WO2021223207A1 - 自旋轨道矩磁性器件、磁性隧道结器件及磁存储器 - Google Patents

自旋轨道矩磁性器件、磁性隧道结器件及磁存储器 Download PDF

Info

Publication number
WO2021223207A1
WO2021223207A1 PCT/CN2020/089143 CN2020089143W WO2021223207A1 WO 2021223207 A1 WO2021223207 A1 WO 2021223207A1 CN 2020089143 W CN2020089143 W CN 2020089143W WO 2021223207 A1 WO2021223207 A1 WO 2021223207A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
layer
free layer
spin
magnetic free
Prior art date
Application number
PCT/CN2020/089143
Other languages
English (en)
French (fr)
Inventor
王子路
赵巍胜
曹凯华
乔俊峰
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Priority to PCT/CN2020/089143 priority Critical patent/WO2021223207A1/zh
Publication of WO2021223207A1 publication Critical patent/WO2021223207A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details

Definitions

  • This application relates to the field of magnetic memory technology, and in particular to a spin-orbit moment magnetic device, a magnetic tunnel junction device and a magnetic memory.
  • Magnetic memory is a new type of non-volatile memory that uses magnetic moment magnetization direction up or down to store data "0" or "1". It is one of the key technologies to solve the bottleneck problem of chip power consumption in the post-Moore era.
  • Spin orbit torque (Spin Orbit Torque, SOT) is one of the important ways to manipulate the magnetization of magnetic memory by electric current.
  • SOT flip uses the strong spin-orbit coupling (SOC) effect in the heavy metal lead layer to convert the laterally applied current into a spin current, forming spin accumulation at the interface of the heavy metal layer or the magnetic layer, and Under the action of an external in-plane magnetic field, the perpendicular magnetic anisotropy magnetic tunnel junction is flipped.
  • SOC spin-orbit coupling
  • the existing method only uses single-interface spin accumulation, and there is room for further improvement of the magnetization flip efficiency. Therefore, research on more efficient magnetization flip methods is the focus of research in this field.
  • This application provides a spin-orbit moment magnetic device, a magnetic tunnel junction device and a magnetic memory.
  • a spin-orbit moment magnetic device in one aspect of the present application, includes a first magnetic free layer, a metal coupling layer, and a second magnetic free layer. Above the first magnetic free layer, the second magnetic free layer is disposed above the metal coupling layer; the first magnetic free layer and the second magnetic free layer have perpendicular magnetic anisotropy; The metal coupling layer is used to provide exchange interaction so that the first magnetic free layer and the second magnetic free layer realize antiferromagnetic coupling.
  • the spin-orbit moment magnetic device when supplied with a current that is substantially parallel to the in-plane direction, the first magnetic free layer and the second magnetic free layer generate vertical spin currents, so The spin flow on the lower surface of the first magnetic free layer and the upper surface of the second magnetic free layer generates spin accumulation with opposite polarization directions, and the spin accumulation is used to drive the first magnetic free layer.
  • the magnetization directions of the layer and the second magnetic free layer are reversed.
  • the spin-orbit moment magnetic device of the present application further includes: a substrate layer disposed under the first magnetic free layer; the substrate layer is used to absorb and scatter the spins generated by the first magnetic free layer flow.
  • the substrate layer has antiferromagnetism and is used to form a symmetric destruction field.
  • a magnetic tunnel junction device in another aspect of the present application, includes: a device part composed of a tunneling layer, a fixed magnetic layer, and a magnetic pinning layer, and the spin The lead layer part composed of the orbital moment magnetic device; the tunneling layer is arranged above the second magnetic free layer, the fixed magnetic layer is arranged above the tunneling layer, and the magnetic pinning layer is arranged on Above the fixed magnetic layer;
  • the tunneling layer is used to increase the tunneling magnetoresistance ratio provided by the fixed magnetic layer, the tunneling layer, and the second magnetic free layer, so as to read the magnetization state of the second magnetic free layer ;
  • the fixed magnetic layer and the magnetic pinned layer have perpendicular magnetic anisotropy.
  • the magnetic pinning layer is antiferromagnetically coupled with the fixed magnetic layer, and the magnetic pinning layer is used to fix the magnetization direction of the fixed magnetic layer.
  • the first magnetic free layer and the The magnetization directions of the second magnetic free layer are all reversed.
  • the magnetization directions of the first magnetic free layer and the second magnetic free layer are both reversed.
  • the first magnetic free layer and the second magnetic free layer are all reversed.
  • the resistance is read, and the second can be determined according to the resistance.
  • the direction of magnetization of the magnetic free layer is read, and the second can be determined according to the resistance.
  • a magnetic memory in another aspect of the present application, includes the spin-orbit moment magnetic device described in any one of the above.
  • another magnetic memory is provided, and the magnetic memory includes the magnetic tunnel junction device described in any one of the above.
  • FIG. 1 is a schematic structural diagram of a spin-orbit moment magnetic device according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a spin-orbit moment magnetic device according to another embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a magnetic tunnel junction device according to an embodiment of the present application.
  • the purpose of this application is to provide a spin-orbit moment magnetic device with high flipping efficiency, which helps to improve the read and write efficiency of magnetic memory.
  • FIG. 1 is a schematic structural diagram of a spin-orbit moment magnetic device according to an embodiment of the present application.
  • the spin-orbit moment magnetic device of the present application includes: a first magnetic free layer 101 and a metal coupling layer 102 And the second magnetic free layer 103.
  • the metal coupling layer 102 is disposed above the first magnetic free layer 101
  • the second magnetic free layer 103 is disposed above the metal coupling layer 102.
  • the first magnetic free layer 101 and the second magnetic free layer 103 have ferromagnetism or ferrimagnetism, and both have perpendicular magnetic anisotropy (Perpendicular Magnetic Anisotropy, PMA).
  • the anisotropy is the magnetic anisotropy perpendicular to the film plane of the first magnetic free layer 101 and the second magnetic free layer 103.
  • the metal coupling layer 102 provides exchange interaction, so that the first magnetic free layer 101 and the second magnetic free layer 103 realize antiferromagnetic coupling.
  • the antiferromagnetic coupling strength of the first magnetic free layer 101 and the second magnetic free layer 103 can be adjusted by the material and thickness of the metal coupling layer 102.
  • the material used for the first magnetic free layer 101 and the second magnetic free layer 103 may be at least one of the following materials or an alloy composed of at least one of the following materials: cobalt, Co, Nickel Ni, iron Fe, cobalt-iron-boron CoFeB with any composition ratio, cobalt-terbium CoTb with any composition ratio, and Hesler alloy with a composition ratio of approximately Co2XAl, where the element X includes iron Fe, manganese Mn.
