WO2021223416A1 - 位置点补偿方法、装置、设备及存储介质 - Google Patents

位置点补偿方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2021223416A1
WO2021223416A1 PCT/CN2020/131476 CN2020131476W WO2021223416A1 WO 2021223416 A1 WO2021223416 A1 WO 2021223416A1 CN 2020131476 W CN2020131476 W CN 2020131476W WO 2021223416 A1 WO2021223416 A1 WO 2021223416A1
Authority
WO
WIPO (PCT)
Prior art keywords
theoretical
actual
reference coordinates
coordinates
distortion
Prior art date
Application number
PCT/CN2020/131476
Other languages
English (en)
French (fr)
Inventor
孟凡辉
常远
Original Assignee
苏州维嘉科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州维嘉科技股份有限公司 filed Critical 苏州维嘉科技股份有限公司
Publication of WO2021223416A1 publication Critical patent/WO2021223416A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95607Inspecting patterns on the surface of objects using a comparative method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95638Inspecting patterns on the surface of objects for PCB's

Definitions

  • the embodiments of the present application relate to the field of automation technology, for example, to a method, device, device, and storage medium for position compensation.
  • lamination In the manufacturing process of printed circuit boards, lamination is a crucial process. However, due to the implementation of the laminating process, it is possible to cause problems such as offset, rotation, expansion and contraction and distortion of the printed circuit board, and may cause drilling positioning errors in the production process of the reference point, or placing the printed circuit on the drilling platform Problems such as position deviation in the board process will cause the position of the reference point on the printed circuit board and other positions to change, which affects the determination of the target position for operations such as drilling, etching or laser direct writing on the printed circuit board.
  • the generally adopted method is to determine the coordinate position of the theoretical reference point and the actual reference point, and then calculate the transformation matrix from the theoretical reference point to the actual reference point, and calculate the theoretical position point on the printed circuit board after transformation according to the transformation matrix.
  • the actual location point is to determine the coordinate position of the theoretical reference point and the actual reference point, and then calculate the transformation matrix from the theoretical reference point to the actual reference point, and calculate the theoretical position point on the printed circuit board after transformation according to the transformation matrix.
  • the position point compensation method can only use the expected optical target points with a fixed shape distribution to approach the actual reference point.
  • the actual reference point often constitutes an arbitrary quadrilateral with an unfixed shape. Therefore, the compensation result obtained according to the position point compensation method The error is large, and the coordinates of the actual position point cannot be accurately determined, resulting in a large deviation of the drilling position.
  • the embodiments of the present application provide a location point compensation method, device, equipment, and storage medium, so as to improve the accuracy and reliability of location point compensation.
  • an embodiment of the present application provides a method for position compensation, which includes:
  • a mapping transformation relationship between the theoretical reference coordinates and the actual reference coordinates is determined, and the mapping transformation relationship is used to perform position point compensation processing on a target position point on the theoretical printed circuit board.
  • the embodiment of the present application further provides a position point compensation device, which includes:
  • the coordinate acquisition module is set to acquire the theoretical reference coordinates of the reference point of the theoretical printed circuit board in the processing platform coordinate system, and the reference point of the actual printed circuit board corresponding to the reference point of the theoretical printed circuit board in the processing platform coordinate system Actual reference coordinates;
  • a distortion parameter determination module configured to determine distortion parameters according to the theoretical reference coordinates and the actual reference coordinates
  • the mapping transformation relationship determination module is configured to determine the mapping transformation relationship between the theoretical reference coordinates and the actual reference coordinates according to the distortion parameters, and the mapping transformation relationship is used to position the target location points on the theoretical printed circuit board Compensation treatment.
  • an embodiment of the present application further provides a device, including: one or more processors;
  • Memory set to store one or more programs
  • the one or more processors implement the position point compensation method described in any of the embodiments of the present application.
  • the embodiment of the present application further provides a computer-readable storage medium on which a computer program is stored.
  • the program is executed by a processor, the location point as described in any of the embodiments of the present application is realized. Compensation method.
  • FIG. 1 is a flowchart of a location point compensation method provided by an embodiment of the application
  • FIG. 2 is a first schematic diagram of a position point compensation effect provided by an embodiment of this application.
  • FIG. 3 is a second schematic diagram of a position point compensation effect provided by an embodiment of this application.
  • FIG. 4 is a flowchart of a location point compensation method provided by another embodiment of the application.
  • FIG. 5 is a schematic structural diagram of a position point compensation device provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a location point compensation device provided by an embodiment of this application.
  • FIG. 1 is a flowchart of a method for compensation of position points provided by an embodiment of the application.
  • the position point compensation method provided in this embodiment can be applied to the case of drilling a printed circuit board or the like.
  • the embodiment of the present application may be applicable to the situation where other position points on the printed circuit board are transformed according to the change of the reference point, so as to accurately determine the actual coordinates of the other position points for drilling and other processing.
  • the method may be executed by a position point compensation device, which may be implemented by software and/or hardware.
  • the device may be integrated in a position point compensation device, which may be a printed circuit board (Printed Circuit Board, PCB) drilling machine, etc.
  • the method of the embodiment of the present application includes:
  • reference points are generally set on the printed circuit board to assist in the establishment of other reference features, and can also assist in defining the location of modeling features or component installation locations.
  • the position and number of the reference points can be set according to the theoretical printed circuit board shape. For a rectangular printed circuit board, four reference points can be set at the four right angles of the printed circuit board.
  • the midpoint position of the actual printed circuit board may deviate from the origin position in the processing platform coordinate system. Therefore, it needs to be based on the theoretical reference coordinates of the theoretical printed circuit board and the result obtained after production.
  • the actual reference coordinates of the actual printed circuit board determine the mapping transformation relationship to determine the position change of other points on the printed circuit board according to the mapping transformation relationship, and perform position point compensation for other position points.
  • the follow-up drilling accuracy control often takes the datum point as the measurement datum.
  • the traditional position compensation algorithm used in the drilling process will produce a non-negligible error at the actual datum point position, which leads to the reference point and drill reference point for the drilling process after visual positioning.
  • the actual reference point coordinates used in the hole accuracy control measurement are inconsistent, which reduces the complex process capability index (CPK) of the drilling accuracy control.
  • CPK complex process capability index
  • the drilling file is loaded to obtain the theoretical reference coordinates of the reference point on the theoretical printed circuit board, and the position of the reference point on the product is adjusted by a Charge Coupled Device (CCD) camera, an industrial lens, and a light source Take pictures and take images, perform image processing on the collected image data, and perform position calculations to determine the actual reference coordinates of the reference points on the actual printed circuit board.
  • CCD Charge Coupled Device
  • the position point compensation algorithm of the related technology can only compensate for the offset, rotation, and expansion and contraction changes of the actual printed circuit board.
  • the actual printed circuit board does not only have the offset, rotation, and expansion and contraction changes.
  • the quadrilateral formed by the connection of adjacent reference points may be any quadrilateral.
  • the position point compensation algorithm of the related technology can only approach the actual reference coordinates of the reference point with the expected reference point coordinates in a rectangular distribution.
  • the vertices on the quadrilateral where the point 101 and the point 101 are located are the theoretical reference coordinates
  • the vertices on the quadrilateral where the point 102 and the point 102 are located are the actual reference coordinates
  • the vertices on the quadrilateral where the point 103 and the point 103 are located are Predict the actual reference coordinates, that is, the coordinates obtained by transforming the theoretical reference coordinates after determining the mapping transformation relationship according to the position point compensation algorithm of the related technology.
