WO2021223100A1 - 电池供电条件的确定方法、装置、电池和可移动平台 - Google Patents

电池供电条件的确定方法、装置、电池和可移动平台 Download PDF

Info

Publication number
WO2021223100A1
WO2021223100A1 PCT/CN2020/088771 CN2020088771W WO2021223100A1 WO 2021223100 A1 WO2021223100 A1 WO 2021223100A1 CN 2020088771 W CN2020088771 W CN 2020088771W WO 2021223100 A1 WO2021223100 A1 WO 2021223100A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery unit
internal resistance
current
conditions
Prior art date
Application number
PCT/CN2020/088771
Other languages
English (en)
French (fr)
Inventor
胡文贵
肖丹
李鹏
许柏皋
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080004701.6A priority Critical patent/CN112655129A/zh
Priority to PCT/CN2020/088771 priority patent/WO2021223100A1/zh
Publication of WO2021223100A1 publication Critical patent/WO2021223100A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the embodiments of the present invention relate to the technical field of batteries, and in particular to a method, a device, a battery, and a movable platform for determining a battery power supply condition.
  • a dual-battery parallel system can be used as the power supply system of the movable platform.
  • the dual-battery parallel system Before the dual-battery parallel system supplies power to the movable platform, it is necessary to determine the voltage difference and power difference between the two batteries included in the dual-battery parallel system to determine whether the dual-battery parallel system can start the discharge switching element. Specifically, if the voltage difference between the two batteries is large or the power difference is large, after the switching element is activated to indicate power supply, the phenomenon of mutual charging between the two batteries is likely to occur, and when the voltage difference is large, The mutual charging current may far exceed the allowable charging current of the battery. In this way, it is easy to shorten the service life of the battery to be charged; in addition, if the battery is in poor environmental conditions, it is easy to cause abnormalities in the battery, such as a fire and so on.
  • the embodiment of the present invention provides a method, a device, a battery, and a movable platform for determining a battery power supply condition.
  • the first aspect of the present invention is to provide a method for determining battery power supply conditions, including:
  • the charging control parameters corresponding to the first battery unit and the second battery unit are acquired, and the charging control parameters are related to the first battery internal resistance of the first battery unit and the second battery unit.
  • the internal resistance of the second battery of the unit is related, wherein the first battery unit and the second battery unit are connected in parallel, and are used to provide electrical energy to the load;
  • the power supply conditions corresponding to the first battery unit and the second battery unit are determined.
  • the second aspect of the present invention is to provide a device for determining battery power supply conditions, including:
  • Memory used to store computer programs
  • the processor is configured to run a computer program stored in the memory to realize:
  • the charging control parameters corresponding to the first battery unit and the second battery unit are acquired, and the charging control parameters are related to the first battery internal resistance of the first battery unit and the second battery unit.
  • the internal resistance of the second battery of the unit is related, wherein the first battery unit and the second battery unit are connected in parallel, and are used to provide electrical energy to the load;
  • the power supply conditions corresponding to the first battery unit and the second battery unit are determined.
  • the third aspect of the present invention is to provide a computer-readable storage medium, the storage medium is a computer-readable storage medium, the computer-readable storage medium stores program instructions, and the program instructions are used in the first aspect.
  • the fourth aspect of the present invention is to provide a battery including:
  • the device for determining battery power supply conditions according to the second aspect described above is installed in the housing;
  • One or more battery cells are installed in the casing and electrically connected to the determining device for charging operation under the battery power supply condition determined by the determining device.
  • the fifth aspect of the present invention is to provide a movable platform, including:
  • the battery according to the fourth aspect is arranged on the body and used to provide electric energy for the movable platform.
  • the method, device, battery, and movable platform for determining battery power supply conditions provided by the embodiments of the present invention effectively realize that the battery's internal resistance characteristics under different preset conditions are comprehensively considered to stably obtain the safe power supply conditions of the battery. It ensures the accuracy and reliability of obtaining safe power supply conditions and the stable and reliable operation of the dual-battery parallel system.
  • FIG. 1 is a schematic flowchart of a method for determining battery power supply conditions according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a part of the structure of a dual-battery parallel system provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the process of determining the voltage difference between the first battery cell and the second battery cell under different preset conditions based on the charging control parameter in FIG. 1;
  • FIG. 4 shows the determination of the first battery unit and the second battery under different preset conditions based on the internal resistance of the first battery unit and the internal resistance of the second battery unit under different preset conditions in FIG. 3 Schematic diagram of the flow of the voltage difference between the units;
  • FIG. 5 is a schematic diagram of the flow of obtaining the second current of the branch where the second battery unit is located under different preset conditions in FIG. 4;
  • FIG. 6 is a schematic diagram of the process of obtaining charging parameters corresponding to the second battery unit in FIG. 5;
  • FIG. 7 is a schematic flow chart of determining the first current of the branch where the first battery unit is located based on the second current in FIG. 4;
  • FIG. 8 is a schematic structural diagram of determining the first current of the branch where the first battery unit is located based on the second current in FIG. 7;
  • FIG. 9 shows the determination of the first battery cell and the first battery cell under different preset conditions based on the first battery cell internal resistance, the first current, the second battery cell internal resistance, and the second current in FIG.
  • FIG. 10 is a schematic flow chart of determining the power supply conditions corresponding to the first battery unit and the second battery unit according to the voltage difference under different preset conditions in FIG. 1;
  • FIG. 11 is a schematic flowchart of another method for determining battery power supply conditions according to an embodiment of the present invention.
  • FIG. 12 is a schematic flowchart of yet another method for determining battery power supply conditions based on the structure shown in FIG. 2 or FIG. 8;
  • FIG. 13 is a schematic structural diagram of an apparatus for determining battery power supply conditions according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a battery provided by an embodiment of the present invention.
  • 15 is a schematic structural diagram of a movable platform provided by an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of an unmanned aerial vehicle provided by an embodiment of the present invention.
  • the dual battery parallel system Before using the dual battery parallel system to supply power to the mobile platform, it is necessary to determine the voltage difference and power difference between the two batteries included in the dual battery parallel system to determine whether the dual battery parallel system can start the discharge switching element. If the voltage difference between the two batteries is large or the power difference is large, after the discharge switching element is activated, the phenomenon of mutual charging between the two batteries is prone to occur, and when the voltage difference is large, the mutual charging current is It may far exceed the allowable charging current of the battery. In this way, it is easy to shorten the service life of the battery to be charged; in addition, if the battery is in poor environmental conditions, it is easy to cause abnormalities in the battery, such as a fire and so on.
  • lithium-ion batteries have the following characteristics: (1) When the temperature is below 0°C, if a high current is used to charge the lithium battery, there are factors The risk of fire or explosion caused by lithium; (2) The dynamic voltage, static voltage, internal resistance and power of the battery satisfy the preset relationship.
  • lithium-ion battery when the lithium-ion battery is used to supply power to the mobile platform, when the battery is located in a low temperature environment and there is mutual charging between the batteries in parallel, the As far as rechargeable batteries are concerned, if the charging current is too large, it will easily lead to lithium evolution in the battery, or even cause the battery to catch fire and so on.
  • the related technology proposes a method for judging power supply conditions. Specifically, the method may include: obtaining the voltage difference between the parallel dual batteries, and comparing the voltage difference with The preset voltage threshold is analyzed and compared, and according to the comparison result, it is determined whether there is a safe charging current between the dual batteries.
  • the above-mentioned preset voltage threshold is generally determined by actual measured empirical values. It does not consider the internal resistance and power characteristics of the battery. Specifically, the internal resistance and power characteristics of the battery will vary with the application environment and application time of the battery. For example, the internal resistance value of the battery will increase with the application time, and the battery power value will decrease with the application time. Therefore, the voltage threshold value calibrated based on the above actual measurement cannot accurately reflect the change of the battery due to the difference in internal resistance, temperature difference, etc., and thus cannot guarantee the service life and charging safety of the battery.
  • this embodiment provides a battery The method, device, battery and movable platform for determining the power supply conditions.
  • the method obtains the charging control parameters corresponding to the parallel batteries included in the dual-battery parallel system under different preset conditions, and determines the charging control parameters based on the charging control parameters.
  • the voltage difference between the first battery cell and the second battery cell under different preset conditions; after obtaining the voltage difference under different preset conditions, the voltage difference with the first battery cell may be determined based on the voltage difference under different preset conditions.
  • the accuracy and reliability of condition acquisition and the stable and reliable operation of the dual-battery parallel system effectively improve the safety and reliability of the method used, which is conducive to the promotion and application of the market.
  • FIG. 1 is a schematic flowchart of a method for determining battery power supply conditions according to an embodiment of the present invention; referring to FIG. 1, this embodiment provides a method for determining battery power supply conditions, and the execution body of the method may be a battery
  • the device for determining the power supply condition can be understood that the device for determining the battery power supply condition may be implemented as software or a combination of software and hardware.
  • the method for determining the battery power supply condition may include:
  • Step S101 Under different preset conditions, obtain the charge control parameters corresponding to the first battery unit and the second battery unit, and the charge control parameters are related to the first battery internal resistance of the first battery unit and the second battery unit
  • the internal resistance of the two batteries is related, where the first battery unit and the second battery unit are connected in parallel, and are used to provide electrical energy to the load.
  • Step S102 Determine the voltage difference between the first battery cell and the second battery cell under different preset conditions based on the charge control parameter.
  • Step S103 Determine the power supply conditions corresponding to the first battery unit and the second battery unit according to the voltage difference under different preset conditions.
  • Step S101 Under different preset conditions, obtain the charge control parameters corresponding to the first battery unit and the second battery unit, and the charge control parameters are related to the first battery internal resistance of the first battery unit and the second battery unit
  • the internal resistance of the two batteries is related, where the first battery unit and the second battery unit are connected in parallel, and are used to provide electrical energy to the load.
  • the preset conditions may include environmental conditions and/or application conditions.
  • environmental conditions may include: temperature conditions, humidity conditions, atmospheric pressure conditions, etc.
  • application conditions may include: use time, service life, etc., of course
  • the preset conditions may not only include the content exemplified above, and those skilled in the art may also configure other similar condition information according to specific application requirements and design requirements, which will not be repeated here.
  • the first battery cell may include a first battery cell; the second battery cell may include a second battery cell; at least one of the above-mentioned first battery cell and the second battery cell may further include: at least one switching element, At least one switching element is connected in series with the first cell, and/or, the at least one switching element is connected in series with the second cell.
  • the first battery unit includes a first battery cell and a first switching element, the first battery cell and the first switching element are connected in series, and the above-mentioned first battery cell is connected in parallel with the second battery cell.
  • the voltage difference between and the second battery cell determines the charging condition between the first battery cell and the second battery cell. For example: when the voltage difference between the first cell and the second cell is greater than or equal to the preset threshold, when the first switching element is closed, the first cell charges the second cell through the first switching element operate. When the voltage difference between the second cell and the first cell is greater than or equal to the preset threshold, when the first switching element is closed, the second cell charges the first cell through the first switching element.
  • the second battery unit includes a second battery cell and a second switching element.
  • the second battery cell and the second switching element are connected in series.
  • the above-mentioned first battery cell is connected in parallel with the second battery cell.
  • the voltage difference between and the second battery cell determines the charging condition between the first battery cell and the second battery cell. For example: when the voltage difference between the first cell and the second cell is greater than or equal to the preset threshold, when the second switching element is closed, the first cell charges the second cell through the second switching element operate. When the voltage difference between the second cell and the first cell is greater than or equal to the preset threshold, when the second switching element is closed, the second cell charges the first cell through the second switching element.
  • the first battery unit includes a first battery cell and a first switching element, the first battery cell is connected in series with the first switching element, the second battery unit includes a second battery cell and a second switching element, the second battery cell and the first switching element Two switching elements are connected in series, and the above-mentioned first battery cell is connected in parallel with the second battery cell. Then, the voltage difference between the first battery cell and the second battery cell can be detected by detecting the voltage difference between the first battery cell and the second battery cell. Charging situation. For example: when the voltage difference between the first cell and the second cell is greater than or equal to the preset threshold, when the first switching element and the second switching element are closed, the first cell passes through the first switching element and the second switching element.
  • the two switching elements perform a charging operation on the second battery cell.
  • the voltage difference between the second cell and the first cell is greater than or equal to the preset threshold, when the first switching element and the second switching element are closed, the second cell passes through the second switching element and the first switch The component charges the first battery cell.
  • the dual battery parallel system in this embodiment may include a first battery unit and a second battery unit connected in parallel with the first battery unit, wherein the first battery unit and the second battery unit It can include lithium batteries, dry batteries, lead storage batteries, and other types of rechargeable batteries.