  • the material used is one of cobalt-iron-boron CoFeB with any composition ratio, cobalt-terbium CoTb with any composition ratio, and Heusler alloy with a composition ratio of approximately Co2XAl.
  • the first magnetic free layer 101 and the second magnetic free layer 103 may adopt a multilayer film structure, and the material used for each film layer in the multilayer film structure may be at least one of the following materials Or an alloy composed of at least one of the following materials: cobalt Co, iron Fe, nickel Ni, cobalt platinum multilayer film [Co/Pt]n and cobalt nickel multilayer film [Co/Ni]n, preferably cobalt platinum Multilayer film [Co/Pt]n or cobalt nickel multilayer film [Co/Ni]n, where n is a natural number.
  • the thickness of the first magnetic free layer 101 and the second magnetic free layer 103 is less than or equal to 10 nm.
  • the material used for the metal coupling layer 102 may be at least one of the following materials or an alloy composed of at least one of the following materials: ruthenium Ru, tungsten W, hafnium Hf, iridium Ir, Tantalum Ta, molybdenum Mo, platinum Pt, titanium Ti, palladium Pd, chromium Cr, preferably ruthenium Ru, iridium Ir.
  • the metal coupling layer 102 may also adopt a multilayer film structure, and the material used for each film layer in the multilayer film structure may be at least one of the following materials or at least one of the following materials: Kinds of alloys: ruthenium Ru, tungsten W, hafnium Hf, iridium Ir, tantalum Ta, molybdenum Mo, platinum Pt, titanium Ti, palladium Pd, chromium Cr.
  • the thickness of the metal coupling layer 102 is less than or equal to 2 nm.
  • the first magnetic free layer 101 and the second magnetic free layer 103 have perpendicular magnetic anisotropy, and the metal coupling layer 102 provides exchange interaction to make the first magnetic The free layer 101 and the second magnetic free layer 103 realize antiferromagnetic coupling.
  • the spin-orbit coupling (Spin Orbit Coupling) inside the first magnetic free layer 101 and the second magnetic free layer 103 , SOC) generates a spin current in a vertical direction
  • the spin flow on the lower surface of the first magnetic free layer 101 and the upper surface of the second magnetic free layer 103 generates spin accumulation with opposite polarization directions.
  • the accumulation of spins on the lower surface of the first magnetic free layer 101 and the upper surface of the second magnetic free layer 103 together drive the magnetization directions of the first magnetic free layer 101 and the second magnetic free layer 103 to be reversed.
  • the solution of the present invention for performing magnetization reversal through spin accumulation of upper and lower two-layer interfaces has higher magnetization reversal efficiency and speed.
  • an external magnetic field roughly parallel to the in-plane direction can also be applied outside the spin-orbit moment magnetic device to further improve the magnetization reversal efficiency of the first magnetic free layer 101 and the second magnetic free layer 103. speed.
  • the lower surface of the first magnetic free layer 101 and the upper surface of the second magnetic free layer 103 jointly drive the magnetization directions of the first magnetic free layer and the second magnetic free layer by spin accumulation Both flip.
  • the external magnetic field is less than or equal to 1T.
  • the in-plane direction in the present application refers to the direction parallel to the film surface of the first magnetic free layer 101, the metal coupling layer 102, and the second magnetic free layer 103
  • the in-plane direction substantially parallel to the in-plane direction refers to The included angle between the in-plane directions is less than a preset value, and the preset value may be 30 degrees.
  • the vertical direction in this application refers to the direction perpendicular to the in-plane direction.
  • FIG. 2 is a schematic structural diagram of a spin orbit moment magnetic device according to another embodiment of the present application. As shown in FIG. 2, the spin orbit moment magnetic device of the embodiment in FIG. A substrate layer 201 is added on top, and the substrate layer 201 is disposed under the first magnetic free layer 101.
  • the substrate layer 201 is used for spin absorption and spin scattering, and its function is to adjust the spin accumulation on the lower surface of the first magnetic free layer 101, that is, to absorb and scatter the first magnetic layer.
  • the spin current generated by the free layer 101 is not limited to, but not limited to, to, to, to, to absorb and scatter the first magnetic layer.
  • the substrate layer 201 also has antiferromagnetism, which functions to provide an exchange bias to form a symmetrical destruction field.
  • antiferromagnetism In the case that the substrate layer has antiferromagnetism, there is no need to apply an external magnetic field substantially parallel to the in-plane direction. Only the spin-orbit moment magnetic device of the embodiment in FIG. When the current is greater than the threshold current required for reversal, the magnetization directions of the first magnetic free layer 101 and the second magnetic free layer 103 are both reversed.
  • the material used for the substrate layer 201 may be at least one of the following materials or an alloy composed of at least one of the following materials: tungsten W, tantalum Ta, molybdenum Mo, platinum Pt, titanium Ti, palladium Pd, chromium Cr, ruthenium Ru, hafnium Hf, iridium Ir, iron Fe, manganese Mn, gold Au, silver Ag, preferably ruthenium Ru, tantalum Ta, molybdenum Mo.
  • the substrate layer 201 may also adopt a multilayer film structure, and the materials used for each film layer in the multilayer film structure may be at least one of the following materials or at least one of the following materials Component alloys: tungsten W, tantalum Ta, molybdenum Mo, platinum Pt, titanium Ti, palladium Pd, chromium Cr, ruthenium Ru, hafnium Hf, iridium Ir, iron Fe, manganese Mn, gold Au, silver Ag.
  • Component alloys tungsten W, tantalum Ta, molybdenum Mo, platinum Pt, titanium Ti, palladium Pd, chromium Cr, ruthenium Ru, hafnium Hf, iridium Ir, iron Fe, manganese Mn, gold Au, silver Ag.
  • FIG. 3 is a schematic structural diagram of a magnetic tunnel junction device of an embodiment of the present application.
  • the magnetic tunnel junction device of the present application includes: a device composed of a tunneling layer 301, a fixed magnetic layer 302, and a magnetic pinning layer 303 Part and the lead layer part composed of the spin-orbit moment magnetic device 10 of the embodiment of FIG. 1 or the spin-orbit moment magnetic device 20 of the embodiment of FIG. 2 described above.
  • the tunneling layer 301 is disposed above the second magnetic free layer 103 in the lead layer portion 10 or 20
  • the fixed magnetic layer 302 is disposed above the tunneling layer 301
  • the magnetic pinning layer 303 is arranged above the fixed magnetic layer 302.
  • the tunneling layer 301 is used to separate the fixed magnetic layer 302 and the second magnetic free layer 103, and is used to increase the tunneling magnetoresistance ratio provided by the fixed magnetic layer 302, the tunneling layer 301, and the second magnetic free layer 103, so that reading The resistance value of is more obvious, and it is easier to read the magnetization state of the second magnetic free layer 103.