  • the point 104 is another target location point to be processed
  • the point 105 is the coordinate obtained by transforming the theoretical location coordinates of the target location point after the mapping transformation relationship is determined according to the location point compensation algorithm of the related technology.
  • the coordinates obtained by transforming the theoretical reference coordinates have a larger deviation, a large position compensation error, and a low accuracy compared with the actual reference coordinates.
  • the unknown number representing the distortion parameter is preset, and the value representing the unknown number of the distortion parameter is calculated according to the relationship between the unknown number representing the distortion parameter, the theoretical reference coordinate and the actual reference coordinate.
  • the method further includes: based on the mapping transformation relationship, transforming the theoretical position coordinates of the target location points on the theoretical printed circuit board to obtain The actual position coordinates of the position point corresponding to the target position point on the actual printed circuit board; and the actual printed circuit board is drilled based on the actual position coordinates of the position point corresponding to the target position point.
  • the mapping transformation relationship can be a matrix.
  • the transformation matrix for transforming from the theoretical reference coordinates to the actual reference coordinates is determined, and the theoretical position coordinates of the target location points are transformed according to the transformation matrix, so as to obtain the actual printing
  • the actual position coordinates of the position point corresponding to the target position point on the circuit board are the coordinates transformed from the theoretical reference coordinates according to the mapping transformation relationship, that is, the points 103 and the vertices on the quadrilateral where the points 103 are located.
  • the predicted actual reference coordinates which are almost the same as the actual reference coordinates, that is, where the points 102 and 102 are located.
  • the vertices on the quadrilateral are predicted to coincide with the actual reference coordinates, the error of the position point compensation is small, and the accuracy is high. Since the distortion parameter is introduced in this application, the expected reference point coordinates of any quadrilateral distribution are used to approximate the actual reference coordinates, so that the determined mapping transformation relationship can truly reflect the changes of the actual printed circuit board, and the accuracy of position point compensation is improved.
  • distortion parameters are introduced when determining the mapping transformation relationship between the theoretical reference coordinates and the actual reference coordinates, so that the mapping transformation relationship can truly reflect the various types of deformations of the printed circuit board, thereby improving the position compensation. Accuracy.
  • FIG. 4 is a flowchart of a location point compensation method provided by another embodiment of the application.
  • the embodiment of the present application is to describe the foregoing embodiment S120.
  • the position point compensation method provided in this embodiment may include:
  • the distortion matrix can be Among them, a, b, d, and e are scaling and rotation parameters, c and f are translation parameters, and g and h are distortion parameters.
  • determining the distortion parameters according to the theoretical reference coordinates and the actual reference coordinates includes: solving the following equation to determine the distortion parameters:
  • (u, v) are the theoretical reference coordinates
  • (x, y) are the actual reference coordinates
  • H is the distortion matrix
  • a, b, d and e are the scaling and rotation parameters
  • c and f are the translation parameters
  • mapping relationship between the theoretical datum coordinates of all datum points to the actual datum coordinates is (u,v)->(x,y):
  • AT is the transposed matrix of matrix A.
  • the distortion parameters g and h, the rotation and scaling parameters a, b, d, and e, and the translation parameters c and f can be obtained, and then based on the above parameter values, the distortion matrix is constructed to obtain the distortion matrix H.
  • the least square solution is taken.
  • determining the mapping transformation relationship between the theoretical reference coordinates and the actual reference coordinates according to the distortion parameters includes: determining the The mapping transformation relationship between the theoretical reference coordinates and the actual reference coordinates.
  • the transformation matrix from theoretical base coordinates to actual base coordinates is will As the mapping transformation relationship between the theoretical reference coordinates and the actual reference coordinates.
  • the obtained distortion matrix H1 is The theoretical reference coordinates, actual reference coordinates, actual offset, the predicted actual reference coordinates obtained after compensation and the compensation error of the four reference points.
  • #nX is the abscissa of the nth reference point
  • #nY is the ordinate of the nth reference point
  • n 1, 2, 3, 4.
  • the obtained distortion matrix H2 is The theoretical reference coordinates, actual reference coordinates, actual offset, the predicted actual reference coordinates obtained after compensation and the compensation error of the four reference points are shown in Table 2.
  • the obtained distortion matrix H3 is The theoretical reference coordinates, actual reference coordinates, actual offset, the predicted actual reference coordinates obtained after compensation and the compensation error of the four reference points are shown in Table 3.
  • the technical solution of the embodiment of the present application introduces distortion parameters when determining the mapping transformation relationship between the theoretical reference coordinates and the actual reference coordinates, and uses a transformation matrix containing 8 parameters for modeling to determine the non-uniformity variation error, according to the distortion parameters Determine the distortion matrix, approximate the actual reference coordinates with the expected reference point coordinates of any quadrilateral distribution, so that the determined mapping transformation relationship can truly reflect the changes of the actual printed circuit board, improve the accuracy of position point compensation, and make the compensation error close to zero.
  • FIG. 5 is a schematic structural diagram of a position point compensation device provided by an embodiment of the application.
  • the device can be applied to the situation where the printed circuit board is drilled and so on.
  • the embodiment of the present application may be applicable to the situation where other position points on the printed circuit board are transformed according to the change of the reference point, so as to accurately determine the actual coordinates of the other position points for drilling and other processing.
  • the device can be implemented by software and/or hardware, and the device can be integrated in a position point compensation device, which may be a PCB drilling machine or the like.
  • the device includes: a coordinate acquisition module 310 configured to acquire theoretical reference coordinates of the theoretical printed circuit board reference point in the processing platform coordinate system, and the actual printed circuit board corresponding to the theoretical printed circuit board reference point The actual reference coordinates of the reference point in the coordinate system of the processing platform; the distortion parameter determination module 320 is configured to determine the distortion parameters according to the theoretical reference coordinates and the actual reference coordinates; the mapping transformation relationship determination module 330 is configured to determine the distortion parameters according to the theoretical reference coordinates and the actual reference coordinates; The distortion parameter determines the mapping transformation relationship between the theoretical reference coordinates and the actual reference coordinates, and the mapping transformation relationship is used to perform position point compensation processing on the target position point on the theoretical printed circuit board.
  • the distortion parameter determination module includes: a distortion matrix construction unit configured to construct a distortion matrix between theoretical reference coordinates and actual reference coordinates containing unknown distortion parameters; and the equation relationship determination unit is configured to An equation relationship between the theoretical reference coordinates, the actual reference coordinates, and the distortion matrix is established; the solving unit is configured to solve the equation relationship and determine the value of the distortion parameter.
  • the distortion parameter determination module includes: an equation solving unit configured to solve the following equation to determine the distortion parameter:
  • (u, v) is the theoretical reference coordinate
  • (x, y) is the actual reference coordinate
  • H is the distortion matrix
  • a, b, d, e are the scaling and rotation parameters
  • c, f are the translation parameters
  • s is the transform coefficient
  • s gu+hv+1.
  • the mapping transformation relationship determination module 330 includes a ratio determination unit configured to determine the difference between the theoretical reference coordinates and the actual reference coordinates according to the ratio of the distortion matrix to the transformation coefficient. Mapping transformation relationship.
  • the device further includes: a transformation module configured to transform the theoretical position coordinates of the target position point on the theoretical printed circuit board based on the mapping transformation relationship to obtain the actual printed circuit board and the target position The actual position coordinates of the position point corresponding to the point; the processing module is configured to perform drilling processing on the actual printed circuit board based on the actual position coordinates of the position point corresponding to the target position point.
