WO2021223329A1 - 一种x射线成像系统及方法 - Google Patents

一种x射线成像系统及方法 Download PDF

Info

Publication number
WO2021223329A1
WO2021223329A1 PCT/CN2020/104337 CN2020104337W WO2021223329A1 WO 2021223329 A1 WO2021223329 A1 WO 2021223329A1 CN 2020104337 W CN2020104337 W CN 2020104337W WO 2021223329 A1 WO2021223329 A1 WO 2021223329A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
display screen
daec
subject
projection
Prior art date
Application number
PCT/CN2020/104337
Other languages
English (en)
French (fr)
Inventor
陈健
刘建强
Original Assignee
江苏康众数字医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏康众数字医疗科技股份有限公司 filed Critical 江苏康众数字医疗科技股份有限公司
Priority to EP20934849.9A priority Critical patent/EP4147642A4/en
Publication of WO2021223329A1 publication Critical patent/WO2021223329A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/22Image preprocessing by selection of a specific region containing or referencing a pattern; Locating or processing of specific regions to guide the detection or recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/08Auxiliary means for directing the radiation beam to a particular spot, e.g. using light beams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • A61B6/544Control of apparatus or devices for radiation diagnosis involving control of exposure dependent on patient size
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/545Control of apparatus or devices for radiation diagnosis involving automatic set-up of acquisition parameters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/25Determination of region of interest [ROI] or a volume of interest [VOI]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/03Recognition of patterns in medical or anatomical images