  • the material used for the tunnel layer 301 may be at least one of the following materials or an alloy composed of at least one of the following materials: aluminum Al, magnesium Mg, copper Cu, fluorine F, Lithium Li and magnesium oxide MgO are preferably magnesium oxide MgO.
  • the tunneling layer 301 may adopt a multilayer film structure, and the material used for each film layer in the multilayer film structure may be at least one of the following materials or at least one of the following materials: Alloys composed of three types: aluminum Al, magnesium Mg, magnesium oxide MgO, copper Cu, fluorine F, and lithium Li, preferably magnesium Mg or magnesium oxide MgO.
  • the fixed magnetic layer 302 has perpendicular magnetic anisotropy, and the fixed magnetic layer 302 together with the tunneling layer 301 and the second magnetic free layer 103 provide a tunneling magnetoresistance effect for reading the magnetization state of the second magnetic free layer 103 layer.
  • the magnetic pinned layer 303 has perpendicular magnetic anisotropy, and the magnetic pinned layer 303 is antiferromagnetically coupled with the fixed magnetic layer 302, and its purpose is to fix the magnetization direction of the fixed magnetic layer 302.
  • the structure and material selection of the fixed magnetic layer 302 and the magnetic pinned layer 303 may be the same as those of the first magnetic free layer 101 and the second magnetic free layer 103.
  • the shape of the tunnel layer 301, the fixed magnetic layer 302, and the magnetic pinned layer 303 may be a circle, an ellipse, a rectangle, a rhombus, a triangle, and a polygon.
  • the preparation process includes deposition, photolithography, etching, stripping and other processes known in the art.
  • the present application may use the spin orbit moment magnetic device 10 of the embodiment of FIG. 1 or the spin orbit moment magnetic device 20 of the embodiment of FIG. 2 as the lead layer portion of the magnetic tunnel junction device. Utilizing the inverse coupling between the first magnetic free layer 101 and the second magnetic free layer 103, the tunneling magnetoresistance ratio of the magnetic tunnel junction is improved, making the data of the magnetic device easier to read.
  • the data reading method of the magnetic tunnel junction device of the present application is to read the resistance between the upper end of the magnetic pinning layer 303 and any one of the left and right ends of the lead layer portion, and judge the "0" or "of the data by the resistance value. 1".
  • the writing method of the magnetic tunnel junction device of the present application includes: passing a current between the two ends of the lead layer portion, and at the same time, optionally applying an external magnetic field roughly parallel to the in-plane direction, and the size of the external magnetic field can be greater than or equal to 0 and less than Equal to 1T, when the applied current is greater than the threshold current required for reversal, the magnetization directions of the first magnetic free layer 101 and the second magnetic free layer 103 are both reversed.
  • the substrate layer has antiferromagnetism
  • there is no need to apply an external magnetic field that is, the magnitude of the external magnetic field is equal to 0, and only when the current is greater than the threshold current required for switching between the two ends of the lead layer part ,
  • the magnetization directions of the first magnetic free layer 101 and the second magnetic free layer 103 are both reversed.
  • the mechanism by which a current is passed between the two ends of the lead layer portion to perform the flip is Spin Orbit Torque (SOT).
  • the writing method of the magnetic tunnel junction device of the present application further includes: passing a current between the upper end of the magnetic pinning layer 303 and any one of the left and right ends of the lead layer portion, when the passing current is greater than the threshold current required for switching ,
  • the magnetization directions of the first magnetic free layer 101 and the second magnetic free layer 103 are both reversed.
  • an external magnetic field roughly parallel to the in-plane direction can also be selected at the same time.
  • the size of the external magnetic field can be greater than or equal to 0 and less than or equal to 1T, which improves the speed and efficiency of the flipping of the first magnetic free layer 101 and the second magnetic free layer 103.
  • the mechanism of this part of the flip is that spin-orbit moment (Spin Orbit Torque, SOT), spin transfer torque (Spin Transfer Torque, STT), and voltage controlled magnetic anisotropy (Voltage Controlled Magnetic Anisotropy, VCMA) cooperatively drive the flip.
  • SOT spin Orbit Torque
  • STT spin Transfer Torque
  • VCMA Voltage Controlled Magnetic Anisotropy
  • the lead layer portion of the magnetic tunnel junction device adopts the structure of the spin-orbital moment magnetic device 10 of the embodiment in FIG. 1, and the specific structure of the spin-orbital moment magnetic device 10 is: first magnetic freedom Layer 101 is FePt FePt (3nm) with L10 crystal orientation and has perpendicular magnetic anisotropy; metal coupling layer 102 is Ir with a thickness of 0.4nm; second magnetic free layer 103 is cobalt-iron-boron Co20Fe60B20 with a thickness It is 1nm and has perpendicular magnetic anisotropy.
  • first magnetic freedom Layer 101 is FePt FePt (3nm) with L10 crystal orientation and has perpendicular magnetic anisotropy
  • metal coupling layer 102 is Ir with a thickness of 0.4nm
  • second magnetic free layer 103 is cobalt-iron-boron Co20Fe60B20 with a thickness It is 1nm and has perpendicular magnetic anisotropy.
  • the tunneling layer 301 is magnesium oxide MgO with a thickness of 1nm;
  • the fixed magnetic layer 302 is cobalt-iron-boron Co20Fe60B20 with a thickness of 1.3nm, has perpendicular magnetic anisotropy, and the initial magnetization direction is upward;
  • the magnetic pinning layer 303 is made of cobalt Magnetic pinning layer composed of Co platinum Pt multilayer film and ruthenium Ru coupling layer [Co(0.35nm)/Pt(0.6nm)] ⁇ 5/Ru(0.4nm)/[Co(0.35nm)/Pt(0.6nm) )] ⁇ 3/Ru(0.4nm), with perpendicular magnetic anisotropy.
  • the tunneling layer 301, the fixed magnetic layer 302, and the magnetic pinning layer 303 are circular, with a diameter of 20 nm, and the width of the lead layer is 30 nm.
  • the applied direction is a 200 Oe external magnetic field that is approximately parallel to the direction of the lead layer in the plane
  • a current is applied between the upper end of the magnetic pinning layer 303 and one end of the lead layer portion, when the applied current is greater than the threshold current required for inversion ,
  • the magnetic properties of the first magnetic free layer 101 and the second magnetic free layer 103 are both reversed or maintained in a certain direction.
  • the first magnetic free layer 101 and the second magnetic free layer The magnetic properties of the layer 103 are all flipped to or maintained in the other direction.
  • the resistance values of the magnetic tunnel junction devices corresponding to the two equilibrium states are different.
  • a magnetic memory which includes the spin-orbit moment magnetic device described in any of the above embodiments.
  • another magnetic memory is provided, and the magnetic memory includes the magnetic tunnel junction device described in any of the above-mentioned embodiments.