  • a transformation module configured to transform the theoretical position coordinates of the target position point on the theoretical printed circuit board based on the mapping transformation relationship to obtain the actual printed circuit board and the target position The actual position coordinates of the position point corresponding to the point
  • the processing module is configured to perform drilling processing on the actual printed circuit board based on the actual position coordinates of the position point corresponding to the target position point.
  • the position point compensation device provided in the embodiment of the present application can execute the position point compensation method provided in any embodiment of the present application, and has functional modules corresponding to the execution method.
  • FIG. 6 is a schematic structural diagram of a location point compensation device provided by an embodiment of this application.
  • FIG. 6 shows a block diagram of an exemplary position point compensation device 412 suitable for implementing the embodiments of the present application.
  • the position point compensation device 412 shown in FIG. 6 is only an example, and should not bring any limitation to the function and scope of use of the embodiments of the present application.
  • the position point compensation device 412 may include: one or more processors 416; a memory 428, configured to store one or more programs, when the one or more programs are processed by the one or more The processor 416 executes, so that the one or more processors 416 implement the position point compensation method provided in the embodiment of the present application, including: obtaining the theoretical reference coordinates of the reference point of the theoretical printed circuit board in the processing platform coordinate system, and the actual The actual reference coordinates of the reference point corresponding to the reference point of the theoretical printed circuit board on the printed circuit board in the coordinate system of the processing platform; the distortion parameter is determined according to the theoretical reference coordinate and the actual reference coordinate; and the distortion parameter is determined according to the distortion parameter The mapping transformation relationship between the theoretical reference coordinates and the actual reference coordinates, and the mapping transformation relationship is used to perform position point compensation processing on the target position point on the theoretical printed circuit board.
  • the components of the location point compensation device 412 may include, but are not limited to: one or more processors or processors 416, a memory 428, and a bus 418 connecting different device components (including the memory 428 and the processor 416).
  • the bus 418 represents one or more of several types of bus structures, including a memory bus or a memory controller, a peripheral bus, a graphics acceleration port, a processor, or a local bus using any bus structure among multiple bus structures.
  • these architectures include but are not limited to Industry Standard Architecture (ISA) bus, MicroChannel Architecture (MAC) bus, enhanced ISA bus, Video Electronics Standards Association (Video Electronics Standards Association) , VESA) local bus and Peripheral Component Interconnect (PCI) bus.
  • the location point compensation device 412 includes a variety of computer device-readable storage media. These storage media may be any available storage media that can be accessed by the location compensation device 412, including volatile and non-volatile storage media, removable and non-removable storage media.
  • the memory 428 may include a computer-readable storage medium in the form of a volatile memory, such as a random access memory (RAM) 430 and/or a cache memory 432.
  • the location point compensation device 412 may include other removable/non-removable, volatile/nonvolatile computer device storage media.
  • the storage system 434 may include a non-removable, non-volatile magnetic storage medium for reading and writing (not shown in FIG. 6, usually referred to as a "hard drive").
  • each drive may be connected to the bus 418 through one or more data storage medium interfaces.
  • the memory 428 may include at least one program product, and the program product has a set (for example, at least one) program modules that are configured to perform the functions of multiple embodiments of the present application.
  • a program/utility tool 440 having a set of (at least one) program module 442 may be stored in, for example, the memory 428.
  • Such program module 442 includes, but is not limited to, an operating device, one or more application programs, other program modules, and program data Each of these examples or some combination may include the implementation of a network environment.
  • the program module 442 generally executes the functions and/or methods in the embodiments described in this application.
  • the position point compensation device 412 may also communicate with one or more external devices 414 (such as a keyboard, pointing device, display 426, etc.), and may also communicate with one or more devices that enable the user to interact with the position point compensation device 412, And/or communicate with any device (such as a network card, modem, etc.) that enables the position point compensation device 412 to communicate with one or more other computing devices. This communication can be performed through an input/output (I/O) interface 422.
  • the location compensation device 412 may also communicate with one or more networks (for example, a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet) through the network adapter 420. As shown in FIG.
  • the network adapter 420 communicates with other modules of the position point compensation device 412 through the bus 418. It should be understood that although not shown in FIG. 6, other hardware and/or software modules can be used in conjunction with the position point compensation device 412, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, independent disks Redundant Arrays (Redundant Arrays of Independent Disks, RAID) devices, tape drives, data backup storage devices, etc.
  • the processor 416 executes multiple functional applications and data processing by running at least one of the other programs among the multiple programs stored in the memory 428, for example, to implement a position point compensation method provided in an embodiment of the present application.
  • An embodiment of the present application provides a storage medium containing computer-executable instructions, when the computer-executable instructions are executed by a computer processor, used to perform a position point compensation method, including: obtaining a reference of a theoretical printed circuit board The theoretical reference coordinates of the point in the coordinate system of the processing platform, and the actual reference coordinates of the reference point corresponding to the reference point of the theoretical printed circuit board on the actual printed circuit board in the coordinate system of the processing platform; according to the theoretical reference coordinates and the The actual reference coordinates determine the distortion parameters; according to the distortion parameters, the mapping transformation relationship between the theoretical reference coordinates and the actual reference coordinates is determined, and the mapping transformation relationship is used to position the target location points on the theoretical printed circuit board Compensation treatment.
  • the computer storage media in the embodiments of the present application may adopt any combination of one or more computer-readable storage media.
  • the computer-readable storage medium may be a computer-readable signal storage medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor device, device, or device, or a combination of any of the above. More specific examples (non-exhaustive list) of computer-readable storage media include: electrical connections with one or more wires, portable computer disks, hard drives, RAM, Read-Only Memory (ROM), Erasable Programmable Read-Only Memory (EPROM) or flash memory, optical fiber, portable compact CD-ROM, optical storage device, magnetic storage device, or any suitable combination of the above.
  • the computer-readable storage medium may be any tangible storage medium that contains or stores a program, and the program may be used by or in combination with an instruction execution device, device, or device.
  • the computer-readable signal storage medium may include a data signal propagated in baseband or as a part of a carrier wave, and the computer-readable signal storage medium carries computer-readable program code. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal storage medium may also be any computer-readable storage medium other than the computer-readable storage medium.
  • the computer-readable storage medium may be sent, propagated or transmitted for use by or in combination with the instruction execution equipment, apparatus, or device The program used.
  • the program code contained on the computer-readable storage medium can be transmitted by any suitable storage medium, including but not limited to wireless, wire, optical cable, radio frequency (RF), etc., or any suitable combination of the above.
  • suitable storage medium including but not limited to wireless, wire, optical cable, radio frequency (RF), etc., or any suitable combination of the above.
  • the computer program code used to perform the operations of the present invention can be written in one or more programming languages or a combination thereof.
  • the programming languages include object-oriented programming languages—such as Java, Smalltalk, C++, and also conventional Procedural programming language-such as "C" language or similar programming language.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or device.
  • the remote computer may be connected to the user computer through any kind of network including LAN or WAN, or may be connected to an external computer (for example, using an Internet service provider to connect through the Internet).