  • At least one of the foregoing first battery cell and the second battery cell may further include: at least one switching element, and the foregoing switching element may be a Metal-Oxide-Semiconductor Field-Effect Transistor (Metal-Oxide-Semiconductor Field-Effect Transistor, Referred to as MOSFET).
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the aforementioned switching element may include: a first switching element K1 connected in series with the first battery internal resistance R1 and a second switching element K2 connected in series with the second battery cell internal resistance R2.
  • the first current Ibat1 flows from the positive electrode of the first battery cell
  • the first current Ibat1 is the discharge current
  • the second current Ibat2 flows from the positive electrode of the second battery cell.
  • the second current Ibat2 is the charging current. That is, when the voltage V1 of the first battery unit is greater than the voltage V2 of the second battery unit, the first battery unit can charge the second battery unit, and at this time, the first battery unit can also supply power to the load.
  • the current I3 is the third charging current corresponding to the load, which is also called the power supply current.
  • the voltage V1 is the no-load voltage of the first battery cell.
  • the voltage V2 is the no-load voltage of the second battery unit.
  • Ibat1 is the first current of the first battery cell.
  • Ibat2 is the second current of the second battery cell.
  • the current I3 is the third charging current corresponding to the load.
  • the environmental conditions of the first battery unit and the second battery unit can be obtained through the environmental sensor, and the Application conditions corresponding to the battery cell and the second battery cell.
  • those skilled in the art may also use other methods to obtain different preset conditions, as long as the accuracy and reliability of obtaining the preset conditions can be achieved, which will not be repeated here.
  • the first battery unit and the second battery unit can be obtained under different preset conditions.
  • the charge control parameter may be related to the first battery internal resistance of the first battery cell and the second battery internal resistance of the second battery cell.
  • the charge The control parameter can be the ratio of the internal resistance of the first battery to the internal resistance of the second battery, or the charge control parameter can be the ratio of the internal resistance of the first battery to the sum of the internal resistance, or the charge control parameter can be the internal resistance of the second battery and the internal resistance of the second battery.
  • the ratio of the total internal resistance where the total internal resistance is the sum of the internal resistance of the first battery and the internal resistance of the second battery.
  • the charge control parameter can characterize the different magnitude relationship between the internal resistance of the first battery and the internal resistance of the second battery. This will not be repeated here.
  • the number of charge control parameters corresponds to the number of preset conditions.
  • the number of preset conditions can be one or more.
  • the number of charge control parameters can be one or more. It is understandable that different preset conditions can correspond to different charging control parameters, and the same preset condition can correspond to the same charging control parameters.
  • the number of preset conditions is preferably multiple, and correspondingly, the number of charge control parameters is preferably multiple .
  • charging control parameters can be stored in a preset area, and charging can be obtained by accessing the preset area.
  • the device may send the charging control parameter corresponding to the parameter acquisition request to the device for determining the battery power supply condition based on the parameter acquisition request, so that the device for determining the battery power supply condition can stably acquire the charging control parameter.
  • Step S102 Determine the voltage difference between the first battery cell and the second battery cell under different preset conditions based on the charge control parameter.
  • the charging control parameters can be analyzed and processed to determine the voltage difference between the first battery cell and the second battery cell under different preset conditions.
  • the voltage difference between the lower first battery cell and the second battery cell may be the same or different.
  • this embodiment does not limit the specific implementation manner of determining the voltage difference between the first battery cell and the second battery cell under different preset conditions, and it can be set according to specific application requirements and design requirements, for example, : Pre-configured with the mapping relationship/mapping relationship table between the charging control parameter and the voltage difference.
  • the charging control parameter After the charging control parameter is obtained, it can be determined in different presets based on the charging control parameter and the above-mentioned pre-configured mapping relationship/mapping relationship table. The voltage difference between the first battery cell and the second battery cell under the condition.
  • Step S103 Determine the power supply conditions corresponding to the first battery unit and the second battery unit according to the voltage difference under different preset conditions.
  • the voltage difference under different preset conditions can be analyzed and processed to determine the power supply conditions corresponding to the first battery unit and the second battery unit. Specifically, in order to ensure that the first battery unit and the second battery unit can safely and stably perform charging operations, the worst/most severe preset conditions among all the different preset conditions can be obtained.
  • the preset dual-battery parallel system is configured with corresponding normal operating conditions.
  • different preset conditions may include preset condition 1, preset condition 2, preset condition 3, and preset condition 4.
  • preset condition 1 and preset condition 2 belong to normal operating conditions, preset condition 3 and preset condition 4 are not normal operating conditions, and then the preset conditions can be obtained.
  • the similarity between condition 3 and normal operating conditions 1 the similarity between preset condition 4 and normal operating conditions, and when the similarity 1 is less than the similarity 2, the preset corresponding to the similarity 1 can be set
  • Condition 3 is determined as the worst/most severe preset condition, that is, the preset condition with the lowest similarity (the highest degree of difference) to the normal operating condition is determined as the worst/most severe preset condition.
  • the power supply conditions corresponding to the first battery unit and the second battery unit can be determined based on the voltage difference corresponding to the worst/most severe preset conditions.
  • the way of realization is to directly determine the voltage difference corresponding to the worst/most severe preset condition as the power supply condition corresponding to the first battery unit and the second battery unit; another achievable way can be based on the worst /The voltage difference corresponding to the most severe preset condition determines the corresponding power difference, and the power difference is determined as the power supply condition corresponding to the first battery cell and the second battery cell; yet another achievable way can be based on The voltage difference corresponding to the worst/most severe preset condition determines the corresponding power difference, and the power difference and the voltage difference are determined as the power supply conditions corresponding to the first battery unit and the second battery unit. Since the power supply conditions are determined based on the voltage difference corresponding to the worst/most severe preset conditions, it can effectively ensure that the dual-battery parallel system can perform safely even under the worst/most severe preset conditions
  • the method for determining battery power supply conditions obtains the charging control parameters corresponding to the parallel batteries included in the dual-battery parallel system under different preset conditions, and determines the charging control parameters in different presets based on the charging control parameters.
  • the power supply conditions corresponding to the second battery unit because the charge control parameter is related to the battery internal resistance of the parallel battery unit, it effectively realizes the comprehensive consideration of the internal resistance characteristics of the battery under different preset conditions to stably obtain the battery
  • the safe power supply conditions ensure the accuracy and reliability of obtaining the safe power supply conditions and the stable and reliable operation of the dual-battery parallel system, which effectively improves the safety and reliability of the method used, and is beneficial to market promotion and application.
  • FIG. 3 is a schematic diagram of the process of determining the voltage difference between the first battery cell and the second battery cell under different preset conditions based on the charge control parameters in FIG. 1; on the basis of the above embodiment, continue to refer to the accompanying drawings
  • this embodiment does not limit the specific implementation of determining the voltage difference between the first battery cell and the second battery cell under different preset conditions based on the charge control parameters.
  • the application requirements and design requirements are set.
  • the determination of the voltage difference between the first battery unit and the second battery unit under different preset conditions based on the charge control parameters in this embodiment may include:
  • Step S301 Determine the first battery internal resistance of the first battery unit.
  • Step S302 Determine the second battery internal resistance of the second battery unit under different preset conditions based on the charge control parameter and the first battery internal resistance.
  • Step S303 Based on the internal resistance of the first battery and the internal resistance of the second battery under different preset conditions, determine the voltage difference between the first battery unit and the second battery unit under different preset conditions.
  • the first battery internal resistance of the first battery unit can be obtained first. Specifically, you can The open circuit voltage and the short circuit current of the first battery cell are acquired by the preset sensor, and then the ratio between the open circuit voltage and the short circuit current is determined as the first battery internal resistance of the first battery cell. Of course, other methods can also be used to obtain the first battery internal resistance of the first battery unit, as long as the accuracy and reliability of the determination of the first battery internal resistance can be ensured.
  • the charging control parameter is related to the first battery internal resistance of the first battery unit and the second battery internal resistance of the second battery unit, after the first battery internal resistance is obtained, it can be based on the charging control parameter and the first battery internal resistance.
  • the resistance is used to determine the second battery internal resistance of the second battery unit under different preset conditions.
  • the charge control parameter is the ratio of the internal resistance of the first battery to the internal resistance of the second battery
  • the ratio of the internal resistance of the first battery to the charge control parameter may be determined as the first Second battery internal resistance, it can be understood that under the condition that the internal resistance of the first battery remains unchanged, one charging control parameter can correspond to the internal resistance of the second battery. Therefore, the charging control parameters under different preset conditions can correspond to different The internal resistance of the second battery under the conditions.
  • the internal resistance of the first battery under different preset conditions can be determined based on the internal resistance of the first battery and the second battery internal resistance under different preset conditions.
  • the voltage difference between the battery cell and the second battery cell is obtained.
  • the first battery internal resistance of the first battery unit is determined, and the second battery internal resistance of the second battery unit under different preset conditions is determined based on the charge control parameter and the first battery internal resistance, and then Based on the internal resistance of the first battery and the internal resistance of the second battery under different preset conditions, the voltage difference between the first battery cell and the second battery cell under different preset conditions can be determined.
  • the implementation method is simple, reliable, and also This effectively ensures the accuracy and reliability of determining the voltage difference between the first battery cell and the second battery cell under different preset conditions, and further improves the stability and reliability of the method.
  • FIG. 4 is a process of determining the voltage difference between the first battery cell and the second battery cell under different preset conditions based on the first battery internal resistance and the second battery internal resistance under different preset conditions in FIG. 3 Schematic diagram; on the basis of the above-mentioned embodiment, and continuing to refer to FIG. 4, in this embodiment, based on the internal resistance of the first battery and the internal resistance of the second battery under different preset conditions, it is determined under different preset conditions
  • the voltage difference between the first battery cell and the second battery cell may include:
  • Step S401 When the voltage of the first battery unit is greater than the voltage of the second battery unit, obtain the second current of the branch where the second battery unit is located under different preset conditions.
  • Step S402 Based on the second current, determine the first current of the branch where the first battery unit is located.
  • Step S403 Based on the first battery internal resistance, the first current, the second battery internal resistance, and the second current, determine the voltage difference between the first battery cell and the second battery cell under different preset conditions.
  • the second current of the branch where the second battery unit is located under different preset conditions can be obtained.
  • this embodiment Obtaining the second current of the branch where the second battery unit is located under different preset conditions may include:
  • Step S501 Acquire a charging parameter corresponding to the second battery unit, where the charging parameter is used to identify the mapping relationship between different preset conditions and the charging current of the second battery unit.
  • Step S502 Determine the second current of the branch where the second battery unit is located under different preset conditions based on the charging parameters.
  • the charging parameters corresponding to the second battery unit may include at least one of the following: different temperature parameters, charging current values corresponding to different temperature parameters, and charging voltage values corresponding to different temperature parameters. It is understandable that the charging parameters may not only include the above-defined parameters, and those skilled in the art may also set the charging parameters to include other parameters according to specific application requirements and design requirements, such as: environmental humidity parameters, environmental pressure parameters, etc. And so on, as long as the charging parameters can be used to identify the mapping relationship between different preset conditions and the charging current of the second battery unit, it will not be repeated here.
  • the charging parameters corresponding to the second battery unit may include:
  • Step S601 Obtain cell data of the second battery unit, where the cell data includes at least one of the following: temperature data and current data.
  • Step S602 Determine the charging parameter corresponding to the second battery unit based on the battery cell data.
  • the second battery unit can be charged under different preset conditions.
  • the second battery unit can be provided with different temperature data under different temperature data.
  • the current data can then be used to determine the charging parameters corresponding to the second battery cell based on the provided temperature data and current data.
  • the temperature data includes temperature data T1, temperature data T2, and temperature data T3.
  • current data i1 is provided for the second battery cell.
  • current data i2 is provided for the second battery cell
  • current data i3 is provided for the second battery cell.
  • identify whether the second battery cell has lithium evolution count all the temperature data, current data, and whether lithium evolution has occurred, and then use the above statistical data to determine the second battery The current threshold corresponding to the occurrence of lithium evolution in the cell, thereby effectively realizing the determination of the charging parameter corresponding to the second battery cell based on the charging parameter.
  • the charging parameters corresponding to the second battery unit are determined based on the cell data, which effectively guarantees the accuracy and reliability of determining the charging parameters, and further improves The method is stable and reliable.
  • the charging parameters can identify the mapping relationship between different preset conditions and the charging current of the second battery unit, the location of the second battery unit under different preset conditions can be determined based on the charging parameters.
  • the second current of the branch which can be the charging current threshold of the second battery cell under different preset conditions, thereby effectively realizing the second current of the branch where the second battery cell is located under different preset conditions.