Landscapes

  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

一种自旋轨道矩磁性器件、磁性隧道结器件及磁存储器,该自旋轨道矩磁性器件包括:第一磁性自由层(101)、金属耦合层(102)以及第二磁性自由层(103),所述金属耦合层(102)设置在所述第一磁性自由层(101)的上方,所述第二磁性自由层(103)设置在所述金属耦合层(102)上方;所述第一磁性自由层(101)和所述第二磁性自由层(103)具有垂直磁各向异性;所述金属耦合层(102)用于提供交换相互作用以使所述第一磁性自由层(101)和所述第二磁性自由层(103)实现反铁磁耦合。

Description

自旋轨道矩磁性器件、磁性隧道结器件及磁存储器 技术领域
本申请涉及磁存储器技术领域,特别涉及一种自旋轨道矩磁性器件、磁性隧道结器件及磁存储器。
背景技术
磁存储器是一种新型非易失性存储器,采用磁矩磁化方向向上或向下来存储数据的“0”或“1”,是后摩尔时代解决芯片功耗瓶颈问题的关键技术之一。自旋轨道矩(Spin Orbit Torque,SOT)是利用电流操作磁存储器磁化翻转的重要方式之一。现有的SOT翻转利用了重金属引线层中的强自旋轨道耦合效应(Spin Orbit Coupling,SOC),将横向外加电流转化为自旋流,在重金属层或磁性层界面处形成自旋累积,并在外加面内磁场的作用下实现翻转垂直磁各向异性磁隧道结。现有的这种方式仅利用了单界面自旋累积,磁化翻转效率存在进一步提升的空间,因此研究更高效的磁化翻转方式是本领域的研究重点。
发明内容
本申请提供一种自旋轨道矩磁性器件、磁性隧道结器件及磁存储器。
本申请的一个方面,提供了一种自旋轨道矩磁性器件,该自旋轨道矩磁性器件包括:第一磁性自由层、金属耦合层以及第二磁性自由层,所述金属耦合层设置在所述第一磁性自由层的上方,所述第二磁性自由层设置在所述金属耦合层的上方;所述第一磁性自由层和所述第二磁性自由层具有垂直磁各向异性;所述金属耦合层用于提供交换相互作用以使所述第一磁性自由层和所述第二磁性自由层实现反铁磁耦合。
可选的,当所述自旋轨道矩磁性器件通入大致平行于面内方向的电流时,所述第一磁性自由层和所述第二磁性自由层内部产生垂直方向的自旋流,所述自旋流于所述第一磁性自由层的下表面和所述第二磁性自由层的上 表面产生极化方向相反的自旋累积,所述自旋累积用于驱动所述第一磁性自由层和所述第二磁性自由层的磁化方向翻转。
可选的,本申请的自旋轨道矩磁性器件还包括:设置在所述第一磁性自由层下方的衬底层;所述衬底层用于吸收并散射所述第一磁性自由层产生的自旋流。
可选的,所述衬底层具有反铁磁性,用于形成对称破坏场。
本申请的另一个方面,提供了一种磁性隧道结器件,该磁性隧道结器件包括:由隧穿层、固定磁性层和磁性钉扎层组成的器件部分以及上述任意之一所述的自旋轨道矩磁性器件组成的引线层部分;所述隧穿层设置在所述第二磁性自由层的上方,所述固定磁性层设置在所述隧穿层的上方,所述磁性钉扎层设置在所述固定磁性层的上方;
所述隧穿层用于增加所述固定磁性层、所述隧穿层以及所述第二磁性自由层共同提供的隧穿磁阻比率,用以读取所述第二磁性自由层的磁化状态;所述固定磁性层和所述磁性钉扎层具有垂直磁各向异性。
可选的,所述磁性钉扎层与所述固定磁性层反铁磁耦合,所述磁性钉扎层用于固定所述固定磁性层的磁化方向。
可选的,在外加大致平行于面内方向的磁场的条件下,若在所述引线层部分的两端之间通入大于翻转所需阈值电流的电流,所述第一磁性自由层和所述第二磁性自由层的磁化方向均翻转。
可选的,若在所述引线层部分的两端之间通入大于翻转所需阈值电流的电流,所述第一磁性自由层和所述第二磁性自由层的磁化方向均翻转。
可选的,若在所述磁性钉扎层的上端与所述引线层部分的任意一端之间通入大于翻转所需阈值电流的电流,所述第一磁性自由层和所述第二磁性自由层的磁化方向均翻转。
可选的,若在所述磁性钉扎层的上端与所述引线层部分的任意一端之间通入小于翻转所需阈值电流的电流,读取电阻,可根据电阻的大小判断所述第二磁性自由层磁化方向。
本申请的另一个方面,提供了一种磁存储器,该磁存储器包括上述任意之一所述的自旋轨道矩磁性器件。
本申请的另一个方面,提供了另一种磁存储器,该磁存储器包括上述任意之一所述的磁性隧道结器件。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本申请一个实施例自旋轨道矩磁性器件的结构示意图;
图2是本申请另一个实施例自旋轨道矩磁性器件的结构示意图;
图3是本申请一个实施例磁性隧道结器件的结构示意图。
具体实施方式
为了使本申请要解决的技术问题、技术方案和优点更加清楚,下面将结合附图对本申请实施例中的技术方案进行详细描述。
本申请的目的在于提供一种具有高翻转效率的自旋轨道矩磁性器件,有助于提高磁存储器的读写效率。
图1是本申请一个实施例自旋轨道矩磁性器件的结构示意图,在图1所示的实施例中,本申请的自旋轨道矩磁性器件包括:第一磁性自由层101、金属耦合层102以及第二磁性自由层103。所述金属耦合层102设置在所述第一磁性自由层101的上方,所述第二磁性自由层103设置在所述金属耦合层102的上方。
