrated inclination angle can be obtained as:
  • the tool face angle after calibration is:
  • the azimuth angle after calibration is:
  • Equations (36) ⁇ (38) constitute the basic algorithm for resolving dual position alignment with 180° rotation around the Z axis.
  • the analytical dual position solves the problem of inertial instrument constant drift error calibration, improves the alignment accuracy, especially the azimuth alignment accuracy.
  • the main alignment error comes from the error of the indexing mechanism and the randomness of the inertial instrument
  • the drift error due to the 0-180° indexing design, only pays attention to the final indexing positioning accuracy, which facilitates the design of the indexing mechanism.
  • the indexing accuracy can be improved through the mechanical stop structure design, which simplifies Design;
  • the quartz flexible accelerometer in the frequency band of 100Hz, the random error mean square value is 20 ⁇ g.
  • the latitude 40°N can be set to obtain the azimuth caused by the random error.
  • the error is about 0.1deg.
  • a four-position indexing suppression method can be used:
  • the single gyroscope north-seeking mode is adopted, that is, the X-direction gyroscope is used for the sensitive ground speed horizontal component, and the X accelerometer measures the inclination angle.
  • Z The axis gyroscope controls the indexing mechanism and performs four-position indexing control.
  • the output of the X-axis accelerometer and gyroscope are collected at the four positions of 0°, 90°, 180°, and 270°, and the indexing time is set to be very short ,
  • the constant zero bias of the X gyroscope remains unchanged, and the output of the gyroscope at the four positions is:
  • refers to the angle between the fixed position of the probe tube and the geographic north direction, which is also a physical quantity that needs to be solved.
  • ⁇ N refers to the horizontal component of the earth's rotation angle rate, and b 0 is a constant value of zero
  • ⁇ 1-4 refers to the random drift of the four positions of the gyroscope.
  • the inclination angle value can be calculated, which can be used as the compensation for the north angle in the inclination angle direction.
  • ⁇ and ⁇ refer to the horizontal attitude angle
  • K SF refers to the scale factor of the gyroscope.
  • the navigation coordinate system is taken as the northeast sky geographic coordinate system, and a 12-dimensional inertial navigation system precision alignment mathematical model is established.
  • the state variables of the Kalman filter are:
  • the output of the inertial meter can be characterized as a zero mean normal distribution. In practical applications, usually Use Allan variance to solve each model coefficient as the prior value of inertial instrument model estimation.
  • the carrier is stationary when the static base of the GMD system is aligned, and the output velocity v n of the navigation solution is the velocity error ⁇ v n .
  • the measurement equation is:
  • V v is the speed measurement noise in the navigation coordinate system.
  • the standard Kalman optimal estimation is adopted to realize the optimal estimation of strapdown inertial navigation platform misalignment angle (that can be converted into azimuth angle, tool face angle, and well inclination angle), and the zero offset drift of inertial instrument can be estimated.
  • the method is described as follows: the method of refined continuous azimuth measurement is divided into MCM for measurement while drilling, and AHRS for trajectory measurement of cable wells.
  • the b system is fixedly connected to the IMU (Inertial Measurement Unit) and rotates with the carrier.
  • the origin is located at the sensitive center of the IMU position, which is represented by ox b y b z b, and is represented by an attitude matrix Represents the angular position relationship between the b system and the n system.
  • the attitude transition matrix between the navigation coordinate system and the carrier coordinate system is:
  • ⁇ , ⁇ , and ⁇ are the azimuth angle, the inclination angle, and the tool face angle, respectively, corresponding to the heading angle, pitch angle and roll angle in the field of inertial navigation.
  • azimuth as the angle between the true north direction and the horizontal projection direction of the borehole, that is, take the true north direction as the starting edge and rotate clockwise to the angle rotated by the horizontal projection direction of the borehole.
  • the oblique angle is the angle between the axis of the wellbore and the gravity vector.
  • the tool face angle is the angle that the oblique mouth of the tool is rotated clockwise with respect to the high side of the wellbore in the direction of the borehole.
  • the angle and the tool face angle are collectively called the attitude angle.
  • continuous point measurement can be used to calculate and fit the well trajectory through MCM.
  • the algorithm is as follows:
  • the three-dimensional borehole trajectory information is obtained through the minimum curvature method (MCM: Minimum Curvature Method), which is based on similar
  • MCM Minimum Curvature Method
  • point A and point B respectively correspond to the two static measurement points of the well trajectory.
  • the inclination angle and azimuth angle information corresponding to the GMD measurement are ⁇ 1 , ⁇ 1 and ⁇ 2 , ⁇ 2 , and the arc length of the well trajectory ⁇ L can be measured, so that the curvature ⁇ and curvature coefficient RF of this section of well trajectory can be obtained, and further the well depth increment ⁇ TVD, horizontal displacement increment ⁇ E and ⁇ N between the position of point B and point A can be obtained, and point B can be determined from this Position, the relevant calculation formula is shown in formula (47):
  • the MCM method establishes a calculation method from static attitude and azimuth information to continuous measurement position information, and also realizes the unification of GMD from attitude and azimuth measurement in static mode to well trajectory measurement in continuous mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Automation & Control Theory (AREA)
  • Gyroscopes (AREA)

Abstract

一种陀螺随钻测量系统,陀螺随钻测量系统包括:捷联惯性组合、滤波与电平转换模块、数据采集与数据通信模块、驱动机构、驱动控制模块以及导航计算机。一种陀螺随钻测量方法,用于随钻测量系统中,包括以下几种方法的一种或几种组合:全参数变量补偿方法、初始对准算法、连续随钻测量方法。陀螺随钻测量系统和方法能够满足石油钻井测量领域中最为苛刻的使用场景:随钻测量(MWD),并兼容其余场景,如有缆测量、陀螺导向测量等应用领域;并解决陀螺仪在高温、振动环境下的环境适应性问题、零偏重复性、零偏误差等问题,从系统的角度解决惯性仪表在深层导钻应用场景下的技术难题。