Abstract

一种位置点补偿方法、装置、设备及存储介质,该方法包括:获取理论印刷电路板的基准点在处理平台坐标系中的理论基准坐标,以及实际印刷电路板上与理论印刷电路板的基准点对应的基准点在处理平台坐标系中的实际基准坐标(S110);根据理论基准坐标以及实际基准坐标,确定畸变参数(S120);根据畸变参数,确定理论基准坐标与实际基准坐标之间的映射变换关系,映射变换关系用于对理论印刷电路板上目标位置点进行位置点补偿处理(S130)。

Description

位置点补偿方法、装置、设备及存储介质
本申请要求在2020年05月07日提交中国专利局、申请号为202010376986.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及自动化技术领域,例如涉及一种位置点补偿方法、装置、设备及存储介质。
背景技术
在印刷电路板的生产制造过程中,层压是至关重要的工序。而由于层压工序的执行,有可能使印刷电路板产生偏移、旋转、涨缩和畸变等问题,并且有可能产生在基准点制作过程的钻孔定位误差,或者在钻孔平台放置印刷电路板过程中的位置偏差等问题,会导致印刷电路板上基准点位置以及其他位置点的变化,影响在印刷电路板上进行钻孔、刻蚀或激光直写等操作的目标位置确定。
对于上述问题,一般采用的方法为,确定理论基准点和实际基准点的坐标位置,进而计算出理论基准点到实际基准点的变换矩阵,根据变换矩阵计算印刷电路板上理论位置点经过变换后的实际位置点,
而位置点补偿方法,只能采用固定形状分布的预期光学靶点逼近实际的基准点,实际的基准点往往构成的是形状不固定的任意四边形,因此,根据该位置点补偿方法得到的补偿结果误差较大,无法精准确定实际位置点的坐标,导致钻孔位置偏移较大。
发明内容
本申请实施例提供一种位置点补偿方法、装置、设备及存储介质,以提高位置点补偿的准确性和可靠性。
在一个实施例中,本申请实施例提供了一种位置点补偿方法,该方法包括:
获取理论印刷电路板的基准点在处理平台坐标系中的理论基准坐标,以及实际印刷电路板上与理论印刷电路板的基准点对应的基准点在处理平台坐标系中的实际基准坐标;
根据所述理论基准坐标以及所述实际基准坐标,确定畸变参数;
根据所述畸变参数,确定所述理论基准坐标与所述实际基准坐标之间的映射变换关系,映射变换关系用于对理论印刷电路板上目标位置点进行位置点补偿处理。
在另一个实施例中,本申请实施例还提供了一种位置点补偿装置,该装置包括:
坐标获取模块,设置为获取理论印刷电路板的基准点在处理平台坐标系中的理论基准坐标,以及实际印刷电路板上与理论印刷电路板的基准点对应的基准点在处理平台坐标系中的实际基准坐标;
畸变参数确定模块,设置为根据所述理论基准坐标以及所述实际基准坐标,确定畸变参数;
映射变换关系确定模块,设置为根据所述畸变参数,确定所述理论基准坐标与所述实际基准坐标之间的映射变换关系,映射变换关系用于对理论印刷电路板上目标位置点进行位置点补偿处理。
在另一个实施例中,本申请实施例还提供了一种设备,包括:一个或多个处理器;
存储器,设置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现本申请实施例任一所述的位置点补偿方法。
在另一个实施例中,本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请实施例中任一所述的位置点补偿方法。
附图说明
图1为本申请的一种实施例提供的位置点补偿方法的流程图;
图2为本申请的一种实施例提供的位置点补偿效果第一示意图;
图3为本申请的一种实施例提供的位置点补偿效果第二示意图;
图4为本申请的另一实施例提供的位置点补偿方法的流程图;
图5为本申请的一种实施例提供的位置点补偿装置结构示意图;
图6为本申请的一种实施例提供的一种位置点补偿设备的结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
图1为本申请的一种实施例提供的位置点补偿方法的流程图。本实施例提供的位置点补偿方法可适用于对印刷电路板进行钻孔等处理的情况。本申请实施例可以适用于根据基准点的变化,对印刷电路板上的其他位置点进行变换,以准确确定其他位置点的实际坐标进行钻孔等处理的情况。该方法可以由位置点补偿装置来执行,该装置可以由软件和/或硬件的方式实现,该装置可以集成在位置点补偿设备中,该位置点补偿设备可以为印刷电路板(Printed Circuit Board,PCB)钻孔机等。参见图1,本申请实施例的方法包括:
S110、获取理论印刷电路板的基准点在处理平台坐标系中的理论基准坐标,以及实际印刷电路板上与理论印刷电路板的基准点对应的基准点在处理平台坐标系中的实际基准坐标。
在印刷电路板设计阶段,一般会在印刷电路板上设置基准点,用于辅助建立其他基准特征,也可辅助定义建模特征的位置或组件安装定位。基准点的位置和数量可以根据理论印刷电路板的形状进行设定,对于矩形的印刷电路板,可以在印刷电路板的四个直角处设置四个基准点。
在基准点制作过程中,往往需要进行钻通孔、菲林刻蚀或激光直写等工艺,而在进行上述工艺的过程中,很可能导致基准点的位置偏移,偏移量可能达到±25微米。另外,在印刷电路板制作过程中,需要经过层压等制作工序,很可能会产生非均匀形变,印刷电路板多个点的涨缩系数不同,因此可能导致理论印刷电路板的四个基准点构成的矩形在制作之后,由于基准点位置的变化,变为任意形状的四边形。并且,将实际印刷电路板放置于处理平台上时,实际印刷电路板的中点位置可能偏离处理平台坐标系中的原点位置,因此,需要根据理论印刷电路板的理论基准坐标以及制作后得到的实际印刷电路板的实际基准坐标,确定映射变换关系,以根据映射变换关系确定印刷电路板上其他位置点的位置变化,对其他位置点进行位置点补偿。后续钻孔精度管控往往以基准点 为测量基准,钻孔加工使用的传统位置补偿算法在实际基准点位置处会产生不可忽略的误差,导致了视觉定位后钻孔加工所参考的基准点和钻孔精度管控测量时使用的实际基准点坐标不一致,降低钻孔精度管控的制程能力的指标(Complex Process Capability index,CPK)。
在本申请实施例中,加载钻孔文件,获取理论印刷电路板上基准点的理论基准坐标,并通过电荷耦合器件(Charge Coupled Device,CCD)相机、工业镜头及光源对产品上的基准点位置进行拍照取像,对采集的图像数据进行图像处理,并进行位置运算确定实际印刷电路板上基准点的实际基准坐标。
S120、根据所述理论基准坐标以及所述实际基准坐标,确定畸变参数。
相关技术的位置点补偿算法,只能对实际印刷电路板的偏移、旋转和涨缩的变化进行补偿,而实际印刷电路版实际上并不是只存在偏移、旋转和涨缩的变化,而是同时存在其他形式的畸变,相邻基准点连线构成的四边形可能为任意四边形。而相关技术的位置点补偿算法只能以矩形分布的预期基准点坐标逼近基准点的实际基准坐标。如图2所示,点101以及点101所在的四边形上的顶点为理论基准坐标,点102以及点102所在的四边形上的顶点为实际基准坐标,点103以及点103所在的四边形上的顶点为预测实际基准坐标,即根据相关技术的位置点补偿算法确定映射变换关系后,对理论基准坐标进行变换得到的坐标。点104为其他待处理的目标位置点,点105为根据相关技术的位置点补偿算法确定映射变换关系后,对目标位置点的理论位置坐标进行变换得到的坐标。由图2可以看出,通过相关技术的位置点补偿算法得到映射变换关系之后,对理论基准坐标进行变换得到的坐标与实际基准坐标相比,偏差较大,位置补偿误差大,精确度低。而在本申请实施例中,不仅考虑偏移、旋转和涨缩的变化,而且考虑到实际印刷电路板的畸变等形变,根据理论基准坐标和实际基准坐标,确定实际印刷电路板的畸变参数。一实施例中,预先设定代表畸变参数的未知数,再根据代表畸变参数的未知数、理论基准坐标以及实际基准坐标之间的关系,计算出代表畸变参数的未知数的值。