在图1所示的实施例中,第一磁性自由层101和第二磁性自由层103具有铁磁性或亚铁磁性,并且均具有垂直磁各向异性(Perpendicular Magnetic Anisotropy,PMA),垂直磁各向异性为垂直于第一磁性自由层101和第二磁性自由层103的薄膜平面的磁各向异性。所述金属耦合层102提供交换相互作用,使所述第一磁性自由层101和所述第二磁性自由层103实现反铁磁耦合。第一磁性自由层101和第二磁性自由层103的反铁磁耦合强度可以通过金属耦合层102的材料和厚度进行调节。
在本申请的可选实施例中,第一磁性自由层101和第二磁性自由层103采用的材料可以为以下材料的至少一种或者为由以下材料的至少一种构成的合金:钴Co、镍Ni、铁Fe、任意组分比例的钴铁硼CoFeB、任意组分比例的钴铽CoTb以及组分比例大致为Co2XAl的赫斯勒合金,其中元素X包括:铁Fe、锰Mn。优选的,采用的材料为任意组分比例的钴铁硼CoFeB、任意组分比例的钴铽CoTb以及组分比例大致为Co2XAl的赫斯勒合金中的一种。
在本申请的可选实施例中,第一磁性自由层101和第二磁性自由层103可以采用多层膜结构,多层膜结构中的各膜层采用的材料可以为以下材料的至少一种或者为由以下材料的至少一种构成的合金:钴Co、铁Fe、镍Ni、钴铂多层膜[Co/Pt]n以及钴镍多层膜[Co/Ni]n,优选采用钴铂多层膜[Co/Pt]n或钴镍多层膜[Co/Ni]n,其中n为自然数。
在本申请的可选实施例中,第一磁性自由层101和第二磁性自由层103的厚度小于等于10nm。
在本申请的可选实施例中,金属耦合层102采用的材料可以为以下材料的至少一种或者为由以下材料的至少一种构成的合金:钌Ru、钨W、铪Hf、铱Ir、钽Ta、钼Mo、铂Pt、钛Ti、钯Pd、铬Cr,优选为钌Ru、铱Ir。
在本申请的可选实施例中,金属耦合层102也可以采用多层膜结构,多层膜结构中的各膜层采用的材料可以为以下材料的至少一种或者为由以下材料的至少一种构成的合金:钌Ru、钨W、铪Hf、铱Ir、钽Ta、钼Mo、铂Pt、钛Ti、钯Pd、铬Cr。
在本申请的可选实施例中,金属耦合层102的厚度小于等于2nm。
在图1实施例的自旋轨道矩磁性器件中,第一磁性自由层101和第二磁性自由层103具有垂直磁各向异性,所述金属耦合层102提供交换相互作用使所述第一磁性自由层101和所述第二磁性自由层103实现反铁磁耦合。当在图1实施例的自旋轨道矩磁性器件中通入大致平行于面内方向的电流时,由第一磁性自由层101以及第二磁性自由层103内部的自旋轨道耦合(Spin Orbit Coupling,SOC)产生垂直方向的自旋流,自旋流于第一磁性自由层101的下表面和第二磁性自由层103的上表面产生极化方向相反的自旋累积。第一磁性自由层101的下表面和第二磁性自由层103的上表面的自旋累积共同驱动第一磁性自由层101和第二磁性自由层103的磁化方向均翻转。与现有技术的通过单界面自旋累积进行磁化翻转的方法,本发明的通过上下两层界面的自旋累积进行磁化翻转的方案具有更高的磁化翻转效率和速度。
在本发明可选实施例中,还可以在自旋轨道矩磁性器件外施加大致平行于面内方向的外加磁场,进一步提高第一磁性自由层101和第二磁性自由层103的磁化翻转效率和速度。在施加面内方向外加磁场辅助的条件下,第一磁性自由层101的下表面和第二磁性自由层103的上表面自旋累积共同驱动第一磁性自由层和第二磁性自由层的磁化方向均翻转。在本发明可选实施例中,所述外加磁场小于等于1T。
需要说明的是,本申请的面内方向指的是平行于第一磁性自由层101、金属耦合层102和第二磁性自由层103的薄膜表面的方向,大致平行于面内方向指的是与面内方向之间的夹角小于预设值,该预设值可以为30度。本申请的垂直方向指的是垂直于面内方向的方向。
图2是本申请另一个实施例自旋轨道矩磁性器件的结构示意图,如图2所示,图2实施例的自旋轨道矩磁性器件在图1实施例的自旋轨道矩磁性器件的基础上增加了衬底层201,该衬底层201设置在第一磁性自由层101的下方。
在图2所示的实施例中,衬底层201用于自旋吸收和自旋散射,其作用为可以调节第一磁性自由层101下表面的自旋累积,即吸收并散射所述第一磁性自由层101产生的自旋流。
在本申请的可选实施例中,衬底层201还具有反铁磁性,其作用为提供交换偏置,用以形成对称破坏场。在衬底层具有反铁磁性的情况下,无需施加大致平行于面内方向的外加磁场,仅在在图2实施例的自旋轨道矩磁性器件中通入大致平行于面内方向的电流且该电流大于翻转所需阈值电流,第一磁性自由层101和第二磁性自由层103的磁化方向均翻转。
在本申请的可选实施例中,衬底层201采用的材料可以为以下材料的至少一种或者为由以下材料的至少一种构成的合金:钨W、钽Ta、钼Mo、铂Pt、钛Ti、钯Pd、铬Cr、钌Ru、铪Hf、铱Ir、铁Fe、锰Mn、金Au、银Ag,优选为钌Ru,钽Ta,钼Mo。
在本申请的可选实施例中,衬底层201也可以采用多层膜结构,多层膜结构中的各膜层采用的材料可以为以下材料的至少一种或者为由以下材料的至少一种构成的合金:钨W、钽Ta、钼Mo、铂Pt、钛Ti、钯Pd、铬Cr、钌Ru、铪Hf、铱Ir、铁Fe、锰Mn、金Au、银Ag。
本申请的另一个方面,还提供了一种磁性隧道结器件。图3是本申请一个实施例磁性隧道结器件的结构示意图,如图3所示,本申请的磁性隧道结器件包括:由隧穿层301、固定磁性层302和磁性钉扎层303组成的器件部分以及由上述图1实施例的自旋轨道矩磁性器件10或者图2实施例的自旋轨道矩磁性器件20组成的引线层部分。
在图3所示的实施例中,隧穿层301设置在引线层部分10或20中的第二磁性自由层103的上方,固定磁性层302设置在隧穿层301的上方,磁性钉扎层303设置在固定磁性层302的上方。