Definitions

  • the invention relates to the imaging field of X-ray detectors, in particular to an X-ray imaging system and method.
  • the beamer is just a simple X-ray range adjustment device; 2.
  • the automatic exposure control area is limited, and additional devices (ionization chamber) and cost are required.
  • the device absorbs X-rays and causes a waste of dose, and patient positioning needs Disadvantages such as precise location.
  • the present invention provides an X-ray imaging system and method, which can improve the coordinated action of the beam device and the detector, and only need simple operation to automatically and intelligently complete the examination of the subject For X-ray inspection, the technical solutions are as follows:
  • the present invention provides an X-ray imaging system, which includes an X-ray source tube, a high-voltage generator, a beamer, a digital flat-panel detector, and a computing host.
  • the computing host implements the X-ray source tube, high-voltage The signal transmission and processing between the generator, the light beamer and the digital flat panel detector.
  • the light beamer includes a light beam sheet assembly, which makes the light form a projection area on the subject, and the digital
  • the flat-panel detector has the DAEC function and can generate DAEC parameters, which include the actual DAEC response area and the target gray value,
  • the system also includes a PLC and a camera for collecting the position and/or contour of the subject,
  • the PLC displays the image captured by the camera on the display screen, and generates a coordinate system and a projection frame corresponding to the projection area on the display screen.
  • the pixels of the captured image and the coordinates of the coordinate system The points form a one-to-one correspondence, and the PLC is used to automatically determine the projected area and the actual DAEC response area to the desired position according to the needs of the captured image and the diagnosis part and/or position,
  • the projection area is adjusted according to the needs of the diagnosis part and/or position or the adjustment of the projection frame, the projection area is adjusted by the beam sheet assembly, and the actual DAEC response area is adjusted according to the needs of the diagnosis part and/or position Adjust and adjust, the actual DAEC response area is adjusted by the digital flat-panel detector, the projection area covers the actual DAEC response area, the display screen is a display screen connected to the PLC, and the PLC is set in the In the light beamer, the projection frame and the response area frame are displayed or not displayed on the display screen.
  • the present invention also provides an X-ray imaging system, which includes an X-ray source tube, a high-voltage generator, a beamer, a digital flat-panel detector, and a computing host.
  • the computing host implements the X-ray source tube.
  • the signal transmission and processing between the high-voltage generator, the beam beamer and the digital flat-panel detector, the beam beamer includes a beam beam assembly, the beam beam assembly makes the light form a projection area on the subject, the
  • the digital flat-panel detector has the DAEC function and can generate DAEC parameters, which include the actual DAEC response area and the target gray value,
  • the system also includes a camera for collecting the position and/or body contour of the subject, and for automatically adjusting the projection area and the actual DAEC response area to the desired level according to the image taken by the camera and the needs of the diagnostic location and/or position.
  • Position adjustment module for collecting the position and/or body contour of the subject, and for automatically adjusting the projection area and the actual DAEC response area to the desired level according to the image taken by the camera and the needs of the diagnostic location and/or position.
  • the projection area covers the actual DAEC response area.
  • the adjustment module includes a PLC, and the PLC displays the image taken by the camera on the display screen, and generates a coordinate system and a projection frame corresponding to the projection area on the display screen.
  • the pixels of the image form a corresponding relationship with the coordinate points of the coordinate system;
  • the projection area is adjusted according to the needs of the diagnostic site and/or position or the projection frame is adjusted, and the actual DAEC response area varies with the diagnostic site And/or the position needs to be adjusted.
  • the display screen is a display screen connected to the PLC or a display screen of a computing host.
  • the PLC is a part of the computing host or is provided in the beam beamer, and the projection frame and the response area frame are displayed or not displayed on the display screen.
  • the adjustment module includes an intelligent recognition module for recognizing the inspected part of the subject presented by the camera.
  • the intelligent recognition module is connected to the beamer and the digital flat panel detector.
  • the intelligent recognition module adjusts the position according to the input diagnostic position and/or the needs of the position.
  • the projection area and the actual DAEC response area Diagnose the needs of the site and/or location
  • the present invention also provides an imaging method based on the above system.
  • the maximum exposure acceptance range of the detector is the effective imaging area, which includes the following steps:
  • the subject to be X-ray imaging enters the imaging system to ensure that the subject is within the effective imaging area;
  • the camera shoots the subject, and the adjustment module displays the image taken by the camera on the display screen, and generates a coordinate system on the display screen and a projection frame corresponding to the projection area;
  • the adjustment module adjusts the projection area and the actual DAEC response area to the desired position according to the diagnosis position and/or the location of the diagnosis position and/or the needs of the position;
  • the detector automatically informs the high-voltage generator to stop exposure according to the DAEC parameters and obtain X-ray pictures;
  • Step c and step d are in no particular order.
  • the present invention also provides an imaging method based on the above system.
  • the maximum exposure acceptance range of the detector is the effective imaging area, which includes the following steps:
  • the subject to be X-ray imaging enters the imaging system to ensure that the subject is within the effective imaging area;
  • the camera shoots the subject, and the adjustment module displays the image taken by the camera on the display screen, and generates a coordinate system on the display screen and a projection frame corresponding to the projection area;
  • the user touches the frame on the display screen and drags it to the desired observation position; or circles or points the area of interest on the display screen to form a frame,
  • the PLC converts the displacement of each side of the frame on the display screen into the respective required adjustment displacements of the light beam components, and then adjusts the light beam components to the required covering positions to form the projection area;
  • the position information of the region of interest is transmitted to the flat panel detector, and the flat panel detector adjusts the automatic exposure control parameters according to the position information of the region and the needs of the diagnosis part and/or position;
  • the detector automatically informs the high-voltage generator to stop exposure according to the automatic exposure control parameters and obtain X-ray pictures.
  • the present invention also provides an imaging method based on the above-mentioned system.
  • the system also includes an intelligent recognition module for recognizing the subject's part of the subject presented by the camera on the display screen, and the detector The maximum exposure acceptance range of is the effective imaging area.
  • the digital flat-panel detector has DAEC function and can generate DAEC parameters. The method includes the following steps:
  • the subject to be X-ray imaging enters the imaging system to ensure that the subject is within the effective imaging area;
  • the camera shoots the subject and the detector.
  • the intelligent recognition module receives and processes the captured pictures.
  • the intelligent recognition module identifies the subject’s location, the relationship between the location of the subject and the current projection area, and the location of the subject and the current reality.
  • the intelligent recognition module adjusts the projection area and the actual DAEC response area according to the input diagnosis location and/or location requirements;
  • the flat panel detector adjusts the automatic exposure control parameters according to the needs of the diagnostic location and/or location;
  • the detector automatically informs the high-voltage generator to stop exposure according to the automatic exposure control parameters and obtain X-ray pictures.
  • the beneficial effects brought by the technical solution provided by the present invention are as follows: the position relationship between the projection area and the examinee is displayed intuitively through the display screen, and the frame on the display screen is directly dragged to the position of the examinee's image on the display screen.
  • the beam light sheet assembly automatically drives the beam light sheet to move and moves the projection area to the observation position required by the examinee, and at the same time transmits the region of interest information to the detector, as a selection of automatic exposure control
  • the input of the response area of (DAEC), the beam beamer and DAEC cooperate with each other, and there is no longer a strict requirement for the patient's positioning.
  • Figure 1 is a schematic diagram of the structure of the present invention
  • Figure 2 is a schematic diagram of the structure of the beam beamer
  • Fig. 3 is a schematic diagram of the structure of the filter assembly and the light beam assembly
  • Figure 4 is a schematic diagram of a pinhole model
  • Figure 5 is the corresponding relationship between screen pixel adjustment-receiver displacement-beam aperture displacement
  • Fig. 6 is a schematic diagram of the working flow of the beam beamer
  • Fig. 7 is a schematic diagram of the positional relationship of each area during exposure.
  • the X-ray imaging system includes an X-ray source tube 001, a high-voltage generator 002, a beamer 003, a digital flat-panel detector 004, and a computing host 005.
  • the computing host 005 implements the X-ray source tube 001, high-voltage generator 002, The signal transmission and processing between the light beam 003 and the digital flat panel detector 004.
  • the light beam 003 includes a light beam sheet assembly that causes light to form a projection area on the subject.
  • the detector 004 has a DAEC function and can generate DAEC parameters.
  • the parameters include the actual DAEC response area 008 and the target gray value.
  • the projection area 007 covers the actual DAEC response area 008.
  • the system also includes a location for collecting the subject And/or the camera 9 of the contour of the body, an adjustment module used to automatically adjust the projection area and the actual DAEC response area 008 to the desired position according to the image taken by the camera 9 and the needs of the diagnosis part and/or position.
  • the adjustment module includes a PLC (programmable controller) 8.
  • the PLC 8 displays the image taken by the camera 9 on the display screen 7, and generates a coordinate system and the projection area 007 on the display screen 7.
  • the pixels of the captured image and the coordinate points of the coordinate system form a one-to-one correspondence, and the PLC8 is used to automatically determine the projection area and The actual DAEC response area to the desired location,
  • the projection area 007 varies according to the needs of the diagnostic location and/or location. Or the projection frame is adjusted, and the adjustment action is performed by the light beam assembly.
  • the actual DAEC response area 008 is adjusted according to the needs of the diagnostic site and/or position or the response area frame adjustment, and the adjustment action is It is executed by the digital flat panel detector 004.
  • the display screen 7 is a display screen connected to the PLC8 or a display screen of the computing host 006; the PLC8 is a part of the computing host 006 or is set in the beamer 003; the projection frame and The response area frame is displayed or not displayed on the display screen.
  • the X-ray imaging system includes an X-ray source tube 001, a high-voltage generator 002, a beamer 003, a digital flat-panel detector 004, and a computer 005.
  • the digital flat-panel detector has DAEC function and can generate DAEC parameters. It is an exposure system disclosed in the patent authorized announcement number CN106954329B, which automatically generates DAEC parameters.
  • the DAEC parameters include the actual DAEC response area 008 and the target gray value.
  • the computing host 005 realizes the signal transmission and processing between the X-ray source tube 001, the high-voltage generator 002, the beam beamer 003, and the digital flat panel detector 004.
  • the beam beamer includes a housing 0 and a camera 9 mounted on the housing 0 , PLC8, filter assembly 2, beam light assembly 1, display screen 7 and X-ray detector.
  • the display screen 7 is connected to the PLC8.
  • the PLC8 is set in the housing 0.
  • the camera 9 includes an RGB camera.
  • the PLC8 displays the image of the subject 009 captured by the camera 9 on the display screen 7.
  • the filter assembly 2 includes a first mounting plate 21, a first upper slide bar 22 and a first lower slide bar 23 mounted on the first mounting plate 21, and a sliding connection to the first upper slide bar 22 and the first lower slide bar.
  • the first filter disc 24 and the second filter disc 25 on the rod 23 are provided with a guide groove 26 on the same side of the first filter disc 24 and the second filter disc 25, the first upper slide bar 22 and the first lower slide bar There are two pieces 23 respectively and they are arranged in parallel.
  • the first upper slide bar 22 is located above the first lower slide bar 23.
  • the filter assembly 2 also includes a first drive motor 27 installed on the first mounting plate 21 and a fixed sleeve.
  • the first transmission gear 28 on the rotating shaft of the first drive motor 27, the second gear 29 rotatably connected to the first mounting plate 21 and drivingly connected with the first transmission gear 28, is fixed on the end surface of the second gear 29
  • the first guide rod 20 and the second guide rod 210 respectively inserted in the guide groove 26 on the first filter 24 and the second filter 25 are used to detect the number of turns of the second gear 29 to detect the movement of the filter.
  • Position the first travel sensor 211, the illuminance meter assembly 212, and the rotation of the second gear 29 drives the first filter 24 and the second filter 25 to face opposite directions on the first upper slide bar 22 and the first lower slide bar 23, respectively slide.
  • the light beam assembly 1 includes a second mounting plate 11, an upper support 12 and a lower support 13 mounted on the second mounting plate 11, an upper guide shaft 14 and a lower guide shaft 15 mounted on the upper support 12 and the lower support 13, respectively ,
  • the upper shielding sheet 16 and the lower shielding sheet 17 slidably connected to the upper guide shaft 14 and the lower guide shaft 15 are used to drive the upper shielding sheet 16 and the lower shielding sheet 17 to slide on the upper guide shaft 14 and the lower guide shaft 15 respectively
  • the upper driving screw mechanism and the lower driving screw mechanism, the upper stroke sensor 18 and the lower stroke sensor 19 for detecting the moving distance of the upper shielding sheet 16 and the lower shielding sheet 17, respectively, the upper shielding sheet 16 and the lower shielding sheet 17
  • the sliding direction is vertical.
