WO2021226940A1 - 金属有机框架材料复合基质膜作为柔性直接射线探测材料的应用 - Google Patents

金属有机框架材料复合基质膜作为柔性直接射线探测材料的应用 Download PDF

Info

Publication number
WO2021226940A1
WO2021226940A1 PCT/CN2020/090280 CN2020090280W WO2021226940A1 WO 2021226940 A1 WO2021226940 A1 WO 2021226940A1 CN 2020090280 W CN2020090280 W CN 2020090280W WO 2021226940 A1 WO2021226940 A1 WO 2021226940A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
composite matrix
matrix film
organic frame
frame material
Prior art date
Application number
PCT/CN2020/090280
Other languages
English (en)
French (fr)
Inventor
王殳凹
梁城瑜
王亚星
程丽葳
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2021226940A1 publication Critical patent/WO2021226940A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2387/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2487/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds

Definitions

  • the invention relates to the technical field of flexible direct ray detection, in particular to the application of a metal organic frame material composite matrix film as a flexible direct ray detection material.
  • X-ray is an electromagnetic wave with extremely short wavelength and high energy. X-rays have a shorter wavelength than visible light, which means that the energy of X-ray photons is tens of thousands to hundreds of thousands of times greater than that of visible light.
  • the above-mentioned special properties endow X-rays with many properties besides the general properties of visible light. Because of the characteristics of X-rays, it has been widely used in environmental monitoring, medical diagnosis, industrial non-destructive testing, safety inspection, nuclear science and technology, astronomical observation, and high-energy physics soon after its discovery. The detection of X-rays is the basis of all X-ray applications.
  • the detection material is the core content of realizing radiation detection.
  • the current detectors are divided into three generations: gas detectors, scintillator detectors, and semiconductor detectors.
  • the semiconductor detection material with the most obvious advantage is a direct detection material.
  • the irradiation of high-energy rays causes ionization and excitation in the semiconductor.
  • the charged particles generate electron-hole pairs in the semiconductor, and the electron-hole pairs drift under the action of an external electric field. And output the signal.
  • This generation of detectors makes up for many disadvantages of the previous two generations of detectors, such as large size, low sensitivity, complex instruments, and low detection efficiency.
  • silicon (Si) detectors high-purity germanium (Ge) detectors
  • CdZnTe cadmium zinc telluride
  • the silicon (Si) detector has a low atomic number and is only used for detection of lower energy rays
  • the high-purity germanium (Ge) detector has a small band gap and requires cooling and can only work at liquid nitrogen temperature
  • cadmium zinc telluride (CdZnTe) detection The device requires harsh growth conditions and a long period, which makes the cost of this type of material higher.
  • perovskite detectors In recent years, the main types of emerging detectors are perovskite detectors.
  • Huang Jinsong and others at the University of Kansas-Lincoln first reported the use of centimeter-level lead methyl bromide perovskite single crystal (MAPbBr 3 ) For X-ray detection.
  • the crystal has an ultra-high mobility lifetime product (1.2 ⁇ 10 -2 cm 2 /V).
  • This work realizes the response under low-dose X-ray (0.5 ⁇ Gy air /s) irradiation, and the detection sensitivity can reach 80( ⁇ C ⁇ Gy air )/cm 2 , the performance can reach the same level as commercial Cd(Zn)Te and amorphous Se detectors. Since then, many scientific researchers have also done a lot of meaningful work in the field of perovskite.
  • the existing detection technology is mainly flat X-ray detection technology. To obtain three-dimensional images, multiple angles and multiple exposures are required in the diagnosis process. Then get it by computer fitting. According to reports, the X-ray dose received by the human body during this diagnosis process has significantly increased the probability of cancer.
  • the flexible X-ray detection material can obtain images from multiple angles through a single imaging, so as to achieve a 3D effect. Reduce the radiation dose to the human body, so as to achieve the effect of protecting the patient.
  • the existing flexible detection materials are mostly made of organic crystals. Organic crystals have good chemical compatibility with flexible substrates. They can be grown and processed in the form of solutions and are easy to produce large-area films. However, the biggest defect of organic crystals is weak X Ray absorption capacity. Therefore, this kind of flexible detection materials can only be used for some low-energy X-ray detection, and the scope of application is extremely small.
  • CN201510023169.3 discloses an X-ray detectable SEBS thermoplastic elastomer and its products and production methods.
  • the SEBS thermoplastic elastomer products can be developed under an X-ray detector.
  • CN201911001924.2 discloses a series of metal organic frameworks, pharmaceutical preparations and their uses in the preparation of medicines.
  • the metal organic frame containing the photosensitizer needs to be used for X-ray absorption after being matched with a part capable of absorbing X-rays and/or scintillation light.
  • the purpose of the present invention is to provide a metal organic frame material composite matrix film as a flexible direct radiation detection material.