  • the accuracy and reliability of current acquisition further improves the practicability of this method.
  • determining the first current of the branch where the first battery unit is located may include:
  • Step S701 Obtain a third charging current corresponding to the load.
  • Step S702 Determine the sum of the second current and the third charging current as the first current of the branch where the first battery unit is located.
  • a preset sensor (ammeter) can be used to detect the load, so that the first battery corresponding to the load can be obtained.
  • the first battery internal resistance of the first battery unit is R1
  • the second battery internal resistance of the second battery unit is R2 as an example.
  • the first current is Ibat1
  • the second current passing through the internal resistance R2 of the second battery cell is Ibat2.
  • the second current Ibat2 can be determined by charging parameters.
  • the third charging current corresponding to the load by obtaining the third charging current corresponding to the load, and then determining the sum of the second current and the third charging current as the first current of the branch where the first battery unit is located, the The exact reliability of a current determination.
  • the voltage difference between the first battery cell and the second battery cell under different preset conditions can be determined; specifically, referring to FIG.
  • the second battery internal resistance and the second current, and determining the voltage difference between the first battery cell and the second battery cell under different preset conditions may include:
  • Step S901 Determine the product value of the internal resistance of the first battery and the first current as the first internal resistance voltage corresponding to the first battery cell.
  • Step S902 Determine the product value of the second battery internal resistance and the second current as the second internal resistance voltage corresponding to the second battery cell.
  • Step S903 Determine the voltage difference between the first battery cell and the second battery cell under different preset conditions according to the difference between the second internal resistance voltage and the first internal resistance voltage.
  • the no-load voltage of the first battery unit is V1
  • the no-load voltage of the second battery unit is V2
  • the first current of the first battery unit is Ibat1
  • the first current of the second battery unit is Ibat1.
  • the second current is Ibat2
  • the third charging current through the load is I3
  • the internal resistance of the first battery cell of the first battery cell is R1
  • the internal resistance of the second battery cell of the second battery cell is R2 as an example
  • the difference between the second internal resistance voltage and the first internal resistance voltage can be determined as the first battery cell and the second battery cell under different preset conditions.
  • the second internal resistance voltage and the first internal resistance voltage can be analyzed and processed to determine the first internal resistance voltage under different preset conditions.
  • the voltage difference between the battery cell and the second battery cell that is, the first battery cell and the second battery cell under different preset conditions can be determined according to the difference between the second internal resistance voltage and the first internal resistance voltage The voltage difference between.
  • conversion coefficients corresponding to different preset conditions can be pre-configured. It is understandable that the conversion coefficient can be any parameter greater than zero.
  • the product of the conversion coefficient and the aforementioned internal resistance voltage difference can be determined as the first battery under different preset conditions The voltage difference between the cell and the second battery cell.
  • the product value of the first battery internal resistance and the first current is determined as the first internal resistance voltage corresponding to the first battery cell
  • the product value of the second battery internal resistance and the second current is determined as The second internal resistance voltage corresponding to the second battery cell, and then according to the difference between the second internal resistance voltage and the first internal resistance voltage, the first battery cell and the second battery cell under different preset conditions are determined
  • the voltage difference between the two cells effectively ensures the accuracy and reliability of obtaining the voltage difference between the first battery cell and the second battery cell under different preset conditions, and further improves the first battery cell based on different preset conditions.
  • the voltage difference between the battery unit and the second battery unit determines the power supply conditions corresponding to the first battery unit and the second battery unit, thereby effectively improving the accuracy and reliability of the method.
  • FIG. 10 is a schematic flowchart of another method for determining battery power supply conditions provided by an embodiment of the present invention; on the basis of any of the foregoing embodiments, and continuing to refer to FIG.
  • the specific implementation method for determining the power supply conditions corresponding to the first battery unit and the second battery unit is not limited. Those skilled in the art can set it according to specific application requirements and design requirements. Preferably, this embodiment In the example, according to the voltage difference under different preset conditions, determining the power supply conditions corresponding to the first battery unit and the second battery unit may include:
  • Step S1001 Among the voltage differences under different preset conditions, determine the target voltage difference with the smallest difference.
  • Step S1002 Determine the target voltage difference as the power supply condition corresponding to the first battery cell and the second battery cell.
  • the target voltage difference with the smallest difference can be identified, and then the target voltage difference is determined as the power supply condition corresponding to the first battery cell and the second battery cell.
  • different preset conditions include preset condition 1, preset condition 2, preset condition 3, and preset condition 4.
  • preset condition 1 corresponds to voltage difference 1
  • preset condition 2 corresponds to voltage difference 2.
  • the preset condition 3 corresponds to a voltage difference 3
  • the preset condition 4 corresponds to a voltage difference 4.
  • the power supply conditions corresponding to the battery unit and the second battery unit are the worst/severest preset conditions for the charging operation of the first battery unit and the second battery unit.
  • the power supply conditions of the first battery unit and the second battery charging unit can meet the worst/most severe preset conditions described above, the safety and reliability of the charging operation of the first battery unit and the second battery unit can be effectively ensured .
  • FIG. 11 is a schematic flowchart of another method for determining battery power supply conditions provided by an embodiment of the present invention; on the basis of the above-mentioned embodiment, referring to FIG. 11, after determining the target voltage difference with the smallest difference, the present invention
  • the embodiment provides another implementation method that can determine the power supply conditions corresponding to the first battery unit and the second battery unit.
  • the method in this embodiment may include:
  • Step S1101 Obtain a target power difference corresponding to the target voltage difference.
  • Step S1102 Determine the target power difference as the power supply condition corresponding to the first battery unit and the second battery unit.
  • the target voltage difference can be analyzed and processed to obtain the target power difference corresponding to the target voltage difference.
  • this embodiment does not limit the specific implementation manner for obtaining the target power difference corresponding to the target voltage difference, and it can be set according to specific application requirements and design requirements, for example: voltage (open circuit voltage) and power are preset
  • the above mapping relationship may be a measured relationship table, and the target power difference corresponding to the target voltage difference can be obtained based on the above mapping relationship and the target voltage difference.
  • the target power difference can be determined as the power supply condition corresponding to the first battery unit and the second battery unit, thereby effectively achieving the
  • the accuracy and reliability of obtaining the power supply conditions are also guaranteed, and the flexibility and reliability of obtaining the power supply conditions are also ensured, which further improves the flexibility and reliability of the method used.
  • this embodiment provides yet another method for determining the power supply conditions corresponding to the first battery unit and the second battery unit. Specifically, Yes, the method in this embodiment may include:
  • Step S1103 Determine the target voltage difference and the target power difference as the power supply conditions corresponding to the first battery unit and the second battery unit.
  • the target power difference and the target voltage difference can be determined as the power supply conditions corresponding to the first battery unit and the second battery unit.
  • the accuracy and reliability of obtaining the power supply conditions corresponding to the unit are also improved, and the flexibility and reliability of obtaining the power supply conditions are also improved, which further improves the flexibility and reliability of the method used.
  • FIG. 12 is a schematic flowchart of another method for determining battery power supply conditions in the structure shown in FIG. 2 or FIG. May include a first battery cell; the second battery cell may include a second battery cell; at least one of the first battery cell and the second battery cell may further include: at least one switching element, at least one switching element and the first The cells are connected in series, and/or, the at least one switching element is connected in series with the second cell.
  • the method in this embodiment may further include:
  • Step S1201 When the voltage of the first battery unit is greater than the voltage of the second battery unit, detect whether the first battery unit and the second battery unit meet the power supply condition.
  • Step S1202 When the first battery unit and the second battery unit meet the power supply conditions, the switch element is used to control the first battery unit to charge the second battery unit. or,
  • Step S1203 When the second battery unit and the second battery unit do not meet the power supply conditions, the switch element is used to prohibit the first battery unit from charging the second battery unit.
  • the first battery unit includes a first battery cell and a first switching element
  • the second battery unit includes a second battery cell and a second switching element as an example: the voltage of the first battery cell is greater than the voltage of the second battery cell
  • the first battery unit performs a charging operation for the second battery unit.
  • it can be detected whether the current conditions corresponding to the first battery unit and the second battery unit meet the power supply conditions.
  • the first battery unit can safely and stably charge the second battery unit at this time, and the first battery unit can be controlled by the first switching element and the second switching element.
  • the second battery unit performs a charging operation.
  • the first switch can be used The element and the second switching element prohibit the first battery unit from performing a charging operation for the second battery unit.
  • the power supply condition includes the voltage difference Vt between the first battery cell and the second battery cell.
  • the measured voltage difference Vs between the first battery cell and the second battery cell is obtained.
  • the measured voltage difference Vs ⁇ Vt the first battery cell can be determined The actual measured voltage difference corresponding to the second battery unit at the current moment meets the power supply conditions, indicating that the first battery unit can safely and stably charge the second battery unit at this time, and the first switching element and the second The switching element controls the first battery unit to charge the second battery unit.
  • the first battery unit cannot perform a safe and stable charging operation for the second battery unit at this time, and the first battery unit can be prohibited by the first switching element and the second switching element.
  • the second battery unit performs a charging operation, and at this time, the service life, safety and reliability of the second battery unit can be guaranteed.
  • the power supply condition includes the voltage difference Vt between the first battery cell and the second battery cell, and the power difference Ct corresponding to the voltage difference Vt.
  • the measured voltage difference Vs between the first battery cell and the second battery cell and the measured power difference Cs corresponding to the measured voltage difference Vs can be obtained.
  • the measured voltage difference Vs ⁇ Vt and the measured power difference Cs ⁇ Ct it can be determined that the measured voltage difference and the measured power difference corresponding to the first battery cell and the second battery cell meet the power supply conditions.
  • the battery unit can perform a safe and stable charging operation for the second battery unit, and the first battery unit can be controlled by the first switching element and the second switching element to perform the charging operation for the second battery unit.
  • the measured voltage difference Vs ⁇ Vt, or the measured power difference Cs ⁇ Ct it means that the first battery unit cannot be safely and stably charged for the second battery unit at this time, and the first switching element and the second battery unit can be charged
  • the two switching elements prohibit the first battery unit from performing charging operations for the second battery unit, so that abnormal charging operations on the second battery unit can be avoided.
  • the power supply condition includes the power difference Ct between the first battery unit and the second battery unit
  • the voltage of the first battery unit is greater than the voltage of the second battery unit
  • the first battery unit and the second battery unit can be obtained.
  • the measured power difference Cs between the battery cells.
  • the measured power difference Cs ⁇ Ct it can be determined that the measured power difference corresponding to the first battery cell and the second battery cell meets the power supply condition, which means that the first battery cell at this time
  • the second battery unit can be charged safely and stably, and the first battery unit can be controlled by the switch element to perform the charging operation for the second battery unit.
  • the first battery unit cannot perform a safe and stable charging operation for the second battery unit at this time, and the first battery unit can be prohibited from charging the second battery unit through the switch element. At this time, the service life, safety and reliability of the second battery unit can be guaranteed.
  • the switching element controls the first battery unit to charge the second battery unit; when the second battery unit and the second battery unit do not meet the power supply conditions, The switching element prohibits the first battery unit from charging the second battery unit, thereby not only ensuring that the first battery unit can safely and stably charge the second battery unit, but also ensuring the service life and safety of the second battery unit Reliability further improves the safety and reliability of the dual-battery parallel system.
  • this application embodiment provides a method for determining battery power supply conditions.
  • This method can accurately determine the safe power supply conditions for the charging operation of the dual battery parallel power supply system.
  • the dual battery parallel power supply system is The control can effectively prevent the occurrence of abnormal conditions such as battery life degradation, fire and combustion due to the mutual charging operation between the first battery unit and the second battery unit in the dual parallel battery system.
  • the first battery unit and the second battery unit are both lithium-ion batteries as an example.
  • the method starts from the realization principle of the dual battery parallel system and can cover various extreme application scenarios.
  • the power supply system is modeled and analyzed, and the relationship between the internal resistance characteristics, temperature characteristics, voltage characteristics, current characteristics, and power characteristics of the lithium battery is comprehensively considered, so that it can accurately determine the battery life and the ignition and combustion conditions. Safe power supply conditions.
  • the method for determining battery power supply conditions in this application embodiment may include the following steps:
  • Step 1 Obtain cell data of the second battery unit.
  • the cell data may include temperature data and current magnitude.
  • Step 2 Determine the charging and discharging window parameters according to the cell data of the second battery unit.
  • the charging and discharging window parameters are as follows:
  • Step 3 Determine the second current Ibat2 of the second battery cell according to the charge and discharge window parameters.