  • the upper driving screw mechanism includes an upper second motor 10, an upper second gear set 111 connected with the upper second motor 10, an upper screw 112 arranged in parallel with the upper guide shaft 14, and a transmission nut with the upper screw 112
  • the upper mounting frame 113 is fixedly connected, the upper screw 112 is in transmission connection with the upper second gear set 111, the upper shielding sheet 16 is mounted on the upper mounting frame 113, the upper mounting frame 113 and the upper shielding sheet 16 each have two
  • the lower driving screw mechanism includes a lower second motor 110, a lower second gear set 114 connected to the lower second motor 110, a lower screw 115 arranged in parallel with the lower guide shaft 15, and a transmission nut with the lower screw 115
  • the lower mounting frame 116 is fixedly connected, the lower screw 115 is in transmission connection with the lower second gear set 114, the lower shielding sheet 17 is mounted on the lower mounting frame 116, the lower mounting frame 116 and the lower shielding sheet 17 each have two.
  • Co_x(camera_offset_x) the offset distance between the camera and the tube focus in the horizontal direction (unit: mm)
  • Dw(detector_width) The width of the imaging area of the X-ray detector (unit: mm)
  • Dh(detector_height) The height of the imaging area of the X-ray detector (unit: mm)
  • the camera parameter f is provided by the camera manufacturer.
  • CID is the distance between the camera and the imaging area of the X-ray detector, which can be measured in real time.
  • f is a known value.
  • CID is the distance from the camera to the imaging area of the X-ray detector, which can be measured in real time through camera ranging, and the rest are known values.
  • ⁇ w pixel
  • ⁇ c mm
  • the maximum exposure acceptance range of the detector is the effective imaging area 006.
  • the imaging method based on the above system includes the following steps:
  • the subject 009 to be X-ray imaging enters the imaging system to ensure that the subject 009 is within the effective imaging area 006;
  • the camera 9 displays the subject 009 and the projection area 007 on the display screen 7 in real time;
  • the projection area 007 has a projection frame corresponding to it on the display screen 7.
  • the user touches the projection frame on the display screen 7 and drags it to the desired observation position, and the PLC8 will project each side of the frame
  • the displacement on the display screen 7 is converted into the respective required adjustment displacements of the light beam assembly 1, and the light beam assembly 1 is adjusted to the required covering position to form the projection area 007;
  • the information of the region of interest is transferred to the flat panel detector 004, and the flat panel detector 004 calculates the automatic exposure control parameters (DAEC parameters) according to the information of the region and the needs of the diagnostic location and/or location;
  • DEC parameters automatic exposure control parameters
  • the system starts to expose after the action of the beam light sheet assembly 1 and the filter assembly 2 is completed;
  • the detector automatically informs the high-voltage generator to stop exposure according to the automatic exposure control parameters and obtain X-ray pictures.
  • the simple signal transmission between independent components is converted into the coordinated action between the components, and the application potential in addition to the basic functions between the components is opened up.
  • the original beam beam is only a simple X-ray range adjustment equipment, but through the above-mentioned system, it can also provide information such as patient status for imaging.
  • the automatic exposure control area is no longer limited, no additional devices (ionization chamber) are needed, the equipment cost is reduced, the dose waste caused by the absorption of X-rays by the device is reduced, and the patient positioning no longer requires precise position.
  • each light beam is controlled by a screw assembly, so that the projection area 007 and the actual DAEC response area 008 are determined by encircling the area of interest.
  • the PLC8 only needs to control each The screw assembly realizes the independent movement of the light beam and makes the projection area cover the circled observation area.
  • the area change sensed by the display screen is the same as that of the first embodiment.
  • the maximum exposure acceptance range of the detector is the effective imaging area 006, and the imaging method based on the above system includes the following steps:
  • the subject 009 to be X-ray imaging enters the imaging system to ensure that the subject 009 is within the effective imaging area 006;
  • the camera 9 displays the subject 009 and the projection area 007 on the display screen 7 in real time;
  • the user circles or points the area of interest on the display screen 7 to form a frame, and the PLC 8 converts the displacement of each side of the frame on the display screen 7 into the respective required adjustment displacements of the beam light sheet assembly 1, and then Adjust the light beam assembly 1 to the required covering position to form the projection area 007;
  • the information of the region of interest is transmitted to the flat panel detector 004, and the flat panel detector 004 calculates the automatic exposure control parameters according to the region information and the needs of the diagnosis part and/or position;
  • the system starts to expose after the action of the beam light sheet assembly 1 and the filter assembly 2 is completed;
  • the detector automatically informs the high-voltage generator to stop exposure according to the automatic exposure control parameters and obtain X-ray pictures.
  • the adjustment module is an intelligent recognition module for recognizing the inspected part of the subject presented by the camera.
  • the digital flat-panel detector is connected. After the intelligent recognition module recognizes the subject’s inspected part, the positional relationship between the inspected part and the current projection area, and the positional relationship between the inspected part and the current actual DAEC response area, the intelligent identification module The projection area and the actual DAEC response area are adjusted according to the needs of the input diagnosis part and/or location.
  • the maximum exposure acceptance range of the detector is the effective imaging area 006.
  • the digital flat-panel detector has DAEC function and can generate DAEC parameters.
  • the DAEC parameter configuration of each part when the intelligent recognition module recognizes the subject's part to be imaged, it will automatically output the DAEC parameter matching that part;
  • the method includes the following steps:
  • the subject to be X-ray imaging enters the imaging system to ensure that the subject is within the effective imaging area;
  • the camera captures the subject and the detector, and transmits the picture to the intelligent recognition module.
  • the intelligent recognition module identifies the subject’s location, the relationship between the location of the subject and the current projection area, and the relationship between the subject’s location and the current reality.
  • the intelligent recognition module adjusts the projection area and the actual DAEC response area according to the input diagnosis part and/or location requirements.
  • the flat panel detector adjusts the automatic exposure control parameters according to the needs of the diagnostic location and/or location;
  • the system starts to expose after the action of the beam component and filter component is completed and the automatic exposure control parameters are determined;
  • the detector automatically informs the high-voltage generator to stop exposure according to the automatic exposure control parameters and obtain X-ray pictures.
  • step c the diagnosis site and/or location needs to be diagnosed.
  • the actual DAEC response area location is determined when the diagnosis site and/or location needs are determined. For example, if the test site is the lung, the detection will be performed after the projection area is determined. The detector will automatically determine the position and shape of the actual DAEC response area required according to the requirement that the tested part is the lung, and automatically make adjustments while determining the target gray value, and then perform exposure. The same applies to the first and second embodiments.
  • the X-ray imaging system includes an X-ray source tube 001, a high-voltage generator 002, a beam beam 003, a digital flat-panel detector 004, and a computing host 005.
  • the computing host 005 includes a PLC8 and a display screen 7.
  • the digital flat-panel detector has the DAEC function and can generate DAEC parameters. It is the exposure system disclosed in the patent authorized announcement number CN106954329B, which automatically generates DAEC parameters.
  • the DAEC parameters include the actual DAEC response area 008 and the target gray value.
  • the computing host 005 realizes the signal transmission and processing between the X-ray source tube 001, the high-voltage generator 002, the beam beamer 003, and the digital flat panel detector 004.
  • the beam beamer includes a housing 0 and a camera 9 mounted on the housing 0 , Filter assembly 2, beam light assembly 1, and X-ray detector.
  • the display screen 7 is connected to the PLC8, and the camera 9 includes an RGB camera, which displays the subject 009 in proportion to the display screen 7 through the PLC8, and the light beam assembly 1 causes the light to be projected on the subject 009
  • the PLC8 generates a coordinate system on the display screen 7, and corresponds the image formed by the camera 9 to the coordinate system of the display screen 7.
  • a frame corresponding to the projection area 007 can be generated on the display screen.
  • the camera 9, the PLC8 and the display screen 7 constitute an adjustment module.
  • the filter assembly 2 includes a first mounting plate 21, a first upper slide bar 22 and a first lower slide bar 23 mounted on the first mounting plate 21, and a sliding connection to the first upper slide bar 22 and the first lower slide bar.
  • the first filter disc 24 and the second filter disc 25 on the rod 23, the first filter disc 24 and the second filter disc 25 are provided with a guide groove 26 on the same side, the first upper slide bar 22 and the first lower slide bar There are two pieces 23 respectively and they are arranged in parallel.
  • the first upper slide bar 22 is located above the first lower slide bar 23.
  • the filter assembly 2 also includes a first drive motor 27 installed on the first mounting plate 21 and a fixed sleeve.
  • the first transmission gear 28 on the rotating shaft of the first drive motor 27, the second gear 29 rotatably connected to the first mounting plate 21 and drivingly connected with the first transmission gear 28, is fixed on the end surface of the second gear 29
  • the first guide rod 20 and the second guide rod 210 respectively inserted in the guide grooves 26 on the first filter 24 and the second filter 25 are used to detect the number of turns of the second gear 29 to detect the movement of the filter.
  • Position the first travel sensor 211, the illuminance meter assembly 212, and the rotation of the second gear 29 drives the first filter 24 and the second filter 25 to face opposite directions on the first upper slide bar 22 and the first lower slide bar 23, respectively slide.
  • the light beam assembly 1 includes a second mounting plate 11, an upper support 12 and a lower support 13 mounted on the second mounting plate 11, an upper guide shaft 14 and a lower guide shaft 15 mounted on the upper support 12 and the lower support 13, respectively ,
  • the upper shielding sheet 16 and the lower shielding sheet 17 slidably connected to the upper guide shaft 14 and the lower guide shaft 15 are used to drive the upper shielding sheet 16 and the lower shielding sheet 17 to slide on the upper guide shaft 14 and the lower guide shaft 15 respectively
  • the upper driving screw mechanism and the lower driving screw mechanism, the upper stroke sensor 18 and the lower stroke sensor 19 for detecting the moving distance of the upper shielding sheet 16 and the lower shielding sheet 17, respectively, the upper shielding sheet 16 and the lower shielding sheet 17
  • the sliding direction is vertical.
  • the upper driving screw mechanism includes an upper second motor 10, an upper second gear set 111 connected in transmission with the upper second motor 10, an upper screw 112 arranged in parallel with the upper guide shaft 14, and a transmission nut with the upper screw 112
  • the upper mounting frame 113 is fixedly connected, the upper screw 112 is in transmission connection with the upper second gear set 111, the upper shielding sheet 16 is mounted on the upper mounting frame 113, the upper mounting frame 113 and the upper shielding sheet 16 each have two
  • the lower driving screw mechanism includes a lower second motor 110, a lower second gear set 114 connected to the lower second motor 110, a lower screw 115 arranged in parallel with the lower guide shaft 15, and a transmission nut with the lower screw 115
  • the lower mounting frame 116 is fixedly connected, the lower screw 115 is in transmission connection with the lower second gear set 114, the lower shielding sheet 17 is mounted on the lower mounting frame 116, the lower mounting frame 116 and the lower shielding sheet 17 each have two.
  • Co_x(camera_offset_x) the offset distance between the camera and the tube focus in the horizontal direction (unit: mm)
  • Dw(detector_width) The width of the imaging area of the X-ray detector (unit: mm)
  • Dh(detector_height) The height of the imaging area of the X-ray detector (unit: mm)
  • the camera parameter f is provided by the camera manufacturer.
  • CID is the distance between the camera and the imaging area of the X-ray detector, which can be measured in real time.
  • f is a known value.
  • CID is the distance from the camera to the imaging area of the X-ray detector, which can be measured in real time through camera ranging, and the rest are known values.
  • the beam opening displacement is ⁇ c (mm) .
  • the maximum exposure acceptance range of the detector is the effective imaging area 006.
  • the imaging method based on the above system includes the following steps:
  • the subject 009 to be X-ray imaging enters the imaging system to ensure that the subject 009 is within the effective imaging area 006;
  • the camera 9 displays the subject 009 and the projection area 007 on the display screen 7 in real time;
  • the projection area 007 has a corresponding projection frame on the display screen 7.
  • the user selects the projection frame on the display screen 7 with the mouse of the computing host 005 and drags the projection frame to the desired observation position, and the PLC8 will project the image
  • the displacement of each side of the frame on the display screen 7 is converted into the required adjustment displacement of the light beam assembly 1, and the light beam assembly 1 is adjusted to the required covering position to form the projection area 007;
  • the information of the region of interest is transferred to the flat panel detector 004, and the flat panel detector 004 calculates the automatic exposure control parameters (DAEC parameters) according to the information of the region and the needs of the diagnostic location and/or location;
  • DEC parameters automatic exposure control parameters
  • the system starts to expose after the action of the beam light sheet assembly 1 and the filter assembly 2 is completed;
  • the detector automatically informs the high-voltage generator to stop exposure according to the automatic exposure control parameters and obtain X-ray pictures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Human Computer Interaction (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种X射线成像系统及方法,包括X射线源球管(001)、高压发生器(002)、束光器(003)、数字平板探测器(004)以及计算主机(005),通过显示屏(7)直观的展示投射区域(007)与受检者(009)的位置关系,直接拖动显示屏(7)上的图框至受检者(009)在显示屏(7)上所成图像的对应位置或画出感兴趣区域,束光片组件(1)自动带动束光片移动并使投射区域(007)移动至受检者(009)所需的观测位置,同时将感兴趣区域信息传输到数字平板探测器(004),作为选择自动曝光控制(AEC)的响应区域的输入,束光器(003)与数字自动曝光控制(DAEC)相互配合,对病人的摆位不再有严格要求。