  • the present invention discloses a new use of the metal organic frame material composite matrix film, based on its semiconductor imaging principle and itself Flexible, use it as a flexible direct radiation detection material.
  • the first object of the present invention is to disclose the application of a metal organic frame material composite matrix film as a flexible direct radiation detection material.
  • the metal organic frame material composite matrix film includes metal organic frame materials (MOF) and thermoplastic polymer materials, and metal organic frame materials.
  • the material includes a semiconductor metal center that can absorb radiation and an organic ligand connected to it through coordination bonds.
  • the semiconductor metal center is selected from lanthanide metals, lead, bismuth or uranium elements. Preferably it is a lead element.
  • the organic ligand is a valence bond charge transport type ligand or a space charge transport type ligand.
  • organic ligand is derived from one of the compounds having the following structural formula:
  • the organic ligand is derived from chlorranic acid.
  • thermoplastic polymer material is selected from one of polyvinylidene fluoride (PVDF), polyethylene (PE), polyvinyl alcohol (PVA), polyethylene oxide (PEO) and polymethyl methacrylate (PMMA) kind or several kinds.
  • PVDF polyvinylidene fluoride
  • PE polyethylene
  • PVA polyvinyl alcohol
  • PEO polyethylene oxide
  • PMMA polymethyl methacrylate
  • the thermoplastic polymer material is PVDF.
  • the semiconductor metal center in the metal-organic framework material provides the ability of absorbing radiation for the metal-organic framework material composite matrix film, and the organic ligand in the metal-organic framework material selects ligands with stronger electron transport ability, which improves its performance
  • the sensitivity of flexible direct ray detection materials On the one hand, the thermoplastic polymer material serves as the carrier of the composite matrix film to disperse the MOF in it, and on the other hand, it imparts flexibility to the composite matrix film to realize flexible imaging.
  • the combined use of MOF and thermoplastic polymer materials enables the flexible direct radiation detection material to complete high-performance direct radiation detection under the condition of bending and fitting.
  • the mass ratio of the metal organic frame material and the thermoplastic polymer material is 1-2:1. Under this ratio, the morphology and performance of the prepared composite matrix film are comprehensively optimal.
  • flexible direct radiation detection materials are used to detect X-rays.
  • the second object of the present invention is to claim a flexible direct radiation detection material, including metal organic frame material composite matrix film, metal organic frame material composite matrix film including metal organic frame material and thermoplastic polymer material, metal organic frame material It includes a semiconductor metal center that can absorb radiation and an organic ligand connected to it through coordination bonds.
  • the semiconductor metal center is selected from lanthanide metals, lead, bismuth or uranium elements. Preferably it is a lead element.
  • the organic ligand is a valence bond charge transport type ligand or a space charge transport type ligand.
  • the organic ligand is derived from one of the compounds having the following structural formula: More preferred is chlorranic acid.
  • thermoplastic polymer material is selected from one of polyvinylidene fluoride (PVDF), polyethylene (PE), polyvinyl alcohol (PVA), polyethylene oxide (PEO) and polymethyl methacrylate (PMMA) kind or several kinds.
  • PVDF polyvinylidene fluoride
  • PE polyethylene
  • PVA polyvinyl alcohol
  • PEO polyethylene oxide
  • PMMA polymethyl methacrylate
  • the thermoplastic polymer material is PVDF.
  • the mass ratio of the metal organic frame material and the thermoplastic polymer material is 1-2:1. Under this ratio, the morphology and performance of the prepared composite matrix film are comprehensively optimal.
  • preparation method of the metal organic frame material composite matrix film in the present invention includes the following steps:
  • the present invention also claims a flexible direct ray detector, which includes the above-mentioned flexible direct ray detection material of the present invention.
  • the present invention has at least the following advantages:
  • the invention discloses a new use of a metal organic frame material composite matrix film. Based on its semiconductor imaging principle and its own flexibility, it is used as a flexible direct radiation detection material; a flexible semiconductor detector is prepared based on the metal organic frame material composite matrix film, and its preparation
  • the method is simple, the cost is low, and the material design space is large, and the performance improvement potential is large. It can overcome the shortcomings of the rigidity of the previous detectors and provide a new design concept for the new generation of semiconductor detectors.
  • Figure 1 is a schematic diagram of the structure of the SCU-13 crystal in Example 1;
  • Figure 2 is a physical picture of a metal organic frame material composite matrix film
  • Figure 3 is the I-V curve of the metal organic frame material composite matrix film under different doses of X-ray irradiation
  • Figure 4 is the sensitivity test result of the metal organic frame material composite matrix film