隧穿层301用于分隔固定磁性层302与第二磁性自由层103,并用于增加固定磁性层302、隧穿层301以及第二磁性自由层103共同提供的隧穿磁阻比率,使读取的电阻大小更为明显,更容易读取出第二磁性自由层103的磁化状态。
在本申请的可选实施例中,隧穿层301采用的材料可以为以下材料的至少一种或者为由以下材料的至少一种构成的合金:铝Al、镁Mg、铜Cu、氟F、锂Li以及氧化镁MgO,优选为氧化镁MgO。在本申请的其他可选实施例中,隧穿层301可以采用多层膜结构,多层膜结构中的各膜层采用的材料可以为以下材料的至少一种或者为由以下材料的至少一种构成的合金:铝Al、镁Mg、氧化镁MgO、铜Cu、氟F以及锂Li,优选为镁Mg或氧化镁MgO。
固定磁性层302具有垂直磁各向异性,固定磁性层302与隧穿层301和第二磁性自由层103共同提供隧穿磁阻效应,用于读取第二磁性自由层103层的磁化状态。
磁性钉扎层303具有垂直磁各向异性,磁性钉扎层303与固定磁性层302反铁磁耦合,其目的在于固定所述固定磁性层302的磁化方向。
在本申请可选实施例中,固定磁性层302和磁性钉扎层303的结构以及材料的选择可以与第一磁性自由层101和第二磁性自由层103的相同。
在本申请可选实施例中,隧穿层301、固定磁性层302以及磁性钉扎层303的形状可以为圆形、椭圆形、矩形、菱形、三角形以及多边形。其制备流程包含本领域公知的沉积、光刻、刻蚀、剥离等工艺。
在图3所示的实施例中,本申请可以采用图1实施例的自旋轨道矩磁性器件10或者图2实施例的自旋轨道矩磁性器件20作为磁性隧道结器件的引 线层部分,可以利用第一磁性自由层101与第二磁性自由层103之间的反耦合,提升了磁性隧道结的隧穿磁阻比率,使得磁性器件的数据更易读取。
本申请磁性隧道结器件的数据读取方式为读取磁性钉扎层303的上端和引线层部分的左右两端中的任意一端之间电阻,通过电阻值的高低判断数据的“0”或“1”。
本申请磁性隧道结器件的写入方式包括:在引线层部分的两端之间通入电流,同时可以选择施加大致平行于面内方向的外磁场,外磁场的大小可以为大于等于0且小于等于1T,当所通入电流大于翻转所需阈值电流时,第一磁性自由层101与第二磁性自由层103的磁化方向均翻转。在本申请可选实施例中,若衬底层具有反铁磁性,无需施加外磁场,即外磁场的大小等于0,仅在引线层部分的两端之间通入电流大于翻转所需阈值电流时,第一磁性自由层101与第二磁性自由层103的磁化方向均翻转。在引线层部分的两端之间通入电流进行翻转的机理为自旋轨道矩翻转(Spin Orbit Torque,SOT)。
本申请磁性隧道结器件的写入方式还包括:在磁性钉扎层303的上端和引线层部分的左右两端中的任意一端之间通入电流,当所通入电流大于翻转所需阈值电流时,第一磁性自由层101与第二磁性自由层103的磁化方向均翻转。此外,还可以选择同时施加大致平行于面内方向的外磁场,外磁场的大小可以为大于等于0小于等于1T,提升第一磁性自由层101与第二磁性自由层103翻转的速度和效率。本部分翻转的机理为自旋轨道矩(Spin Orbit Torque,SOT)、自旋转移矩(Spin Transfer Torque,STT)与压控磁各向异性(Voltage Controlled Magnetic Anisotropy,VCMA)协同驱动翻转。由此可见,本申请可以利用SOT、STT与VCMA协同驱动翻转,可以实现无外加磁场翻转,并且提高了SOT器件的翻转效率和速度。
在本申请一个具体实施例中,磁性隧道结器件的引线层部分采用图1实施例的自旋轨道矩磁性器件10的结构,其自旋轨道矩磁性器件10的具体结 构为:第一磁性自由层101为具有L10晶向的铁铂FePt(3nm),具有垂直磁各向异性;金属耦合层102为铱Ir,其厚度为0.4nm;第二磁性自由层103为钴铁硼Co20Fe60B20,其厚度为1nm,具有垂直磁各向异性。
隧穿层301为氧化镁MgO,其厚度为1nm;固定磁性层302为钴铁硼Co20Fe60B20,其厚度为1.3nm,具有垂直磁各向异性,初始磁化方向向上;磁性钉扎层303为由钴Co铂Pt多层膜和钌Ru耦合层构成的磁性钉扎层[Co(0.35nm)/Pt(0.6nm)]×5/Ru(0.4nm)/[Co(0.35nm)/Pt(0.6nm)]×3/Ru(0.4nm),具有垂直磁各向异性。
隧穿层301、固定磁性层302以及磁性钉扎层303为圆形,其直径为20nm,所述引线层宽度为30nm。在外加方向为面内大致平行于引线层方向的200Oe外磁场的情况下,在磁性钉扎层303上端和引线层部分的一端之间通入电流,当通入电流大于翻转所需阈值电流时,第一磁性自由层101与第二磁性自由层103的磁性均会翻转至或保持在某一方向,当所通入电流或外加磁场方向反向时,第一磁性自由层101与第二磁性自由层103的磁性均翻转至或保持在另一方向。两种平衡状态对应的磁性隧道结器件的阻值不同,通过读取在磁性钉扎层303上端和引线层部分的一端之间的电阻,可以用来读取第二磁性自由层的磁化状态。
本申请的另一个方面,还提供了一种磁存储器,该磁存储器包括上述任一实施例所述的自旋轨道矩磁性器件。
本申请的另一个方面,还提供了另一种磁存储器,该磁存储器包括上述任一实施例所述的磁性隧道结器件。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (11)