Description

一种X射线成像系统及方法 技术领域
本发明涉及X光探测仪成像领域,尤其涉及一种X射线成像系统及方法。
背景技术
目前X射线影像设备各个关键部件之间相互配合较少,没有挖掘部件除了基本功能外的应用潜力。例如:1.束光器只是一个单纯的X射线范围调节设备;2.自动曝光控制区域受限,并且需要额外的器件(电离室)和成本,器件吸收X射线导致剂量浪费,病人摆位需要位置精确等缺点。
发明内容
为了解决现有技术中存在的问题,本发明提供一种X射线成像系统及方法,其能提高束光器、探测器的协同动作,只需要简单操作即可自动智能化的完成对受检者的X射线检查,所述技术方案如下:
一方面,本发明提供了一种X射线成像系统,其包括X射线源球管、高压发生器、束光器、数字平板探测器以及计算主机,所述计算主机实现X射线源球管、高压发生器、束光器以及数字平板探测器之间的信号传输以及处理,所述束光器包括束光片组件,所述束光片组件使光线在受检者上形成投射区域,所述数字平板探测器具有DAEC功能,并可生成DAEC参数,所述参数包括实际DAEC响应区域以及目标灰度值,
所述系统还包括PLC以及用于采集受检者位置和/或形体轮廓的摄像头,
所述PLC将所述摄像头所摄图像显示在显示屏上,并在所述显示屏上生成坐标系以及与所述投射区域对应的投射图框,所摄图像的像素与所述坐标系的坐标点形成一一对应关系,所述PLC用于根据所摄图像以及诊断部位和/或位置的需要自动确定所述投射区域和实际DAEC响应区域至所需位置,
所述投射区域随诊断部位和/或位置的需要或所述投射图框的调整而调整,所述投射区域由束光片组件调整,所述实际DAEC响应区域随诊断部位和/或位置的需要调整而调整,所述实际DAEC响应区域由所述数字平板探测器调整,所述投射区域覆盖实际DAEC响应区域,所述显示屏为与所述PLC连接的显示 屏,所述PLC设于所述束光器中,所述投射图框和响应区域图框在所述显示屏上显示或不显示。
一方面,本发明还提供了一种X射线成像系统,其包括X射线源球管、高压发生器、束光器、数字平板探测器以及计算主机,所述计算主机实现X射线源球管、高压发生器、束光器以及数字平板探测器之间的信号传输以及处理,所述束光器包括束光片组件,所述束光片组件使光线在受检者上形成投射区域,所述数字平板探测器具有DAEC功能,并可生成DAEC参数,所述参数包括实际DAEC响应区域以及目标灰度值,
所述系统还包括用于采集受检者位置和/或形体轮廓的摄像头、用于根据摄像头所摄图像以及诊断部位和/或位置的需要自动调整所述投射区域和实际DAEC响应区域至所需位置的调节模块。
优化的,所述投射区域覆盖实际DAEC响应区域。
优化的,所述调节模块包括PLC,所述PLC将所述摄像头所摄图像显示在显示屏上,并在所述显示屏上生成坐标系以及与所述投射区域对应的投射图框,所摄图像的像素与所述坐标系的坐标点形成对应关系;
当所述显示屏上生成与所述投射区域对应的投射图框,所述投射区域随诊断部位和/或位置的需要或所述投射图框调整而调整,所述实际DAEC响应区域随诊断部位和/或位置的需要调整而调整。
进一步的,所述显示屏为与所述PLC连接的显示屏或计算主机的显示屏。
进一步的,所述PLC为所述计算主机的一部分或设于所述束光器中,所述投射图框和响应区域图框在所述显示屏上显示或不显示。
优化的,所述调节模块包括用于识别摄像头所呈现的受检者的受检部位的智能识别模块,智能识别模块与所述束光器和所述数字平板探测器连接,当所述智能识别模块识别出受检者的受检部位、受检部位与当前投射区域位置关系 以及受检部位与当前实际DAEC响应区域位置关系后,智能识别模块根据输入的诊断部位和/或位置的需要调整所述投射区域和所述实际DAEC响应区域。诊断部位和/或位置的需要
另一方面,本发明还提供了一种基于上述系统的成像方法,所述探测器的最大曝光接受范围为有效成像区域,其包括以下步骤:
a.待X射线成像受检者进入成像系统,确保受检者在有效成像区域内;
b.摄像头拍摄受检者,调节模块将所述摄像头所摄图像显示在显示屏上,并在所述显示屏上生成坐标系、与所述投射区域对应的投射图框;
c.调节模块根据诊断部位和/或位置的诊断部位和/或位置的需要调整投射区域和实际DAEC响应区域至所需位置;
d.根据诊断部位和/或位置的需要确定目标灰度值;
e.X射线拍摄过程中,探测器根据所述DAEC参数,自动通知高压发生器停止曝光,获得X射线图片;
步骤c和步骤d不分先后。
另一方面,本发明还提供了一种基于上述系统的成像方法,所述探测器的最大曝光接受范围为有效成像区域,其包括以下步骤:
a.待X射线成像受检者进入成像系统,确保受检者在有效成像区域内;
b.摄像头拍摄受检者,调节模块将所述摄像头所摄图像显示在显示屏上,并在所述显示屏上生成坐标系、与所述投射区域对应的投射图框;
c.用户在显示屏上触摸图框并将其拖动至所需观测位置;或者在显示屏上圈出或点出感兴趣区域形成图框,
PLC将图框的各边在所述显示屏上的位移转换为束光片组件各自所需调整位移,再由束光片组件各自调整至所需覆盖位置,形成投射区域;
d.感兴趣区域位置信息传递到平板探测器,平板探测器根据该区域位置信息以及诊断部位和/或位置的需要调整自动曝光控制参数;
e.待束光片组件动作完成和自动曝光控制参数确定后系统开始曝光;
f.探测器根据自动曝光控制参数,自动通知高压发生器停止曝光,获得X射线图片。
另一方面,本发明还提供了一种基于上述系统的成像方法,所述系统还包括用于识别摄像头在显示屏上所呈现的受检者的受检部位的智能识别模块,所 述探测器的最大曝光接受范围为有效成像区域,所述数字平板探测器具有DAEC功能,并可生成DAEC参数,所述方法包括以下步骤:
a.待X射线成像受检者进入成像系统,确保受检者在有效成像区域内;
b.摄像头拍摄受检者与探测器,智能识别模块接收处理所摄图片,智能识别模块设别出受检者的受检部位、受检部位与当前投射区域位置关系以及受检部位与当前实际DAEC响应区域位置关系;
c.智能识别模块根据输入的诊断部位和/或位置的需要调整所述投射区域和所述实际DAEC响应区域;
d.平板探测器根据诊断部位和/或位置的需要调整自动曝光控制参数;
e.待束光片组件动作完成和自动曝光控制参数确定后系统开始曝光;
f.探测器根据自动曝光控制参数,自动通知高压发生器停止曝光,获得X射线图片。
本发明提供的技术方案带来的有益效果如下:通过显示屏直观的展示投射区域与受检者的位置关系,直接拖动显示屏上的图框至受检者在显示屏上所成图像的对应位置或画出感兴趣区域,束光片组件自动带动束光片移动并使投射区域移动至受检者所需的观测位置,同时将感兴趣区域信息传输到探测器,作为选择自动曝光控制(DAEC)的响应区域的输入,束光器与DAEC相互配合,对病人的摆位不再有严格要求。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明的结构示意图;
图2是束光器的结构示意图;
图3是滤片组件和束光片组件的结构示意图;
图4是针孔模型示意图;
图5是屏幕像素调整--接收器位移--束光口位移对应关系
图6是束光器的工作流程示意图;
图7是曝光时各区域的位置关系示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
X射线成像系统,其包括X射线源球管001、高压发生器002、束光器003、数字平板探测器004以及计算主机005,计算主机005实现X射线源球管001、高压发生器002、束光器003、以及数字平板探测器004之间的信号传输以及处理,束光器003包括束光片组件,所述束光片组件使光线在受检者上形成投射区域,所述数字平板探测器004具有DAEC功能,并可生成DAEC参数,所述参数包括实际DAEC响应区域008以及目标灰度值,所述投射区域007覆盖实际DAEC响应区域008,系统还包括用于采集受检者位置和/或形体轮廓的摄像头9、用于根据摄像头9所摄图像以及诊断部位和/或位置的需要自动调整所述投射区域和实际DAEC响应区域008至所需位置的调节模块。
所述调节模块包括PLC(可编程控制器)8,所述PLC8将所述摄像头9所摄图像显示在显示屏7上,并在所述显示屏7上生成坐标系以及与所述投射区域007对应的投射图框,所摄图像的像素与所述坐标系的坐标点形成一一对应关系,所述PLC8用于根据所摄图像以及诊断部位和/或位置的需要自动确定所述投射区域和实际DAEC响应区域至所需位置,
当所述显示屏7上生成与所述投射区域007对应的投射图框以及与所述实际DAEC响应区域008对应的响应区域图框时,所述投射区域007随诊断部位和/或位置的需要或所述投射图框调整而调整,其调整动作由束光片组件执行,所述实际DAEC响应区域008随诊断部位和/或位置的需要或所述响应区域图框调整而调整,其调整动作由数字平板探测器004执行。
