WO2021223760A1 - 一种火电机组用高强高温合金及其加工工艺 - Google Patents

一种火电机组用高强高温合金及其加工工艺 Download PDF

Info

Publication number
WO2021223760A1
WO2021223760A1 PCT/CN2021/092505 CN2021092505W WO2021223760A1 WO 2021223760 A1 WO2021223760 A1 WO 2021223760A1 CN 2021092505 W CN2021092505 W CN 2021092505W WO 2021223760 A1 WO2021223760 A1 WO 2021223760A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
alloy
thermal power
strength
furnace
Prior art date
Application number
PCT/CN2021/092505
Other languages
English (en)
French (fr)
Inventor
严靖博
谷月峰
袁勇
杨征
张醒兴
Original Assignee
华能国际电力股份有限公司
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华能国际电力股份有限公司, 西安热工研究院有限公司 filed Critical 华能国际电力股份有限公司
Priority to JP2022564104A priority Critical patent/JP2023522735A/ja
Priority to EP21800520.5A priority patent/EP4148157A1/en
Publication of WO2021223760A1 publication Critical patent/WO2021223760A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/025Casting heavy metals with high melting point, i.e. 1000 - 1600 degrees C, e.g. Co 1490 degrees C, Ni 1450 degrees C, Mn 1240 degrees C, Cu 1083 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum

Definitions

  • ferritic heat-resistant steel is difficult to meet the performance requirements of higher temperature parameters for the material properties of large-diameter thick-walled pipes.
  • coarse-grained (TP304H, TP347H) fine-grained (Super304H, TP347HFG) and high chromium (HR3C, NF709, SAVE25) and other austenitic heat-resistant steels have more excellent durability and resistance. Oxidation and corrosion properties, etc.
  • it also exposes many problems such as low heat transfer efficiency, high thermal expansion coefficient, and high cost during its application.
  • the strength of austenitic heat-resistant steel also cannot meet the service performance requirements of large-diameter thick-walled pipes.
  • Japan's Sumitomo Corporation has also developed iron-nickel-based superalloys such as HR6W and HR35; Sweden's Sandvik Corporation has developed Sanicro 25 iron-nickel-based alloy; my country's Shenyang Institute of Metals, Chinese Academy of Sciences and Central Iron and Steel Research Institute have also developed GH2984, GH110, etc.
  • Iron-nickel-based deformed superalloy Compared with nickel-based deformed superalloys, although the above-mentioned iron-nickel-based superalloys have advantages in raw material cost, they have low thermal strength, poor structure stability and poor corrosion resistance. At the same time, because deformation processing is still needed to obtain the organization and performance required for service, the preparation and processing technology is complicated, which makes the overall manufacturing cost higher and it is more difficult to further improve the performance.
  • the purpose of the present invention is to solve the problems in the prior art and propose a high-strength high-temperature alloy for thermal power units and its processing technology.
  • a high-strength high-temperature alloy for thermal power units in terms of mass percentage, including: C: 0.05 ⁇ 0.08%, Cr: 14 ⁇ 17%, Mn: ⁇ 0.5%, Si: ⁇ 0.5%, W: 1.0 ⁇ 2.5%, Mo :0.3 ⁇ 2.0%, Ti: 2.0 ⁇ 2.5%, Al: 1.0 ⁇ 1.5%, B: ⁇ 0.003%, Zr: ⁇ 0.03%, Fe: 37 ⁇ 48%, the balance is Ni.
  • a preparation process of a high-strength high-temperature alloy for a thermal power unit includes the following steps:
  • step (1) the alloy that has been smelted and homogenized in step (1) is billeted and forged at 200-250°C above the ⁇ 'precipitation temperature, and the deformation per pass is not less than 30%, and the final total deformation Not less than 70%;
  • step (3) High-temperature rolling: The alloy after forging and blanking in step (2) is rolled at a temperature of 150-200°C above the ⁇ 'precipitation temperature. The deformation of each pass is not less than 35%, and the final total deformation is not low. Less than 80%;
  • a further improvement of the present invention is that in step (1), the refining time is 0.5-1 h.
  • step (1) is: when the vacuum degree reaches 0.3-0.5Pa, the Cr, Ni, W, Si, Mn, Mo and Fe are melted and then added to the coke for deoxidation, and the coke is added for deoxidation.
  • the mass does not exceed 25-50% of the mass of C, and then Ni-Mg alloy is added for secondary deoxidation, and finally Al, Ti, B, Zr and C are added, stirred for 5-10min, and then out of the furnace for casting.
  • the casting temperature is not less than 1600°C , Then solidify, and finally homogenize and cool to room temperature in air.
  • a further improvement of the present invention is that, in step (1), the homogenization treatment is specifically: heating from room temperature to 1050-1120°C at a heating rate of 10-30°C/min, and keeping the temperature for 24 hours.
  • a further improvement of the present invention is that, in step (1), after solidification, the temperature is maintained at 900-980°C for 1.0-1.5 hours, and then homogenization is performed.
  • a further improvement of the present invention is that in step (2), after each pass of forging and billeting is completed, the heat preservation time is returned to the furnace, and the heat preservation time T and the time outside the furnace t satisfy 5t ⁇ T ⁇ 10t.
  • a further improvement of the present invention is that in step (3), after each pass of high-temperature rolling is completed, the heat is returned to the furnace, and the heat preservation time T and the time outside the furnace t satisfy 5t ⁇ T ⁇ 10t.
  • step (4) is: firstly heat up to 1100-1125°C for solid solution for 3-5 hours and air-cool to room temperature, and then heat up from room temperature to 630°C at a heating rate of 10-30°C/min Incubate at -680°C for 7-10 hours and cool in air, and finally heat up from room temperature to 740-800°C at a heating rate of 10-30°C/min for 1-3 hours and then cool in air.
  • the present invention has the beneficial effects that the alloy of the present invention has a higher Fe element content and a lower content of noble elements such as W and Nb, which limits the raw material cost of the alloy.
  • the alloy preparation process abandons the traditional triple smelting process of high-temperature alloys and adopts direct billet rolling after arc smelting, which reduces the composition of the alloy.
  • the second deoxidation is performed, and the heating agent is used to reduce the solidification rate of the molten metal after casting; the alloy is then processed with multiple passes with large deformation, and the forging and rolling temperatures are respectively controlled at 200-250 above the ⁇ 'precipitation temperature.
  • the alloy has excellent high temperature strength properties, its yield strength at 700°C is not less than 540MPa, and the elongation rate is more than 12%.
  • Figure 1 is a photo of the casting ingot of Example 1 (the surface oxide scale has been turned);
  • Figure 3 is a photo of the plate after rolling in Example 2 after one pass
  • Figure 4 is a photograph of the plate after rolling in Example 2.
  • the high-strength high-temperature alloy for thermal power unit of the present invention meets the following range (by mass percentage): C: 0.05 ⁇ 0.08%, Cr: 14-17%, Mn: ⁇ 0.5%, Si: ⁇ 0.5% , W: 1.0 ⁇ 2.5%, Mo: 0.3 ⁇ 2.0%, Ti: 2.0 ⁇ 2.5%, Al: 1.0 ⁇ 1.5%, B: ⁇ 0.003%, Zr: ⁇ 0.03%, Fe: 37 ⁇ 48%, balance For Ni.
  • the preparation process of the above alloy mainly includes three steps of alloy smelting, deformation and heat treatment, as follows:
  • the induction electric arc furnace uses an alkaline lining of magnesium oxide. Before smelting, a pure nickel washing furnace is used, and the alloy raw materials are shot blasted before adding; In the range of 0.3-0.5Pa, after the Cr, Ni, W, Si, Mn, Mo and Fe in the alloy are completely melted, refining for 0.5-1h, and then add Al, Ti, B, Zr and C, and casting; after solidification, homogenize the ingot in the range of 1050-1120°C for 24-72 hours and then air-cool to room temperature;
  • step (1) the alloy that has been smelted and homogenized in step (1) is billeted and forged at 200-250°C above the ⁇ 'precipitation temperature, and the deformation per pass is not less than 30%, and the final total deformation Not less than 70%;