  • Step 4 Perform analysis and processing based on the structure of the dual-battery parallel power supply system, and determine the power supply conditions corresponding to the first battery unit and the second battery unit.
  • the dual-battery parallel power supply system includes a first battery unit and a second battery unit.
  • first battery unit and the second battery unit For the first battery unit and the second battery unit, current flows from the positive electrode to discharge, and current flows from the positive electrode to charge.
  • the first battery unit can charge the second battery unit, and the first battery unit can also supply power to the load.
  • V1 is the no-load voltage of the first battery cell
  • V2 is the no-load voltage of the second battery cell
  • Ibat1 is the first current of the first battery cell
  • Ibat2 is the second current of the second battery cell
  • I3 is The third charging current corresponding to the load
  • R1 is the first battery internal resistance of the first battery unit
  • R2 is the second battery internal resistance of the second battery unit.
  • V1-Ibat1*R1 V2+Ibat2*R2;
  • Ibat1 I3+Ibat2;
  • Ibat2 since the above charge and discharge window parameters are related to the charging current of the battery to be charged, Ibat2 can be obtained based on the above charge and discharge window parameters; I3 is the charge current of the load, which can be detected by a detection device, similarly, The discharge current Ibat1 corresponding to the first battery cell can be obtained by the detection device; since Ibat1 is a known value, the internal resistance R1 of the first battery can be obtained by actual measurement.
  • the second battery internal resistance R2 can be determined based on the charge control parameter K and the first battery internal resistance R1.
  • V1 can be obtained. -The value of V2. It is understandable that different values of K can obtain different values of V1-V2.
  • the values of V1-V2 corresponding to different K values After obtaining the values of V1-V2 corresponding to different K values, the values of V1-V2 with the smallest difference can be obtained, and then the value of V1-V2 with the smallest difference is determined to be the same as the value of the first battery cell and the first battery cell.
  • the power supply conditions corresponding to the second battery unit After obtaining the values of V1-V2 corresponding to different K values, the values of V1-V2 with the smallest difference can be obtained, and then the value of V1-V2 with the smallest difference is determined to be the same as the value of the first battery cell and the first battery cell.
  • Another achievable way is to obtain the smallest power difference corresponding to the value of V1-V2 with the smallest difference, and determine the smallest power difference as the one corresponding to the first battery cell and the second battery cell. Power supply conditions.
  • Another achievable way is to obtain the smallest power difference corresponding to the value of V1-V2 with the smallest difference, and determine the smallest power difference and the value of V1-V2 with the smallest difference as the first The power supply conditions corresponding to the battery unit and the second battery unit.
  • Step 5 After determining the power supply conditions corresponding to the first battery unit and the second battery unit, the charging operation of the first battery unit and the second battery unit can be controlled based on the power supply condition.
  • the power supply conditions corresponding to the first battery unit and the second battery unit including: the smallest power difference, V1-V2 with the smallest difference as an example: to obtain the real-time voltage between the first battery unit and the second battery unit Difference, the real-time power difference corresponding to the real-time voltage difference, when the real-time voltage difference is greater than the voltage difference corresponding to the power supply condition, or the real-time power difference is greater than the power difference corresponding to the power supply condition, you can pass the first battery cell and The switching element between the second battery cells, so that the first battery cell prohibits the charging operation for the second battery cell; when the real-time voltage difference is less than or equal to the voltage difference corresponding to the power supply condition, and the real-time power difference is less than or equal to the power supply condition When the corresponding power is poor, the switching element (MOSFET) located between the first battery unit and the second battery unit can be closed, so that the first battery unit can safely charge the second battery unit.
  • MOSFET switching element
  • Step 6 Restricted application scenarios of the above power supply conditions
  • SOC restriction conditions can be configured for the above-mentioned abnormal conditions, specifically, SOC restriction conditions
  • the power difference condition corresponding to the first battery unit and the second battery charging unit may be included.
  • the voltage difference and power difference between the first battery unit and the second battery unit can be obtained, and then The charging operation between the first battery unit and the second battery unit is accurately controlled based on the voltage difference and the power difference, so as to ensure the safety and reliability of the charging operation on the first battery unit and the second battery unit.
  • the method for determining battery power supply conditions compares the first charging voltage of the first battery cell with the second charging voltage of the second battery cell.
  • the Comprehensively consider the resistance characteristics of the second charging unit to obtain the voltage difference and power difference between the first charging voltage and the second charging voltage, and then based on the above voltage difference and power difference to determine the first battery unit and the second battery unit
  • the charging operation is controlled to effectively prevent the battery life shortening or the fire burning caused by overcharging between the first battery unit and the second battery unit, which further improves the stability and reliability of the battery charging operation, and effectively The practicability of this method is guaranteed.
  • FIG. 13 is a schematic structural diagram of a device for determining battery power supply conditions provided by an embodiment of the present invention. referring to FIG. 13, this embodiment provides a device for determining battery power supply conditions, which can perform the above-mentioned FIG. 1
  • the shown method for determining battery power supply conditions, specifically, the determining device may include:
  • the memory 12 is used to store computer programs
  • the processor 11 is configured to run a computer program stored in the memory 12 to realize:
  • the charging control parameters corresponding to the first battery unit and the second battery unit are acquired, and the charging control parameters are related to the first battery internal resistance of the first battery unit and the second battery unit.
  • the internal resistance of the second battery of the unit is related, wherein the first battery unit and the second battery unit are connected in parallel, and are used to provide electrical energy to the load;
  • the power supply conditions corresponding to the first battery unit and the second battery unit are determined.
  • the structure of the device for determining the battery power supply condition may further include a communication interface 13 for communication between the electronic device and other devices or a communication network.
  • the charge control parameter is the ratio of the internal resistance of the first battery to the internal resistance of the second battery.
  • the processor 11 determines the voltage difference between the first battery cell and the second battery cell under different preset conditions based on the charge control parameter
  • the processor 11 is configured to: determine the first battery cell The first battery internal resistance of the unit; based on the charge control parameter and the first battery internal resistance, determine the second battery internal resistance of the second battery unit under different preset conditions; based on the first battery The internal resistance and the internal resistance of the second battery under different preset conditions determine the voltage difference between the first battery cell and the second battery cell under different preset conditions.
  • the processor 11 determines the voltage difference between the first battery cell and the second battery cell under different preset conditions based on the first battery internal resistance and the second battery internal resistance under different preset conditions When the voltage of the first battery unit is greater than the voltage of the second battery unit, the processor 11 is configured to obtain the second current of the branch where the second battery unit is located under different preset conditions; Based on the second current, determine the first current of the branch where the first battery unit is located; based on the first battery internal resistance, the first current current, the second battery internal resistance, and the second battery internal resistance; The current determines the voltage difference between the first battery cell and the second battery cell under different preset conditions.
  • the processor 11 when the processor 11 obtains the second current of the branch where the second battery unit is located under different preset conditions, the processor 11 is configured to: obtain a charging parameter corresponding to the second battery unit, and the charging parameter It is used to identify the mapping relationship between different preset conditions and the charging current of the second battery unit; based on the charging parameters, determine the second current of the branch where the second battery unit is located under different preset conditions.
  • the charging parameters include: different temperature parameters, charging current values corresponding to different temperature parameters, and charging voltage values corresponding to different temperature parameters.
  • the processor 11 when the processor 11 obtains the charging parameters corresponding to the second battery unit, the processor 11 is configured to: obtain cell data of the second battery unit, and the cell data includes at least one of the following: temperature data, Current data; based on the battery cell data, determine the charging parameters corresponding to the second battery unit.
  • the second current is a charging current threshold of the second battery cell under different preset conditions.
  • the processor 11 when the processor 11 determines the first current of the branch where the first battery unit is located based on the second current, the processor 11 is further configured to: obtain a third charging current corresponding to the load; The sum value with the third charging current is determined as the first current of the branch where the first battery unit is located.
  • the processor 11 determines the difference between the first battery cell and the second battery cell under different preset conditions based on the first battery internal resistance, the first current, the second battery internal resistance, and the second current.
  • the processor 11 is further configured to: determine the product value of the internal resistance of the first battery and the first current as the first internal resistance voltage corresponding to the first battery cell; and compare the internal resistance of the second battery with the second The product value of the current is determined as the second internal resistance voltage corresponding to the second battery cell; the difference between the second internal resistance voltage and the first internal resistance voltage is determined as the first under different preset conditions The voltage difference between the battery cell and the second battery cell.
  • the processor 11 when the processor 11 determines the power supply conditions corresponding to the first battery cell and the second battery cell according to the voltage difference under different preset conditions, the processor 11 is configured to: Among the voltage differences, determine the target voltage difference with the smallest difference; determine the target voltage difference as the power supply condition corresponding to the first battery cell and the second battery cell.
  • the processor 11 is further configured to: obtain the target power difference corresponding to the target voltage difference; determine the target power difference as the difference between the first battery unit and the second battery unit. The power supply conditions corresponding to the battery unit.
  • the processor 11 is further configured to: determine the target voltage difference and the target power difference as those corresponding to the first battery cell and the second battery cell. Power supply conditions.
  • the first battery unit includes: a first battery cell; the second battery unit includes: a second battery cell; at least one of the first battery unit and the second battery unit further includes : At least one switching element, the at least one switching element is connected in series with the first battery cell, and/or, the at least one switching element is connected in series with the second battery cell;
  • the processor 11 is further configured to: when the voltage of the first battery unit is greater than the voltage of the second battery unit, detect whether the first battery unit and the second battery unit meet the power supply condition; When the battery unit and the second battery unit meet the power supply conditions, the switching element controls the first battery unit to charge the second battery unit; or, when the second battery unit and the second battery unit do not meet the power supply conditions, the switching element prohibits The first battery unit charges the second battery unit.
  • the preset conditions include at least one of the following: environmental conditions, application conditions, where the environmental conditions include at least one of the following: temperature conditions, humidity conditions, and atmospheric pressure conditions, and the application conditions include: use time , Service life.
  • FIG. 14 is a schematic structural diagram of a battery provided by an embodiment of the present invention. referring to FIG. 14, as shown in FIG. 14, this embodiment provides a battery, and the battery may include:
  • the device 22 for determining battery power supply conditions in the embodiment of FIG. 13 is installed in the housing 21;
  • One or more battery cells 23 are installed in the housing 21 and are electrically connected to the determining device 22 for charging operation under the battery power supply condition determined by the determining device 22.
  • FIG. 15 is a schematic structural diagram of a movable platform provided by an embodiment of the present invention; as shown in FIG. 15, this embodiment provides a movable platform, where the movable platform can be a handheld phone, a handheld platform, or a mobile phone.
  • the movable platform in this embodiment may include:
  • the battery 32 in the above embodiment in FIG. 14 is arranged on the body 31 and used to provide electrical energy for the movable platform.
  • the unmanned aerial vehicle 100 may include a display device 130 and a remote control device 140.
  • the UAV 110 may include a power system 150, a dual-battery parallel power supply system 170, a flight control system 160, a frame, and a pan/tilt 120 carried on the frame.
  • the drone 100 can wirelessly communicate with the remote control device 140 and the display device 130.
  • the dual-battery parallel power supply system 170 is used to provide electrical energy for the power system 150/flight control system 160/display device 130/remote control device 140.
  • the frame may include a fuselage and a tripod (also called a landing gear).
  • the fuselage may include a center frame and one or more arms connected to the center frame, and the one or more arms extend radially from the center frame.
  • the tripod is connected with the fuselage, and is used for supporting the UAV 100 when it is landed.
  • the power system 150 may include one or more electronic governors (referred to as ESCs for short) 151, one or more propellers 153, and one or more motors 152 corresponding to the one or more propellers 153, where the motors 152 are connected Between the electronic governor 151 and the propeller 153, the motor 152 and the propeller 153 are arranged on the arm of the UAV 100; the electronic governor 151 is used to receive the driving signal generated by the flight control system 160 and provide it according to the driving signal The driving current is supplied to the motor 152 to control the rotation speed of the motor 152. The motor 152 is used to drive the propeller to rotate, thereby providing power for the flight of the drone 100, and the power enables the drone 100 to achieve one or more degrees of freedom of movement.
  • ESCs electronic governors
  • the drone 100 may rotate around one or more rotation axes.
  • the aforementioned rotation axis may include a roll axis (Roll), a yaw axis (Yaw), and a pitch axis (pitch).
  • the motor 152 may be a DC motor or an AC motor.
  • the motor 152 may be a brushless motor or a brushed motor.
  • the flight control system 160 may include a flight controller 161 and a sensing system 162.
  • the sensing system 162 is used to measure the attitude information of the drone, that is, the position information and state information of the drone 100 in space, such as three-dimensional position, three-dimensional angle, three-dimensional velocity, three-dimensional acceleration, and three-dimensional angular velocity.