Description

一种陀螺随钻测量系统及方法 技术领域
本发明涉及地下方位随钻测量技术领域,具体涉及一种陀螺随钻测量系统及方法。
背景技术
定向井的定向钻进是指沿着预设的井眼轨迹钻达目的层位的钻井方法,按照导向的依据可分为几何导向钻井和地质导向钻井,几何导向钻井通常是指采用随钻测量工具(Measurement While Drilling,简称MWD)测量的井眼的几何参数(井斜角、方位角和工具面角)来控制井眼轨迹的导向钻井方式;地质导向是在拥有几何导向的能力的同时,又能根据随钻测井(Logging While Drilling,简称LWD)得出的地质参数(地层岩性、地层层面、油层特点等),实时控制井眼轨迹,使钻头沿着地层的最优位置钻进。
1978年出现的由磁通门与石英挠性加速度计的构成的MWD方案,由于其极好的测量精度与恶劣环境下的适应性能力,定义了MWD的基本规格,迅速地成为各大石油公司的标准化产品,这两类核心传感器关键技术的突破起到了关键性的作用,磁通门通过敏感地磁实现方位测量,由于其没有活动部件,故而振动与冲击等恶劣环境对之几乎没有影响,再加上对于耐高温的磁通门核心材料的突破,使其成为方位测量的首选传感器。另一个核心传感器是惯性类传感器,石英挠性加速度计是敏感惯性空间加速度的传感器,在MWD中主要是敏感重力加速度,出现之初主要是军事用途,与陀螺仪构成了各种导弹和飞行器的惯导系统,以日本航空电子JAE和美国霍尼韦尔(Honeywell)为代表的厂家对军用惯导石英加速度计进行了改进与优化,使其满足高温和强振动下环境下的精度,此外,此时的数据传输技术也取得了突破,也就是传感器技术和传输技术的进展使得磁测MWD成为定向井测量的主流技术。
然而,从磁测MWD的出现到现在的四十余年中,陀螺惯性技术在石油领域中的研究与应用并没有因此停止,一方面,新型陀螺仪不断出现,陀螺仪的精度和环境适应性也越来越高;另一方面,更为复杂的井轨迹测量,要求测量精度也 越来越高。这期间,陀螺仪的应用主要包含了:寻北陀螺仪(North Seeking Gyro),陀螺导向测量(Gyro Steering),连续陀螺寻北系统(Continuous North Seeking Gyros Systems),投掷式陀螺仪(Drop Gyro)以及近期出现的陀螺仪随钻测量系统(Gyro-MWD),将陀螺技术推向了一个新的高度。
国外以斯伦贝谢、贝克休斯、陀螺数据、科学钻井等公司为代表的公司,在过去的几十年当中,一直致力于陀螺(随钻)测量系统的研制。
其中贝克休斯公司(Baker Hughes)早在1987年报道了环形激光惯性制导测量仪(Ring Laser Inertial Guidance Surveyor,RIGS),它是采用小型三轴激光陀螺组成的有缆陀螺测量仪,选用精度可达到战略级的激光陀螺仪,并兼顾了静态点测和连续测量的能力,但是受限于激光陀螺仪的尺寸与环境适应性,其无法应用于随钻测量领域。
Keeper系列陀螺寻北仪是美国科学钻井公司(Scientific Drilling)代表性产品,可以用来定向及井眼轨迹的测量,在过去的十几年中,市场占有率很高,可以说,是有缆测井行业中非常成功的一代产品。
Keeper分为三种运行模式,分别是:自寻北模式(Gyro Compass)、低井斜角高速模式(Low Angle High Speed)、高井斜角高速模式(High Angle High Speed),定义坐标系为东北地,分别代表XYZ轴系,在X轴,安装了加速度计与陀螺仪,Y轴安装了加速度计,Z轴安装了陀螺仪,此外,报道中称采用了一只陀螺仪,可以判断,Keeper采用的动力调谐陀螺仪,动力调谐陀螺仪(简称动调陀螺,DTG)是一种框架式、高速马达转子式的双轴陀螺仪,分别为X轴与Z轴提供角速率信息,陀螺三种运行模式下分别采用不同的组合方式。
Keeper采用了经典的稳定平台方案,需要复杂框架结构设计配合转角传感器以及电机等执行机构,建立各种井斜角下的惯性空间,完成对应的方位测量,对于小井斜角与大井斜角的连续测量,都是以前一个状态为初始值,一旦发生掉电或者由于环境因素带来大的误差,都需要回到竖直井的寻北初始状态获取初始姿态方位。
动调陀螺仪仍然是基于高速旋转的马达实现陀螺效应,不同于传统浮子式陀螺仪,其采用了挠性支撑悬挂陀螺转子,并将陀螺转子与驱动电机隔开,采用平衡环产生的动力效应力矩补偿挠性支撑的弹性力矩,实现闭环测量,动调陀螺仪设计比较巧妙,当达到调谐状态时,在小角度范围内会呈现出自由陀螺的特性,是一种小型化双轴陀螺仪,也是转子陀螺技术上的重大革新。动调陀螺仪也是比较早的应用于(随钻)测量领域,比如美国Gyrodata公司,通过不断改进动调陀螺仪的设计与工艺,使其在高温和振动环境下的精度与寿命不断提高。
随着计算机技术的发展,捷联惯性技术要求陀螺仪具备小体积、大量程、高可靠性等技术优势,而傅科摆和哥氏效应带来了新的启发,建立陀螺效应的方式由之前的高速旋转的转子技术变革为哥式振动,在小体积、可靠性等技术方向,极大的解放了思想。而对于哥式振动陀螺仪,又分为Type Ⅰ和Type Ⅱ型,Type Ⅰ多采用音叉方案,如Draper实验室早期的MEMS梳齿式陀螺仪,BEI公司的石英音叉式陀螺仪,Type Ⅱ型采用全对称结构,极大地改善了频率与阻尼的各项同性指标,并且正是由于对称结构的设计,使得陀螺仪的方便地实现了自校准与自标定,并能够实现力平衡速率模式与速率积分全角模式的统一,代表性的产品如MEMS环形陀螺仪,JPL的MEMS-Disk型陀螺仪,以及半球陀螺仪HRG。
石油勘探开发对于高端陀螺仪的需求:能够满足高温、强振动且具备小体积和高精度的陀螺仪,一直是石油行业对于惯性技术矢志不渝的追求,尤其是针对定向钻井过程中,磁通门存在干扰的情况下,当前并非不需要陀螺仪,而是尚无适合的陀螺仪产品,能够在由磁测MWD构建的标准:高温、强振动等恶劣环境下长时间正常工作。
作为导向钻井应用的陀螺仪技术,恶劣环境下的可靠性是优选陀螺仪的重要依据,本发明旨在开发一种能够满足石油钻井测量领域中最为苛刻的使用场景:随钻测量(MWD),并兼容其余场景,如有缆测量、陀螺导向测量等等应用领域。并解决陀螺仪在高温、振动环境下的环境适应性问题、零偏重复性问题等,从系统的角度解决惯性仪表在深层导钻应用场景下的技术难题。即:陀螺需要具备: 高精度且在高温、强振动、大冲击等恶劣环境下有很好的环境适应性,且兼顾探管的小尺寸要求。
发明内容
本发明提供一种陀螺随钻测量系统及方法,能够满足石油钻井测量领域中随钻测量并兼容其余场景,旨在解决陀螺仪在高温、振动环境下的环境适应性问题、零偏重复性问题等,从系统及方法的角度解决惯性仪表在深层导钻应用场景下的技术难题。
根据本发明的第一方面,提供了一种陀螺随钻测量系统,所述随钻测量系统包括:捷联惯性组合,包括固联在探管中的陀螺仪与加速度计;滤波与电平转换模块,对捷联惯性组合的输出信号进行滤波、电平转换,并将结果输出给数据采集与数据通信模块;数据采集与数据通信模块,采集所述抗混叠滤波与电平转换模块的输出数据,并根据接收到的来自导航计算机的工作模式指令输出处理后的相关数据给导航计算机;驱动机构,接收来自驱动控制模块的控制指令,驱动所述捷联惯性组合进行转动;驱动控制模块,所述模块用于响应所述数据采集与数据通信模块的控制模式,发出控制指令用于驱动所述驱动机构;导航计算机,根据接收到控制指令,输出工作模式指令给数据采集与数据通信模块,对相关数据进行计算与处理,并输出处理结果。
进一步的,所述陀螺仪为哥氏振动陀螺仪。
进一步的,所述捷联惯性组合的输出信号包含陀螺仪的内部参数信号输出,所述内部参数信号包括但不限于:惯性仪表的温度、电路的温度、陀螺仪的振动幅度、陀螺仪的谐振频率、陀螺仪的正交耦合输出信号。
进一步的,所述哥氏振动陀螺仪为全对称型。
进一步的,所述随钻测量系统还包含测角单元,用于对所述捷联惯性组合的转角进行测量。
进一步的,所述随钻测量系统还包括振动与冲击采集单元,实时采集所述随钻测量系统工作过程中的振动与冲击信号,对所述测量系统的工作状态进行监控。
进一步的,在所述导航计算机中进行的相关数据计算与处理包括全参量补偿模块、初始对准模块以及连续随钻测量模块。
进一步的,所述全参量补偿模块,是指通过采集陀螺仪与加速度计内部多个 观测点,通过误差建模与相关算法,实现补偿温度、振动带来的陀螺仪或者加速度计漂移误差。
进一步的,所述初始对准模块是在测量系统的静基座下,通过陀螺仪与加速度计分别敏感地球自转角速率信息与重力加速度信息,通过粗对准算法,计算出方位角、井斜角、工具面角的初值,然后结合外部辅助信息,采用最优估计算法计算出GMD的方位角、井斜角与工具面角。
进一步的,所述连续随钻测量模块是指在初始对准模块计算得到的初始方位角、井斜角与工具面角的基础上,通过相关算法,实时输出随钻测量系统连续工作时的方位信息、井斜角信息与工具面信息。
根据本发明的第二方面,提供了一种陀螺随钻测量方法,所述方法用于前述的随钻测量系统,所述方法包括以下几种方法的一种或几种组合:1)全参数变量补偿方法;2)初始对准算法;3)连续随钻测量方法。
进一步的,所述全参量变量补偿具体为:建立陀螺仪零偏与温度相关的综合模型如下式所示:
Figure PCTCN2020090519-appb-000001
则得到陀螺仪的零偏估计值为:
Figure PCTCN2020090519-appb-000002
B 0是与温度相关的综合零偏误差的拟合建模计算值,B r是指陀螺仪的原始输出,
Figure PCTCN2020090519-appb-000003
是指剔除建模误差后的估计值,谐振子的锁相控制电压P,正交耦合的解调值Q,T是指谐振子的温度,A i是指谐振子的振动幅度,
Figure PCTCN2020090519-appb-000004
是线性回归拟合系数。
进一步的,所述初始对准算法包括双位置解析对准算法。
进一步的,经过双位置解析对准算法校准后的井斜角为:
Figure PCTCN2020090519-appb-000005
校准后的工具面角为:
Figure PCTCN2020090519-appb-000006
校准后的方位角为:
Figure PCTCN2020090519-appb-000007
其中陀螺仪转位前后位置是b 1和b 2,在对准时间内对应的陀螺仪的采样输出均值分别为
Figure PCTCN2020090519-appb-000008
记加速度计转位前后采样输出均值分别为
Figure PCTCN2020090519-appb-000009
Figure PCTCN2020090519-appb-000010
下标x,y,z分别表示上述采样输出均值分别在x,y,z上的分量;
其中:
双位置校准后加速度计的估计值为:
Figure PCTCN2020090519-appb-000011
双位置校准后陀螺仪的估计值为:
Figure PCTCN2020090519-appb-000012
而Z轴的加速度计与陀螺仪不可观测,直接取转位前后的均值作为校准后的估计值:
Figure PCTCN2020090519-appb-000013
进一步的,在所述初始对准算法还包括卡尔曼滤波算法,进一步优化估算的测量系统的方位角、井斜角与工具面角。
进一步的,所述连续随钻测量方法包括随钻测量下的井轨迹拟合算法,对于随钻状态下的连续测量,可以通过MCM方式进行计算与拟合井轨迹。
本发明的有益效果:
本发明的系统和方法能够满足石油钻井测量领域中最为苛刻的使用场景:随钻测量(MWD),并兼容其余场景,如有缆测量、陀螺导向测量等等应用领域;并解决陀螺仪在高温、振动环境下的环境适应性问题、零偏重复性、零偏误差等 问题,从系统的角度解决惯性仪表在深层导钻应用场景下的技术难题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明中陀螺随钻测量系统的构成框图;
图2为本发明中GMD系统的信号传输框图;
图3为本发明中陀螺仪闭环控制系统级框图;
图4(a)为陀螺仪原始输出与温度的关系,图4(b)为单一温度补偿的陀螺零偏估计,图4(c)为综合温度补偿后的陀螺零偏估计;
图5(a)为原始零偏误差输出分布图,图5(b)为单一补偿后的零偏误差分布图,图5(c)为综合补偿后的零偏误差分布图;
图6为陀螺仪温变环境下的Allan方差比对图;
图7为单轴陀螺仪转位置消除零位原理;
图8为捷联惯导原理简图;
图9为最小曲率方法轨迹测量原理图。
具体实施例
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明公开的一些方面相一致的装置和方法的例子。
参见图1,为本发明的陀螺随钻测量系统(Gyro Measurement while Drilling,简称GMD)的构成,在该系统中包含:捷联惯性组合、振动与冲击采集传感器、测角传感器、驱动机构、抗混叠滤波与电平转换模块、数据采集与数据通信模块、导航计算机以及二次电源。
1、捷联惯性组合,是指高温陀螺仪与高温加速度计通过正交安装,固联在探管中,作为一种实施例,高温陀螺仪采用的是基于哥氏振动陀螺仪原理的全对称型陀螺仪(称之为typeⅡ型),该类型的陀螺仪的特点为:
1)谐振子全对称;
2)采用电容或者压电的检测、驱动方式;
3)谐振子采用熔融石英、硅(MEMS)、弹性合金等材料;
4)驱动和检测电极采用接触式或者非接触式。
高温加速度计是采用高温石英挠性加速度计,或者高温MEMS加速度计。
作为一种实施例,捷联惯性组合中,还可以安装三轴敏感地磁的传感器如磁通门传感器。
2、振动与冲击采集传感器:是实时敏感GMD工作过程中的振动与冲击信号,由此作为GMD工作状态的监控,也是作为采集数据有效性的判读。
作为一种实施例,该传感器可采用MEMS型或者压电型,要求具备很高的频带宽度,以满足对于高频2KHz甚至到5KHz振动信号的采集。
3、测角传感器:是测量捷联惯性组合转角的传感器,为了消除在高温和振动环境下陀螺仪的常值漂移误差,需要对捷联惯性组合进行转动位置,该传感器是测量转动角度的大小,从而作为误差消除与数据融合的依据。
4、驱动机构:接收来自驱动控制模块的控制指令,驱动电机带动捷联惯性组合进行转动。
5、抗混叠滤波与电平转换模块,该模块是对捷联惯性组合的输出信号进行滤波、电平转换,然后输出给数据采集与数据通信模块中,同时,该模块还对振动与冲击采集传感器进行滤波,并输出给数据采集与数据通信模块。
其中一种实施例,对于捷联惯性组合的输出信号进行滤波,是采用的是低通滤波器,起到抗混叠的作用,对于振动与冲击采集传感器的滤波采用的是带通滤波器,设置滤波器的截止频率为10Hz和5KHz,这样可以采集振动干扰的事件,而不采集低频信号。
6、数据采集与数据通信模块,首先,一方面采集来自“抗混叠滤波与电平转换模块”的输出数据,即,捷联惯性组合(包含陀螺仪与加速度计输出、陀螺仪与加速度计内部关键参数输出)、振动与冲击传感器的输出经过滤波与电平转换后的输出。
此外,采集角度传感器输出的编码信号,作为控制指令依据输出给驱动控制模块。并根据接收到的来自“导航计算机”的工作模式指令,据此输出传感器数据给导航计算机。该数据包含了:捷联惯性组合的数据、振动与冲击传感器的数据、测角传感器的数据等。
数据采集与数据通信模块,通常是由模数转换器(ADC)与FPGA组成。
7、导航计算机
根据接收到的标准MWD接口的控制指令,输出工作模式指令给数据采集与数据通信模块,对传感器的数据进行计算与处理,将处理结果输出给MWD标准接口。
8、二次电源,对上述的各个模块进行供电
在本发明中,采用与标准传统的磁MWD兼容的机械与电气接口,并兼容数据通信协议。
参见图2,为GMD系统的信号传输图示。所述信号采集与数据通信包括陀螺信号、加速度计信号、敏感地磁的传感器信号、振动监测信号、温度信号、角度信号等的采集与传输;信号处理单元在导航计算机中进行,包括但不限于全参量补偿模块、初始对准模块以及连续随钻测量模块、滤波(如抗混叠滤波器)模块等。
所述全参量补偿模块,是指通过采集陀螺仪与加速度计内部多个观测点,通过误差建模与相关算法,实现补偿温度、振动等带来的陀螺仪或者加速度计漂移误差。
所述初始对准模块,实现GMD在静基座下,通过陀螺仪与加速度计分别敏感地球自转角速率信息与重力加速度信息,通常通过粗对准算法,计算出方位角、井斜角、工具面角的初值,然后结合外部辅助信息,如零速修正信息等,采用卡尔曼最优估计算法,计算出GMD的方位角、井斜角与工具面角。
所述连续随钻测量模块,是指在初始对准计算得到的初始方位角、井斜角与工具面角的基础上,通过相关算法,实时输出GMD连续工作时的方位信息、井斜角信息与工具面信息。
上述捷联惯性组合、振动与冲击采集传感器,共同组成了传感器组合单元,捷联惯性组合内部包含了三轴加速度计、三轴陀螺仪以及内部的温度传感器,温度传感器内置与陀螺仪、加速度计中,或者放置在捷联惯性组合的内部,紧贴加 速度计与陀螺仪,以最大限度降低温度梯度。
其中,陀螺仪包含了敏感单元与闭环控制电路两大部分。陀螺仪闭环控制系统级框图如图3所示,闭环控制电路的描述如下:
在图3中,C x、C y是固定驱动轴的解调值正交分量,S x、S y是固定测量轴的解调值正交分量,C x表征了驱动轴的幅度,S x表征了驱动轴的相位相关,C y是与检测轴的哥氏力相关,S y表征正交耦合,四个系数作为四路闭环控制系统的输入,分别实现:
1)幅度闭环控制:通常采用自动增益控制回路(AGC),使得谐振子在驱动轴上等幅度振荡,维持振荡幅度到预设值,即:
Figure PCTCN2020090519-appb-000014
2)相位闭环控制:通常采用锁相环电路(PLL)通过PID控制使得相位差
Figure PCTCN2020090519-appb-000015
趋于零,类似于幅度控制,设定
Figure PCTCN2020090519-appb-000016
实现谐振子工作在固有工作频率ω x
3)哥氏力闭环控制:通过PID闭环控制,实现闭环反馈力实时平衡输入哥氏力,实现驻波被固定捆绑在固定电极上,也就是实现进动角θ=θ 0,通常设定θ 0=0,表征实时进动角大小的误差量C y是PID控制信号的输入,通过控制策略实施,从而实现误差量C y=θ 0=0;
4)正交耦合闭环控制:类似于哥氏力闭环控制,表征正交耦合误差量的S y作为PID控制信号的输入,通过闭环控制,实现正交耦合误差量的
Figure PCTCN2020090519-appb-000017
当前,基于陀螺仪技术的随钻测量系统(本发明称之为GMD),面临的挑战:
1)定向井测量,尤其是随钻测量下的惯性仪表(加速度计与陀螺仪,这里尤其是陀螺仪)的零偏误差问题,主要是在高温环境和持续强振动环境下引起了陀螺仪敏感单元与控制电路的误差,包含长时间稳定性误差与重复性误差,本发明通过“全参数变量补偿”技术,可以补偿惯性仪表由于温度和振动等环境下的误差,补偿的方式是通过离线的标定与测试,建立影响陀螺仪零偏的误差模型,通过相关算法,计算得到补偿模型的相关系数,将该系数嵌入到导航计算机中,从而实现工作状态下的零偏实时补偿;并实现补偿后的输出呈现正态分布。
2)利用外部基准去消除重复性误差:比如转位置方式,由于综合补偿后的 陀螺仪输出呈现正态分布,可以通过改变惯性仪表输入极性的方式,从而消除陀螺仪的随机误差,辨识得到陀螺仪的零偏;
3)利用外部基准去消除重复性误差:外部参考输入信号,如静态下的零速信息,通过最优控制如卡尔曼的方式,实现陀螺仪的零偏误差的最优估计与消除。
分别说明如下:
全参数变量补偿
在前述图2中,上述数据采集与数据通信模块(ADC+FPGA)除了采集陀螺仪与加速度计的输出外,还采集了温度传感器输出、陀螺仪内部的关键参变量:作为一种实施例,采集了上述四个闭环控制系统解调器输出,包含:锁相控制电压P、正交耦合的解调值Q、驱动轴的控制电压A、温度传感器输出T,或者上述参数的组合。
影响惯性仪表稳定性的一个重要因素是温度,温度的改变导致了敏感单元材料特性的变化,根据陀螺仪的误差模型,频率裂解、阻尼失调以及控制误差是导致陀螺仪零偏误差的主要因素,而温度又是直接影响这三大类误差稳定性的关键因素,各种误差存在相互耦合关系,建立陀螺仪零偏与温度相关的综合模型如式(1):
Figure PCTCN2020090519-appb-000018
则得到陀螺仪的零偏估计值为:
Figure PCTCN2020090519-appb-000019
式(2)中,B 0是与温度相关的综合零偏误差的拟合建模计算值,B r是指陀螺仪的原始输出,
Figure PCTCN2020090519-appb-000020
是指剔除建模误差后的估计值,谐振子的锁相控制电压P,正交耦合的解调值Q,T是指谐振子的温度,A是指谐振子的振动幅度,
Figure PCTCN2020090519-appb-000021
Figure PCTCN2020090519-appb-000022
是线性回归拟合系数。
在试验过程中,温箱的温度从-40℃到85℃做多个循环,采用陀螺仪内置的温度传感器采集敏感性单元内部的实际温度,测试陀螺仪的原始输出与内置温度传感器的输出曲线,如图4(a)所示,其中的一个温度循环数据,可以得出陀螺仪的零偏输出与温度存在明显的相关性,但同时也可以看出,升温和降温过程,存 在明显的迟滞特性。
如图4(b)所示,采样结果采用单一的温度场建模,得到补偿后的零偏估计值
Figure PCTCN2020090519-appb-000023