  • High-temperature rolling the alloy turned into a cast ingot after forging and pressing in step (2), and the turning depth is 0.5-1 nm. After the surface scale turning is completed, heat the roll to above 500°C, and perform high-temperature rolling at 150-200°C above the ⁇ 'precipitation temperature. The deformation per pass is not less than 35%, and the final total deformation is not less than 80%; And after each pass of forging and rolling is completed, return to the furnace for heat preservation, and the heat preservation time T and the out-of-furnace processing time t satisfy 5t ⁇ T ⁇ 10t.
  • the alloy After heat treatment, the alloy has excellent high-temperature strength properties, its yield strength at 700°C is not less than 540MPa, and the elongation rate is higher than 12%.
  • the high-strength high-temperature alloy used in the thermal power unit of this embodiment includes, by mass percentage: C: 0.06%, Cr: 16%, Mn: 0.2%, Si: 0.15%, W: 1.6%, Mo: 1.2%, Ti: 2.2 %, Al: 1.4%, B: 0.002%, Zr: 0.02%, Fe: 37%, and the balance is Ni.
  • Magnesium oxide alkaline furnace lining is used for alloy smelting, pure nickel washing furnace is used before smelting, and shot blasting is performed before alloy raw materials are added.
  • the alloy is smelted in an induction electric arc furnace, and the vacuum degree is controlled at 0.35Pa. After the elements such as Cr, Ni, W are completely melted, it is refined for 40 minutes, and high-purity argon gas is introduced for protection before adding Al, Ti, B, Zr, and C. After the alloy raw materials such as Cr, Ni, W are completely melted, add coke for deoxidation, and the added mass does not exceed 50% of the mass of the C element in the alloy raw materials.
  • the ingot is heated to 1020°C for 1.0 hour at a rate of 10°C/min, then heated to 1160°C for 24 hours, and then air-cooled to room temperature.
  • the alloy is billet forged at 220°C above the ⁇ 'precipitation temperature, with a deformation of 30% per pass, and a final total deformation of 70%.
  • the alloy is rolled at a temperature of 160°C above the ⁇ 'precipitation temperature, with a deformation of 35% per pass, and a final total deformation of 80%.
  • the roll is heated to above 500°C, and after each pass of forging and rolling, it is returned to the furnace for 30 minutes.
  • the temperature is raised to 1120°C for 4 hours and air-cooled to room temperature, then heated to 650°C for 8 hours and air-cooled, and finally heated to 760°C for 2 hours and then air-cooled.
  • the alloy has a heating rate of 10°C/min during the heating stage of homogenization treatment, solid solution and aging treatment, and the temperature should be kept at 950°C for 1.0 hour before the ingot is raised to the homogenization treatment temperature.
  • Figures 1 and 2 are photos of the ingot and the alloy slab after forging in Example 1. There are no obvious cracks on the surface, indicating that the alloy smelting and processing technology scheme is reasonable.
  • the alloy performance test results show that its yield strength at 700°C is 582MPa and the elongation rate is 14.2%, indicating that the alloy has excellent high temperature strength properties.
  • the casting temperature is 1650 °C.
  • Alloy casting adopts a metal mold, and after casting, it is covered with sodium nitrate + alumina heating agent on the surface of the molten steel to reduce the solidification rate and promote the supply of the molten metal.
  • the ratio of sodium nitrate to alumina heating agent is well known to those skilled in the art.
  • the ingot is heated to 1020°C for 1.0 hour at a rate of 10°C/min, then heated to 1160°C for 24 hours, and then air-cooled to room temperature.
  • the alloy is billet forged at 240°C above the ⁇ 'precipitation temperature, with a deformation of 30% per pass, and a final total deformation of 70%.
  • the alloy is rolled at a temperature of 180°C above the ⁇ 'precipitation temperature, with a deformation of 35% per pass, and a final total deformation of 80%.
  • the roll is heated to above 500°C, and after each pass of forging and rolling, it is returned to the furnace for 30 minutes.
  • the temperature is raised to 1120°C for 4 hours and air-cooled to room temperature, then heated to 650°C for 8 hours and air-cooled, and finally heated to 760°C for 2 hours and then air-cooled.
  • the alloy has a heating rate of 10°C/min during the heating stage of homogenization treatment, solid solution and aging treatment, and the temperature should be kept at 950°C for 1.0 hour before the ingot is raised to the homogenization treatment temperature.
  • Figures 3 and 4 are photos of Example 2 after one pass of rolling and the completion of rolling. There are no obvious cracks on the surface, indicating that the alloy processing technology is reasonable.
  • the alloy performance test results show that its yield strength at 700°C is 543MPa and the elongation rate is 16.1%, indicating that the alloy has excellent high temperature strength properties.
  • step (2) Forging billeting the alloy that has been smelted and homogenized in step (1) is billeted and forged at 200°C above the ⁇ 'precipitation temperature, and the deformation per pass is not less than 30%, and the final total deformation is not low. Less than 70%; after each pass of forging and billeting, return to the furnace for heat preservation, and the holding time T and the time outside the furnace t satisfy 5t ⁇ T ⁇ 10t.
  • step (3) High-temperature rolling: The alloy that has been forged and opened in step (2) is subjected to high-temperature rolling at 150°C above the ⁇ 'precipitation temperature, the deformation of each pass is not less than 35%, and the final total deformation is not less than 80 %; After each pass of high-temperature rolling is completed, return to the furnace for heat preservation, and the holding time T and the time outside the furnace t satisfy 5t ⁇ T ⁇ 10t.
  • High temperature solid solution and aging treatment firstly heat up to 1100°C for 5 hours and air-cool to room temperature, then heat up from room temperature to 630°C at a heating rate of 10°C/min for 10 hours and air cool, and finally at 10°C/min.
  • the heating rate of min is increased from room temperature to 740°C for 3 hours and then air-cooled.
  • High temperature solid solution and aging treatment firstly heat up to 1120°C for solid solution for 3 hours and air-cool to room temperature, then heat up from room temperature to 650°C at a heating rate of 20°C/min for 8 hours and air cool, and finally heat up to 20°C/min.
  • the heating rate of min is increased from room temperature to 800°C for 1 hour and then air-cooled.
  • step (2) Forging billeting The alloy that has been smelted and homogenized in step (1) is billeted and forged at 250°C above the ⁇ 'precipitation temperature, and the deformation per pass is not less than 30%, and the final total deformation is not low. Less than 70%; After each pass of forging and billeting is completed, return to the furnace for heat preservation, and the holding time T and the time outside the furnace t satisfy 5t ⁇ T ⁇ 10t.
  • High-temperature solution and aging treatment firstly heat up to 1115°C for solid solution for 4 hours and air-cool to room temperature, then at a heating rate of 30°C/min from room temperature to 680°C for 7 hours and air-cooled, and finally at 30°C/min.
  • the heating rate of min is increased from room temperature to 770°C for 2 hours and then air-cooled.