  • Figure 5 is the test results of the mobility life product of the metal-organic framework material composite matrix film and pure MOF crystals
  • Figure 6 is the current signal-to-noise ratio test results of the metal organic frame material composite matrix film under different bias conditions
  • Figure 7 illustrates the effect of bending times on the photocurrent performance of the metal organic frame material composite matrix film
  • Figure 8 illustrates the effect of bending angle on the photocurrent performance of the metal organic frame material composite matrix film
  • Figure 9 is a comparison diagram of the X-ray photon blocking efficiency of a metal organic frame material composite matrix film and a common commercial semiconductor detector
  • Figure 10 is a simulation experiment and results of pixel imaging of a metal organic frame material composite matrix film.
  • the crystal structure of SCU-13 is shown in Figure 1, which has a porous structure.
  • the device for detecting the X-ray properties of semiconductor materials in the patent number ZL201920810627.1 was used to test the sensitivity, mobility life product, leakage current, photocurrent, lower detection limit and other parameters of the metal-organic framework material composite matrix film prepared above.
  • the metal-organic framework material composite matrix film of the present invention has a significant increase in the current of the film material under the irradiation of different doses of X-rays, and changes significantly with the change of the X-ray dose (see Figure 3).
  • the X-ray sensitivity of the metal organic frame material composite matrix film is very high. Under the conditions of 80kVP and 100V, the sensitivity reaches 65.86 ⁇ CGy air -1 cm -2 (see Figure 4), which exceeds that of many commercial semiconductor detectors.
  • Figure 5 shows that the mobility lifetime product of the mixed matrix film sample reaches 4.31 ⁇ 10 -4 cm 2 ⁇ V -1 , which is higher than the device obtained by using pure MOF crystal (SCU-13 crystal) (3.76 ⁇ 10 -4 cm 2 ⁇ V -1 ), indicating that the negative effect of the processed film material on the grain boundary effect of the polycrystalline sample has been improved.
  • the present invention tested the lower detection limit of the membrane material, which was only 6.553 ⁇ Gy air /s ( Figure 6). In addition, the performance of the film material under different bending conditions was tested, and relatively excellent data was obtained.
  • Figure 7a and b are the photocurrent performance test results of the metal organic frame material composite matrix film under different bending times (test condition 160kVp , 25mA and 5V conditions) and a schematic diagram of the degree of bending during each bending.
  • the ⁇ in FIG. 8a corresponds to the bending angle
  • FIG. 8b is the photocurrent performance test result of the metal organic frame material composite matrix film corresponding to different bending angles. It can be seen from Figure 7-8 that with the increase of the bending angle and the number of bending, the performance of the detector hardly changes.
  • the blocking ability for X-rays is also an important indicator that affects the detection effect.
  • the metal organic frame material composite matrix film prepared in the present invention can already exceed Si detectors and high-purity Ge detectors in X-ray photon absorption capacity, and Close to the cadmium zinc telluride (CdZnTe) detector (see Figure 9).
  • a 5 ⁇ 5 pixel array area was selected on the metal-organic frame material composite matrix film prepared in Example 1 to simulate the imaging effect of the composite matrix film when bent at a certain angle. Fix the composite matrix film on the curved plate, place an "S"-shaped lead plate on top, and then test the current size of each pixel under X-ray irradiation (Figure 10a), according to the current size and color step The relationship is drawn as a simulated image, and an obvious "S"-shaped image is obtained ( Figure 10b), indicating that the above-mentioned composite matrix film has great potential for practical applications and can be used as a flexible direct-ray detection material for detecting X-rays.
  • the raw materials for preparing MOF crystals can be selected not only from metal salts containing lead elements, but also metal salts containing lanthanide metals, bismuth-uranium elements, or uranium elements.
  • the organic ligands can be selected from the above of the present invention. Choose from the listed valence bond charge transport ligands or space charge transport ligands.
  • the prepared MOF crystals and thermoplastic polymer materials are mixed in a mass ratio of 1-2:1, and the prepared composite matrix film Both can absorb X-rays, and their properties are close to those of the product of Example 1. These materials can all be used as flexible direct-ray detection materials.
  • the present invention proposes for the first time the use of a mixed matrix film formed of semiconductor metal organic frame materials and polymer materials as a method and concept for direct semiconductor imaging.
  • the composite matrix film is not limited to the listed SCU-13 compounds and polyvinylidene fluoride (PVDF).
  • PVDF polyvinylidene fluoride
  • the mixed matrix film, other metal organic frame materials (MOFs) and other thermoplastic polymer materials with similar properties are also suitable for the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明涉及一种金属有机框架材料复合基质膜作为柔性直接射线探测材料的应用。金属有机框架材料复合基质膜包括金属有机框架材料(MOF)和热塑高分子材料,金属有机框架材料中包括可吸收射线的半导体金属中心及与其通过配位键连接的有机配体。本发明公开了金属有机框架材料复合基质膜的新用途,基于其半导体成像原理及自身柔性,将其作为柔性直接射线探测材料使用,为新一代半导体探测器提供一种全新的设计理念。