如图4(b)所示,可以看出,经过温度补偿后,陀螺仪的输出不再受温度的线性影响,改善了温度特性,但是,单一补偿后,仍然存在较大的残差值,工程上常用标准方差去评价零偏稳定性的优劣,图4(b)的补偿后的零偏稳定性可达到:1σ=6.2deg/h。
为了解决单一温度补偿的精度问题,采用式(2)给出的综合补偿模型,得到估计后的陀螺零偏曲线如图4(c)所示,可以看出,陀螺仪的零偏估计明显收敛,计算得到综合补偿后的零偏稳定性可达到:1σ=1.9deg/h,相对于单一补偿提升了3倍多的测量精度。
通过陀螺仪的输出的分布图,也可以判读补偿的精度与有效性,图5(a)是原始的陀螺仪输出,图5(b)是单一温度补偿后的输出分布图,经单一补偿后,陀螺仪的输出仍然存在非高斯特征影响,即存在影响零偏误差的物理因素没有被“挖掘”,绘制综合补偿后的分布图如图5(c),表现较为理想的高斯分布特征,从而证明了补偿的有效性。
分别绘制补偿之前、单一温度补偿、综合参变量补偿的陀螺仪零偏Allan方差,如图6所示。
从图6可知,在没有任何补偿下,0.15s达到零偏不稳定性值是0.28deg/h,在时间常数0.4s处产生了斜率为+1的速率斜坡,采用单一温度补偿,零偏不稳定性提升到0.2deg/h,并且“触底”保持时间延长了,并补偿了部分的速率斜坡趋势,当采用全参数变量补偿,几乎消除了速率斜坡漂移,保证了在全部采样时间内的Allan方差值小于1.4deg/h。
该方法对于GMD的连续测量模式非常有价值,不考虑苏拉调谐,惯性仪表的方位保持测量精度可表达为:
ψ∝ψ 0+k∫ε(t)dt          ...(3)
式(3)中,ψ 0是初始对准的方位精度,ε(t)是指陀螺仪的漂移误差,完成静基座初始方位对准后,由于连续测量处于温变的环境下,保持陀螺仪较好的零偏稳 定性,是实现GMD连续测量的方位精度的保证。
静态方位测量
首先给出惯性仪表的误差模型:
1)误差模型分析:
首先给出惯性仪表的误差模型,静基座下,忽略标度因子误差与安装误差,陀螺在载体坐标系输出模型可以表示为:
Figure PCTCN2020090519-appb-000024
其中
Figure PCTCN2020090519-appb-000025
陀螺仪采样输出的均值,ω b为陀螺仪的真实角速率输入值,ε 0为陀螺仪的常值漂移,ε r为慢变漂移,ε w为快变漂移。
根据Allan方差概念,ε 0主要是逐次启动的重复性误差,可以用随机常数表示,其误差模型为:
Figure PCTCN2020090519-appb-000026
慢变漂移ε r代表陀螺仪的趋势项,表征Allan方差中的速率斜坡项,通常可以用一阶马尔科夫过程描述,即:
Figure PCTCN2020090519-appb-000027
式(6)中,τ g为马尔科夫过程的相关时间,w r是白噪声。
在高温半球陀螺仪样机的Allan方差可得,通过综合误差补偿,抑制了陀螺仪和时间相关的趋势项误差,实现了陀螺仪Allan方差“触底”时间后可以保持较长的时间,因此,实际上马尔科夫相关时间较长,在对准时间内可以忽略不计,陀螺仪的输出模型可简化为:
Figure PCTCN2020090519-appb-000028
其中,陀螺仪的零偏误差为:
ε=ε 0w           ...(8)
通常用角度随机游走系数ARW表示和白噪声相关的项ε w
同样,加速度计输出模型可以简化为:
Figure PCTCN2020090519-appb-000029
其中,
Figure PCTCN2020090519-appb-000030
加速度计采样输出的均值,f b为加速度计的真实加速度值,
Figure PCTCN2020090519-appb-000031
为 加速度计的常值漂移,
Figure PCTCN2020090519-appb-000032
为白噪声随机误差。
Figure PCTCN2020090519-appb-000033
主要是加速度计逐次启动的重复性误差,同样可以用随机常数表示,其误差模型为:
Figure PCTCN2020090519-appb-000034
定义加速度计的零偏误差为:
Figure PCTCN2020090519-appb-000035
通常用加速度计的一定带宽内的功率谱密度(PSD)值表示和白噪声相关的项
Figure PCTCN2020090519-appb-000036
陀螺导向是基于陀螺罗盘原理(Gyrocompass)原理,主要是使用惯性器件(加速度计与陀螺仪)去测量地球自转角速率矢量与重力加速度矢量,从而计算出载体与地理北向的夹角。
ω ie为地球的自转角速率,为固定值15.041067°/h(约0.0042°/s),被测载体所处位置的经度与纬度分别为λ和L,采用“东北天”地理坐标系。
地球自转角速率的水平分量为ω N,其大小取决于测量地点的纬度L:
ω N=ω iecos L
如在北京纬度是40°,地球自转的水平分量约为11.52°/h,纬度越高水平分量越小,接近极点位置水平分量趋于零。
假设陀螺仪的敏感轴与载体运动方向同相,定义方位角ψ为陀螺仪敏感轴与北向夹角,则得到陀螺仪的输出值为:
ω ob=ω Ncosψ+B=ω iecosLcosψ+B       …(12)
式(12)中,ω ob为陀螺仪的输出值,即观测值,B为陀螺仪的零偏。
求解式(12),就可以计算得到载体的方位角ψ,此外,式(12)中可知,陀螺仪的测量数据包含了陀螺仪本身的零偏B,其值的大小会直接影响方位角计算结果,通常通过多点转位或者连续旋转调制等方式消除,图7给出了单轴陀螺仪通过转位机构旋转改变其敏感方向工作原理示意,为了方便转位机构机械设计,采用简单的0°、180°两位置转位方法,陀螺仪的输出分别为:
ω ob(0)=U 1/SF 1=ω iecosLcosψ+B 1        …(13)
ω ob(180)=U 2/SF 2=-ω iecosLcosψ+B 2       …(14)
式(13)、(14)中,SF 1、SF 2,U 1、U 2,B 1、B 2分别是指在0°和180°位置下陀螺仪的标度因子、输出(模拟量或者数字量)和零偏。
设定GMD寻北的精度为1°,忽略陀螺仪的标度因子误差,由(13)、(14)可得到单轴陀螺仪的方位测量估计为:
Figure PCTCN2020090519-appb-000037
式(15)中,ε B是转位补偿后的残余漂移误差,对上式取泰勒展开并忽略高阶项,得到两位置下的估计误差(精度)为:
Figure PCTCN2020090519-appb-000038
从式(16)可知,采用单陀螺两位置转位时,转位的两个位置选择在东西向附近(ψ 1=90°、270°)估计误差最小,此时的估计误差为:
Figure PCTCN2020090519-appb-000039
式(17)给出了陀螺仪寻北估计精度误差的基本公式,可以看出,两位置转位的寻北精度与陀螺仪的残余漂移误差、当地的纬度相关。
2)粗对准与精对准:
由于钻井施工地点地理位置已知,此时就能准确获取地球自转角速度矢量在地理坐标系的分量和重力矢量,如下式:
Figure PCTCN2020090519-appb-000040
其中,g、ω ie、L分别表示当地重力加速度大小、地球自转角速率大小和当地纬度,记地球自转角速度的北向分量ω N=ω iecos L和天向分量ω U=ω iesin L。
在静基座粗对准过程中,GMD系统中陀螺和加速度计测量到的分别是重力矢量和地球自转角速度在载体系下的投影,忽略泥浆晃动干扰的影响,载体上三分量陀螺仪与三分量加速度的量测值为:
Figure PCTCN2020090519-appb-000041
Figure PCTCN2020090519-appb-000042
其中,
Figure PCTCN2020090519-appb-000043
粗对准时间一般都很短,惯性仪表的量测值一般取一段时间内的平滑均值,在惯性仪表无明显的趋势项漂移误差时,平滑时间越长,越能获得比较好的精度,在综合考虑粗对准时间与对准精度的情况下,平滑的时间长短可以通过对Allan方差测试数据进行判断分析,平滑的最优时间选取依据是Allan方差“触底”的时间。
由式(20),可求得俯仰角:
Figure PCTCN2020090519-appb-000044
求得横滚角:
Figure PCTCN2020090519-appb-000045
在获得
Figure PCTCN2020090519-appb-000046
Figure PCTCN2020090519-appb-000047
的基础上,代入式(19)可得:
Figure PCTCN2020090519-appb-000048
求解航向角为:
Figure PCTCN2020090519-appb-000049
式(22)、(23)、(25)即构成了欧拉角粗对准的基本算法,下面分析欧拉解析方法静基座对准的极限精度。
考虑加速度计和陀螺仪的零偏误差:
Figure PCTCN2020090519-appb-000050
式(26)中,
Figure PCTCN2020090519-appb-000051
分别表载体系与导航系下的加速度计的零偏误差,ε b、ε n分别表载体系与导航系下的陀螺仪的零偏误差。
求解一个方向微分时并令另外两个方向角度为零,分别对(22)、(23)、(25)两边进行微分并忽略二阶小量得:
Figure PCTCN2020090519-appb-000052
Figure PCTCN2020090519-appb-000053
Figure PCTCN2020090519-appb-000054
式(27)、(28)和(29)确定了静基座对准的极限精度。静基座条件下的姿态对准精度主要取决于东向与北向的加速度计漂移误差,而方位对准精度主要取决于东向陀螺的漂移误差以及东向加速度计的漂移误差。
其中双位置解析式对准:
假定惯性仪表的常值零偏在转位前后数值不变,并忽略转动前后位置的角运动和线运动干扰,通过绕一个方向转动IMU,从而构造两个位置下的姿态转移矩阵,增加常值零偏的可观测性。实际应用中,受限于惯性仪表的尺寸与GMD探管的细长杆尺寸特性,转位机构的设计只能是绕探管的轴向,也就是绕Z轴陀螺仪的输入轴方向。
陀螺仪转位前后位置是b 1和b 2,在对准时间内对应的陀螺仪的采样输出均值分别为
Figure PCTCN2020090519-appb-000055
记加速度计转位前后采样输出均值分别为
Figure PCTCN2020090519-appb-000056
Figure PCTCN2020090519-appb-000057
假设b 1与b 2位置夹角β,由此构成的状态转移矩阵为
Figure PCTCN2020090519-appb-000058