Abstract

一种火电机组用高强高温合金及其加工工艺,该高温合金成分按质量百分比包括:C:0.05~0.08%,Cr:14~17%,Mn:≤0.5%,Si:≤0.5%,W:1.0~2.5%,Mo:0.3~2.0%,Ti:2.0~2.5%,Al:1.0~1.5%,B:≤0.003%,Zr:≤0.03%,Fe:37~48%,余量为Ni。在最高不超过0.5Pa的真空度下采用电弧炉对预配的合金炉料进行冶炼;在Ni 3Al(γ')析出温度以上200-250℃温度范围内对合金进行变形量达70%的开坯锻造;在γ'析出温度以上150-200℃进行变形量达80%的高温轧制。合金在650℃以上具有优异的高温力学性能。

Description

一种火电机组用高强高温合金及其加工工艺 技术领域
本发明属于材料及材料制备领域,具体涉及一种火电机组用高强高温合金及其加工工艺。可满足700℃级先进超超临界火电机组主蒸汽管道、集箱等厚壁部件对材料的加工及使用性能要求。
背景技术
随着我国用电需求不断增加,能源紧缺及环境污染问题日益凸显,发展高效、节能、环保发电方式的需求越发紧迫。火力发电作为我国长期以来最主要的发电技术,提高机组蒸汽参数被认为是解决上述问题最有效的途径。以往大量实践表明,关键部件材料的服役性能是制约锅炉机组蒸汽参数提高的最主要原因,而作为火电机组锅炉中服役工况最严苛的关键部件之一,主蒸汽管、集箱等大口径厚壁管对材料的服役性能提出了极高的要求。随着火电机组主蒸汽参数的大幅提高,开发出可以满足700℃级机组大口径厚壁管性能要求并兼具优异加工性能的高温合金材料已成为火力发电行业亟待解决的课题。
目前国内外600℃级以下火电机组大口径厚壁管主要选用铁素体耐热钢(Cr:9wt.%-12wt.%)及奥氏体耐热钢。常用铁素体耐热钢主要有TP91、NF616、E911、HCM12A等,这些材料具有优良的持久性能和抗腐蚀性能,因而在600℃级以下机组大口径厚壁管中获得了广泛应用。其中TP91已完全实现国产化,广泛应用于我国亚临界及超临界火电机组中,并已积累了大量的使用性能数据。这些数据和实践都表明铁素体耐热钢难以满足更高温度参数对大口径厚壁管材料性能的使用性能需求。与铁素体耐热钢相比,粗晶(TP304H、TP347H)、细晶(Super304H、TP347HFG)以及高铬(HR3C、NF709、SAVE25)等奥氏体耐热钢具备更加优异的持久强度、抗氧化及腐蚀性能等。然而,其在应用过程中也暴露出传热效率低, 热膨胀系数高,成本较高等诸多问题。尤其是在主蒸汽温度达到700℃以上时,奥氏体耐热钢的强度同样也无法满足大口径厚壁管对材料的服役性能要求。
针对700℃级超超临界机组锅炉大口径厚壁管对材料使用性能的需求,目前国外已开发出了一系列镍基变形高温合金材料,如美国特殊金属公司开发的Inconel 740H、美国哈氏公司开发的Haynes 282、德国蒂森克虏伯公司开发的CCA 617、英国Rolls-Royce公司开发的Nimonic 263、日本日立公司开发的USC41等。这些材料具备优异的高温持久强度及抗氧化性能,但价格昂贵、焊接性能差、冶炼和热加工等技术要求高,限制了其迅速推广应用。另外,日本住友公司还开发出HR6W、HR35等铁镍基高温合金;瑞典山特维克公司开发了Sanicro 25铁镍基合金;我国中科院沈阳金属所、钢铁研究总院也分别开发出GH2984、GH110等铁镍基变形高温合金。与镍基变形高温合金相比,上述几种铁镍基高温合金虽然具有原料成本优势,但热强度低,组织稳定性和抗蚀性较差。同时,由于仍需变形加工来获得服役所需组织和性能,制备及加工工艺复杂,使得总体制造成本较高,性能进一步提升的难度较大。
发明内容
本发明的目的在于解决现有技术中的问题,提出一种火电机组用高强高温合金及其加工工艺。
为了实现以上发明目的,本发明所采用的技术方案为:
一种火电机组用高强高温合金,按质量百分比计,包括:C:0.05~0.08%,Cr:14~17%,Mn:≤0.5%,Si:≤0.5%,W:1.0~2.5%,Mo:0.3~2.0%,Ti:2.0~2.5%,Al:1.0~1.5%,B:≤0.003%,Zr:≤0.03%,Fe:37~48%,余量为Ni。
一种火电机组用高强高温合金的制备工艺,包括以下步骤:
(1)冶炼、均匀化处理:按质量百分比计,取C:0.05~0.08%,Cr:14~17%,Mn:≤0.5%,Si:≤0.5%,W:1.0~2.5%,Mo:0.3~2.0%,Ti:2.0~2.5%,Al:1.0~1.5%,B:≤0.003%,Zr:≤0.03%,Fe:37~48%,余量为Ni;在真空下,待Cr、Ni、W、Si、Mn、Mo以及Fe熔化后精炼后,在氩气保护下再加入Al、Ti、B、Zr以及C,并进行浇铸;再进行凝固后,最后进行均匀化处理后空冷至室温;
(2)锻压开坯:将经步骤(1)冶炼、均匀化处理的合金在γ’析出温度以上200-250℃进行开坯锻造,每道次变形量不低于30%,最终总变形量不低于70%;
(3)高温轧制:将经步骤(2)锻压开坯的合金在γ’析出温度以上150-200℃进行高温轧制,每道次变形量不低于35%,最终总变形量不低于80%;
(4)高温固溶、时效处理:将经步骤(3)高温轧制的合金进行高温固溶以及时效处理。
本发明进一步的改进在于,步骤(1)中,精炼时间为0.5-1h。
本发明进一步的改进在于,步骤(1)的具体过程为:真空度达到在0.3-0.5Pa时,将Cr、Ni、W、Si、Mn、Mo以及Fe熔化后加入焦炭脱氧,焦炭脱氧的加入质量不超过C质量的25-50%,然后加入Ni-Mg合金进行二次脱氧,最后加入Al、Ti、B、Zr以及C,搅拌5-10min后出炉进行浇铸,浇铸温度不低于1600℃,再进行凝固,最后进行均匀化处理后空冷至室温。
本发明进一步的改进在于,步骤(1)中,浇铸时采用金属铸型;进行凝固时,采用铝发热剂覆盖于钢液表面。
本发明进一步的改进在于,步骤(1)中,进行均匀化处理具体为:以10-30℃/min的升温速率自室温升温至1050-1120℃,保温24h。
本发明进一步的改进在于,步骤(1)中,进行凝固后在900-980℃保温1.0-1.5 小时,然后进行均匀化处理。
本发明进一步的改进在于,步骤(2)中,每道次锻压开坯完成后回炉保温,保温时间T与炉外时间t满足5t≤T≤10t。
本发明进一步的改进在于,步骤(3)中,每道次高温轧制完成后回炉保温,保温时间T与炉外时间t满足5t≤T≤10t。