  1. 一种自旋轨道矩磁性器件,其特征在于,包括:第一磁性自由层、金属耦合层以及第二磁性自由层,所述金属耦合层设置在所述第一磁性自由层的上方,所述第二磁性自由层设置在所述金属耦合层的上方;
    所述第一磁性自由层和所述第二磁性自由层具有垂直磁各向异性;
    所述金属耦合层用于提供交换相互作用以使所述第一磁性自由层和所述第二磁性自由层实现反铁磁耦合。
  2. 根据权利要求1所述的自旋轨道矩磁性器件,其特征在于,当所述自旋轨道矩磁性器件通入大致平行于面内方向的电流时,所述第一磁性自由层和所述第二磁性自由层内部产生垂直方向的自旋流,所述自旋流于所述第一磁性自由层的下表面和所述第二磁性自由层的上表面产生极化方向相反的自旋累积,所述自旋累积用于驱动所述第一磁性自由层和所述第二磁性自由层的磁化方向翻转。
  3. 根据权利要求1所述的自旋轨道矩磁性器件,其特征在于,还包括:设置在所述第一磁性自由层下方的衬底层;所述衬底层用于吸收并散射所述第一磁性自由层产生的自旋流。
  4. 根据权利要求3所述的自旋轨道矩磁性器件,其特征在于,所述衬底层具有反铁磁性,用于形成对称破坏场。
  5. 一种磁性隧道结器件,其特征在于,包括:由隧穿层、固定磁性层和磁性钉扎层组成的器件部分以及由权利要求1至4任意之一所述的自旋轨道矩磁性器件组成的引线层部分;所述隧穿层设置在所述第二磁性自由层的上方,所述固定磁性层设置在所述隧穿层的上方,所述磁性钉扎层设置在所述固定磁性层的上方;
    所述隧穿层用于增加所述固定磁性层、所述隧穿层以及所述第二磁性自由层共同提供的隧穿磁阻比率,用以读取所述第二磁性自由层的磁化状态;所述固定磁性层和所述磁性钉扎层具有垂直磁各向异性。
  6. 根据权利要求5所述的磁性隧道结器件,其特征在于,所述磁性钉扎层与所述固定磁性层反铁磁耦合,所述磁性钉扎层用于固定所述固定磁性层的磁化方向。
  7. 根据权利要求6所述的磁性隧道结器件,其特征在于,在外加大致平行于面内方向的磁场的条件下,若在所述引线层部分的两端之间通入大于翻转所需阈值电流的电流,所述第一磁性自由层和所述第二磁性自由层的磁化方向均翻转。
  8. 根据权利要求6所述的磁性隧道结器件,其特征在于,若在所述引线层部分的两端之间通入大于翻转所需阈值电流的电流,所述第一磁性自由层和所述第二磁性自由层的磁化方向均翻转。
  9. 根据权利要求6所述的磁性隧道结器件,其特征在于,若在所述磁性钉扎层的上端与所述引线层部分的任意一端之间通入大于翻转所需阈值电流的电流,所述第一磁性自由层和所述第二磁性自由层的磁化方向均翻转。
  10. 一种磁存储器,其特征在于,包括根据权利要求1至4任意之一所述的自旋轨道矩磁性器件。
  11. 一种磁存储器,其特征在于,包括根据权利要求5至9任意之一所述的磁性隧道结器件。
PCT/CN2020/089143 2020-05-08 2020-05-08 自旋轨道矩磁性器件、磁性隧道结器件及磁存储器 WO2021223207A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089143 WO2021223207A1 (zh) 2020-05-08 2020-05-08 自旋轨道矩磁性器件、磁性隧道结器件及磁存储器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089143 WO2021223207A1 (zh) 2020-05-08 2020-05-08 自旋轨道矩磁性器件、磁性隧道结器件及磁存储器