所述显示屏7为与所述PLC8连接的显示屏或计算主机006的显示屏;所述PLC8为所述计算主机006的一部分或设于所述束光器003中;所述投射图框和响应区域图框在所述显示屏上显示或不显示。
实施例一
如图1-6所示,
X射线成像系统包括X射线源球管001、高压发生器002、束光器003、数字平板探测器004以及计算主机005。
数字平板探测器具有DAEC功能,并可生成DAEC参数,其为授权公告号为CN106954329B的专利所公开的曝光系统,其自动生成DAEC参数,DAEC参数包括实际DAEC响应区域008和目标灰度值。
计算主机005实现X射线源球管001、高压发生器002、束光器003、以及数字平板探测器004之间的信号传输以及处理,束光器包括外壳0,安装于外壳0上的摄像头9、PLC8、滤片组件2、束光片组件1、显示屏7以及X光探测仪。在本实施例中,显示屏7与PLC8连接,PLC8设于外壳0中,摄像头9包括RGB摄像头,PLC8将摄像头9拍摄的受检者009的图像成比例显示在显示屏7,束光片组件1使光线在受检者009上形成投射区域007,PLC8在显示屏7上生成坐标系,并将摄像头9所成图像与显示屏7坐标系对应。显示屏上能生成与投射区域007对应的图框。摄像头9、PLC8以及显示屏7组成调节模块,显示屏7为触控显示屏,能直观的展示投射区域与受检者的位置关系。
滤片组件2包括第一安装板21、安装于第一安装板21上的第一上层滑杆22和第一下层滑杆23、滑动连接于第一上层滑杆22和第一下层滑杆23上的第一滤片24和第二滤片25,第一滤片24和第二滤片25的同一侧上设有导向槽26,第一上层滑杆22和第一下层滑杆23分别有两根且相平行设置,第一上层滑杆22位于第一下层滑杆23上方,滤片组件2还包括安装于第一安装板21上的第一驱动电机27、固定套设于第一驱动电机27的转轴上的第一变速齿轮28、转动连接于第一安装板21上且与第一变速齿轮28相传动连接的第二齿轮29、固定于第二齿轮29的端面上且分别插设于第一滤片24和第二滤片25上的导向槽26内的第一导向杆20和第二导向杆210、用于检测第二齿轮29转动圈数进而检测滤片移动位置的第一行程传感器211、照度计组件212,第二齿轮29转动带动第一滤片24和第二滤片25分别在第一上层滑杆22和第一下层滑杆23上朝相反方向滑动。
束光片组件1包括第二安装板11、安装于第二安装板11上的上层支架12和下层支架13、分别安装于上层支架12和下层支架13上的上层导向轴14和下 层导向轴15、滑动连接于上层导向轴14和下层导向轴15上的上层屏蔽片16和下层屏蔽片17、分别用于驱动上层屏蔽片16和下层屏蔽片17在上层导向轴14和下层导向轴15上滑动的上层驱动丝杆机构和下层驱动丝杆机构、用于分别检测上层屏蔽片16和下层屏蔽片17的移动距离的上层行程传感器18和下层行程传感器19,上层屏蔽片16和下层屏蔽片17的滑动方向向垂直。上层驱动丝杆机构包括上层第二电机10、与上层第二电机10传动连接的上层第二齿轮组111、与上层导向轴14相平行设置的上层丝杆112、与上层丝杆112的传动螺母相固定连接的上层安装架113,上层丝杆112与上层第二齿轮组111相传动连接,上层屏蔽片16安装于上层安装架113上,上层安装架113和上层屏蔽片16各有两个,下层驱动丝杆机构包括下层第二电机110、与下层第二电机110传动连接的下层第二齿轮组114、与下层导向轴15相平行设置的下层丝杆115、与下层丝杆115的传动螺母相固定连接的下层安装架116,下层丝杆115与下层第二齿轮组114相传动连接,下层屏蔽片17安装于下层安装架116上,下层安装架116和下层屏蔽片17各有两个。
结合图4对成像及投射区域007原理进行详述:
1.相关变量常量如下:
Figure PCTCN2020104337-appb-000001
Co_y(collimator_offset_y):束光器开口与球管焦点在垂直方向偏移距离(单位:mm)
Figure PCTCN2020104337-appb-000002
Co_x(camera_offset_x):摄像头与球管焦点在水平方向偏移距离(单位:mm)
Figure PCTCN2020104337-appb-000003
Dw(detector_width):X光探测仪成像区域的宽度(单位:mm)
Figure PCTCN2020104337-appb-000004
Dh(detector_height):X光探测仪成像区域的高度(单位:mm)
Figure PCTCN2020104337-appb-000005
(D_x,D_y):X光探测仪在屏幕显示中的中心坐标(单位:pixel)
Figure PCTCN2020104337-appb-000006
CID(camera to image-receptor distance)摄像头到图像接受器的距离(单位:mm)
Figure PCTCN2020104337-appb-000007
FW(field_width):在CID确定时,摄像头所能覆盖的宽度(单位:mm)
Figure PCTCN2020104337-appb-000008
w(width_pixel):图像像素宽度(单位:pixel)
Figure PCTCN2020104337-appb-000009
f:摄像头内参数
2.摄像机内参数
由针孔模型,如图3所示,对应得到束光器宽度方向参数:
Figure PCTCN2020104337-appb-000010
其中摄像头参数f由摄像头厂家提供。
3.屏幕像素调整--接收器位移--束光口位移对应关系
1)交互界面调整像素Δw(pixel),X光探测仪成像区域变化位移ΔFW(mm)。由前面公式可知:
Figure PCTCN2020104337-appb-000011
可得到离散化形式:
Figure PCTCN2020104337-appb-000012
式中,CID为摄像头到X光探测仪成像区域的距离,可以实时测得,f为已知值,当交互界面宽度位移Δw(pixel)时,可知X光探测仪成像区域的位移ΔFW(mm)。
2)交互界面调整像素Δw(pixel),束光器口驱动电机位移Δc(mm)。由相似三角形公式可知:
Figure PCTCN2020104337-appb-000013
推导可得:
Figure PCTCN2020104337-appb-000014
带入ΔFW可得:
Figure PCTCN2020104337-appb-000015
式中,CID为摄像头到X光探测仪成像区域的距离,可以通过摄像头测距实时测得,其余为已知值,当交互界面宽度位移Δw(pixel)时,束光口位移Δc (mm)。
对应可以求得本系统需要给步进电机驱动器发多少个脉冲,已知步进电机单脉冲位移:
Figure PCTCN2020104337-appb-000016
其中θ为步进角,n为驱动器细分数,k为齿轮传动比,L为丝杠导程。所以当需要束光口位移Δc时,系统需要给驱动器发脉冲数N_pulse为:
Figure PCTCN2020104337-appb-000017
探测器的参数调整参照授权公告号为CN106954329B的专利所公开的曝光系统。
如图1所示,所述探测器的最大曝光接受范围为有效成像区域006,基于上述系统的成像方法,其包括以下步骤:
a.待X射线成像受检者009进入成像系统,确保受检者009在有效成像区域006内;
b.摄像头9将受检者009以及投射区域007实时显示于所述显示屏7上;
c.所述投射区域007在显示屏7上具有与其相对应的投射图框,用户在显示屏7上触摸投射图框并将其拖动至所需观测位置,PLC8将投射图框的各边在所述显示屏7上的位移转换为束光片组件1各自所需调整位移,再由束光片组件1各自调整至所需覆盖位置,形成投射区域007;
d.在所述显示屏7上选择所需滤光片序号,PLC控制滤片组件2动作,调整为所需滤光片;
e.感兴趣区域信息传递到平板探测器004,平板探测器004根据该区域信息以及诊断部位和/或位置的需要计算自动曝光控制参数(DAEC参数);
f.待束光片组件1和滤片组件2动作完成后系统开始曝光;
g.探测器根据自动曝光控制参数,自动通知高压发生器停止曝光,获得X射线图片。
通过上述设备和方法,将独立的部件之间的简单信号传输转换为各部件之间的协同动作,开放除了各部件之间基本功能外的应用潜力,例如:原有的束光器只是一个单纯的X射线范围调节设备,但是通过上述系统,使其还能为成 像提供病人状态等信息。
自动曝光控制区域不再受限,无需额外的器件(电离室),降低了设备成本,减少了器件吸收X射线导致剂量浪费,病人摆位不再需要位置精确。
实施例二
本实施例与实施例一的区别在于,每个束光片由一个丝杆组件控制,从而满足用圈出感兴趣区域的方式确定投射区域007和实际DAEC响应区域008,PLC8只需分别控制各丝杆组件实现束光片的独立动作并使投射区域覆盖圈出的观测区域,显示屏所感应到的区域变化与各丝杆组件动作实现束光片位移的转换原理与实施例一相同。