Description

金属有机框架材料复合基质膜作为柔性直接射线探测材料的应用 技术领域
本发明涉及柔性直接射线探测技术领域,尤其涉及一种金属有机框架材料复合基质膜作为柔性直接射线探测材料的应用。
背景技术
X射线是一种波长极短,能量很大的电磁波。X射线具有比可见光更短的波长,也就意味着X射线光子能量比可见光的光子能量大几万至几十万倍。上述特殊性质赋予X射线除了具有可见光的一般性质外的很多特性。正由于X射线的特性,使其在发现后不久,就在环境监测、医学诊断、工业无损检测、安全检查、核科学与技术、天文观测以及高能物理等领域广泛应用。而对于X射线的探测是所有X射线应用的基础。
探测材料则是实现辐射探测的核心内容。目前探测器分为三代:气体探测器、闪烁体探测器、半导体探测器。其中优势最为明显的半导体探测材料是一种直接探测材料,高能射线的照射使得半导体内发生电离激发,带电粒子在半导体内产生了电子-空穴对,电子-空穴对在外电场的作用下漂移而输出信号。这一代探测器弥补了之前两代探测器体积大、灵敏度低、仪器复杂、探测效率低等众多弊端。
商用半导体探测器目前发展较为成熟的有硅(Si)探测器、高纯锗(Ge)探测器、碲锌镉(CdZnTe)。但是硅(Si)探测器原子序数低,只用于较低能射线探测;高纯锗(Ge)探测器带隙小,需要冷却,只能在液氮温度工作;碲锌镉(CdZnTe)探测器需要严苛的生长条件和较长周期,使得该类材料成本较高。
近几年来,新兴探测器种类主要是钙钛矿探测器,2016年,美国内布拉斯加大学林肯分校黄劲松等人首次报道了厘米级别铅溴甲铵钙钛矿单晶(MAPbBr 3)用于X射线探测。该晶体具有超高的迁移率寿命积(1.2×10 -2cm 2/V),该工作实现低剂量X射线(0.5μGy air/s)照射下响应,探测灵敏度可达80(μC·Gy air)/cm 2,性能可与商用Cd(Zn)Te和非晶Se等探测器达到同等级别。之后很多科研工作者也在钙钛矿领域做出了很多有意义的工作。
目前探测材料领域主要对焦点是医学人体X射线成像领域,现有的探测技术主要是以平面型X射线探测技术为主,要得到三维图像要在诊断过程中需要多个角度、多次照射,再进行计算机拟合得到。据报道,在这个诊断过程中人体受到的X射线剂量已经明显提升患者罹患癌症的概率。而柔性X射线探测材料可以通过单次成像就得到多个角度的图像,从而达到 3D效果。降低人体受照射剂量,从而达到保护患者的效果。现有的柔性探测的材料多是由有机晶体完成的,有机晶体与柔性基底化学相容性好,能以溶液形式成长、加工,易于制作大面积膜,但是有机晶体最大缺陷是较弱的X射线吸收能力。因此,这类柔性探测材料仅仅能用于一些低能X射线探测,适用范围极小。
CN201510023169.3公开了一种可X射线探测的SEBS热塑性弹性体及其制品与生产方法,该SEBS热塑性弹性体制品可在X光检测仪下显影。CN201911001924.2公开了一系列金属有机框架、药物制剂及其在制备药物中的用途。包含光敏剂的金属有机框架需配合能够吸收X射线和/或闪烁光的部分后用于X射线的吸收。
因此,解决射线探测器具有的刚性强度大、重量大、不便携、装置复杂的技术问题且开发越来越多可柔性成像的射线探测器材料十分必要。
发明内容
为解决上述技术问题,本发明的目的是提供金属有机框架材料复合基质膜作为柔性直接射线探测材料的应用,本发明公开了金属有机框架材料复合基质膜的新用途,基于其半导体成像原理及自身柔性,将其作为柔性直接射线探测材料使用。
本发明的第一个目的是公开金属有机框架材料复合基质膜作为柔性直接射线探测材料的应用,金属有机框架材料复合基质膜包括金属有机框架材料(MOF)和热塑高分子材料,金属有机框架材料中包括可吸收射线的半导体金属中心及与其通过配位键连接的有机配体。
进一步地,半导体金属中心选自镧系金属、铅、铋或铀元素。优选为铅元素。
进一步地,有机配体为价键电荷传输型配体或空间电荷传输型配体。
进一步地,有机配体来源于具有以下结构式的化合物中的一种:
Figure PCTCN2020090280-appb-000001