Figure PCTCN2020090519-appb-000059
则b 1位置和b 2位置惯性仪表输出之间存在关系式:
Figure PCTCN2020090519-appb-000060
考虑到转位过程时间很短,忽略随机常值中的一阶马尔科夫过程,并认为转位前后惯性仪表的常值漂移不变,只考虑随机漂移的影响,此外,由于陀螺仪绕Z轴旋转,Z轴陀螺仪与加速度计转位前后敏感方向不变,无法实现Z轴常值漂移的分离,当只考虑水平轴惯性仪表的输出时,
Figure PCTCN2020090519-appb-000061
式(31)可得b 2位置的水平陀螺输出为:
Figure PCTCN2020090519-appb-000062
同样可得b 2位置的水平加速度计的输出为:
Figure PCTCN2020090519-appb-000063
式(32)、(33)可以得出,理论上任何微小转角β都可以分离出水平惯性仪表的常值漂移,当转角β为180°时,
Figure PCTCN2020090519-appb-000064
最大,常值漂移误差的分离受随机漂移的影响最小,不考虑转位过程的随机漂移影响,此时求得水平陀螺常值漂移估计值为:
Figure PCTCN2020090519-appb-000065
水平加速度计零偏估计值为:
Figure PCTCN2020090519-appb-000066
求得双位置校准后加速度计的估计值为:
Figure PCTCN2020090519-appb-000067
双位置校准后陀螺仪的估计值为:
Figure PCTCN2020090519-appb-000068
而Z轴的加速度计与陀螺仪不可观测,直接取转位前后的均值作为校准后的估计值:
Figure PCTCN2020090519-appb-000069
根据校正后的陀螺仪与加速度计的估计值,采用类似于单位置欧拉角解析粗对准原理,可求得校准后的井斜角为:
Figure PCTCN2020090519-appb-000070
校准后的工具面角为:
Figure PCTCN2020090519-appb-000071
校准后的方位角为:
Figure PCTCN2020090519-appb-000072
式(36)~(38)构成了绕Z轴转位180°解析双位置对准的基本算法。
解析双位置解决了惯性仪表常值漂移误差校准的问题,提高了对准精度尤其是方位对准精度,对于小井斜角测量,对准的主要误差来源于转位机构的误差与惯性仪表的随机漂移误差,由于采用0-180°转位设计,只关注最终的转位定位精度,方便了转位机构的设计,在实际应用中,可以通过机械止档结构设计提高转位定位精度,简化了设计;对于随机漂移误差,假设每个位置的对准时间都是t,经测试得到的陀螺仪的随机游走系数为
Figure PCTCN2020090519-appb-000073
则得到t时间内的统计均方差为
Figure PCTCN2020090519-appb-000074
设置总对准时间为300s,假设每个位置的对准时间为145s,由此带来的陀螺仪随机误差约为ε w=0.017deg/h,对于噪声为
Figure PCTCN2020090519-appb-000075
的石英挠性加 速度计,在100Hz的频带下,随机误差均方值为20μg,根据欧拉解析法方位对准精度极限的分析公式,设置纬度40°N,可以求得随机误差带来的方位误差约是0.1deg。
在另一实施例中,可采用四位置转位抑制方法:
在自寻北模式(Gyro Compass)下,采用单陀螺仪寻北模式,即采用X向陀螺仪敏感地速水平分量,X加速度计测量井斜角,为了消除陀螺仪的零位误差,采用Z轴陀螺仪控制转位机构,执行四位置转位控制,分别在0°、90°、180°、270°四个位置采集X轴的加速度计与陀螺仪输出,并设定转位时间很短,X陀螺仪的常值零偏保持不变,四个位置下陀螺仪的输出分别为:
Figure PCTCN2020090519-appb-000076
Figure PCTCN2020090519-appb-000077
Figure PCTCN2020090519-appb-000078
Figure PCTCN2020090519-appb-000079
式(39)中,
Figure PCTCN2020090519-appb-000080
是指陀螺仪在四个位置的测量值,ψ是指探管固定位置与地理北向的夹角,也是实际需要求解的物理量,ω N是指地球自转角速率水平分量,b 0是常值零偏,ε 1-4是指陀螺仪的四个位置的随机漂移。综合利用四个位置的测量结果,并假设随机漂移为小量,得到北向角为:
Figure PCTCN2020090519-appb-000081
同样通过四个位置下加速度计的输出,可以计算出井斜角值,从而作为北向角在井斜角方向的补偿。综合考虑探管的井斜角,得到:
Figure PCTCN2020090519-appb-000082
上式中,θ、γ是指水平姿态角,K SF是指陀螺仪的标度因子。
卡尔曼滤波:
导航坐标系取为东北天地理坐标系,建立12维惯导系统精对准数学模型,卡尔曼滤波器的状态变量为:
Figure PCTCN2020090519-appb-000083
式(42)中分别为:速度误差δv n、捷联惯导数学平台失准角φ n、高温陀螺常值漂移
Figure PCTCN2020090519-appb-000084
和高温加速度计常值零偏
Figure PCTCN2020090519-appb-000085
Figure PCTCN2020090519-appb-000086
主要是由高温惯性仪表的逐次启动重复性误差带来的,根据静基座下捷联惯导系统的误差模型并忽略小量误差,可得状态方程为:
Figure PCTCN2020090519-appb-000087
上式中,
Figure PCTCN2020090519-appb-000088
式(44)中
Figure PCTCN2020090519-appb-000089
分别为加速度计和陀螺的在载体坐标系(b系)随机白噪声,在经过综合温度补偿并消除Warm-up因素后,惯性仪表的输出可以表征为零均值正态分布,实际应用中,通常用Allan方差求解各模型系数,作为惯性仪表模型估计的先验值。
GMD系统静基座对准时载体静止,导航解算的输出速度v n即为速度误差δv n,将δv n作为量测值,则量测方程为:
Z v=δv n=[0 3×3 I 3×3 0 3×3 0 3×3]X+V v        ...(45)
其中,V v为导航坐标系中的速度量测噪声。
采用标准的卡尔曼最优估计,实现捷联惯导的平台失准角(即可转化为方位角、工具面角、井斜角)的最优估计,并可估计惯性仪表的零偏漂移。
连续随钻测量方法
所述方法描述如下:细化连续方位测量的方法,分为MCM的用于随钻测量,AHRS用于有缆井轨迹测量。
1)AHRS应用于有缆测井模式,捷联惯性测量系统基本原理如图8所示。
在静态方位测量的基础上,得到了初始方位、井斜角、工具面角,由此得到姿态矩阵初值:
b系与IMU(惯性测量单元)固联,随载体转动,原点位于IMU位置的敏感 中心,用ox by bz b表示,用姿态矩阵
Figure PCTCN2020090519-appb-000090
表示b系与n系之间的角位置关系,导航坐标系与载体坐标系的姿态转移矩阵为:
Figure PCTCN2020090519-appb-000091
式(46)中,Ψ、θ、φ分别是方位角、井斜角、工具面角,分别对应惯性导航领域的航向角、俯仰角和横滚角。对于定向钻进测量应用,定义方位角为正北方向和井眼水平投影方向的夹角,即以正北方向为始边,顺时方向旋转到井眼水平投影方向所转过的角度,井斜角为井眼轴线与重力矢量之间的夹角,工具面角为俯视井眼方向仪器斜口朝向相对于井眼高边顺时针方向旋转的角度,表示仪器自身的旋转,通常将井斜角与工具面角统称为姿态角。
2)MCM随钻测量下的井轨迹拟合算法:
对于随钻状态下的连续测量,可以通过连续点测的方式,通过MCM方式进行计算与拟合井轨迹。算法如下:
而对于GMD位置更新算法,通常是在获取姿态信息后(方位角、井斜角、工具面角),通过最小曲率法(MCM:Minimum Curvature Method)获取三维井眼轨迹信息,该方法是基于相近的测量点之间的轨迹是一条平滑的弧线的假设,通过获取相近两个静态位置下的井斜角与方位信息,拟合两点之间的轨迹曲线,其原理如图9所示。
图9中,A点与B点分别对应井轨迹的两个静态测量点,通过GMD测量对应的井斜角与方位角信息分别是θ 1、ψ 1与θ 2、ψ 2,井轨迹弧长ΔL可测量,从而可以求得这段井轨迹的曲率β与曲率系数RF,进一步可获取B点位置相对A点的井深度增量ΔTVD、水平位移增量ΔE与ΔN,由此可以确定B点位置,相关计算公式如式(47)所示:
β=arccos(cos(θ 21)-sinθ 1sinθ 2(1-cos(ψ 21)))
RF=2tan(β/2)/β
Figure PCTCN2020090519-appb-000092
Figure PCTCN2020090519-appb-000093
Figure PCTCN2020090519-appb-000094
MCM方法建立了静态姿态方位信息到连续测量位置信息的计算方法,也是实现GMD从静态模式下的姿态方位测量到连续模式下的井轨迹测量的统一。
以上对本申请实施例进行了详细介绍。如在说明书及权利要求书当中使用了某些词汇来指称特定组件。本领域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一个组件。本说明书及权利要求书并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求书当中所提及的“包含”、“包括”为一开放式用语,故应解释成“包含/包括但不限定于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。说明书后续描述为实施本申请的较佳实施方式,然所述描述乃以说明本申请的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求书所界定者为准。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上述说明示出并描述了本申请的若干优选实施例,但如前所述,应当理解本申请并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述申请构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本申请的精神和范围,则都应在本申请所附权利要求书的保护范围内。