所述探测器的最大曝光接受范围为有效成像区域006,基于上述系统的成像方法,其包括以下步骤:
a.待X射线成像受检者009进入成像系统,确保受检者009在有效成像区域006内;
b.摄像头9将受检者009以及投射区域007实时显示于所述显示屏7上;
c.用户在显示屏7上圈出或点出感兴趣区域形成图框,PLC8将图框的各边在所述显示屏7上的位移转换为束光片组件1各自所需调整位移,再由束光片组件1各自调整至所需覆盖位置,形成投射区域007;
d.在所述显示屏7上选择所需滤光片序号,PLC控制滤片组件2动作,调整为所需滤光片;
e.感兴趣区域信息传递到平板探测器004,平板探测器004根据该区域信息以及诊断部位和/或位置的需要计算自动曝光控制参数;
f.待束光片组件1和滤片组件2动作完成后系统开始曝光;
g.探测器根据自动曝光控制参数,自动通知高压发生器停止曝光,获得X射线图片。
实施例三
如图7所示,本实施与实施例一的区别在于,所述调节模块为用于识别摄像头所呈现的受检者的受检部位的智能识别模块,智能识别模块与所述束光器和所述数字平板探测器连接,当所述智能识别模块识别出受检者的受检部位、 受检部位与当前投射区域位置关系以及受检部位与当前实际DAEC响应区域位置关系后,智能识别模块根据输入的诊断部位和/或位置的需要调整所述投射区域和所述实际DAEC响应区域。
所述探测器的最大曝光接受范围为有效成像区域006,基于上述系统的成像方法,所述数字平板探测器具有DAEC功能,并可生成DAEC参数,智能识别模块内存储有针对各种受检者各部位的DAEC参数配置,当智能识别模块识别出受检者的待成像部位后自动输出与该部位匹配的DAEC参数;
所述方法包括以下步骤:
a.待X射线成像受检者进入成像系统,确保受检者在有效成像区域内;
b.摄像头拍摄受检者与探测器,并将图片传送至智能识别模块,智能识别模块设别出受检者的受检部位、受检部位与当前投射区域位置关系以及受检部位与当前实际DAEC响应区域位置关系;
c.智能识别模块根据输入的诊断部位和/或位置的需要调整所述投射区域和所述实际DAEC响应区域。
d.平板探测器根据诊断部位和/或位置的需要调整自动曝光控制参数;
e.待束光片组件、滤光片组件动作完成和自动曝光控制参数确定后系统开始曝光;
f.探测器根据自动曝光控制参数,自动通知高压发生器停止曝光,获得X射线图片。
步骤c中诊断诊断部位和/或位置的需要,实际DAEC响应区域的位置在诊断部位和/或位置的需要确定时即确定,如:受检部位为肺部,则在投射区域确定后,探测器会根据受检部位为肺部的要求自动确定所需实际DAEC响应区域的位置及形状并自动做调整同时确定目标灰度值,随后进行曝光,实施例一、二同理。
实施例四
如图1-6所示,
X射线成像系统包括X射线源球管001、高压发生器002、束光器003、数字平板探测器004以及计算主机005,计算主机005包括PLC8和显示屏7。
数字平板探测器具有DAEC功能,并可生成DAEC参数,其为授权公告号 为CN106954329B的专利所公开的曝光系统,其自动生成DAEC参数,DAEC参数包括实际DAEC响应区域008和目标灰度值。
计算主机005实现X射线源球管001、高压发生器002、束光器003、以及数字平板探测器004之间的信号传输以及处理,束光器包括外壳0,安装于外壳0上的摄像头9、滤片组件2、束光片组件1、以及X光探测仪。在本实施例中,显示屏7与PLC8连接,摄像头9包括RGB摄像头,其通过PLC8将受检者009成比例显示在显示屏7,束光片组件1使光线在受检者009上形成投射区域007,PLC8在显示屏7上生成坐标系,并将摄像头9所成图像与显示屏7坐标系对应。显示屏上能生成与投射区域007对应的图框。摄像头9、PLC8以及显示屏7组成调节模块。
滤片组件2包括第一安装板21、安装于第一安装板21上的第一上层滑杆22和第一下层滑杆23、滑动连接于第一上层滑杆22和第一下层滑杆23上的第一滤片24和第二滤片25,第一滤片24和第二滤片25的同一侧上设有导向槽26,第一上层滑杆22和第一下层滑杆23分别有两根且相平行设置,第一上层滑杆22位于第一下层滑杆23上方,滤片组件2还包括安装于第一安装板21上的第一驱动电机27、固定套设于第一驱动电机27的转轴上的第一变速齿轮28、转动连接于第一安装板21上且与第一变速齿轮28相传动连接的第二齿轮29、固定于第二齿轮29的端面上且分别插设于第一滤片24和第二滤片25上的导向槽26内的第一导向杆20和第二导向杆210、用于检测第二齿轮29转动圈数进而检测滤片移动位置的第一行程传感器211、照度计组件212,第二齿轮29转动带动第一滤片24和第二滤片25分别在第一上层滑杆22和第一下层滑杆23上朝相反方向滑动。
束光片组件1包括第二安装板11、安装于第二安装板11上的上层支架12和下层支架13、分别安装于上层支架12和下层支架13上的上层导向轴14和下层导向轴15、滑动连接于上层导向轴14和下层导向轴15上的上层屏蔽片16和下层屏蔽片17、分别用于驱动上层屏蔽片16和下层屏蔽片17在上层导向轴14和下层导向轴15上滑动的上层驱动丝杆机构和下层驱动丝杆机构、用于分别检测上层屏蔽片16和下层屏蔽片17的移动距离的上层行程传感器18和下层行程传感器19,上层屏蔽片16和下层屏蔽片17的滑动方向向垂直。上层驱动丝杆机构包括上层第二电机10、与上层第二电机10传动连接的上层第二齿轮组111、 与上层导向轴14相平行设置的上层丝杆112、与上层丝杆112的传动螺母相固定连接的上层安装架113,上层丝杆112与上层第二齿轮组111相传动连接,上层屏蔽片16安装于上层安装架113上,上层安装架113和上层屏蔽片16各有两个,下层驱动丝杆机构包括下层第二电机110、与下层第二电机110传动连接的下层第二齿轮组114、与下层导向轴15相平行设置的下层丝杆115、与下层丝杆115的传动螺母相固定连接的下层安装架116,下层丝杆115与下层第二齿轮组114相传动连接,下层屏蔽片17安装于下层安装架116上,下层安装架116和下层屏蔽片17各有两个。
结合图4对成像及投射区域007原理进行详述:
1.相关变量常量如下:
Figure PCTCN2020104337-appb-000018
Co_y(collimator_offset_y):束光器开口与球管焦点在垂直方向偏移距离(单位:mm)
Figure PCTCN2020104337-appb-000019
Co_x(camera_offset_x):摄像头与球管焦点在水平方向偏移距离(单位:mm)
Figure PCTCN2020104337-appb-000020
Dw(detector_width):X光探测仪成像区域的宽度(单位:mm)
Figure PCTCN2020104337-appb-000021
Dh(detector_height):X光探测仪成像区域的高度(单位:mm)
Figure PCTCN2020104337-appb-000022
(D_x,D_y):X光探测仪在屏幕显示中的中心坐标(单位:pixel)
Figure PCTCN2020104337-appb-000023
CID(camera to image-receptor distance)摄像头到图像接受器的距离(单位:mm)
Figure PCTCN2020104337-appb-000024
FW(field_width):在CID确定时,摄像头所能覆盖的宽度(单位:mm)
Figure PCTCN2020104337-appb-000025
w(width_pixel):图像像素宽度(单位:pixel)
Figure PCTCN2020104337-appb-000026
f:摄像头内参数
2.摄像机内参数
由针孔模型,如图3所示,对应得到束光器宽度方向参数:
Figure PCTCN2020104337-appb-000027
其中摄像头参数f由摄像头厂家提供。
3.屏幕像素调整--接收器位移--束光口位移对应关系
3)交互界面调整像素Δw(pixel),X光探测仪成像区域变化位移ΔFW(mm)。由前面公式可知:
Figure PCTCN2020104337-appb-000028
可得到离散化形式:
Figure PCTCN2020104337-appb-000029
式中,CID为摄像头到X光探测仪成像区域的距离,可以实时测得,f为已知值,当交互界面宽度位移Δw(pixel)时,可知X光探测仪成像区域的位移ΔFW(mm)。
4)交互界面调整像素Δw(pixel),束光器口驱动电机位移Δc(mm)。由相似三角形公式可知:
Figure PCTCN2020104337-appb-000030
推导可得:
Figure PCTCN2020104337-appb-000031
带入ΔFW可得:
Figure PCTCN2020104337-appb-000032