  • the sensing system 162 may include, for example, at least one of sensors such as a gyroscope, an ultrasonic sensor, an electronic compass, an inertial measurement unit (IMU), a vision sensor, a global navigation satellite system, and a barometer.
  • the global navigation satellite system may be the Global Positioning System (GPS).
  • the flight controller 161 is used to control the flight of the drone 100, for example, it can control the flight of the drone 100 according to the attitude information measured by the sensor system 162. It is understandable that the flight controller 161 can control the drone 100 according to pre-programmed program instructions, and can also control the drone 100 by responding to one or more remote control signals from the remote control device 140.
  • the pan/tilt head 120 may include a motor 122.
  • the pan/tilt is used to carry the camera 123.
  • the flight controller 161 can control the movement of the pan/tilt 120 through the motor 122.
  • the pan/tilt head 120 may further include a controller for controlling the movement of the pan/tilt head 120 by controlling the motor 122.
  • the pan-tilt 120 may be independent of the drone 100 or a part of the drone 100.
  • the motor 122 may be a DC motor or an AC motor.
  • the motor 122 may be a brushless motor or a brushed motor.
  • the pan/tilt may be located on the top of the drone 100 or on the bottom of the drone 100.
  • the photographing device 123 may be a device for capturing images, such as a camera or a video camera, and the photographing device 123 may communicate with the flight controller and take pictures under the control of the flight controller.
  • the imaging device 123 of this embodiment at least includes a photosensitive element, and the photosensitive element is, for example, a Complementary Metal Oxide Semiconductor (CMOS) sensor or a Charge-coupled Device (CCD) sensor. It is understandable that the camera 123 can also be directly fixed on the drone 100, so the pan/tilt 120 can be omitted.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge-coupled Device
  • the display device 130 is located on the ground end of the drone 100, can communicate with the drone 100 in a wireless manner, and can be used to display the attitude information of the drone 100.
  • the image photographed by the photographing device 123 may also be displayed on the display device 130. It can be understood that the display device 130 may be an independent device or integrated in the remote control device 140.
  • the remote control device 140 is located on the ground end of the drone 100 and can communicate with the drone 100 in a wireless manner for remote control of the drone 100.
  • the storage medium is a computer-readable storage medium.
  • the computer-readable storage medium stores program instructions. It corresponds to the method for determining battery power supply conditions in the embodiment.
  • the disclosed related remote control device and method can be implemented in other ways.
  • the embodiments of the remote control device described above are only illustrative.
  • the division of the modules or units is only a logical function division, and there may be other divisions in actual implementation, such as multiple units or components. It can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, remote control devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • the aforementioned storage media include: U disk, mobile hard disk, Read-Only Memory (ROM), Random Access Memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池供电条件的确定方法、装置、电池和可移动平台。方法包括:(S101)在不同的预设条件下,获取与第一电池单元和第二电池单元相对应的充电控制参量,充电控制参量与第一电池单元的第一电池内阻、第二电池单元的第二电池内阻相关,第一电池单元和第二电池单元并联连接,且用于为负载提供电能;(S102)基于充电控制参量,确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差;(S103)根据不同的预设条件下的电压差,确定与第一电池单元和第二电池单元相对应的供电条件。该技术方案,实现了综合不同预设条件下电池的内阻特性获取电池的安全供电条件,保证了对安全供电条件进行获取的准确可靠性和电池进行充电操作的可靠性。

Description

电池供电条件的确定方法、装置、电池和可移动平台 技术领域
本发明实施例涉及电池技术领域,尤其涉及一种电池供电条件的确定方法、装置、电池和可移动平台。
背景技术
随着可移动平台(例如:无人机、无人车、无人船、移动机器人等等)的应用领域越来越广泛,可移动平台的结构也越来越复杂。为了能够保证可移动平台工作的稳定性,可以采用双电池并联系统作为可移动平台的供电系统。
在双电池并联系统为可移动平台进行供电之前,需要判断双电池并联系统中所包括的两个电池之间的电压差和电量差,以确定双电池并联系统是否可以启动放电开关元件。具体的,如果两个电池之间的电压差较大或者电量差较大时,启动开关元件以指示供电之后,容易出现两个电池之间相互充电的现象,并且,在电压差较大时,互充电流有可能远超过电池所允许的充电电流。这样,对于被充电电池而言,容易缩短电池的使用寿命;另外,如果电池所处的环境条件较差,容易使得电池发生异常情况,例如:起火等等。
因此,确定电池在何种条件下可以进行安全供电是亟需解决的问题。
发明内容
本发明实施例提供了一种电池供电条件的确定方法、装置、电池和可移动平台。
本发明的第一方面是为了提供了一种电池供电条件的确定方法,包括:
在不同的预设条件下,获取与第一电池单元和第二电池单元相对应的充电控制参量,所述充电控制参量与所述第一电池单元的第一电池内阻、所述第二电池单元的第二电池内阻相关,其中,所述第一电池单元和所述第二电池单元并联连接,且用于为负载提供电能;
基于所述充电控制参量,确定在不同预设条件下的所述第一电池单元与 所述第二电池单元之间的电压差;
根据不同的预设条件下的电压差,确定与所述第一电池单元和所述第二电池单元相对应的供电条件。
本发明的第二方面是为了提供了一种电池供电条件的确定装置,包括:
存储器,用于存储计算机程序;
处理器,用于运行所述存储器中存储的计算机程序以实现:
在不同的预设条件下,获取与第一电池单元和第二电池单元相对应的充电控制参量,所述充电控制参量与所述第一电池单元的第一电池内阻、所述第二电池单元的第二电池内阻相关,其中,所述第一电池单元和所述第二电池单元并联连接,且用于为负载提供电能;
基于所述充电控制参量,确定在不同预设条件下的所述第一电池单元与所述第二电池单元之间的电压差;
根据不同的预设条件下的电压差,确定与所述第一电池单元和所述第二电池单元相对应的供电条件。
本发明的第三方面是为了提供一种计算机可读存储介质,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于第一方面所述的电池供电条件的确定方法。
本发明的第四方面是为了提供了一种电池,包括:
壳体;
上述第二方面所述的电池供电条件的确定装置,安装在所述壳体内;
一个或多个电芯,安装在所述壳体内,并且与所述确定装置电连接,用于在所述确定装置所确定的电池供电条件下进行充电操作。
本发明的第五方面是为了提供了一种可移动平台,包括:
机身;
上述第四方面所述的电池,设置于所述机身上,用于为所述可移动平台提供电能。
本发明实施例提供的电池供电条件的确定方法、装置、电池和可移动平台,有效地实现了综合考虑到不同预设条件下的电池的内阻特性来稳定地获取到电池的安全供电条件,保证了对安全供电条件进行获取的准确可靠性和双电池并联系统工作的稳定可靠性。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本发明实施例提供的一种电池供电条件的确定方法的流程示意图;
图2为本发明实施例提供的双电池并联系统的部分结构示意图;
图3为图1中的基于所述充电控制参量,确定在不同预设条件下的所述第一电池单元与所述第二电池单元之间的电压差的流程示意图;
图4为图3中的基于所述第一电池单元内阻和不同预设条件下的第二电池单元内阻,确定在不同预设条件下的所述第一电池单元与所述第二电池单元之间的电压差的流程示意图;
图5为图4中的获取在不同预设条件下的所述第二电池单元所在支路的第二电流的流程示意图;
图6为图5中的获取与所述第二电池单元相对应的充电参数的流程示意图;
图7为图4中的基于所述第二电流,确定所述第一电池单元所在支路的第一电流的流程示意图;
图8为图7中的基于所述第二电流,确定所述第一电池单元所在支路的第一电流的结构示意图;
图9为图4中的基于所述第一电池单元内阻、第一电流、第二电池单元内阻和所述第二电流,确定在不同预设条件下的所述第一电池单元与所述第二电池单元之间的电压差的流程示意图;
图10为图1中的根据不同的预设条件下的电压差,确定与所述第一电池单元和所述第二电池单元相对应的供电条件的流程示意图;
图11为本发明实施例提供的另一种电池供电条件的确定方法的流程示意图;
图12为基于图2或者图8所示结构的又一种电池供电条件的确定方法的流程示意图;
图13为本发明实施例提供的一种电池供电条件的确定装置的结构示意图;