Claims (16)

  1. 一种陀螺随钻测量系统,其特征在于,所述随钻测量系统包括:
    捷联惯性组合,包括固联在探管中的陀螺仪与加速度计;
    滤波与电平转换模块,对捷联惯性组合的输出信号进行滤波、电平转换,并将结果输出给数据采集与数据通信模块;
    数据采集与数据通信模块,采集所述滤波与电平转换模块的输出数据,并根据接收到的来自导航计算机的工作模式指令输出处理后的相关数据给导航计算机;
    驱动机构,接收来自驱动控制模块的控制指令,驱动所述捷联惯性组合进行转动;
    驱动控制模块,所述模块用于响应所述数据采集与数据通信模块的控制模式,发出控制指令用于驱动所述驱动机构;
    导航计算机,根据接收到控制指令,输出工作模式指令给数据采集与数据通信模块,对相关数据进行计算与处理,并输出处理结果。
  2. 根据权利要求1所述的陀螺随钻测量系统,其特征在于,所述陀螺仪为哥氏振动陀螺仪。
  3. 根据权利要求1所述的陀螺随钻测量系统,其特征在于,所述捷联惯性组合的输出信号包含陀螺仪的内部参数信号输出,所述内部参数信号包括但不限于:惯性仪表的温度、电路的温度、陀螺仪的振动幅度、陀螺仪的谐振频率、陀螺仪的正交耦合输出信号。
  4. 根据权利要求2所述的陀螺随钻测量系统,其特征在于,所述哥氏振动陀螺仪为全对称型。
  5. 根据权利要求1所述的陀螺随钻测量系统,其特征在于,所述随钻测量系统还包含测角单元,用于对所述捷联惯性组合的转角进行测量。
  6. 根据权利要求1所述的陀螺随钻测量系统,其特征在于,所述随钻测量系统还包括振动与冲击采集单元,实时采集所述随钻测量系统工作过程中的振动与冲击信号,对所述测量系统的工作状态进行监控。
  7. 根据权利要求1所述的陀螺随钻测量系统,其特征在于,在所述导航计算机中进行的相关数据计算与处理包括全参量补偿模块、初始对准模块以及连续随钻测量模块。
  8. 根据权利要求7所述的陀螺随钻测量系统,其特征在于,所述全参量补偿模块,是指通过采集陀螺仪与加速度计内部多个观测点,通过误差建模与相关算法,实现补偿温度、振动带来的陀螺仪或者加速度计漂移误差。
  9. 根据权利要求7所述的陀螺随钻测量系统,其特征在于,所述初始对准模块是在测量系统的静基座下,通过陀螺仪与加速度计分别敏感地球自转角速率信息与重力加速度信息,通过粗对准算法,计算出方位角、井斜角、工具面角的初值,然后结合外部辅助信息,采用最优估计算法计算出GMD的方位角、井斜角与工具面角。
  10. 根据权利要求7所述的陀螺随钻测量系统,其特征在于,所述连续随钻测量模块是指在初始对准模块计算得到的初始方位角、井斜角与工具面角的基础上,通过相关算法,实时输出随钻测量系统连续工作时的方位信息、井斜角信息与工具面信息。
  11. 一种陀螺随钻测量方法,所述方法用于权利要求1-10任一项所述的随钻测量系统,其特征在于,所述方法包括以下几种方法的一种或几种组合:
    1)全参数变量补偿方法;
    2)初始对准算法;
    3)连续随钻测量方法。
  12. 根据权利要求11所述的测量方法,其特征在于,所述全参量变量补偿具体为:建立陀螺仪零偏与温度相关的综合模型如下式所示:
    Figure PCTCN2020090519-appb-100001
    则得到陀螺仪的零偏估计值为:
    Figure PCTCN2020090519-appb-100002
    B 0是与温度相关的综合零偏误差的拟合建模计算值,B r是指陀螺仪的原始输出,
    Figure PCTCN2020090519-appb-100003
    是指剔除建模误差后的估计值,谐振子的锁相控制电压P,正交耦合的解调值Q,T是指谐振子的温度,A i是指谐振子的振动幅度,
    Figure PCTCN2020090519-appb-100004
    是线性回归拟合系数。
  13. 根据权利要求12所述的测量方法,其特征在于,所述初始对准算法包括双位置解析对准算法。
  14. 根据权利要求13所述的测量方法,其特征在于,经过双位置解析对准算法校准后的井斜角为:
    Figure PCTCN2020090519-appb-100005
    校准后的工具面角为:
    Figure PCTCN2020090519-appb-100006
    校准后的方位角为:
    Figure PCTCN2020090519-appb-100007
    其中陀螺仪转位前后位置是b 1和b 2,在对准时间内对应的陀螺仪的采样输出均值分别为
    Figure PCTCN2020090519-appb-100008
    记加速度计转位前后采样输出均值分别为
    Figure PCTCN2020090519-appb-100009
    Figure PCTCN2020090519-appb-100010
    下标x,y,z分别表示上述采样输出均值分别在x,y,z上的分量;
    其中:
    双位置校准后加速度计的估计值为:
    Figure PCTCN2020090519-appb-100011
    双位置校准后陀螺仪的估计值为:
    Figure PCTCN2020090519-appb-100012
    而Z轴的加速度计与陀螺仪不可观测,直接取转位前后的均值作为校准后的估计值:
    Figure PCTCN2020090519-appb-100013
  15. 根据权利要求11所述的测量方法,其特征在于,在所述初始对准算法还包括卡尔曼滤波算法,进一步优化估算的测量系统的方位角、井斜角与工具面角。
  16. 根据权利要求11所述的测量方法,其特征在于,所述连续随钻测量方法包括 随钻测量下的井轨迹拟合算法,对于随钻状态下的连续测量,通过MCM方式进行计算与拟合井轨迹。
PCT/CN2020/090519 2020-05-11 2020-05-15 一种陀螺随钻测量系统及方法 WO2021227011A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/137,696 US11220899B2 (en) 2020-05-11 2020-12-30 Gyro measurement while drilling system and method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010393245.0A CN111878056B (zh) 2020-05-11 2020-05-11 一种陀螺随钻测量系统及方法
CN202010393245.0 2020-05-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/137,696 Continuation US11220899B2 (en) 2020-05-11 2020-12-30 Gyro measurement while drilling system and method therefor