Publications (1)

Publication Number Publication Date
WO2021223207A1 true WO2021223207A1 (zh) 2021-11-11

Family

ID=78468594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089143 WO2021223207A1 (zh) 2020-05-08 2020-05-08 自旋轨道矩磁性器件、磁性隧道结器件及磁存储器

Country Status (1)

Country Link
WO (1) WO2021223207A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117500281A (zh) * 2024-01-02 2024-02-02 致真存储(北京)科技有限公司 磁存储器及其制备方法、电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040222450A1 (en) * 2003-05-05 2004-11-11 David Tsang MRAM architecture with a bit line located underneath the magnetic tunneling junction device
CN105702853A (zh) * 2016-03-04 2016-06-22 北京航空航天大学 一种自旋转移矩磁存储单元
CN109037434A (zh) * 2018-07-06 2018-12-18 西安交通大学 基于人工反铁磁自由层的隧道结器件及磁性随机存储装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040222450A1 (en) * 2003-05-05 2004-11-11 David Tsang MRAM architecture with a bit line located underneath the magnetic tunneling junction device
CN105702853A (zh) * 2016-03-04 2016-06-22 北京航空航天大学 一种自旋转移矩磁存储单元
CN109037434A (zh) * 2018-07-06 2018-12-18 西安交通大学 基于人工反铁磁自由层的隧道结器件及磁性随机存储装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117500281A (zh) * 2024-01-02 2024-02-02 致真存储(北京)科技有限公司 磁存储器及其制备方法、电子设备
CN117500281B (zh) * 2024-01-02 2024-04-12 致真存储(北京)科技有限公司 磁存储器及其制备方法、电子设备

Similar Documents

Publication Publication Date Title
JP5623507B2 (ja) スピントルクの切換を補助する層を有する、スピントルクの切換を持つ磁気積層体
EP2342714B1 (en) Reducing spin pumping induced damping of a free layer of a memory device
US7307876B2 (en) High speed low power annular magnetic devices based on current induced spin-momentum transfer
JP5696909B2 (ja) 磁気抵抗効果素子、および磁気ランダムアクセスメモリ
JP3863536B2 (ja) 磁気ランダムアクセスメモリ及びその磁気ランダムアクセスメモリのデータ書き込み方法
JP5383882B1 (ja) 不揮発性記憶装置
CN106953005B (zh) 磁性元件和存储装置
US11776726B2 (en) Dipole-coupled spin-orbit torque structure
US20130059168A1 (en) Magnetoresistance Device
JP5104753B2 (ja) 磁気ランダムアクセスメモリ及びその製造方法
US20190189908A1 (en) Heterostructures for Electric Field Controlled Magnetic Tunnel Junctions
JP2012519963A (ja) 垂直異方性を有するst−ramセル
WO2014089182A1 (en) A nonvolatile magnetic logic device
WO2014050379A1 (ja) 記憶素子、記憶装置、磁気ヘッド
WO2011078018A1 (ja) 磁気抵抗効果素子及びそれを用いた磁気ランダムアクセスメモリ
WO2020215610A1 (zh) 磁性随机存储器的磁隧道结器件
KR20180061555A (ko) 자기 메모리 소자 및 자기 메모리 소자의 쓰기 방법
EP2887410A1 (en) Magnetic multilayer stack
US8565010B2 (en) Magnetic random access memory with field compensating layer and multi-level cell
TWI278989B (en) Magnetic random access memory with lower switching field through indirect exchange coupling
WO2021223207A1 (zh) 自旋轨道矩磁性器件、磁性隧道结器件及磁存储器
TWI324770B (zh)
CN110993782A (zh) 基于钙钛矿型异质结衬底及锯齿型隧穿异质结的自旋轨道动量矩磁存储器
TWI790839B (zh) 平面式磁化自旋軌道磁性元件
KR102442286B1 (ko) 스핀궤도 토크 메모리 소자 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934709

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20934709

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 16.05.2023 DATED 16.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20934709

Country of ref document: EP

Kind code of ref document: A1