图14为本发明实施例提供的一种电池的结构示意图;
图15为本发明实施例提供的一种可移动平台的结构示意图;
图16为本发明实施例提供的一种无人机的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
为了便于理解本实施例中技术方案的实现过程和效果,下面对相关技术进行简要说明:
在利用双电池并联系统为可移动平台进行供电之前,需要判断双电池并联系统中所包括的两个电池之间的电压差和电量差,以确定双电池并联系统是否可以启动放电开关元件。,如果两个电池之间的电压差较大或者电量差较大时,启动放电开关元件之后,容易出现两个电池之间相互充电的现象,并且,在电压差较大时,互充电流有可能远超过电池所允许的充电电流。这样,对于被充电电池而言,容易缩短电池的使用寿命;另外,如果电池所处的环境条件较差,容易使得电池发生异常情况,例如:起火等等。
以锂离子电池所构成的双电池并联系统为例进行说明,需要说明的是,锂离子电池具有以下特性:(1)在0℃以下时,若采用大电流为锂电池进行充电,存在因析锂而引起的起火燃烧甚至爆炸的风险;(2)电池的动态电压、静态电压、内阻以及电量之间满足预设关系。
具体的,基于上述锂离子电池所具有的的特性可知:在利用锂离子电池为可移动平台进行供电时,当电池所在环境温度较低,且并联电池之间存在相互充电的情况时,对于被充电电池而言,如果充电电流过大,则容易导致电池出现析锂的情况,甚至容易使得电池起火燃烧等等。
当电池单元之间存在压差时,电压高的电池单元会给电池低的电池单元进行充电。其中,这个充电电流为被充电电池的充电电流。为了保证双电池并联系统中存在充电电流的稳定可靠性,相关技术提出了一种供电条件的判断方法,具体的,该方法可以包括:获取并联的双电池之间的电压差,将电 压差与预设的电压阈值进行分析比较,并根据比较结果来确定双电池之间是否存在安全的充电电流。
其中,上述预设的电压阈值一般通过实测经验值来确定,其并没有考虑电池的内阻特性、电量特性,具体的,电池的内阻特性和电量特性会随着电池的应用环境、应用时间的变化而发生变化,例如:电池的内阻值会随着应用时间的增长而增大,电池的电量值会随着应用时间的增长而减小。因此,基于上述实测标定的电压阈值无法准确地反映出电池因内阻差异、温度差异等变化情况,进而无法保证电池的使用寿命和充电安全。
为了能够准确地识别出双电池并联供电系统的供电条件,并且防止双电池并联供电系统的并联电池之间的相互充电而导致电池出现寿命衰减、起火燃烧等问题,本实施例提供了一种电池供电条件的确定方法、装置、电池和可移动平台,该方法通过在不同的预设条件下,获取与双电池并联系统中所包括的并联电池相对应的充电控制参量,基于充电控制参量确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差;在获取到不同的预设条件下的电压差之后,可以基于不同预设条件下的电压差来确定与第一电池单元和第二电池单元相对应的供电条件。由于充电控制参量与并联电池单元的电池内阻相关,因此,有效地实现了综合考虑到不同预设条件下的电池的内阻特性来稳定地获取到电池的安全供电条件,保证了对安全供电条件进行获取的准确可靠性和双电池并联系统工作的稳定可靠性,有效地提高了该方法使用的安全可靠性,有利于市场的推广与应用。
下面结合附图,对本发明的一些实施方式作详细说明。在各实施例之间不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图1为本发明实施例提供的一种电池供电条件的确定方法的流程示意图;参考附图1所示,本实施例提供了一种电池供电条件的确定方法,该方法的执行主体可以为电池供电条件的确定装置,可以理解的是,该电池供电条件的确定装置可以实现为软件、或者软件和硬件的组合。具体的,该电池供电条件的确定方法可以包括:
步骤S101:在不同的预设条件下,获取与第一电池单元和第二电池单元相对应的充电控制参量,充电控制参量与第一电池单元的第一电池内阻、第二电池单元的第二电池内阻相关,其中,第一电池单元和第二电池单元并联连接,且用于为负载提供电能。
步骤S102:基于充电控制参量,确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差。
步骤S103:根据不同的预设条件下的电压差,确定与第一电池单元和第二电池单元相对应的供电条件。
下面对上述各个步骤的实现过程进行详细阐述:
步骤S101:在不同的预设条件下,获取与第一电池单元和第二电池单元相对应的充电控制参量,充电控制参量与第一电池单元的第一电池内阻、第二电池单元的第二电池内阻相关,其中,第一电池单元和第二电池单元并联连接,且用于为负载提供电能。
其中,预设条件可以包括环境条件和/或应用条件,具体的,环境条件可以包括:温度条件、湿度条件、大气压强条件等等,应用条件可以包括:使用时间、使用寿命等等,当然的,预设条件可以不仅仅包括上述所例举的内容,本领域技术人员还可以根据具体的应用需求和设计需求来配置其他相类似的条件信息,在此不再赘述。
另外,第一电池单元可以包括第一电芯;第二电池单元可以包括第二电芯;上述的第一电池单元和所述第二电池单元中的至少一个还可以包括:至少一个开关元件,至少一个开关元件与所述第一电芯串联,和/或,所述至少一个开关元件与所述第二电芯串联。
举例1,第一电池单元包括第一电芯和第一开关元件,第一电芯和第一开关元件串联,上述的第一电池单元与第二电池单元并联,而后可以通过检测第一电芯和第二电芯之间的电压差来确定第一电芯和第二电芯之间的充电情况。例如:在第一电芯与第二电芯之间的电压差大于或等于预设阈值时,则当第一开关元件闭合时,第一电芯通过第一开关元件对第二电芯进行充电操作。在第二电芯与第一电芯之间的电压差大于或等于预设阈值时,则当第一开关元件闭合时,第二电芯通过第一开关元件对第一电芯进行充电操作。
举例2,第二电池单元包括第二电芯和第二开关元件,第二电芯和第二开关元件串联,上述的第一电池单元与第二电池单元并联,而后可以通过检测第一电芯和第二电芯之间的电压差来确定第一电芯和第二电芯之间的充电情况。例如:在第一电芯与第二电芯之间的电压差大于或等于预设阈值时,则当第二开关元件闭合时,第一电芯通过第二开关元件对第二电芯进行充电操作。在第二电芯与第一电芯之间的电压差大于或等于预设阈值时,则当第二 开关元件闭合时,第二电芯通过第二开关元件对第一电芯进行充电操作。
举例3,第一电池单元包括第一电芯和第一开关元件,第一电芯与第一开关元件串联,第二电池单元包括第二电芯和第二开关元件,第二电芯和第二开关元件串联,上述的第一电池单元与第二电池单元并联,而后可以通过检测第一电芯和第二电芯之间的电压差来确定第一电芯和第二电芯之间的充电情况。例如:在第一电芯与第二电芯之间的电压差大于或等于预设阈值时,则当第一开关元件和第二开关元件闭合时,第一电芯通过第一开关元件和第二开关元件对第二电芯进行充电操作。在第二电芯与第一电芯之间的电压差大于或等于预设阈值时,则当第一开关元件和第二开关元件闭合时,第二电芯通过第二开关元件和第一开关元件对第一电芯进行充电操作。
具体的,参考附图2所示,本实施例中的双电池并联系统可以包括第一电池单元和与第一电池单元相并联的第二电池单元,其中,第一电池单元和第二电池单元可以包括锂电池、干电池、铅蓄电池等类型的可充电电芯。上述的第一电池单元和所述第二电池单元中的至少一个还可以包括:至少一个开关元件,上述的开关元件可以为金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,简称MOSFET)。具体实现时,上述的开关元件可以包括:与第一电池内阻R1串联的第一开关元件K1和与第二电池单元内阻R2串联的第二开关元件K2。当第一电池单元的电压V1大于第二电池单元的电压V2时,第一电流Ibat1从第一电池单元的正极流出,第一电流Ibat1为放电电流,第二电流Ibat2从第二电池单元的正极流入,第二电流Ibat2为充电电流。也就是说,在第一电池单元的电压V1大于第二电池单元的电压V2时,第一电池单元可以为第二电池单元进行充电,并且此时,第一电池单元也可以为负载进行供电。其中,电流I3为与负载相对应的第三充电电流,也称为供电电流。电压V1为第一电池单元的无负载电压。电压V2为第二电池单元的无负载电压。Ibat1为第一电池单元的第一电流。Ibat2为第二电池单元的第二电流。电流I3为与负载相对应的第三充电电流。
在利用并联的第一电池单元和第二电池单元为负载提供电能时,可以通过环境传感器获取到第一电池单元和第二电池单元所在的环境条件,并通过预设检测装置获取到与第一电池单元和第二电池单元所对应的应用条件。当然的,本领域技术人员也可以采用其他的方式来获取到不同的预设条件,只要能够实现对预设条件进行获取的准确可靠性即可,在此不再赘述。
另外,对于并联的第一电池单元和第二电池单元而言,为了能够保证第一电池单元和第二电池单元进行充电操作的稳定可靠性,可以在不同的预设条件下,获取到与第一电池单元和第二电池单元相对应的不同的充电控制参量,该充电控制参量可以与第一电池单元的第一电池内阻、第二电池单元的第二电池内阻相关,具体的,充电控制参量可以为第一电池内阻与第二电池内阻的比值,或者,充电控制参量可以为第一电池内阻与内阻总和的比值,或者,充电控制参量可以为第二电池内阻与内阻总和的比值,其中,内阻总和为第一电池内阻与第二电池内阻的和值。当然的,本领域技术人员也可以配置其他的充电控制参量的表达形式,只要能够使得该充电控制参量能够表征第一电池内阻与第二电池内阻之间具有不同的大小关系即可,在此不再赘述。
需要注意的是,充电控制参量的个数与预设条件的个数相对应,在预设条件的个数可以为一个或多个,相对应的,充电控制参量的个数可以为一个或多个,可以理解的是,不同的预设条件可以对应有不同的充电控制参量,同一个预设条件可以对应有相同的充电控制参量。一般情况下,为了能够准确地确定与第一电池单元和第二电池单元相对应的供电条件,预设条件的个数优选为多个,相对应的,充电控制参量的个数优选为多个。
此外,本实施例对于充电控制参量的具体获取方式不做限定,可以根据具体的应用需求和设计需求进行设置,例如:充电控制参量可以存储在预设区域,通过访问预设区域可以获取到充电控制参量;或者,充电控制参量可以存储在预设装置中,电池供电条件的确定装置与预设装置通信连接,而后通过电池供电条件的确定装置向预设装置发送参量获取请求,以使得预设装置可以基于参量获取请求将与参量获取请求相对应的充电控制参量发送至电池供电条件的确定装置,从而使得电池供电条件的确定装置可以稳定地获取到充电控制参量。
步骤S102:基于充电控制参量,确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差。
在获取到充电控制参量之后,可以对充电控制参量进行分析处理,以确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差,可以理解的是,不同预设条件下的第一电池单元与第二电池单元之间的电压差可以相同或不同。具体的,本实施例对于确定在不同预设条件下的第一电池单元 与第二电池单元之间的电压差的具体实现方式不做限定,可以根据具体的应用需求和设计需求进行设置,例如:预先配置有充电控制参量与电压差之间的映射关系/映射关系表,在获取到充电控制参量之后,可以基于充电控制参量和上述预先配置的映射关系/映射关系表来确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差。
当然的,也可以采用其他的方式来确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差,只要能够保证对不同预设条件下的第一电池单元与第二电池单元之间的电压差进行确定的准确可靠性即可,在此不再赘述。
步骤S103:根据不同的预设条件下的电压差,确定与第一电池单元和第二电池单元相对应的供电条件。
在获取到不同的预设条件下的电压差之后,可以对不同的预设条件下的电压差进行分析处理,以确定与第一电池单元和第二电池单元相对应的供电条件。具体的,为了保证第一电池单元和第二电池单元能够安全稳定地进行充电操作,可以获取到所有不同的预设条件中最恶劣/最严峻的预设条件。具体的,针对预设的双电池并联系统配置有相对应的正常运行条件,举例来说,不同的预设条件可以包括预设条件1、预设条件2、预设条件3和预设条件4,将上述的预设条件与正常运行条件进行分析比较可知,预设条件1和预设条件2属于正常运行条件,预设条件3和预设条件4不属于正常运行条件,而后可以获取到预设条件3与正常运行条件之间的相似度1、预设条件4与正常运行条件之间的相似度2,在相似度1小于相似度2时,则可以将相似度1所对应的预设条件3确定为最恶劣/最严峻的预设条件,即将与正常运行条件相似度最低(差异度最高)的预设条件确定为最恶劣/最严峻的预设条件。由于在将双电池并联系统设置于不同的预设条件时,可以获取到与不同的预设条件相对应的电压差,相类似的,在获取到最恶劣/最严峻的预设条件之后,可以获取到与上述最恶劣/最严峻的预设条件相对应的最恶劣/最严峻电压差。
当然的,本领域技术人员也可以采用其他方式来获取所有不同的预设条件中最恶劣/最严峻的预设条件,只要能够保证对最恶劣/最严峻的预设条件进行获取的准确可靠性即可,在此不再赘述。
在获取到最恶劣/最严峻的预设条件之后,可以基于最恶劣/最严峻的预设条件所对应的电压差确定与第一电池单元和第二电池单元相对应的供电条 件,一种可实现的方式,直接将最恶劣/最严峻的预设条件所对应的电压差确定为与第一电池单元和第二电池单元相对应的供电条件;另一种可实现的方式,可以基于最恶劣/最严峻的预设条件所对应的电压差确定相对应的电量差,将电量差确定为与第一电池单元和第二电池单元相对应的供电条件;又一种可实现的方式,可以基于最恶劣/最严峻的预设条件所对应的电压差确定相对应的电量差,将电量差和电压差确定为与第一电池单元和第二电池单元相对应的供电条件。由于供电条件是基于最恶劣/最严峻的预设条件所对应的电压差来确定的,因此,可以有效地保证双电池并联系统即使在最恶劣/最严峻的预设条件下,也能够进行安全、稳定地充电操作。