本发明进一步的改进在于,步骤(4)的具体过程为:先升温至1100-1125℃固溶3-5小时并空冷至室温,随后以10-30℃/min的升温速率自室温升温至630-680℃保温7-10小时并空冷,最后以10-30℃/min的升温速率自室温升温至740-800℃保温1-3小时后空冷。
与现有技术相比,本发明具有的有益效果为:本发明的合金具有较高的Fe元素含量,并且W、Nb等贵元素含量较低,限制了合金的原料成本。同时,合金制备工艺放弃高温合金传统的三重熔炼工艺而采用电弧熔炼后直接开坯轧制,降低了合金的制备成分。其中冶炼过程中二次脱氧,并在浇铸后采用发热剂降低金属液凝固速率;随后对合金采用多道次大变形量加工,其锻造及轧制温度分别控制在γ’析出温度以上200-250℃及150-200℃范围内,且单道次变形量分别不低于30%及35%,确保了合金交工期间具备足够的应变储能。最终经热处理后合金具备优异的高温强度性能,其在700℃屈服强度不低于540MPa,延伸率高于12%。
附图说明
图1为实施例1铸锭(表面氧化皮已车削)照片;
图2为实施例1锻造完成后板坯照片;
图3为实施例2经1道次轧制完成后板材照片;
图4为实施例2轧制后板材照片。
具体实施方式
下面结合实施例对本发明作进一步详细说明。
本发明的一种火电机组用高强高温合金,合金成分符合下述范围(按质量百分比计):C:0.05~0.08%,Cr:14~17%,Mn:≤0.5%,Si:≤0.5%,W:1.0~2.5%,Mo:0.3~2.0%,Ti:2.0~2.5%,Al:1.0~1.5%,B:≤0.003%,Zr:≤0.03%,Fe:37~48%,余量为Ni。
上述合金的制备工艺流程主要包括合金熔炼、变形及热处理三步,具体如下:
(1)冶炼、均匀化处理:将上述合金采用感应电弧炉熔炼,感应电弧炉采用氧化镁碱性炉衬,熔炼前采用纯镍洗炉,合金原料加入前进行抛丸处理;真空度达控制在0.3-0.5Pa范围内,待合金中Cr、Ni、W、Si、Mn、Mo以及Fe完全熔化后精炼0.5-1h,然后通入高纯氩气保护下再加入Al、Ti、B、Zr以及C,并进行浇铸;进行凝固后将铸锭在1050-1120℃范围内均匀化处理24-72小时后空冷至室温;
(2)锻压开坯:将经步骤(1)冶炼、均匀化处理的合金在γ’析出温度以上200-250℃进行开坯锻造,每道次变形量不低于30%,最终总变形量不低于70%;
(3)高温轧制:将经步骤(2)锻压开坯的合金车削铸锭表面氧化皮,车削深度0.5-1nm。表面氧化皮车削完成后将轧辊加热至500℃以上,在γ’析出温度以上150-200℃进行高温轧制,每道次变形量不低于35%,最终总变形量不低于80%;且每道次锻造及轧制完成后回炉保温,其保温时间T与炉外加工时间t满足5t≤T≤10t。
(4)高温固溶、时效处理:将经步骤(3)高温轧制的合金升温至1100-1125℃ 固溶3-5小时并空冷至室温,随后加热至630-680℃保温7-10小时并空冷,最后加热至740-800℃保温1-3小时后空冷。
优选的,在Cr、Ni、W、Si、Mn、Mo以及Fe完全熔化后加入焦炭脱氧,焦炭脱氧的加入质量不超过合金原料中含C元素质量的25-50%,完成后加入Ni-Mg合金进行二次脱氧,最后加入Al、Ti、B、Zr以及C易烧损元素,搅拌5-10min后出炉,出炉时浇铸温度不低于1600℃。并且浇铸时采用金属铸型,进行凝固时,采用铝发热剂覆盖于钢液表面,以降低凝固速率促进金属液补缩。
合金在均匀化处理、固溶及时效处理的升温阶段其升温速率应控制在10-30℃/min范围内,其中在铸锭升至均匀化处理温度前应在900-980℃保温1.0-1.5小时;然后以10-30℃/min的速率升温至1050-1120℃。
合金经热处理后具备优异的高温强度性能,其在700℃屈服强度不低于540MPa,延伸率高于12%。
实施例1
本实施例的火电机组用高强高温合金,按质量百分比计包括:C:0.06%,Cr:16%,Mn:0.2%,Si:0.15%,W:1.6%,Mo:1.2%,Ti:2.2%,Al:1.4%,B:0.002%,Zr:0.02%,Fe:37%,余量为Ni。
合金熔炼采用氧化镁碱性炉衬,熔炼前采用纯镍洗炉,合金原料加入前进行抛丸处理。合金采用感应电弧炉熔炼,真空度达控制在0.35Pa,待Cr、Ni、W等元素完全熔化后精炼40min,并在加入Al、Ti、B、Zr、C前通入高纯氩气保护。Cr、Ni、W等合金原料完全熔化后加入焦炭脱氧,其加入质量不超过合金原料中含C元素质量的50%,完成后加入Ni-Mg合金进行二次脱氧,最后加入Al、Ti、B、Zr、C等易烧损元素,搅拌5min后出炉,其浇铸温度1630℃。合金浇铸采 用金属铸型,并在浇铸后用硝酸钠+氧化铝发热剂覆盖于钢液表面,以降低凝固速率促进金属液补缩。
钢液凝固后将铸锭以10℃/min的速率升温至1020℃保温1.0小时,随后升温至1160℃范围内均匀化处理24小时后空冷至室温。表面氧化皮车削完成后将合金在γ’析出温度以上220℃进行开坯锻造,每道次变形量30%,最终总变形量70%。随后将合金在γ’析出温度以上160℃进行高温轧制,每道次变形量35%,最终总变形量80%。合金轧制前将轧辊加热至500℃以上,且每道次锻造及轧制完成后回炉保温30min。合金轧制完成后升温至1120℃固溶4小时并空冷至室温,随后加热至650℃保温8小时并空冷,最后加热至760℃保温2小时后空冷。其中,合金在均匀化处理、固溶及时效处理的升温阶段其升温速率10℃/min,且在铸锭升至均匀化处理温度前应在950℃保温1.0小时。
图1和图2为实施例1铸锭及锻造后的合金板坯照片,其表面无明显的裂纹,表明合金冶炼及加工工艺方案合理。合金性能测试结果表明其在700℃屈服强度分为582MPa,延伸率14.2%,表明合金具备优异的高温强度性能。
实施例2
本实施例的高强高温合金,按质量百分比包括:C:0.07%,Cr:15%,Mn:0.2%,Si:0.15%,W:2.2%,Mo:0.4%,Ti:2.2%,Al:1.4%,B:0.002%,Zr:0.02%,Fe:47%,余量为Ni。合金熔炼采用氧化镁碱性炉衬,熔炼前采用纯镍洗炉,合金原料加入前进行抛丸处理。合金采用感应电弧炉熔炼,真空度达控制在0.35Pa,待Cr、Ni、W等元素完全熔化后精炼40min,并在加入Al、Ti、B、Zr、C前通入高纯氩气保护。Cr、Ni、W等合金原料完全熔化后加入焦炭脱氧,其加入质量不超过合金原料中含C元素质量的40%,完成后加入Ni-Mg合金进 行二次脱氧,最后加入Al、Ti、B、Zr、C等易烧损元素,搅拌5min后出炉,其浇铸温度1650℃。合金浇铸采用金属铸型,并在浇铸后用硝酸钠+氧化铝发热剂覆盖于钢液表面,以降低凝固速率促进金属液补缩。硝酸钠与氧化铝发热剂的比例为本领域技术人员公知。