S130、根据所述畸变参数,确定所述理论基准坐标与所述实际基准坐标之间的映射变换关系,映射变换关系用于对理论印刷电路板上目标位置点进行位置点补偿处理。
确定所述理论基准坐标与所述实际基准坐标之间的映射变换关系之后,所述方法还包括:基于所述映射变换关系,对理论印刷电路板上目标位置点的理论位置坐标进行变换,得到实际印刷电路板上与目标位置点对应的位置点的实际位置坐标;基于与所述目标位置点对应的位置点的实际位置坐标,对实际印刷电路板进行钻孔处理。
映射变换关系可以为矩阵,示例性的,根据畸变参数,确定从理论基准坐标到实际基准坐标之间变换的变换矩阵,根据该变换矩阵对目标位置点的理论位置坐标进行变换,从而得到实际印刷电路版上与目标位置点对应的位置点的实际位置坐标。如图3所示,根据映射变换关系对理论基准坐标变换后的坐标,即点103以及点103所在的四边形上的顶点为预测实际基准坐标,几乎和实际基准坐标,即点102以及点102所在的四边形上的顶点为预测实际基准坐标重合,位置点补偿的误差小,准确度高。由于本申请中引入了畸变参数,从而以任意四边形分布的预期基准点坐标逼近实际基准坐标,进而使确定的映射变换关系能够真实反映实际印刷电路板的变化,提高位置点补偿的准确度。
本申请实施例中,通过在确定理论基准坐标与实际基准坐标之间映射变换关系时,引入畸变参数,从而使映射变换关系能够真实反映印刷电路板多种类型的形变,从而提高位置点补偿的精确度。
图4为本申请的另一实施例提供的位置点补偿方法的流程图。本申请实施例为对上述实施例S120进行说明,未在本实施例中描述的细节详见上述实施例。参见图4,本实施例提供的位置点补偿方法可以包括:
S121、构建包含未知畸变参数的理论基准坐标与实际基准坐标之间的畸变矩阵。
示例性的,畸变矩阵可以为
Figure PCTCN2020131476-appb-000001
其中,a、b、d和e为缩放和旋转参数,c和f为平移参数,g和h为畸变参数。
S122、建立所述理论基准坐标、所述实际基准坐标以及所述畸变矩阵之间的等式关系。
示例性的,当所述基准点为至少四个时,根据所述理论基准坐标以及所述 实际基准坐标,确定畸变参数,包括:对如下等式进行求解,确定所述畸变参数:
Figure PCTCN2020131476-appb-000002
其中,(u,v)为理论基准坐标,(x,y)为实际基准坐标,H为畸变矩阵,a、b、d和e为缩放和旋转参数,c和f为平移参数,g和h为畸变参数,s为变换系数,s=gu+hv+1。
S123、对所述等式关系进行求解,确定所述畸变参数的值。
示例性的,对上述等式求解,包括:
Figure PCTCN2020131476-appb-000003
Figure PCTCN2020131476-appb-000004
Figure PCTCN2020131476-appb-000005
作直接线性变换,可得:
Figure PCTCN2020131476-appb-000006
对于所有基准点的理论基准坐标到实际基准坐标的映射关系为(u,v)->(x,y):
Figure PCTCN2020131476-appb-000007
则有线性方程:A*t=b,可求得:t=(A T*A) -1*(A T*b)。其中A T为矩阵A的 转置矩阵。从而可以求得畸变参数g和h,旋转和缩放参数a、b、d和e以及平移参数c和f,进而根据以上参数值,构建畸变矩阵,得到畸变矩阵H。在本申请实施例中,当基准点超过4个时,取最小二乘解。
在本申请实施例中,根据所述畸变参数,确定所述理论基准坐标与所述实际基准坐标之间的映射变换关系,包括:根据所述畸变矩阵与所述变换系数的比值,确定所述理论基准坐标与所述实际基准坐标之间的映射变换关系。
示例性的,由于
Figure PCTCN2020131476-appb-000008
因此,从理论基准坐标到实际基准坐标之间的变换矩阵为
Figure PCTCN2020131476-appb-000009
Figure PCTCN2020131476-appb-000010
作为理论基准坐标与实际基准坐标之间的映射变换关系。
在本申请实施例中,示例性的给出相关技术的位置点补偿算法与本申请实施例中的位置点补偿算法的结果对比。在采用传统的部分仿射变换算法进行位置点补偿时,得到的畸变矩阵H1为
Figure PCTCN2020131476-appb-000011
四个基准点的理论基准坐标、实际基准坐标、实际偏移、补偿后得到的预测实际基准坐标和补偿误差如表1所示。其中,#nX为第n个基准点的横坐标,#nY为第n个基准点的纵坐标,n=1,2,3,4。
表1
Figure PCTCN2020131476-appb-000012
在采用传统的全仿射变换算法进行位置点补偿时,得到的畸变矩阵H2为
Figure PCTCN2020131476-appb-000013
四个基准点的理论基准坐标、实际基准坐标、实际偏移、补偿后得到的预测实际基准坐标和补偿误差如表2所示。
表2
Figure PCTCN2020131476-appb-000014
在采用本申请实施例中的位置点补偿算法进行位置点补偿时,得到的畸变矩阵H3为
Figure PCTCN2020131476-appb-000015
四个基准点的理论基准坐标、实际基准坐标、实际偏移、补偿后得到的预测实际基准坐标和补偿误差如表3所示。
表3
Figure PCTCN2020131476-appb-000016
由上述数据可知,在实际偏移达到0.2mm时,根据传统的位置点补偿算法补偿后的最大补偿误差达到了±0.0805mm,而根据本申请实施例中的位置点补偿算法补偿后的补偿误差为0,有效提高了位置点补偿的精确度。
本申请实施例的技术方案,通过在确定理论基准坐标与实际基准坐标之间 映射变换关系时,引入畸变参数,采用包含8个参数的变换矩阵进行建模确定非均匀性变误差,根据畸变参数确定畸变矩阵,以任意四边形分布的预期基准点坐标逼近实际基准坐标,进而使确定的映射变换关系能够真实反映实际印刷电路板的变化,提高位置点补偿的准确度,使补偿误差接近于零。
图5为本申请的一种实施例提供的位置点补偿装置结构示意图。该装置可适用于对印刷电路板进行钻孔等处理的情况。本申请实施例可以适用于根据基准点的变化,对印刷电路板上的其他位置点进行变换,以准确确定其他位置点的实际坐标进行钻孔等处理的情况。该装置可以由软件和/或硬件的方式实现,该装置可以集成在位置点补偿设备中,该位置点补偿设备可以为PCB钻孔机等。参见图5,该装置包括:坐标获取模块310,设置为获取理论印刷电路板的基准点在处理平台坐标系中的理论基准坐标,以及实际印刷电路板上与理论印刷电路板的基准点对应的基准点在处理平台坐标系中的实际基准坐标;畸变参数确定模块320,设置为根据所述理论基准坐标以及所述实际基准坐标,确定畸变参数;映射变换关系确定模块330,设置为根据所述畸变参数,确定所述理论基准坐标与所述实际基准坐标之间的映射变换关系,映射变换关系用于对理论印刷电路板上目标位置点进行位置点补偿处理。
在本申请实施例中,所述畸变参数确定模块,包括:畸变矩阵构建单元,设置为构建包含未知畸变参数的理论基准坐标与实际基准坐标之间的畸变矩阵;等式关系确定单元,设置为建立所述理论基准坐标、所述实际基准坐标以及所述畸变矩阵之间的等式关系;求解单元,设置为对所述等式关系进行求解,确定所述畸变参数的值。
在本申请实施例中,所述基准点的数量为至少四个;所述畸变参数确定模块,包括:等式求解单元,设置为对如下等式进行求解,确定所述畸变参数:
Figure PCTCN2020131476-appb-000017
其中,(u,v)为理论基准坐标,(x,y)为实际基准坐标,H为畸变矩阵,a、b、d、e为缩放和旋转参数,c、f为平移参数,g、h为畸变参数,s为变换系数,s=gu+hv+1。
在本申请实施例中,映射变换关系确定模块330,包括:比值确定单元,设 置为根据所述畸变矩阵与所述变换系数的比值,确定所述理论基准坐标与所述实际基准坐标之间的映射变换关系。