当然的,也可以采用其他方式来确定与第一电池单元和第二电池单元相对应的供电条件,只要能够保证对与第一电池单元和第二电池单元相对应的供电条件进行确定的准确可靠性即可,在此不再赘述。
本实施例提供的电池供电条件的确定方法,通过在不同的预设条件下,获取与双电池并联系统中所包括的并联电池相对应的充电控制参量,并基于充电控制参量确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差;在获取到不同的预设条件下的电压差之后,可以基于不同预设条件下的电压差来确定与第一电池单元和第二电池单元相对应的供电条件;由于充电控制参量与并联电池单元的电池内阻相关,因此,有效地实现了综合考虑到不同预设条件下的电池的内阻特性来稳定地获取到电池的安全供电条件,保证了对安全供电条件进行获取的准确可靠性和双电池并联系统工作的稳定可靠性,有效地提高了该方法使用的安全可靠性,有利于市场的推广与应用。
图3为图1中的基于充电控制参量,确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差的流程示意图;在上述实施例的基础上,继续参考附图3所示,本实施例对于基于充电控制参量,确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差的具体实现方式不做限定,本领域技术人员可以根据具体的应用需求和设计需求进行设置,较为优选的,本实施例中的基于充电控制参量,确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差可以包括:
步骤S301:确定第一电池单元的第一电池内阻。
步骤S302:基于充电控制参量和第一电池内阻,确定在不同预设条件下的第二电池单元的第二电池内阻。
步骤S303:基于第一电池内阻和不同预设条件下的第二电池内阻,确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差。
为了能够保证对不同预设条件下的第一电池单元与第二电池单元之间的电压差进行确定的准确可靠性,可以先获取到第一电池单元的第一电池内阻,具体的,可以利用预设传感器获取到第一电池单元的开路电压和短路电流,而后将开路电压与短路电流之间的比值确定为第一电池单元的第一电池内阻。当然的,也可以采用其他的方式来获取第一电池单元的第一电池内阻,只要能够保证对第一电池内阻进行确定的准确可靠性即可。
由于充电控制参量与第一电池单元的第一电池内阻、第二电池单元的第二电池内阻相关,因此,在获取到第一电池内阻之后,可以基于充电控制参量和第一电池内阻来确定在不同预设条件下的第二电池单元的第二电池内阻。举例来说,在充电控制参量为第一电池内阻与第二电池内阻的比值时,在获取到第一电池内阻之后,可以将第一电池内阻与充电控制参量的比值确定为第二电池内阻,可以理解的是,在第一电池内阻保持不变的情况下,一个充电控制参量可以对应一个第二电池内阻,因此,不同预设条件下的充电控制参量可以对应不同条件下的第二电池内阻。
在获取到第一电池内阻和不同条件下的第二电池内阻时,可以基于第一电池内阻和不同预设条件下的第二电池内阻来确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差。
本实施例中,通过确定第一电池单元的第一电池内阻,并基于充电控制参量和第一电池内阻,确定在不同预设条件下的第二电池单元的第二电池内阻,而后基于第一电池内阻和不同预设条件下的第二电池内阻可以确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差,实现方式简单、可靠,并且也有效地保证了对不同预设条件下的第一电池单元与第二电池单元之间的电压差进行确定的准确可靠性,进一步提高了该方法使用的稳定可靠性。
图4为图3中的基于第一电池内阻和不同预设条件下的第二电池内阻,确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差的流程示意图;在上述实施例的基础上,继续参考附图4所示,本实施例中的基于第一电池内阻和不同预设条件下的第二电池内阻,确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差可以包括:
步骤S401:在第一电池单元的电压大于第二电池单元的电压时,获取在不同预设条件下的第二电池单元所在支路的第二电流。
步骤S402:基于第二电流,确定第一电池单元所在支路的第一电流。
步骤S403:基于第一电池内阻、第一电流、第二电池内阻和第二电流,确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差。
在第一电池单元的电压大于第二电池单元的电压时,存在第一电池单元为第二电池单元进行充电操作的可能性。为了能够保证对第二电池单元进行充电操作的安全可靠性,可以获取在不同预设条件下的第二电池单元所在支路的第二电流,具体的,参考附图5所示,本实施例中的获取在不同预设条件下的第二电池单元所在支路的第二电流可以包括:
步骤S501:获取与第二电池单元相对应的充电参数,充电参数用于标识不同预设条件与第二电池单元的充电电流之间的映射关系。
步骤S502:基于充电参数,确定在不同预设条件下的第二电池单元所在支路的第二电流。
其中,与第二电池单元相对应的充电参数可以包括以下至少之一:不同温度参数、与不同温度参数相对应的充电电流值、与不同温度参数相对应的充电电压值。可以理解的是,充电参数可以不仅仅包括上述所限定的参数,本领域技术人员也可以根据具体的应用需求和设计需求将充电参数设置为包括其他参数,例如:环境湿度参数、环境压强参数等等,只要能够使得充电参数能够用于标识不同预设条件与第二电池单元的充电电流之间的映射关系即可,在此不再赘述。
另外,本实施例对于充电参数的具体获取方式不做限定,本领域技术人员可以根据具体的应用需求和设计需求进行设置,较为优选的,参考附图6所示,本实施例中的获取与第二电池单元相对应的充电参数可以包括:
步骤S601:获取第二电池单元的电芯数据,电芯数据包括以下至少之一:温度数据、电流数据。
步骤S602:基于电芯数据,确定与第二电池单元相对应的充电参数。
为了能够准确地确定与第二电池单元相对应的充电参数,可以在不同预设条件下为第二电池单元进行充电操作,例如:可以在不同的温度数据下,为第二电池单元提供不同的电流数据,而后可以基于所提供的温度数据和电流数据来确定与第二电池单元相对应的充电参数。
以电芯数据包括温度数据和电流数据为例进行说明,在温度数据包括温度数据T1、温度数据T2和温度数据T3,其中,在温度数据T1的情况下,为第二电池单元提供电流数据i1,在温度数据T2的情况下,为第二电池单元提供电流数据i2,在温度数据T3的情况下,为第二电池单元提供电流数据i3。在上述温度数据和电流数据的情况下,识别第二电池单元是否发生析锂的情况,统计所有的温度数据、电流数据和是否发生析锂的情况,而后可以通过上述统计数据来确定第二电池单元发生析锂情况所对应的电流阈值,从而有效地实现了基于充电参数来确定与第二电池单元相对应的充电参数。
本实施例中,通过获取第二电池单元的电芯数据,基于电芯数据来确定与第二电池单元相对应的充电参数,有效地保证了对充电参数进行确定的准确可靠性,进一步提高了该方法使用的稳定可靠性。
在获取到充电参数之后,由于充电参数可以标识不同预设条件与第二电池单元的充电电流之间的映射关系,因此,可以基于充电参数来确定在不同预设条件下的第二电池单元所在支路的第二电流,该第二电流可以为第二电池单元在不同预设条件下的充电电流阈值,从而有效地实现了对不同预设条件下的第二电池单元所在支路的第二电流进行获取的准确可靠性,进一步提高了该方法的实用性。
进一步的,在获取到第二电流之后,通过对第二电流进行分析处理,以可以确定与第一电池单元所在支路的第一电流。具体的,参考附图7所示,基于第二电流,确定第一电池单元所在支路的第一电流可以包括:
步骤S701:获取与负载相对应的第三充电电流。
步骤S702:将第二电流与第三充电电流的和值,确定为第一电池单元所在支路的第一电流。
其中,在利用包括第一电池单元和第二电池单元相互并联的双电池并联系统为负载进行充电时,可以利用预设传感器(电流表)对负载进行检测,从而可以获取到与负载相对应的第三充电电流。在获取到第三充电电流之后,可以将第二电流和第三充电电流的和值确定为第一电池单元所在支路的第一电流。
具体的,参考附图8所示,以第一电池单元的第一电池内阻为R1,第二电池单元的第二电池内阻为R2为例进行说明,假设经过第一电池内阻R1的第一电流为Ibat1,经过第二电池单元内阻R2的第二电流为Ibat2,该第二电流 Ibat2可以通过充电参数来确定,经过负载的第三充电电流为I3,该第三充电电流I3可以通过实测获得,在获取到第二电流Ibat2和第三充电电流I3之后,可以将第二电流Ibat2和第三充电电流I3的和值确定为第一电池单元所在支路的第一电流,即Ibat1=Ibat2+I3。
本实施例中,通过获取与负载相对应的第三充电电流,而后将第二电流与第三充电电流的和值确定为第一电池单元所在支路的第一电流,有效地保证了对第一电流进行确定的准确可靠性。
在获取到第一电池内阻、第一电流、第二电池内阻和第二电流之后,可以对第一电池内阻、第一电流、第二电池内阻和第二电流进行分析处理,从而可以确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差;具体的,参考附图9所示,本实施例中的基于第一电池内阻、第一电流、第二电池内阻和第二电流,确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差可以包括:
步骤S901:将第一电池内阻与第一电流的乘积值,确定为与第一电池单元相对应的第一内阻电压。
步骤S902:将第二电池内阻与第二电流的乘积值,确定为与第二电池单元相对应的第二内阻电压。
步骤S903:根据第二内阻电压与第一内阻电压之间的差值,确定为在不同预设条件下的第一电池单元与第二电池单元之间的电压差。
具体的,参考附图8所示,以第一电池单元的无负载电压为V1,第二电池单元的无负载电压为V2,第一电池单元的第一电流为Ibat1,第二电池单元的第二电流为Ibat2,经过负载的第三充电电流为I3,第一电池单元的第一电池单元内阻为R1,第二电池单元的第二电池单元内阻为R2为例进行说明,基于上述电路结构,可以获得如下关系式:V1-Ibat1*R1=V2+Ibat2*R2,通过上述关系式可以获得第一电池单元与第二电池单元之间的电压差为V1-V2=Ibat2*R2-Ibat1*R1。
因此,在获取到第一电池单元内阻和第一电流之后,可以将第一电池内阻与第一电流的乘积值确定为与第一电池单元相对应的第一内阻电压,即Vr1=Ibat1*R1。在获取到第二电池内阻与第二电流之后,可以将第二电池内阻与第二电流的乘积值确定为与第二电池单元相对应的第二内阻电压,即Vr2=Ibat2*R2。在获取到第一内阻电压和第二内阻电压之后,可以将第二内 阻电压与第一内阻电压之间的差值确定为在不同预设条件下的第一电池单元与第二电池单元之间的电压差,即V1-V2=Vr2-Vr1=Ibat2*R2-Ibat1*R1。
在另一些实例中,在获取到第二内阻电压和第一内阻电压之后,可以对第二内阻电压与第一内阻电压进行分析处理,以确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差,即可以根据第二内阻电压与第一内阻电压之间的差值,确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差。例如:可以预先配置的与不同预设条件相对应的转换系数,可以理解的是,该转换系数可以为大于零的任意参数。在获取到第二内阻电压与第一内阻电压之间的内阻电压差值之后,可以将转换系数与上述的内阻电压差值的乘积确定为在不同预设条件下的第一电池单元与第二电池单元之间的电压差。
本实施例中,通过将第一电池内阻与第一电流的乘积值确定为与第一电池单元相对应的第一内阻电压,将第二电池内阻与第二电流的乘积值确定为与第二电池单元相对应的第二内阻电压,而后根据第二内阻电压与第一内阻电压之间的差值,确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差,有效地保证了对不同预设条件下的第一电池单元与第二电池单元之间的电压差进行获取的准确可靠性,进一步提高了基于不同预设条件下的第一电池单元与第二电池单元之间的电压差来确定与第一电池单元和第二电池单元相对应的供电条件,从而有效地提高了该方法使用的准确可靠性。
图10为本发明实施例提供的另一种电池供电条件的确定方法的流程示意图;在上述任意实施例的基础上,继续参考附图10所示,本实施例对于根据不同的预设条件下的电压差,确定与第一电池单元和第二电池单元相对应的供电条件的具体实现方式不做限定,本领域技术人员可以根据具体的应用需求和设计需求进行设置,较为优选的,本实施例中的根据不同的预设条件下的电压差,确定与第一电池单元和第二电池单元相对应的供电条件可以包括:
步骤S1001:在不同预设条件下的电压差中,确定差值最小的目标电压差。
步骤S1002:将目标电压差确定为与第一电池单元和第二电池单元相对应的供电条件。
在获取到不同预设条件下的电压差之后,可以识别出差值最小的目标电压差,而后将目标电压差确定为与第一电池单元和第二电池单元相对应的供电条件。举例来说:不同预设条件包括预设条件1、预设条件2、预设条件3和 预设条件4,其中,预设条件1对应有电压差1,预设条件2对应有电压差2,预设条件3对应有电压差3,预设条件4对应有电压差4。在获取到上述不同预设条件下的电压差之后,可以获取到差值最小的目标电压差,例如,在确定目标电压差为电压差3时,则可以将目标电压差确定为与第一电池单元和第二电池单元相对应的供电条件,该供电条件即为第一电池单元和第二电池单元进行充电操作的最恶劣/最严峻的预设条件。当第一电池单元和第二电池充电单元的供电条件可以满足上述的最恶劣/最严峻的预设条件时,则可以有效地确保第一电池单元和第二电池单元进行充电操作的安全可靠性。