式中,CID为摄像头到X光探测仪成像区域的距离,可以通过摄像头测距实时测得,其余为已知值,当交互界面宽度位移Δw(pixel)时,束光口位移Δc(mm)。
对应可以求得本系统需要给步进电机驱动器发多少个脉冲,已知步进电机单脉冲位移:
Figure PCTCN2020104337-appb-000033
其中θ为步进角,n为驱动器细分数,k为齿轮传动比,L为丝杠导程。所以当需要束光口位移Δc时,系统需要给驱动器发脉冲数 N_pulse为:
Figure PCTCN2020104337-appb-000034
探测器的参数调整参照授权公告号为CN106954329B的专利所公开的曝光系统。
如图1所示,所述探测器的最大曝光接受范围为有效成像区域006,基于上述系统的成像方法,其包括以下步骤:
a.待X射线成像受检者009进入成像系统,确保受检者009在有效成像区域006内;
b.摄像头9将受检者009以及投射区域007实时显示于所述显示屏7上;
c.所述投射区域007在显示屏7上具有与其相对应的投射图框,用户在显示屏7上用计算主机005的鼠标选中其拖动投射图框至所需观测位置,PLC8将投射图框的各边在所述显示屏7上的位移转换为束光片组件1各自所需调整位移,再由束光片组件1各自调整至所需覆盖位置,形成投射区域007;
d.在所述显示屏7上选择所需滤光片序号,PLC控制滤片组件2动作,调整为所需滤光片;
e.感兴趣区域信息传递到平板探测器004,平板探测器004根据该区域信息以及诊断部位和/或位置的需要计算自动曝光控制参数(DAEC参数);
f.待束光片组件1和滤片组件2动作完成后系统开始曝光;
g.探测器根据自动曝光控制参数,自动通知高压发生器停止曝光,获得X射线图片。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种X射线成像系统,其包括X射线源球管、高压发生器、束光器、数字平板探测器以及计算主机,所述计算主机实现X射线源球管、高压发生器、束光器以及数字平板探测器之间的信号传输以及处理,所述束光器包括束光片组件,所述束光片组件使光线在受检者上形成投射区域,所述数字平板探测器具有DAEC功能,并可生成DAEC参数,所述参数包括实际DAEC响应区域以及目标灰度值,
    其特征在于:
    所述系统还包括PLC以及用于采集受检者位置和/或形体轮廓的摄像头,
    所述PLC将所述摄像头所摄图像显示在显示屏上,并在所述显示屏上生成坐标系以及与所述投射区域对应的投射图框,所摄图像的像素与所述坐标系的坐标点形成一一对应关系,所述PLC用于根据所摄图像以及诊断部位和/或位置的需要自动确定所述投射区域和实际DAEC响应区域至所需位置,
    所述投射区域随诊断部位和/或位置的需要或所述投射图框的调整而调整,所述投射区域由束光片组件调整,所述实际DAEC响应区域随诊断部位和/或位置的需要调整而调整,所述实际DAEC响应区域由所述数字平板探测器调整,所述投射区域覆盖实际DAEC响应区域,所述显示屏为与所述PLC连接的显示屏,所述PLC设于所述束光器中,所述投射图框和响应区域图框在所述显示屏上显示或不显示。
  2. 一种X射线成像系统,其包括X射线源球管、高压发生器、束光器、数字平板探测器以及计算主机,所述计算主机实现X射线源球管、高压发生器、束光器以及数字平板探测器之间的信号传输以及处理,所述束光器包括束光片组件,所述束光片组件使光线在受检者上形成投射区域,所述数字平板探测器具有DAEC功能,并可生成DAEC参数,所述参数包括实际DAEC响应区域以及目标灰度值,
    其特征在于:
    所述系统还包括用于采集受检者位置和/或形体轮廓的摄像头、用于根据摄像头所摄图像以及诊断部位和/或位置的需要自动调整所述投射区域和实际DAEC响应区域至所需位置的调节模块。诊断部位和/或位置的需要
  3. 根据权利要求2所述的X射线成像系统,其特征在于:所述投射区域覆盖实际DAEC响应区域。
  4. 根据权利要求2所述的X射线成像系统,其特征在于:
    所述调节模块包括PLC,所述PLC将所述摄像头所摄图像显示在显示屏上,并在所述显示屏上生成坐标系以及与所述投射区域对应的投射图框,所摄图像的像素与所述坐标系的坐标点形成对应关系;
    当所述显示屏上生成与所述投射区域对应的投射图框,所述投射区域随诊断部位和/或位置的需要或所述投射图框调整而调整,所述实际DAEC响应区域随诊断部位和/或位置的需要调整而调整。
  5. 根据权利要求4所述的X射线成像系统,其特征在于:所述显示屏为与所述PLC连接的显示屏或计算主机的显示屏。
  6. 根据权利要求4所述的X射线成像系统,其特征在于:所述PLC为所述计算主机的一部分或设于所述束光器中,所述投射图框和响应区域图框在所述显示屏上显示或不显示。
  7. 根据权利要求2所述的X射线成像系统,其特征在于:所述调节模块包括用于识别摄像头所呈现的受检者的受检部位的智能识别模块,智能识别模块与所述束光器和所述数字平板探测器连接,当所述智能识别模块识别出受检者的受检部位、受检部位与当前投射区域位置关系以及受检部位与当前实际DAEC响应区域位置关系后,智能识别模块根据输入的诊断部位和/或位置的需要调整所述投射区域和所述实际DAEC响应区域。
  8. 一种基于权利要求2或3中任一所述系统的成像方法,所述探测器的最大曝光接受范围为有效成像区域,其特征在于,其包括以下步骤:
    a.待X射线成像受检者进入成像系统,确保受检者在有效成像区域内;
    b.摄像头拍摄受检者,调节模块将所述摄像头所摄图像显示在显示屏上,并在所述显示屏上生成坐标系、与所述投射区域对应的投射图框;
    c.调节模块根据诊断部位和/或位置的诊断部位和/或位置的需要调整投射区域和实际DAEC响应区域至所需位置;
    d.根据诊断部位和/或位置的需要确定目标灰度值;
    e.X射线拍摄过程中,探测器根据所述DAEC参数,自动通知高压发生器停止曝光,获得X射线图片;
    步骤c和步骤d不分先后。
  9. 一种基于权利要求4-7中任一所述系统的成像方法,所述探测器的最大曝光接受范围为有效成像区域,其特征在于,其包括以下步骤:
    a.待X射线成像受检者进入成像系统,确保受检者在有效成像区域内;
    b.摄像头拍摄受检者,调节模块将所述摄像头所摄图像显示在显示屏上,并在所述显示屏上生成坐标系、与所述投射区域对应的投射图框;
    c.用户在显示屏上触摸图框并将其拖动至所需观测位置;或者在显示屏上圈出或点出感兴趣区域形成图框,
    PLC将图框的各边在所述显示屏上的位移转换为束光片组件各自所需调整位移,再由束光片组件各自调整至所需覆盖位置,形成投射区域;
    d.感兴趣区域位置信息传递到平板探测器,平板探测器根据该区域位置信息以及诊断部位和/或位置的需要调整自动曝光控制参数;
    e.待束光片组件动作完成和自动曝光控制参数确定后系统开始曝光;
    f.探测器根据自动曝光控制参数,自动通知高压发生器停止曝光,获得X射线图片。
  10. 一种基于权利要求8所述系统的成像方法,所述系统还包括用于识别摄像头在显示屏上所呈现的受检者的受检部位的智能识别模块,所述探测器的最大曝光接受范围为有效成像区域,其特征在于,所述数字平板探测器具有自动生成DAEC参数功能,所述方法包括以下步骤:
    a.待X射线成像受检者进入成像系统,确保受检者在有效成像区域内;
    b.摄像头拍摄受检者与探测器,智能识别模块接收处理所摄图片,智能识别模块设别出受检者的受检部位、受检部位与当前投射区域位置关系以及受检部位与当前实际DAEC响应区域位置关系;
    c.智能识别模块根据输入的诊断部位和/或位置的需要调整所述投射区域和所述实际DAEC响应区域;
    d.平板探测器根据诊断部位和/或位置的需要调整自动曝光控制参数;
    e.待束光片组件动作完成和自动曝光控制参数确定后系统开始曝光;
    f.探测器根据自动曝光控制参数,自动通知高压发生器停止曝光,获得X射线图片。
PCT/CN2020/104337 2020-05-08 2020-07-24 一种x射线成像系统及方法 WO2021223329A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20934849.9A EP4147642A4 (en) 2020-05-08 2020-07-24 X-RAY IMAGING SYSTEM AND METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010380071.4A CN111528880B (zh) 2020-05-08 2020-05-08 一种x射线成像系统及方法
CN202010380071.4 2020-05-08