钢液凝固后将铸锭以10℃/min的速率升温至1020℃保温1.0小时,随后升温至1160℃范围内均匀化处理24小时后空冷至室温。表面氧化皮车削完成后将合金在γ’析出温度以上240℃进行开坯锻造,每道次变形量30%,最终总变形量70%。随后将合金在γ’析出温度以上180℃进行高温轧制,每道次变形量35%,最终总变形量80%。合金轧制前将轧辊加热至500℃以上,且每道次锻造及轧制完成后回炉保温30min。合金轧制完成后升温至1120℃固溶4小时并空冷至室温,随后加热至650℃保温8小时并空冷,最后加热至760℃保温2小时后空冷。其中,合金在均匀化处理、固溶及时效处理的升温阶段其升温速率10℃/min,且在铸锭升至均匀化处理温度前应在950℃保温1.0小时。
图3和图4为实施例2经1道次轧制及轧制完成后的照片,其表面无明显的裂纹,表明合金加工工艺合理。合金性能测试结果表明其在700℃屈服强度分为543MPa,延伸率16.1%,表明合金具备优异的高温强度性能。
实施例3
(1)冶炼、均匀化处理:按质量百分比计,取C:0.05%,Cr:14%,Mn:0.5%,Si:0.1%,W:1.0%,Mo:2.0%,Ti:2.0%,Al:1.0%,B:0.003%,Zr:0.01%,Fe:37%,余量为Ni;
真空度达到在0.3-0.5Pa时,将Cr、Ni、W、Si、Mn、Mo以及Fe熔化后加入焦炭脱氧,焦炭脱氧的加入质量不超过C质量的25%,然后加入Ni-Mg合金 进行二次脱氧,最后加入Al、Ti、B、Zr以及C,搅拌5min后出炉进行浇铸,浇铸时采用金属铸型,浇铸温度不低于1600℃,再进行凝固,并采用铝发热剂覆盖于钢液表面,然后在900℃保温1.5小时,最后以10℃/min的升温速率自室温升温至1120℃,进行均匀化处理24h后空冷至室温。
(2)锻压开坯:将经步骤(1)冶炼、均匀化处理的合金在γ’析出温度以上200℃进行开坯锻造,每道次变形量不低于30%,最终总变形量不低于70%;每道次锻压开坯完成后回炉保温,保温时间T与炉外时间t满足5t≤T≤10t。
(3)高温轧制:将经步骤(2)锻压开坯的合金在γ’析出温度以上150℃进行高温轧制,每道次变形量不低于35%,最终总变形量不低于80%;每道次高温轧制完成后回炉保温,保温时间T与炉外时间t满足5t≤T≤10t。
(4)高温固溶、时效处理:先升温至1100℃固溶5小时并空冷至室温,随后以10℃/min的升温速率自室温升温至630℃保温10小时并空冷,最后以10℃/min的升温速率自室温升温至740℃保温3小时后空冷。
实施例4
(1)冶炼、均匀化处理:按质量百分比计,取C:0.08%,Cr:15%,Mn:0.2%,Si:0.5%,W:2.5%,Mo:1.0%,Ti:2.0%,Al:1.5%,B:0.001%,Zr:0.02%,Fe:48%,余量为Ni;
真空度达到在0.3-0.5Pa时,将Cr、Ni、W、Si、Mn、Mo以及Fe熔化后加入焦炭脱氧,焦炭脱氧的加入质量不超过C质量的35%,然后加入Ni-Mg合金进行二次脱氧,最后加入Al、Ti、B、Zr以及C,搅拌7min后出炉进行浇铸,浇铸时采用金属铸型,浇铸温度不低于1600℃,再进行凝固,并采用铝发热剂覆盖于钢液表面,然后在980℃保温1小时,最后以20℃/min的升温速率自室温 升温至1100℃,进行均匀化处理24h后空冷至室温。
(2)锻压开坯:将经步骤(1)冶炼、均匀化处理的合金在γ’析出温度以上220℃进行开坯锻造,每道次变形量不低于30%,最终总变形量不低于70%;每道次锻压开坯完成后回炉保温,保温时间T与炉外时间t满足5t≤T≤10t。
(3)高温轧制:将经步骤(2)锻压开坯的合金在γ’析出温度以上200℃进行高温轧制,每道次变形量不低于35%,最终总变形量不低于80%;每道次高温轧制完成后回炉保温,保温时间T与炉外时间t满足5t≤T≤10t。
(4)高温固溶、时效处理:先升温至1120℃固溶3小时并空冷至室温,随后以20℃/min的升温速率自室温升温至650℃保温8小时并空冷,最后以20℃/min的升温速率自室温升温至800℃保温1小时后空冷。
实施例5
(1)冶炼、均匀化处理:按质量百分比计,取C:0.06%,Cr:17%,Mn:0.1%,Si:0.3%,W:2.0%,Mo:0.3%,Ti:2.1%,Al:1.3%,Zr:0.01%,Fe:42%,余量为Ni;
真空度达到在0.3-0.5Pa时,将Cr、Ni、W、Si、Mn、Mo以及Fe熔化后加入焦炭脱氧,焦炭脱氧的加入质量不超过C质量的50%,然后加入Ni-Mg合金进行二次脱氧,最后加入Al、Ti、B、Zr以及C,搅拌10min后出炉进行浇铸,浇铸时采用金属铸型,浇铸温度不低于1600℃,再进行凝固,并采用铝发热剂覆盖于钢液表面,然后在950℃保温1小时,最后以30℃/min的升温速率自室温升温至1050℃,进行均匀化处理24h后空冷至室温。
(2)锻压开坯:将经步骤(1)冶炼、均匀化处理的合金在γ’析出温度以上250℃进行开坯锻造,每道次变形量不低于30%,最终总变形量不低于70%; 每道次锻压开坯完成后回炉保温,保温时间T与炉外时间t满足5t≤T≤10t。
(3)高温轧制:将经步骤(2)锻压开坯的合金在γ’析出温度以上170℃进行高温轧制,每道次变形量不低于35%,最终总变形量不低于80%;每道次高温轧制完成后回炉保温,保温时间T与炉外时间t满足5t≤T≤10t。
(4)高温固溶、时效处理:先升温至1115℃固溶4小时并空冷至室温,随后以30℃/min的升温速率自室温升温至680℃保温7小时并空冷,最后以30℃/min的升温速率自室温升温至770℃保温2小时后空冷。
本发明的高温合金成分按质量百分比包括:C:0.05~0.08%,Cr:14~17%,Mn:≤0.5%,Si:≤0.5%,W:1.0~2.5%,Mo:0.3~2.0%,Ti:2.0~2.5%,Al:1.0~1.5%,B:≤0.003%,Zr:≤0.03%,Fe:37~48%,余量为Ni。在最高不超过0.3Pa的真空度下采用电弧炉对预配的合金炉料进行冶炼;在Ni 3Al(γ’)析出温度以上200-250℃温度范围内对合金进行变形量达70%的开坯锻造;在γ’析出温度以上150-200℃进行变形量达80%的高温轧制。本发明的合金加工工艺具有低廉的制备成本,合金采用该本发明中方法制备完成后在650℃以上具有优异的高温力学性能。