Figure PCTCN2020090280-appb-000002
优选地,有机配体来源于氯冉酸。
进一步地,热塑高分子材料选自聚偏氟乙烯(PVDF)、聚乙烯(PE)、聚乙烯醇(PVA)、聚氧化乙烯(PEO)和聚甲基丙烯甲酯(PMMA)中的一种或几种。优选地,热塑高分子材料为PVDF。
本发明中,金属有机框架材料中的半导体金属中心为金属有机框架材料复合基质膜提供吸收射线的能力,金属有机框架材料中的有机配体选择电子传输能力较强的配体,提高了其作为柔性直接射线探测材料的灵敏度。热塑高分子材料一方面作为复合基质膜的载体,使MOF分散于其中,另一方面赋予复合基质膜以柔性,实现柔性成像。MOF和热塑高分子材料的配合使用,使得柔性直接射线探测材料能够在弯折贴合的情况下完成高性能直接射线探测。
进一步地,金属有机框架材料复合基质膜中,金属有机框架材料和热塑高分子材料的质量比为1-2:1。在该比例下,所制备的复合基质膜的形态和性能综合最优。
进一步地,柔性直接射线探测材料用于探测X射线。
本发明的第二个目的是要求保护一种柔性直接射线探测材料,包括金属有机框架材料复合基质膜,金属有机框架材料复合基质膜包括金属有机框架材料和热塑高分子材料,金属有机框架材料中包括可吸收射线的半导体金属中心及与其通过配位键连接的有机配体。
进一步地,半导体金属中心选自镧系金属、铅、铋或铀元素。优选为铅元素。
进一步地,有机配体为价键电荷传输型配体或空间电荷传输型配体。优选地,有机配体来源于具有以下结构式的化合物中的一种:
Figure PCTCN2020090280-appb-000003
Figure PCTCN2020090280-appb-000004
Figure PCTCN2020090280-appb-000005
更优选为氯冉酸。
进一步地,热塑高分子材料选自聚偏氟乙烯(PVDF)、聚乙烯(PE)、聚乙烯醇(PVA)、聚氧化乙烯(PEO)和聚甲基丙烯甲酯(PMMA)中的一种或几种。优选地,热塑高分子材料为PVDF。
进一步地,金属有机框架材料复合基质膜中,金属有机框架材料和热塑高分子材料的质量比为1-2:1。在该比例下,所制备的复合基质膜的形态和性能综合最优。
进一步地,本发明中金属有机框架材料复合基质膜的制备方法包括以下步骤:
(1)利用无机半导体金属盐与有机配体在溶剂中发生水热反应,得到MOF晶体材料;
(2)将MOF晶体材料与热塑高分子材料在有机溶剂中混匀,成膜后干燥,得到金属有机框架材料复合基质膜。
本发明还要求保护一种柔性直接射线探测器,其包括本发明的上述柔性直接射线探测材料。
借由上述方案,本发明至少具有以下优点:
本发明公开了金属有机框架材料复合基质膜的新用途,基于其半导体成像原理及自身柔 性,将其作为柔性直接射线探测材料使用;基于金属有机框架材料复合基质膜制备柔性半导体探测器,其制备方法简单、成本较低、并且材料的设计空间大、性能提升潜能大,能够克服以往探测器刚性的缺点,为新一代半导体探测器提供一种全新的设计理念。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合详细附图说明如后。
附图说明
图1是实施例1中SCU-13晶体的结构示意图;
图2是金属有机框架材料复合基质膜的实物图;
图3是金属有机框架材料复合基质膜在不同剂量X射线照射下的I-V曲线;
图4是金属有机框架材料复合基质膜的灵敏度测试结果;
图5是金属有机框架材料复合基质膜和纯MOF晶体的迁移率寿命积测试结果;
图6是金属有机框架材料复合基质膜在不同偏压条件下的电流信噪比测试结果;
图7图示了弯折次数对金属有机框架材料复合基质膜光电流性能的影响;
图8图示了弯折角度对金属有机框架材料复合基质膜光电流性能的影响;
图9是金属有机框架材料复合基质膜和常见商用半导体探测器的X射线光子阻滞效率对比图;
图10是金属有机框架材料复合基质膜的像素成像模拟实验及结果。
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