Publications (1)

Publication Number Publication Date
WO2021227011A1 true WO2021227011A1 (zh) 2021-11-18

Family

ID=73153826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090519 WO2021227011A1 (zh) 2020-05-11 2020-05-15 一种陀螺随钻测量系统及方法

Country Status (2)

Country Link
CN (1) CN111878056B (zh)
WO (1) WO2021227011A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111844A (zh) * 2021-12-06 2022-03-01 中国电子科技集团公司第十三研究所 一种mems惯性器件测试系统
CN114167493A (zh) * 2021-11-23 2022-03-11 武汉大学 Gnss双天线辅助陀螺的地震旋转测量系统及方法
CN114293971A (zh) * 2021-12-28 2022-04-08 中国石油天然气集团有限公司 一种用于随钻测量的井下陀螺测量方法
CN114440933A (zh) * 2022-02-28 2022-05-06 中国船舶重工集团公司第七0七研究所 一种谐振陀螺仪旋转调制标度自校正系统
CN114608573A (zh) * 2022-04-02 2022-06-10 北京航空航天大学 一种基于双轴旋转惯导系统的温度误差模型系数快速辨识方法
CN114673488A (zh) * 2022-03-31 2022-06-28 中国石油大学(华东) 动态指向式旋转导向钻井工具的自适应工具面角估计方法
CN114964199A (zh) * 2022-08-03 2022-08-30 中国船舶重工集团公司第七0七研究所 一种半球谐振陀螺电极增益自补偿系统及实现方法
CN115016034A (zh) * 2022-06-01 2022-09-06 中国科学院地质与地球物理研究所 一种随钻测量装置的标定方法
CN115046568A (zh) * 2022-03-31 2022-09-13 湖南航天机电设备与特种材料研究所 一种捷联惯导系统温度标定方法与系统
CN115127552A (zh) * 2022-08-31 2022-09-30 中国船舶重工集团公司第七0七研究所 旋转调制方法、装置、设备及存储介质
CN115265590A (zh) * 2022-07-15 2022-11-01 北京航空航天大学 一种双轴旋转惯导动态误差抑制方法
CN116358545A (zh) * 2023-05-24 2023-06-30 融感科技(北京)有限公司 一种惯性传感器零偏温度补偿方法
CN116465384A (zh) * 2023-06-20 2023-07-21 中国船舶集团有限公司第七〇七研究所 一种基于模态反转的半球谐振陀螺漂移误差补偿方法
CN116519011A (zh) * 2023-03-11 2023-08-01 中国人民解放军国防科技大学 基于Psi角误差修正模型的长航时双惯导协同标定方法
CN117109637A (zh) * 2023-10-19 2023-11-24 四川图林科技有限责任公司 一种半球谐振陀螺仪的温漂误差修正补偿方法
CN117405101A (zh) * 2023-09-11 2024-01-16 北京国卫星通科技有限公司 惯导数据采集与分析系统
CN117514146A (zh) * 2024-01-04 2024-02-06 陕西太合智能钻探有限公司 一种测井系统及测井方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112781588B (zh) * 2020-12-31 2022-08-12 厦门华源嘉航科技有限公司 一种随钻陀螺定位定向仪导航解算方法
CN113819902B (zh) * 2021-09-13 2023-08-29 武汉理工大学 基于单轴陀螺的行进轨迹线的三维测量方法及应用
CN114184212B (zh) * 2021-12-27 2023-09-26 北京计算机技术及应用研究所 一种惯性仪表零位温度补偿方法
CN116592863B (zh) * 2023-05-06 2023-10-20 苏州如涵科技有限公司 一种陀螺仪模块精度测量与优化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6714870B1 (en) * 1999-10-19 2004-03-30 Halliburton Energy Services, Inc. Method of and apparatus for determining the path of a well bore under drilling conditions
CN101493008A (zh) * 2009-02-17 2009-07-29 北京六合伟业科技有限公司 基于mems器件的捷联惯性导航陀螺测斜仪
CN106246168A (zh) * 2016-08-29 2016-12-21 中国科学院地质与地球物理研究所 一种近钻头钻具姿态随钻测量装置及测量方法
US20190169984A1 (en) * 2017-12-01 2019-06-06 Gyrodata, Incorporated Directional Control of Wellbore Trajectories
CN110043248A (zh) * 2019-05-31 2019-07-23 西南石油大学 一种全姿态mwd测斜装置的测量短节
CN110886606A (zh) * 2019-11-20 2020-03-17 中国地质大学(北京) 一种随钻特征量辅助的惯性测斜方法及装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201865663U (zh) * 2010-06-03 2011-06-15 西安思坦仪器股份有限公司 一种惯性测量单元以及动力调谐陀螺连续测斜系统
CN101876244A (zh) * 2010-06-03 2010-11-03 西安思坦仪器股份有限公司 一种惯性测量单元以及动力调谐陀螺连续测斜仪
CN102140913B (zh) * 2011-05-13 2014-03-26 重庆华渝电气仪表总厂 钻探用小口径定向陀螺测斜仪
CN102980577B (zh) * 2012-12-05 2015-07-08 南京理工大学 一种微型捷联航姿系统及其工作方法
CN103278162A (zh) * 2013-04-24 2013-09-04 哈尔滨工程大学 基于cpci总线的旋转式捷联系统硬件平台及其导航解算方法
CN104880201B (zh) * 2015-03-26 2016-01-13 武汉大学 Mems陀螺自动标定方法
CN106092140B (zh) * 2016-06-24 2019-03-12 成都希德电子信息技术有限公司 一种陀螺仪零偏估计方法
CN109084755B (zh) * 2018-06-14 2021-06-25 东南大学 一种基于重力视速度与参数辨识的加速度计零偏估计方法
CN109323711B (zh) * 2018-12-04 2020-07-28 中国工程物理研究院电子工程研究所 一种陀螺仪模态反转零位自校正方法及系统
CN109826619B (zh) * 2019-03-06 2020-11-24 北京华瑞九州能源科技有限公司 一种三轴光纤陀螺测斜仪的控制系统
CN110411444B (zh) * 2019-08-22 2024-01-09 深圳赛奥航空科技有限公司 一种地面下采掘移动设备用惯性导航定位系统与定位方法
CN210268669U (zh) * 2019-08-22 2020-04-07 深圳赛奥航空科技有限公司 一种地面下采掘移动设备用惯性导航定位系统
CN111130627A (zh) * 2019-12-26 2020-05-08 中国科学院国家空间科学中心 一种海上相控阵卫星通信终端
CN111076717B (zh) * 2019-12-31 2022-11-25 南京工程学院 基于全球地磁异常场的地磁辅助惯性导航仿真系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6714870B1 (en) * 1999-10-19 2004-03-30 Halliburton Energy Services, Inc. Method of and apparatus for determining the path of a well bore under drilling conditions
CN101493008A (zh) * 2009-02-17 2009-07-29 北京六合伟业科技有限公司 基于mems器件的捷联惯性导航陀螺测斜仪
CN106246168A (zh) * 2016-08-29 2016-12-21 中国科学院地质与地球物理研究所 一种近钻头钻具姿态随钻测量装置及测量方法
US20190169984A1 (en) * 2017-12-01 2019-06-06 Gyrodata, Incorporated Directional Control of Wellbore Trajectories
CN110043248A (zh) * 2019-05-31 2019-07-23 西南石油大学 一种全姿态mwd测斜装置的测量短节
CN110886606A (zh) * 2019-11-20 2020-03-17 中国地质大学(北京) 一种随钻特征量辅助的惯性测斜方法及装置