Claims (10)

  1. 一种火电机组用高强高温合金,其特征在于,按质量百分比计,包括:C:0.05~0.08%,Cr:14~17%,Mn:≤0.5%,Si:≤0.5%,W:1.0~2.5%,Mo:0.3~2.0%,Ti:2.0~2.5%,Al:1.0~1.5%,B:≤0.003%,Zr:≤0.03%,Fe:37~48%,余量为Ni。
  2. 一种火电机组用高强高温合金的制备工艺,其特征在于,包括以下步骤:
    (1)冶炼、均匀化处理:按质量百分比计,取C:0.05~0.08%,Cr:14~17%,Mn:≤0.5%,Si:≤0.5%,W:1.0~2.5%,Mo:0.3~2.0%,Ti:2.0~2.5%,Al:1.0~1.5%,B:≤0.003%,Zr:≤0.03%,Fe:37~48%,余量为Ni;在真空下,待Cr、Ni、W、Si、Mn、Mo以及Fe熔化后精炼后,在氩气保护下再加入Al、Ti、B、Zr以及C,并进行浇铸;再进行凝固后,最后进行均匀化处理后空冷至室温;
    (2)锻压开坯:将经步骤(1)冶炼、均匀化处理的合金在γ’析出温度以上200-250℃进行开坯锻造,每道次变形量不低于30%,最终总变形量不低于70%;
    (3)高温轧制:将经步骤(2)锻压开坯的合金在γ’析出温度以上150-200℃进行高温轧制,每道次变形量不低于35%,最终总变形量不低于80%;
    (4)高温固溶、时效处理:将经步骤(3)高温轧制的合金进行高温固溶以及时效处理。
  3. 根据权利要求2所述的一种火电机组用高强高温合金的制备工艺,其特征在于,步骤(1)中,精炼时间为0.5-1h。
  4. 根据权利要求2所述的一种火电机组用高强高温合金的制备工艺,其特征在于,步骤(1)的具体过程为:真空度达到在0.3-0.5Pa时,将Cr、Ni、W、Si、Mn、Mo以及Fe熔化后加入焦炭脱氧,焦炭脱氧的加入质量不超过C质量的25-50%,然后加入Ni-Mg合金进行二次脱氧,最后加入Al、Ti、B、Zr以及C, 搅拌5-10min后出炉进行浇铸,浇铸温度不低于1600℃,再进行凝固,最后进行均匀化处理后空冷至室温。
  5. 根据权利要求2所述的一种火电机组用高强高温合金的制备工艺,其特征在于,步骤(1)中,浇铸时采用金属铸型;进行凝固时,采用铝发热剂覆盖于钢液表面。
  6. 根据权利要求2所述的一种火电机组用高强高温合金的制备工艺,其特征在于,步骤(1)中,进行均匀化处理具体为:以10-30℃/min的升温速率自室温升温至1050-1120℃,保温24h。
  7. 根据权利要求2所述的一种火电机组用高强高温合金的制备工艺,其特征在于,步骤(1)中,进行凝固后在900-980℃保温1.0-1.5小时,然后进行均匀化处理。
  8. 根据权利要求2所述的一种火电机组用高强高温合金的制备工艺,其特征在于,步骤(2)中,每道次锻压开坯完成后回炉保温,保温时间T与炉外时间t满足5t≤T≤10t。
  9. 根据权利要求2所述的一种火电机组用高强高温合金的制备工艺,其特征在于,步骤(3)中,每道次高温轧制完成后回炉保温,保温时间T与炉外时间t满足5t≤T≤10t。
  10. 根据权利要求2所述的一种火电机组用高强高温合金的制备工艺,其特征在于,步骤(4)的具体过程为:先升温至1100-1125℃固溶3-5小时并空冷至室温,随后以10-30℃/min的升温速率自室温升温至630-680℃保温7-10小时并空冷,最后以10-30℃/min的升温速率自室温升温至740-800℃保温1-3小时后空冷。
PCT/CN2021/092505 2020-05-08 2021-05-08 一种火电机组用高强高温合金及其加工工艺 WO2021223760A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022564104A JP2023522735A (ja) 2020-05-08 2021-05-08 火力発電ユニット用高強度超合金及びその加工プロセス
EP21800520.5A EP4148157A1 (en) 2020-05-08 2021-05-08 High-strength high-temperature alloys for thermal power units and processing technique therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010383732.9 2020-05-08
CN202010383732.9A CN111394638B (zh) 2020-05-08 2020-05-08 一种火电机组用高强高温合金及其加工工艺