(1)金属有机框架材料(MOFs)SCU-13晶体的合成:将PbCl 2(27.8mg,0.1mmol)和配体氯冉酸(41.8mg,0.2mmol)置入聚四氟乙烯反应釜中,向反应釜中加入混合溶剂(1ml水+4mlDMF),密封反应釜后升温至100℃,恒温反应48小时,后逐渐冷却至室温,得到SCU-13晶体。将SCU-13晶体用DMF和乙醇洗涤,后于60℃恒温烘箱中干燥6小时。
SCU-13晶体结构如图1所示,其具有多孔结构。
(2)金属有机框架材料复合基质膜的合成:将所得200mgSCU-13晶体与200mg聚偏氟乙烯(PVDF)混合后充分研磨,然后加入2mlDMF溶液,充分混合后,将稠状混合液均匀平摊在玻璃基底上,在100℃恒温烘箱内烘干半小时,之后用镊子将产物缓缓取下,即可 得到薄膜状的金属有机框架材料复合基质膜。图2是金属有机框架材料复合基质膜的实物图。
采用专利号为ZL201920810627.1中的用于探测半导体材料X射线性能的装置测试上述制备的金属有机框架材料复合基质膜的灵敏度、迁移率寿命积、漏电流、光电流、检测下限等参数。
结果表明,本发明的金属有机框架材料复合基质膜在不同剂量的X射线的照射下,膜材料的电流有明显的提升,并且随着X射线剂量改变有明显的改变(见图3)。金属有机框架材料复合基质膜的X射线灵敏度很高,在80kVP、100V条件下,灵敏度达到了65.86μCGy air -1cm -2(见图4),超过了很多商用的半导体探测器。图5表明,混合基质膜样品的迁移率寿命积达到了4.31×10 -4cm 2·V -1,比使用纯MOF晶体(SCU-13晶体)得到的器件高(3.76×10 -4cm 2·V -1),说明加工得到的膜材料对于多晶体样品的晶界效应带来的负面效应有所改善。为了能够应对医用X射线的低剂量成像,本发明测试了膜材料的检测下限,仅为6.553μGy air/s(图6)。此外,对于膜材料在不同的弯折条件下的性能加以测试,得到较为优秀的数据,图7a、b分别为不同弯折次数时金属有机框架材料复合基质膜光电流性能测试结果(测试条件160kVp、25mA及5V条件)及每次弯折时的弯折程度示意图。图8a中的α对应弯折角度,图8b为不同弯折角度对应的金属有机框架材料复合基质膜光电流性能测试结果。从图7-8中可看出,随着弯折角度和弯折次数的提升,探测器的性能几乎没有改变。
对于X射线的阻滞能力同时也是影响探测效果的一个重要指标,本发明上述制备的金属有机框架材料复合基质膜在X射线光子吸收能力上已经可以超过Si探测器和高纯Ge探测器,并且接近碲锌镉(CdZnTe)探测器(见图9)。
实施例2
在实施例1制备的金属有机框架材料复合基质膜上选取5×5像素阵列区域,模拟上述复合基质膜在弯曲一定角度的情况下的成像效果。将复合基质膜固定在弧形板上,在上方放置一个“S”状的铅板,之后在X射线照射情况下测试每个像素点的电流大小(图10a),按照电流大小与颜色阶梯的关系绘制成一幅模拟图像,并且得到了明显的“S”状图像(图10b),说明上述复合基质膜具有实际应用的巨大潜力,可作为柔性直接射线探测材料用于探测X射线。
本发明实施例1中,制备MOF晶体的原料不仅可选自含铅元素的金属盐,还可选择含镧系金属、铋铀元素或铀元素的金属盐,有机配体可从本发明上文中列出的价键电荷传输型配体或空间电荷传输型配体中选择,所制备的制备MOF晶体与热塑高分子材料按质量比为1-2:1混合后,所制备的复合基质膜均可以吸收X射线,其性能与实施例1的产物性质接近,这些材料均可作为柔性直接射线探测材料。
本发明首次提出利用半导体金属有机框架材料和高分子材料形成的混合基质膜用作直接半导体成像的方法和概念,复合基质膜不仅仅限于列举的SCU-13化合物和聚偏氟乙烯(PVDF)形成的混合基质膜,其他具有类似性能的金属有机框架材料(MOFs)和其他热塑高分子材料同样适用于本发明。
以上仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (10)