在本申请实施例中,所述装置还包括:变换模块,设置为基于所述映射变换关系,对理论印刷电路板上目标位置点的理论位置坐标进行变换,得到实际印刷电路板上与目标位置点对应的位置点的实际位置坐标;处理模块,设置为基于与所述目标位置点对应的位置点的实际位置坐标,对实际印刷电路板进行钻孔处理。
本申请实施例所提供的位置点补偿装置可执行本申请任意实施例所提供的位置点补偿方法,具备执行方法相应的功能模块。
图6为本申请的一种实施例提供的一种位置点补偿设备的结构示意图。图6示出了适于用来实现本申请实施例的示例性位置点补偿设备412的框图。图6显示的位置点补偿设备412仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。
如图6所示,位置点补偿设备412可以包括:一个或多个处理器416;存储器428,设置为存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器416执行,使得所述一个或多个处理器416实现本申请实施例所提供的位置点补偿方法,包括:获取理论印刷电路板的基准点在处理平台坐标系中的理论基准坐标,以及实际印刷电路板上理论印刷电路板的基准点对应的基准点在处理平台坐标系中的实际基准坐标;根据所述理论基准坐标以及所述实际基准坐标,确定畸变参数;根据所述畸变参数,确定所述理论基准坐标与所述实际基准坐标之间的映射变换关系,映射变换关系用于对理论印刷电路板上目标位置点进行位置点补偿处理。
位置点补偿设备412的组件可以包括但不限于:一个或者多个处理器或者处理器416,存储器428,连接不同设备组件(包括存储器428和处理器416)的总线418。
总线418表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构 (Industry Standard Architecture,ISA)总线,微通道体系结构(MicroChannel Architecture,MAC)总线,增强型ISA总线、视频电子标准协会(Video Electronics Standards Association,VESA)局域总线以及外围组件互连(Peripheral Component Interconnect,PCI)总线。
位置点补偿设备412包括多种计算机设备可读存储介质。这些存储介质可以是任何能够被位置点补偿设备412访问的可用存储介质,包括易失性和非易失性存储介质,可移动的和不可移动的存储介质。
存储器428可以包括易失性存储器形式的计算机设备可读存储介质,例如随机存取存储器(Random Access Memory,RAM)430和/或高速缓存存储器432。位置点补偿设备412可以包括其它可移动/不可移动的、易失性/非易失性计算机设备存储介质。仅作为举例,存储系统434可以包括用于读写不可移动的、非易失性磁存储介质(图6未显示,通常称为“硬盘驱动器”)。尽管图6中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如光盘-只读存储器(Compact Disc-Read-Only Memory,CD-ROM),数字视盘-只读存储器(Digital Video Disc-Read-Only Memory,DVD-ROM)或者其它光存储介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据存储介质接口与总线418相连。存储器428可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本申请多个实施例的功能。
具有一组(至少一个)程序模块442的程序/实用工具440,可以存储在例如存储器428中,这样的程序模块442包括但不限于操作设备、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块442通常执行本申请所描述的实施例中的功能和/或方法。
位置点补偿设备412也可以与一个或多个外部设备414(例如键盘、指向设备、显示器426等)通信,还可与一个或者多个使得用户能与该位置点补偿设备412交互的设备通信,和/或与使得该位置点补偿设备412能与一个或多个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口422进行。并且,位置点补偿设备412还可以通过网络适配器420与一个或者多个网络(例如局域网(Local Area Network,LAN), 广域网(Wide Area Network,WAN)和/或公共网络,例如因特网)通信。如图6所示,网络适配器420通过总线418与位置点补偿设备412的其它模块通信。应当明白,尽管图6中未示出,可以结合位置点补偿设备412使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、独立磁盘冗余阵列(Redundant Arrays of Independent Disks,RAID)设备、磁带驱动器以及数据备份存储设备等。
处理器416通过运行存储在存储器428中的多个程序中其他程序的至少一个,从而执行多种功能应用以及数据处理,例如实现本申请实施例所提供的一种位置点补偿方法。
本申请的一种实施例提供了一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行位置点补偿方法,包括:获取理论印刷电路板的基准点在处理平台坐标系中的理论基准坐标,以及实际印刷电路板上与理论印刷电路板的基准点对应的基准点在处理平台坐标系中的实际基准坐标;根据所述理论基准坐标以及所述实际基准坐标,确定畸变参数;根据所述畸变参数,确定所述理论基准坐标与所述实际基准坐标之间的映射变换关系,映射变换关系用于对理论印刷电路板上目标位置点进行位置点补偿处理。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的存储介质的任意组合。计算机可读存储介质可以是计算机可读信号存储介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的设备、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、RAM、只读存储器(Read-Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)或闪存、光纤、便携式紧凑CD-ROM、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请实施例中,计算机可读存储介质可以是任何包含或存储程序的有形存储介质,该程序可以被指令执行设备、装置或者器件使用或者与其结合使用。
计算机可读的信号存储介质可以包括在基带中或者作为载波一部分传播的数据信号,计算机可读的信号存储介质中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号存储介质还可以是计算机可读存储介质以外的任何计算机可读存储介质,该计算机可读存储介质可以发送、传播或者传输用于由指令执行设备、装置或者器件使用或者与其结合使用的程序。
计算机可读存储介质上包含的程序代码可以用任何适当的存储介质传输,包括——但不限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本发明操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或设备上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括LAN或WAN—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。