Publications (1)

Publication Number Publication Date
WO2021223760A1 true WO2021223760A1 (zh) 2021-11-11

Family

ID=71437484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092505 WO2021223760A1 (zh) 2020-05-08 2021-05-08 一种火电机组用高强高温合金及其加工工艺

Country Status (4)

Country Link
EP (1) EP4148157A1 (zh)
JP (1) JP2023522735A (zh)
CN (1) CN111394638B (zh)
WO (1) WO2021223760A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150169A (zh) * 2021-11-26 2022-03-08 中国航发北京航空材料研究院 一种涡轮增压器用高温合金k418c的制备方法
CN115261700A (zh) * 2022-08-11 2022-11-01 华能国际电力股份有限公司 一种耐蚀合金及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111394638B (zh) * 2020-05-08 2021-11-16 华能国际电力股份有限公司 一种火电机组用高强高温合金及其加工工艺
CN112453101B (zh) * 2020-11-10 2023-03-10 华能国际电力股份有限公司 一种铁基高温合金的大口径厚壁管材成型制备工艺
CN112359261B (zh) * 2020-11-10 2021-12-14 华能国际电力股份有限公司 一种高铝耐蚀高温合金的大口径厚壁管材制备加工工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103556073A (zh) * 2013-10-30 2014-02-05 西安热工研究院有限公司 一种700℃级超超临界火电机组再热器用高温合金铸管材料及其制备方法
CN110863099A (zh) * 2019-10-31 2020-03-06 河钢股份有限公司 一种提高镍铁基高温合金板材冲击韧性的热处理工艺
CN110952016A (zh) * 2019-12-16 2020-04-03 华能国际电力股份有限公司 一种高强高韧抗氧化铁镍基高温合金及其制备方法
CN111394638A (zh) * 2020-05-08 2020-07-10 华能国际电力股份有限公司 一种火电机组用高强高温合金及其加工工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2404281C1 (ru) * 2009-04-27 2010-11-20 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Жаропрочная сталь для энергетического оборудования
CN104532097B (zh) * 2014-12-25 2016-08-17 钢铁研究总院 高强高耐蚀镍基高温合金及其固溶时效热处理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103556073A (zh) * 2013-10-30 2014-02-05 西安热工研究院有限公司 一种700℃级超超临界火电机组再热器用高温合金铸管材料及其制备方法
CN110863099A (zh) * 2019-10-31 2020-03-06 河钢股份有限公司 一种提高镍铁基高温合金板材冲击韧性的热处理工艺
CN110952016A (zh) * 2019-12-16 2020-04-03 华能国际电力股份有限公司 一种高强高韧抗氧化铁镍基高温合金及其制备方法
CN111394638A (zh) * 2020-05-08 2020-07-10 华能国际电力股份有限公司 一种火电机组用高强高温合金及其加工工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150169A (zh) * 2021-11-26 2022-03-08 中国航发北京航空材料研究院 一种涡轮增压器用高温合金k418c的制备方法
CN115261700A (zh) * 2022-08-11 2022-11-01 华能国际电力股份有限公司 一种耐蚀合金及其制备方法

Also Published As

Publication number Publication date
CN111394638A (zh) 2020-07-10
JP2023522735A (ja) 2023-05-31
CN111394638B (zh) 2021-11-16
EP4148157A1 (en) 2023-03-15

Similar Documents

Publication Publication Date Title
WO2021223760A1 (zh) 一种火电机组用高强高温合金及其加工工艺
WO2020249113A1 (zh) 一种低铬耐蚀高强多晶高温合金及其制备方法
WO2020249115A1 (zh) 一种复合强化型耐蚀高温合金及其制备工艺
WO2022100169A1 (zh) 抗蠕变、长寿命镍基变形高温合金及其制备方法和应用
JP7342149B2 (ja) 析出強化型ニッケル基高クロム超合金およびその製造方法
CN106756253A (zh) 刷式密封用高性能镍基高温合金刷丝材料
CN110157993B (zh) 一种高强耐蚀铁镍基高温合金及其制备方法
CN111471897B (zh) 一种高强镍基高温合金制备成型工艺
CN113430445A (zh) 一种FeCrNiAlMoNb高熵合金及其制备方法
WO2021223758A1 (zh) 一种可形成复合耐蚀层的变形高温合金及其制备工艺
WO2021223759A1 (zh) 一种高强耐蚀镍基多晶高温合金及其制备方法
CN102899582A (zh) 一种高强度镍基耐蚀合金及其制造方法
CN111411266B (zh) 一种镍基高钨多晶高温合金的制备工艺
CN111394620B (zh) 一种高强镍基高温合金棒材的加工成型工艺
CN111534717B (zh) 一种高强镍钴基合金管材的制备成型工艺
CN101386940B (zh) Al-Mn-Mg-Cu-Ni-Ce合金的制造方法
CN103088265B (zh) 一种高温耐热合金及其制备方法
CN110004273B (zh) 一种控制fcc晶体结构合金中高温第二相的方法
CN111534718B (zh) 一种高铝、钛变形高温合金的制备工艺
CN116162845B (zh) 一种改善高硅奥氏体不锈钢热塑性的方法
CN104651749A (zh) 一种中碳多元素成分耐热钢
CN116810212A (zh) 一种用于高强韧结构钢增材修复实心焊丝及制备方法
CN113981274A (zh) 一种高强镍基高温合金铸锭的双级均匀化热处理方法
CN114959488A (zh) 一种工业纯铁中厚板及其生产方法
CN1170768A (zh) 一种加热炉用钴基合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800520

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022564104

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021800520

Country of ref document: EP

Effective date: 20221208

NENP Non-entry into the national phase

Ref country code: DE