  1. 金属有机框架材料复合基质膜作为柔性直接射线探测材料的应用,所述金属有机框架材料复合基质膜包括金属有机框架材料和热塑高分子材料,所述金属有机框架材料中包括可吸收射线的半导体金属中心及与其通过配位键连接的有机配体。
  2. 根据权利要求1所述的应用,其特征在于:所述半导体金属中心选自镧系金属、铅、铋或铀元素。
  3. 根据权利要求1所述的应用,其特征在于:所述有机配体为价键电荷传输型配体或空间电荷传输型配体。
  4. 根据权利要求1所述的应用,其特征在于:所述有机配体来源于具有以下结构式的化合物中的一种:
    Figure PCTCN2020090280-appb-100001
  5. 根据权利要求1所述的应用,其特征在于:所述热塑高分子材料选自聚偏氟乙烯、聚乙烯、聚乙烯醇、聚氧化乙烯和聚甲基丙烯甲酯中的一种或几种。
  6. 根据权利要求1所述的应用,其特征在于:所述金属有机框架材料复合基质膜中,金属有机框架材料和热塑高分子材料的质量比为1-2:1。
  7. 根据权利要求1所述的应用,其特征在于:所述柔性直接射线探测材料用于探测X射线。
  8. 一种柔性直接射线探测材料,其特征在于,包括金属有机框架材料复合基质膜,所述金属有机框架材料复合基质膜包括金属有机框架材料和热塑高分子材料,所述金属有机框架材料中包括可吸收射线的半导体金属中心及与其通过配位键连接的有机配体。
  9. 根据权利要求8所述的柔性直接射线探测材料,其特征在于,所述半导体金属中心选自镧系金属、铅、铋或铀元素;所述有机配体为价键电荷传输型配体或空间电荷传输型配体。
  10. 一种柔性直接射线探测器,其特征在于,包括权利要求8或9所述的柔性直接射线探测材料。
PCT/CN2020/090280 2020-05-09 2020-05-14 金属有机框架材料复合基质膜作为柔性直接射线探测材料的应用 WO2021226940A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010388428.3 2020-05-09
CN202010388428.3A CN111518397A (zh) 2020-05-09 2020-05-09 金属有机框架材料复合基质膜作为柔性直接射线探测材料的应用