Claims (10)

  1. 一种位置点补偿方法,包括:
    获取理论印刷电路板的基准点在处理平台坐标系中的理论基准坐标,以及实际印刷电路板上与所述理论印刷电路板的基准点对应的基准点在处理平台坐标系中的实际基准坐标;
    根据所述理论基准坐标以及所述实际基准坐标,确定畸变参数;
    根据所述畸变参数,确定所述理论基准坐标与所述实际基准坐标之间的映射变换关系,所述映射变换关系用于对所述理论印刷电路板上目标位置点进行位置点补偿处理。
  2. 根据权利要求1所述的方法,其中,根据所述理论基准坐标以及所述实际基准坐标,确定畸变参数,包括:
    构建包含未知畸变参数的理论基准坐标与实际基准坐标之间的畸变矩阵;
    建立所述理论基准坐标、所述实际基准坐标以及所述畸变矩阵之间的等式关系;
    对所述等式关系进行求解,确定所述畸变参数的值。
  3. 根据权利要求1或2所述的方法,其中,所述基准点的数量为至少四个;
    根据所述理论基准坐标以及所述实际基准坐标,确定畸变参数,包括:
    对如下等式进行求解,确定所述畸变参数:
    Figure PCTCN2020131476-appb-100001
    其中,(u,v)为理论基准坐标,(x,y)为实际基准坐标,H为畸变矩阵,a、b、d和e为缩放和旋转参数,c和f为平移参数,g和h为畸变参数,s为变换系数,s=gu+hv+1。
  4. 根据权利要求3所述的方法,其中,根据所述畸变参数,确定所述理论基准坐标与所述实际基准坐标之间的映射变换关系,包括:
    根据所述畸变矩阵与所述变换系数的比值,确定所述理论基准坐标与所述实际基准坐标之间的映射变换关系。
  5. 根据权利要求1所述的方法,在确定所述理论基准坐标与所述实际基准坐标之间的映射变换关系之后,还包括:
    基于所述映射变换关系,对所述理论印刷电路板上目标位置点的理论位置坐标进行变换,得到所述实际印刷电路板上与所述目标位置点对应的位置点的 实际位置坐标;
    基于与所述目标位置点对应的位置点的实际位置坐标,对所述实际印刷电路板进行钻孔处理。
  6. 一种位置点补偿装置,包括:
    坐标获取模块,设置为获取理论印刷电路板的基准点在处理平台坐标系中的理论基准坐标,以及实际印刷电路板上与所述理论印刷电路板的基准点对应的基准点在处理平台坐标系中的实际基准坐标;
    畸变参数确定模块,设置为根据所述理论基准坐标以及所述实际基准坐标,确定畸变参数;
    映射变换关系确定模块,设置为根据所述畸变参数,确定所述理论基准坐标与所述实际基准坐标之间的映射变换关系,所述映射变换关系用于对所述理论印刷电路板上目标位置点进行位置点补偿处理。
  7. 根据权利要求6所述的装置,其中,所述畸变参数确定模块,包括:
    畸变矩阵构建单元,设置为构建包含未知畸变参数的理论基准坐标与实际基准坐标之间的畸变矩阵;
    等式关系确定单元,设置为建立所述理论基准坐标、所述实际基准坐标以及所述畸变矩阵之间的等式关系;
    求解单元,设置为对所述等式关系进行求解,确定所述畸变参数的值。
  8. 根据权利要求6或7所述的装置,其中,所述基准点的数量为至少四个;
    所述畸变参数确定模块,包括:
    等式求解单元,设置为对如下等式进行求解,确定所述畸变参数:
    Figure PCTCN2020131476-appb-100002
    其中,(u,v)为理论基准坐标,(x,y)为实际基准坐标,H为畸变矩阵,a、b、d、e为缩放和旋转参数,c、f为平移参数,g、h为畸变参数,s为变换系数,s=gu+hv+1。
  9. 一种位置点补偿设备,其包括:
    至少一个处理器;
    存储器,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理 器实现如权利要求1-5中任一项所述的位置点补偿方法。
  10. 一种计算机可读存储介质,存储有计算机程序,该程序被处理器执行时实现如权利要求1-5中任一项所述的位置点补偿方法。
PCT/CN2020/131476 2020-05-07 2020-11-25 位置点补偿方法、装置、设备及存储介质 WO2021223416A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010376986.8 2020-05-07
CN202010376986.8A CN111579561B (zh) 2020-05-07 2020-05-07 位置点补偿方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021223416A1 true WO2021223416A1 (zh) 2021-11-11