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114167493A (zh) * 2021-11-23 2022-03-11 武汉大学 Gnss双天线辅助陀螺的地震旋转测量系统及方法
CN114167493B (zh) * 2021-11-23 2023-08-04 武汉大学 Gnss双天线辅助陀螺的地震旋转测量系统及方法
CN114111844A (zh) * 2021-12-06 2022-03-01 中国电子科技集团公司第十三研究所 一种mems惯性器件测试系统
CN114111844B (zh) * 2021-12-06 2024-04-16 中国电子科技集团公司第十三研究所 一种mems惯性器件测试系统
CN114293971A (zh) * 2021-12-28 2022-04-08 中国石油天然气集团有限公司 一种用于随钻测量的井下陀螺测量方法
CN114440933A (zh) * 2022-02-28 2022-05-06 中国船舶重工集团公司第七0七研究所 一种谐振陀螺仪旋转调制标度自校正系统
CN114673488A (zh) * 2022-03-31 2022-06-28 中国石油大学(华东) 动态指向式旋转导向钻井工具的自适应工具面角估计方法
CN115046568A (zh) * 2022-03-31 2022-09-13 湖南航天机电设备与特种材料研究所 一种捷联惯导系统温度标定方法与系统
CN115046568B (zh) * 2022-03-31 2024-04-19 湖南航天机电设备与特种材料研究所 一种捷联惯导系统温度标定方法与系统
CN114608573A (zh) * 2022-04-02 2022-06-10 北京航空航天大学 一种基于双轴旋转惯导系统的温度误差模型系数快速辨识方法
CN114608573B (zh) * 2022-04-02 2024-04-16 北京航空航天大学 一种基于双轴旋转惯导系统的温度误差模型系数快速辨识方法
CN115016034A (zh) * 2022-06-01 2022-09-06 中国科学院地质与地球物理研究所 一种随钻测量装置的标定方法
CN115265590A (zh) * 2022-07-15 2022-11-01 北京航空航天大学 一种双轴旋转惯导动态误差抑制方法
CN115265590B (zh) * 2022-07-15 2024-04-30 北京航空航天大学 一种双轴旋转惯导动态误差抑制方法
CN114964199B (zh) * 2022-08-03 2022-11-25 中国船舶重工集团公司第七0七研究所 一种半球谐振陀螺电极增益自补偿系统及实现方法
CN114964199A (zh) * 2022-08-03 2022-08-30 中国船舶重工集团公司第七0七研究所 一种半球谐振陀螺电极增益自补偿系统及实现方法
CN115127552B (zh) * 2022-08-31 2022-11-18 中国船舶重工集团公司第七0七研究所 旋转调制方法、装置、设备及存储介质
CN115127552A (zh) * 2022-08-31 2022-09-30 中国船舶重工集团公司第七0七研究所 旋转调制方法、装置、设备及存储介质
CN116519011A (zh) * 2023-03-11 2023-08-01 中国人民解放军国防科技大学 基于Psi角误差修正模型的长航时双惯导协同标定方法
CN116519011B (zh) * 2023-03-11 2024-03-01 中国人民解放军国防科技大学 基于Psi角误差修正模型的长航时双惯导协同标定方法
CN116358545A (zh) * 2023-05-24 2023-06-30 融感科技(北京)有限公司 一种惯性传感器零偏温度补偿方法
CN116358545B (zh) * 2023-05-24 2023-08-18 融感科技(北京)有限公司 一种惯性传感器零偏温度补偿方法
CN116465384A (zh) * 2023-06-20 2023-07-21 中国船舶集团有限公司第七〇七研究所 一种基于模态反转的半球谐振陀螺漂移误差补偿方法
CN116465384B (zh) * 2023-06-20 2023-08-18 中国船舶集团有限公司第七〇七研究所 一种基于模态反转的半球谐振陀螺漂移误差补偿方法
CN117405101A (zh) * 2023-09-11 2024-01-16 北京国卫星通科技有限公司 惯导数据采集与分析系统
CN117109637B (zh) * 2023-10-19 2023-12-19 四川图林科技有限责任公司 一种半球谐振陀螺仪的温漂误差修正补偿方法
CN117109637A (zh) * 2023-10-19 2023-11-24 四川图林科技有限责任公司 一种半球谐振陀螺仪的温漂误差修正补偿方法
CN117514146A (zh) * 2024-01-04 2024-02-06 陕西太合智能钻探有限公司 一种测井系统及测井方法
CN117514146B (zh) * 2024-01-04 2024-03-22 陕西太合智能钻探有限公司 一种测井系统及测井方法

Also Published As

Publication number Publication date
CN111878056A (zh) 2020-11-03
CN111878056B (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
WO2021227011A1 (zh) 一种陀螺随钻测量系统及方法
US11220899B2 (en) Gyro measurement while drilling system and method therefor
WO2021227012A1 (zh) 一种姿态测量方法
WO2021227013A1 (zh) 固态谐振陀螺自校准方法及系统
CN110792430B (zh) 一种基于多传感器数据融合的随钻测斜方法及装置
CN1740746B (zh) 微小型动态载体姿态测量装置及其测量方法
US6453239B1 (en) Method and apparatus for borehole surveying
US20210348503A1 (en) Self-calibration method and system of solid-state resonator gyroscope
US11193366B2 (en) High-temperature solid state resonant gyroscope and drilling measurement system composed thereby
EP1828540B1 (en) Gyroscopically-oriented survey tool
US6668465B2 (en) Continuous measurement-while-drilling surveying
CN111878068B (zh) 一种高温固态谐振陀螺仪及其组成的钻井测量系统
US4756088A (en) Instruments for monitoring the direction of a borehole
US9714548B2 (en) Apparatus for single degree of freedom inertial measurement unit platform rate isolation
CN109882157B (zh) 井下多分量测量仪器的光纤惯导系统及其数据处理方法
Pang et al. Low-cost IMU error intercorrection method for verticality measurement
Ji et al. An attitude improvement method of FOG-based measurement-while-drilling utilizing backtracking navigation algorithm
US20140366622A1 (en) Navigation device and method for surveying and directing a borehole under drilling conditions
EP3929399A1 (en) High temperature resistant solid-state resonator gyroscope and drilling measurement system having same
Liu et al. High precision fiber-optic gyroscope resolution test method based on low precision turntable
US11939830B2 (en) Tool, system and method for orienting core samples during borehole drilling
Burov Analysis of SINS structures with error autocompensation
CN112595314A (zh) 一种可实时测量重力加速度的惯性导航系统
RU2269001C1 (ru) Способ измерения траектории скважины по азимуту и двухрежимный бесплатформенный гироскопический инклинометр для его осуществления
Asif et al. True north measurement: A comprehensive review of Carouseling and Maytagging methods of gyrocompassing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936000

Country of ref document: EP

Kind code of ref document: A1