Publications (1)

Publication Number Publication Date
WO2021226940A1 true WO2021226940A1 (zh) 2021-11-18

Family

ID=71907915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090280 WO2021226940A1 (zh) 2020-05-09 2020-05-14 金属有机框架材料复合基质膜作为柔性直接射线探测材料的应用

Country Status (2)

Country Link
CN (1) CN111518397A (zh)
WO (1) WO2021226940A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066809B (zh) * 2021-03-05 2023-04-18 兰州大学 一种柔性x射线闪烁体探测器的制备方法
CN114685805B (zh) * 2022-04-11 2022-12-27 福州大学 一种室温下直接合成电催化二氧化碳还原的mof材料的制备方法
CN114805837B (zh) * 2022-05-07 2023-08-01 闽都创新实验室 一种金属有机框架材料半导体晶体及其制备方法和应用
CN116284820A (zh) * 2023-03-06 2023-06-23 天津大学 一种铋基金属有机框架材料及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107383386A (zh) * 2017-08-04 2017-11-24 南京工业大学 一种制备二维金属有机骨架材料的方法及其应用
CN108444500A (zh) * 2018-03-12 2018-08-24 天津大学 基于金属有机框架材料的柔性传感器件及其制作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206480639U (zh) * 2017-02-22 2017-09-08 东华理工大学 一种变掺杂变组分AlGaAsGaAs核辐射探测器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107383386A (zh) * 2017-08-04 2017-11-24 南京工业大学 一种制备二维金属有机骨架材料的方法及其应用
CN108444500A (zh) * 2018-03-12 2018-08-24 天津大学 基于金属有机框架材料的柔性传感器件及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIANG CHENGYU, ZHANG SHITONG, CHENG LIWEI, XIE JIAN, ZHAI FUWAN, HE YIHUI, WANG YAXING, CHAI ZHIFANG, WANG SHUAO: "Thermoplastic Membranes Incorporating Semiconductive Metal–Organic Frameworks: An Advance on Flexible X‐ray Detectors", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, ¬VERLAG CHEMIE| :, vol. 59, no. 29, 13 July 2020 (2020-07-13), pages 11856 - 11860, XP055866003, ISSN: 1433-7851, DOI: 10.1002/anie.202004006 *

Also Published As

Publication number Publication date
CN111518397A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
WO2021226940A1 (zh) 金属有机框架材料复合基质膜作为柔性直接射线探测材料的应用
Cao et al. Preparation of lead-free two-dimensional-layered (C8H17NH3) 2SnBr4 perovskite scintillators and their application in X-ray imaging
Song et al. Facile strategy for facet competition management to improve the performance of perovskite single-crystal X-ray detectors
Jana et al. Perovskite: Scintillators, direct detectors, and X-ray imagers
Hu et al. X-ray scintillation in lead-free double perovskite crystals
Mao et al. Organic–inorganic hybrid cuprous halide scintillators for flexible X-ray imaging
Williams et al. Perovskite quantum-dot-in-host for detection of ionizing radiation
US20040251420A1 (en) X-ray detectors with a grid structured scintillators
WO2018099322A1 (zh) 基于Bi基四元卤化物单晶的半导体辐射探测器及制备方法
Yao et al. Visualization of X-rays with an ultralow detection limit via zero-dimensional perovskite scintillators
Yang et al. Recent advances in radiation detection technologies enabled by metal-halide perovskites
Peng et al. X-ray detection based on crushed perovskite crystal/polymer composites
Haruta et al. Columnar grain growth of lead-free double perovskite using mist deposition method for sensitive X-ray detectors
Qiu et al. Polymer composites entrapped Ce-doped LiYF4 microcrystals for high-sensitivity X-ray scintillation and imaging
Zhao et al. Purely organic 4HCB single crystals exhibiting high hole mobility for direct detection of ultralow-dose X-radiation
US11531124B2 (en) Inorganic ternary halide semiconductors for hard radiation detection
Iwanczyk et al. HgI/sub 2/polycrystalline films for digital X-ray imagers
Liu et al. Perovskite Nanocrystals and Dyes for High-Efficiency Liquid Scintillator Counters To Detect Radiation
CN115926179B (zh) 一种基于金属有机框架的热释光材料及其制备方法与应用
Chen et al. Anthracene single-crystal scintillators for computer tomography scanning
Wang et al. Manipulation of shallow-trap states in halide double perovskite enables real-time radiation dosimetry
Nagarkar et al. Structured LiI scintillator for thermal neutron imaging
Cha et al. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography
Mubarak et al. Elucidating the effect of Pb and Ba substitution in SrTcO3 for advanced radioactive semiconducting applications
Park et al. Self-powered X-ray detector based on solution-grown Cs0. 05FA0. 9MA0. 05PbI3 single crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935528

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20935528

Country of ref document: EP

Kind code of ref document: A1