Family

ID=72115200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131476 WO2021223416A1 (zh) 2020-05-07 2020-11-25 位置点补偿方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN111579561B (zh)
WO (1) WO2021223416A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295056A (zh) * 2021-12-31 2022-04-08 普聚智能系统(苏州)有限公司 一种激光加工设备的视觉定位系统快速校正方法及应用
CN115471551A (zh) * 2022-09-13 2022-12-13 苏州市凌臣采集计算机有限公司 点胶点位的坐标获取方法、装置、计算机设备及可读存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111579561B (zh) * 2020-05-07 2021-02-19 维嘉数控科技(苏州)有限公司 位置点补偿方法、装置、设备及存储介质
CN113500760B (zh) * 2021-07-23 2023-05-23 江苏亨通光电股份有限公司 一种挤塑速度补偿方法、系统、计算机设备及存储介质
CN115775279B (zh) * 2023-02-13 2023-05-16 苏州希盟科技股份有限公司 点胶定位方法、装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020085188A1 (en) * 2000-12-26 2002-07-04 Hall Richard Ronald Apparatus and method for compensating for distortion of a printed circuit workpiece substrate
CN1860835A (zh) * 2004-02-17 2006-11-08 日立比亚机械股份有限公司 衬底的制造方法
CN101480759A (zh) * 2009-01-22 2009-07-15 华中科技大学 一种激光切割挠性印刷电路板的网格间高精度拼接方法
CN101502917A (zh) * 2009-01-22 2009-08-12 华中科技大学 一种挠性印刷电路板的紫外激光切割的定位与变形校正方法
CN109794988A (zh) * 2019-02-13 2019-05-24 深南电路股份有限公司 穿孔二维码的加工方法、装置及计算机可读存储介质
CN111579561A (zh) * 2020-05-07 2020-08-25 维嘉数控科技(苏州)有限公司 位置点补偿方法、装置、设备及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101870039B (zh) * 2010-06-12 2014-01-22 中国电子科技集团公司第四十五研究所 双工作台驱动激光加工机及其加工方法
CN103116889A (zh) * 2013-02-05 2013-05-22 海信集团有限公司 一种定位方法及电子设备
CN107274453A (zh) * 2017-06-12 2017-10-20 哈尔滨理工大学 一种结合标定与校正的摄像机三维测量装置、系统及方法
CN109870883B (zh) * 2019-04-16 2020-11-06 苏州源卓光电科技有限公司 一种用于直写式曝光机的标定板的位置补偿方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020085188A1 (en) * 2000-12-26 2002-07-04 Hall Richard Ronald Apparatus and method for compensating for distortion of a printed circuit workpiece substrate
CN1860835A (zh) * 2004-02-17 2006-11-08 日立比亚机械股份有限公司 衬底的制造方法
CN101480759A (zh) * 2009-01-22 2009-07-15 华中科技大学 一种激光切割挠性印刷电路板的网格间高精度拼接方法
CN101502917A (zh) * 2009-01-22 2009-08-12 华中科技大学 一种挠性印刷电路板的紫外激光切割的定位与变形校正方法
CN109794988A (zh) * 2019-02-13 2019-05-24 深南电路股份有限公司 穿孔二维码的加工方法、装置及计算机可读存储介质
CN111579561A (zh) * 2020-05-07 2020-08-25 维嘉数控科技(苏州)有限公司 位置点补偿方法、装置、设备及存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295056A (zh) * 2021-12-31 2022-04-08 普聚智能系统(苏州)有限公司 一种激光加工设备的视觉定位系统快速校正方法及应用
CN115471551A (zh) * 2022-09-13 2022-12-13 苏州市凌臣采集计算机有限公司 点胶点位的坐标获取方法、装置、计算机设备及可读存储介质
CN115471551B (zh) * 2022-09-13 2023-09-01 苏州市凌臣采集计算机有限公司 点胶点位的坐标获取方法、装置、计算机设备及可读存储介质

Also Published As

Publication number Publication date
CN111579561B (zh) 2021-02-19
CN111579561A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2021223416A1 (zh) 位置点补偿方法、装置、设备及存储介质
WO2020019962A1 (zh) 一种增强现实设备的坐标系校准方法及装置
CN110148454B (zh) 一种摆位方法、装置、服务器及存储介质
CN113284191A (zh) 一种基于视觉引导的点胶方法、系统、设备及存储介质
WO2022246898A1 (zh) 用于电子束缺陷检测的像素尺寸校准方法和装置及设备
CN113211445A (zh) 一种机器人参数标定方法、装置、设备及存储介质
CN112902961B (zh) 基于机器视觉定位的标定方法、介质、标定设备及系统
CN108759818A (zh) 一种超高精度导星敏感器姿态确定的方法
WO2024055470A1 (zh) 旋转中心的标定方法、装置、计算机设备和存储介质
CN113313772B (zh) 一种标定方法、装置、电子设备及存储介质
WO2022252277A1 (zh) 校准om和sem坐标关系的方法和装置、设备和存储介质
US6016599A (en) Device and method for mounting electronic parts
CN115713563A (zh) 一种相机标定的方法、装置、电子设备及存储介质
CN110736910A (zh) Pcb的飞针测试方法、测试装置、测试设备及存储介质
CN112132909A (zh) 参数获取方法及装置、媒体数据处理方法和存储介质
CN108253931B (zh) 一种双目立体视觉测距方法及其测距装置
Weilong et al. On camera calibration and distortion correction based on bundle adjustment
WO2022237054A1 (zh) 芯片安装位置的调整方法、装置、介质和电子设备
CN116342712B (zh) 基于消失点一致性的空间相机在轨畸变系数标定方法、介质及设备
CN110264524B (zh) 一种标定方法、装置、系统及存储介质
CN113759348B (zh) 一种雷达标定方法、装置、设备及存储介质
TWI764227B (zh) 邊緣觸控處理方法及利用其之觸控模組與資訊處理裝置
JP2013003753A (ja) 画像処理装置、画像処理方法および画像処理プログラム
JPH04361104A (ja) 基板マーク位置検出方式
CN116513576A (zh) 一种贴膜方法、装置、电子设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934741

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20934741

Country of ref document: EP

Kind code of ref document: A1