Publications (1)

Publication Number Publication Date
WO2021223329A1 true WO2021223329A1 (zh) 2021-11-11

Family

ID=71970427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104337 WO2021223329A1 (zh) 2020-05-08 2020-07-24 一种x射线成像系统及方法

Country Status (4)

Country Link
US (1) US11721083B2 (zh)
EP (1) EP4147642A4 (zh)
CN (1) CN111528880B (zh)
WO (1) WO2021223329A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111443378A (zh) * 2020-05-08 2020-07-24 江苏康众数字医疗科技股份有限公司 一种智能化束光器及控制方法
US20220087632A1 (en) * 2020-09-24 2022-03-24 Our United Corporation Imaging system, imaging method and radiotherapy system
US11862357B2 (en) * 2020-10-21 2024-01-02 Illinois Tool Works Inc. Adjustable collimators and x-ray imaging systems including adjustable collimators
WO2022110132A1 (zh) * 2020-11-30 2022-06-02 江苏康众数字医疗科技股份有限公司 一种无人化智能拍片系统及拍片方法
CN112312636B (zh) * 2020-12-23 2021-05-07 上海奕瑞光电子科技股份有限公司 X射线的自动曝光控制方法及系统
CN113425317A (zh) * 2021-07-09 2021-09-24 江苏康众数字医疗科技股份有限公司 一种x射线成像装置及具有其的x射线成像系统
CN114531767B (zh) * 2022-04-20 2022-08-02 深圳市宝润科技有限公司 一种手持式x光机可视化x射线定位方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539798A (en) * 1993-01-27 1996-07-23 Kabushiki Kaisha Toshiba X-ray radiographic apparatus
CN102961154A (zh) * 2011-08-31 2013-03-13 Ge医疗系统环球技术有限公司 调节x射线系统的曝光视场的方法及装置和x射线系统
CN203576524U (zh) * 2013-11-06 2014-05-07 上海西门子医疗器械有限公司 X射线摄像设备及其辅助定位系统
CN106954329A (zh) 2016-05-17 2017-07-14 江苏康众数字医疗设备有限公司 成像设备的自动曝光控制方法及曝光系统
CN108095746A (zh) * 2017-12-21 2018-06-01 安徽省星灵信息科技有限公司 一种自动束光器及自动束光系统
CN110960243A (zh) * 2019-12-28 2020-04-07 上海健康医学院 一种自助式放射摄片成像系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070025525A1 (en) * 2005-07-12 2007-02-01 Chaim Gilath Means for improving patient positioning during X-ray imaging
US7344305B2 (en) * 2006-08-01 2008-03-18 Siemens Medical Solutions Usa, Inc. Remote visual feedback of collimated area and snapshot of exposed patient area
US8867705B2 (en) * 2010-04-13 2014-10-21 Carestream Health, Inc. Display of AEC sensor location
DE102013215516B4 (de) * 2013-08-07 2021-11-11 Siemens Healthcare Gmbh Röntgengerät und Verfahren zum Steuern eines Röntgengeräts

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539798A (en) * 1993-01-27 1996-07-23 Kabushiki Kaisha Toshiba X-ray radiographic apparatus
CN102961154A (zh) * 2011-08-31 2013-03-13 Ge医疗系统环球技术有限公司 调节x射线系统的曝光视场的方法及装置和x射线系统
CN203576524U (zh) * 2013-11-06 2014-05-07 上海西门子医疗器械有限公司 X射线摄像设备及其辅助定位系统
CN106954329A (zh) 2016-05-17 2017-07-14 江苏康众数字医疗设备有限公司 成像设备的自动曝光控制方法及曝光系统
CN108095746A (zh) * 2017-12-21 2018-06-01 安徽省星灵信息科技有限公司 一种自动束光器及自动束光系统
CN110960243A (zh) * 2019-12-28 2020-04-07 上海健康医学院 一种自助式放射摄片成像系统

Also Published As

Publication number Publication date
CN111528880B (zh) 2023-07-25
CN111528880A (zh) 2020-08-14
EP4147642A1 (en) 2023-03-15
EP4147642A4 (en) 2023-10-11
US11721083B2 (en) 2023-08-08
US20210330275A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2021223329A1 (zh) 一种x射线成像系统及方法
CN109452947B (zh) 用于生成定位图像和对患者成像的方法、x射线成像系统
KR101777436B1 (ko) 디지털 방사선 촬영 검출기를 이용하는 노출 제어
JP6498552B2 (ja) 漏油検出システム
US10830712B2 (en) System and method for cabinet x-ray systems with camera
KR101934836B1 (ko) 엑스선 영상 장치 및 그 제어 방법
CN100590577C (zh) 触摸屏定位装置及其定位方法
EP3669784B1 (en) System and method for acquiring an x-ray image
US20120014505A1 (en) Radiation image processing apparatus, radiation image processing method, and radiation image processing program
WO2016001135A1 (en) Method and system for configuring an x-ray imaging system
US10729399B2 (en) System and method for cabinet X-ray system with camera and X-ray images superimposition
CN113440156A (zh) 移动ct智能扫描定位系统、定位方法和存储介质
CN108697400A (zh) X射线设备和用于医学成像的方法
JP4715986B2 (ja) X線透視装置
JP5985970B2 (ja) 放射線断層撮影装置およびプログラム
WO2021223328A1 (zh) 一种智能化束光器及控制方法
JP3487292B2 (ja) X線透視装置
CN201107280Y (zh) 一种自动x射线实时成像检测装置
EP2664279A1 (en) Radiograph display apparatus and method
JP2003004666A (ja) X線透視撮影装置
CN201422883Y (zh) 一种准确定位的无图像失真x射线数字成像装置
CN216747272U (zh) 干粉颗粒分析仪
JP5224057B2 (ja) X線断層撮影装置
CN115886870B (zh) 一种用于远程超声诊断的超声图像虚拟显示方法
CN213843043U (zh) 粮食检测仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934849

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020934849

Country of ref document: EP

Effective date: 20221208

NENP Non-entry into the national phase

Ref country code: DE