图11为本发明实施例提供的另一种电池供电条件的确定方法的流程示意图;在上述实施例的基础上,继续参考附图11所示,在确定差值最小的目标电压差之后,本实施例提供了另一种可以确定与第一电池单元和第二电池单元相对应的供电条件的实现方法,具体的,本实施例中的方法可以包括:
步骤S1101:获取与目标电压差相对应的目标电量差。
步骤S1102:将目标电量差,确定为与第一电池单元和第二电池单元相对应的供电条件。
在获取到目标电压差之后,可以对目标电压差进行分析处理,以获取与目标电压差相对应的目标电量差。具体的,本实施例对于获取与目标电压差相对应的目标电量差的具体实现方式不做限定,可以根据具体的应用需求和设计需求进行设置,例如:预先设置有电压(开路电压)与电量之间的映射关系,具体实现时,上述的映射关系可以为实测关系表,基于上述的映射关系和目标电压差可以获取到与目标电压差相对应的目标电量差。
在获取到目标电量差之后,可以将目标电量差确定为与第一电池单元和第二电池单元相对应的供电条件,从而有效地实现了对与第一电池单元和第二电池单元相对应的供电条件进行获取的准确可靠性,并且也保证了对供电条件进行获取的灵活可靠性,进一步提高了该方法使用的灵活可靠性。
在另一些实例中,在获取与目标电压差相对应的目标电量差之后,本实施例提供了又一种可以确定与第一电池单元和第二电池单元相对应的供电条件的实现方法,具体的,本实施例中的方法可以包括:
步骤S1103:将目标电压差和目标电量差,确定为与第一电池单元和第二电池单元相对应的供电条件。
在获取到目标电量差之后,可以将目标电量差和目标电压差确定为与第 一电池单元和第二电池单元相对应的供电条件,不仅有效地实现了对与第一电池单元和第二电池单元相对应的供电条件进行获取的准确可靠性,并且也提高了对供电条件进行获取的灵活可靠性,进一步提高了该方法使用的灵活可靠性。
图12为图2或者图8所示结构的又一种电池供电条件的确定方法的流程示意图;在上述实施例的基础上,继续参考附图12所示,具体的,上述的第一电池单元可以包括第一电芯;第二电池单元可以包括第二电芯;第一电池单元和所述第二电池单元中的至少一个还包括:至少一个开关元件,至少一个开关元件与所述第一电芯串联,和/或,所述至少一个开关元件与所述第二电芯串联。基于上述的双电池并联系统所对应的结构,在确定与第一电池单元和第二电池单元相对应的供电条件之后,本实施例中的方法还可以包括:
步骤S1201:在第一电池单元的电压大于第二电池单元的电压时,检测第一电池单元与第二电池单元是否满足供电条件。
步骤S1202:在第一电池单元与第二电池单元满足供电条件时,通过开关元件控制第一电池单元为第二电池单元进行充电。或者,
步骤S1203:在第二电池单元与第二电池单元不满足供电条件时,通过开关元件禁止第一电池单元为第二电池单元进行充电。
下面以第一电池单元包括第一电芯和第一开关元件,第二电池单元包括第二电芯和第二开关元件为例进行说明:在第一电池单元的电压大于第二电池单元的电压时,存在第一电池单元为第二电池单元进行充电操作的可能性。为了能够保证第一电池单元对第二电池单元进行充电操作的安全可靠性,可以检测第一电池单元与第二电池单元所对应的当前条件是否满足供电条件,具体的,在第一电池单元与第二电池单元满足供电条件时,则说明此时的第一电池单元能够为第二电池单元进行安全、稳定地充电操作,进而可以通过第一开关元件和第二开关元件控制第一电池单元为第二电池单元进行充电操作。在第一电池单元与第二电池单元所对应的当前条件不满足供电条件时,则说明此时的第一电池单元不能为第二电池单元进行安全、稳定地充电操作,进而可以通过第一开关元件和第二开关元件禁止第一电池单元为第二电池单元进行充电操作。
举例1,供电条件包括第一电池单元与第二电池单元之间的电压差Vt。在第一电池单元的电压大于第二电池单元的电压时,获取第一电池单元与第二 电池单元之间的实测电压差Vs,在实测电压差Vs<Vt时,则可以确定第一电池单元与第二电池单元当前时刻所对应的实测电压差满足供电条件,则说明此时的第一电池单元能够为第二电池单元进行安全、稳定地充电操作,进而可以通过第一开关元件和第二开关元件控制第一电池单元为第二电池单元进行充电操作。在实测电压差Vs≥Vt时,则说明此时的第一电池单元不能为第二电池单元进行安全、稳定地充电操作,进而可以通过第一开关元件和第二开关元件禁止第一电池单元为第二电池单元进行充电操作,此时可以保证第二电池单元的使用寿命和安全可靠性。
举例2,供电条件包括第一电池单元与第二电池单元之间的电压差Vt、与电压差Vt相对应的电量差Ct。在第一电池单元的电压大于第二电池单元的电压时,则可以获取第一电池单元与第二电池单元之间的实测电压差Vs、与实测电压差Vs相对应的实测电量差Cs。在实测电压差Vs<Vt、且实测电量差Cs<Ct时,则可以确定第一电池单元与第二电池单元所对应的实测电压差和实测电量差满足供电条件,则说明此时的第一电池单元能够为第二电池单元进行安全、稳定地充电操作,进而可以通过第一开关元件和第二开关元件控制第一电池单元为第二电池单元进行充电操作。在实测电压差Vs≥Vt,或者,实测电量差Cs≥Ct时,则说明此时的第一电池单元不能为第二电池单元进行安全、稳定地充电操作,进而可以通过第一开关元件和第二开关元件禁止第一电池单元为第二电池单元进行充电操作,从而可以避免对第二电池单元进行异常充电操作的情况出现。
举例3,在供电条件包括第一电池单元与第二电池单元之间的电量差Ct时,在第一电池单元的电压大于第二电池单元的电压时,则可以获取第一电池单元与第二电池单元之间的实测电量差Cs,在实测电量差Cs<Ct时,则可以确定第一电池单元与第二电池单元所对应的实测电量差满足供电条件,则说明此时的第一电池单元能够为第二电池单元进行安全、稳定地充电操作,进而可以通过开关元件控制第一电池单元为第二电池单元进行充电操作。在实测电量差Cs≥Ct时,则说明此时的第一电池单元不能为第二电池单元进行安全、稳定地充电操作,进而可以通过开关元件禁止第一电池单元为第二电池单元进行充电操作,此时可以保证第二电池单元的使用寿命和安全可靠性。
本实施例中,在第一电池单元的电压大于第二电池单元的电压时,通过检测第一电池单元与第二电池单元所对应的当前条件是否满足供电条件,提 高了双电池并联系统进行工作的安全可靠性。具体的,在第一电池单元与第二电池单元满足供电条件时,通过开关元件控制第一电池单元为第二电池单元进行充电;在第二电池单元与第二电池单元不满足供电条件时,通过开关元件禁止第一电池单元为第二电池单元进行充电,从而不仅保证了第一电池单元能够安全稳定地为第二电池单元进行充电操作,并且还能够保证第二电池单元的使用寿命和安全可靠性,进一步提高了双电池并联系统进行工作的安全可靠性。
具体应用时,本应用实施例提供了一种电池供电条件的确定方法,该方法可以准确地确定双电池并联供电系统进行充电操作的安全供电条件,基于上述安全供电条件对双电池并联供电系统进行控制,可以有效地防止因双并联电池系统中第一电池单元与第二电池单元之间的相互充电操作而导致电池寿命衰减、起火燃烧等异常情况的出现。具体的,以第一电池单元和第二电池单元均为锂离子电池为例进行说明,该方法从双电池并联系统的实现原理出发,可以覆盖各种不同的极端应用场景,通过对双电池并联供电系统进行建模分析,并综合考虑锂电池的内阻特性、温度特性、电压特性、电流特性、电量特性之间的关系,从而可以准确地确定不损害电池使用寿命、不发生起火燃烧情况的安全供电条件。
具体的,以第一电池单元的电压大于第二电池单元的电压为例,本应用实施例中的电池供电条件的确定方法可以包括如下步骤:
步骤1:获取第二电池单元的电芯数据,电芯数据可以包括温度数据和电流大小。
步骤2:根据第二电池单元的电芯数据,确定充放电窗口参数,具体的,充放电窗口参数如下:
Figure PCTCN2020088771-appb-000001
Figure PCTCN2020088771-appb-000002
步骤3:根据充放电窗口参数,确定第二电池单元的第二电流Ibat2。
步骤4:基于双电池并联供电系统的结构进行分析处理,确定与第一电池单元和第二电池单元相对应的供电条件。
参考附图8所示,双电池并联供电系统包括第一电池单元和第二电池单元,对于第一电池单元和第二电池单元而言,电流从正极流出为放电,电流从正极流入为充电。在第一电池单元的电压大于第二电池单元的电压时,第一电池单元可以为第二电池单元进行充电,并且第一电池单元也可以为负载进行供电。
具体的,以V1为第一电池单元的无负载电压;V2为第二电池单元的无负载电压,Ibat1为第一电池单元的第一电流;Ibat2为第二电池单元的第二电流,I3为与负载相对应的第三充电电流;R1为第一电池单元的第一电池内阻;R2为第二电池单元的第二电池内阻。基于上述的双电池并联供电系统可以获得如下公式:
V1-Ibat1*R1=V2+Ibat2*R2;
Ibat1=I3+Ibat2;
R1/R2=K。
其中,由于上述充放电窗口参数与被充电电池的充电电流相关,因此,可以基于上述的充放电窗口参数获取到Ibat2;I3为负载的充电电流,可以通过检测装置进行检测获得,相类似的,可以通过检测装置获取到第一电池单元所对应的放电电流Ibat1;由于Ibat1为已知值,第一电池内阻R1可实测获得。为了考虑各种不同的应用场景,配置不同温度电池、不同老化程度电池的搭配使用,配置用于标识电池充电内阻特性的充电控制参量K,充电控制参量K的个数可以为预先配置的一个或多个,例如,设置K=2、K=0.25、K=0.5、K=3、K=4等等。在获取到充电控制参量K和第一电池内阻R1之后,可以基于充电控制参量K和第一电池内阻R1确定第二电池内阻R2,在获取到R1、R2、K之后,可以获得V1-V2的值。可以理解的是,不同的K值可以获取到不同的V1-V2的值。
在获取到与不同K值相对应的V1-V2的值之后,可以获取到差值最小的V1-V2的值,而后将该差值最小的V1-V2的值确定为与第一电池单元和第二电池单元相对应的供电条件。
又一种可实现的方式为,获取与差值最小的V1-V2的值相对应的最小的电量差值,将最小的电量差值确定为与第一电池单元和第二电池单元相对应的供电条件。
又一种可实现的方式为,获取与差值最小的V1-V2的值相对应的最小的电量差值,将最小的电量差值、差值最小的V1-V2的值确定为与第一电池单元和第二电池单元相对应的供电条件。
步骤5:在确定与第一电池单元和第二电池单元相对应的供电条件之后,可以基于供电条件对第一电池单元和第二电池单元的充电操作进行控制。
以第一电池单元和第二电池单元相对应的供电条件包括差值最小的V1-V2为例进行说明:获取第一电池单元与第二电池单元之间的实时电压差,将实时电压差与供电条件所对应的电压差进行分析比较,在实时电压差大于供电条件所对应的电压差时,则可以通过位于第一电池单元与第二电池单元之间的开关元件,以使得第一电池单元禁止为第二电池单元进行充电操作,以保证为第二电池单元进行充电操作的安全可靠性;在实时电压差小于或等于供电条件所对应的电压差时,则可以闭合位于第一电池单元与第二电池单元之间的开关元件,以使得第一电池单元为第二电池单元进行充电操作。
以第一电池单元和第二电池单元相对应的供电条件包括:最小的电量差值、差值最小的V1-V2为例进行说明:获取第一电池单元与第二电池单元之间的实时电压差、与实时电压差相对应的实时电量差,在实时电压差大于供电条件所对应的电压差、或者,实时电量差大于供电条件所对应的电量差时,则可以通过位于第一电池单元与第二电池单元之间的开关元件,以使得第一电池单元禁止为第二电池单元进行充电操作;在实时电压差小于或等于供电条件所对应的电压差、且实时电量差小于或等于供电条件所对应的电量差时,则可以闭合位于第一电池单元与第二电池单元之间的开关元件(MOSFET),以使得第一电池单元可以安全地为第二电池单元进行充电操作。
步骤6:上述供电条件的限制应用场景
需要注意的是,在对上述的双并联电池系统的结构进行建模分析时,并没有考虑到双并联电池系统中的线阻(由于对称,应该很小)、pack端(电池对外输出的端点)虚焊(电池端bat端虚焊引入SOC限制也覆盖不了)、电压采样错误等异常情况,也即,在上述情况下,仅仅通过将第一电池单元与第二电池单元之间的电压差作为供电条件,无法准确地对第一电池单元和第 二电池单元之间的充电操作进行准确控制。因此,为了避免对第一电池单元和第二电池单元进行充电控制的误处理操作,可以针对上述的异常情况配置相应的电荷状态(State of charge,简称SOC)限制条件,具体的,SOC限制条件可以包括与第一电池单元和第二电池充电单元相对应的电量差条件。
具体的,在某些应用场景中,为了能够准确地对第一电池单元和第二电池单元进行精确控制,可以获取到第一电池单元和第二电池单元之间的电压差和电量差,而后基于电压差和电量差对第一电池单元和第二电池单元之间的充电操作进行准确控制,以保证对第一电池单元和第二电池单元进行充电操作的安全可靠性。
本应用实施例提供的电池供电条件的确定方法,通过将第一电池单元的第一充电电压与第二电池单元的第二充电电压进行比较,在第一充电电压大于第二充电电压时,可以综合考虑第二充电单元的电阻特性来获取第一充电电压和第二充电电压之间的电压差和电量差,而后基于上述的电压差和电量差来对第一电池单元和第二电池单元的充电操作进行控制,从而有效地防止了第一电池单元与第二电池单元之间因过充而导致电池寿命缩减或者起火燃烧的情况出现,进一步提高了电池进行充电操作的稳定可靠性,有效地保证了该方法的实用性。
图13为本发明实施例提供的一种电池供电条件的确定装置的结构示意图;参考附图13所示,本实施例提供了一种电池供电条件的确定装置,该确定装置可以执行上述图1所示的电池供电条件的确定方法,具体的,该确定装置可以包括:
存储器12,用于存储计算机程序;
处理器11,用于运行存储器12中存储的计算机程序以实现:
在不同的预设条件下,获取与第一电池单元和第二电池单元相对应的充电控制参量,所述充电控制参量与所述第一电池单元的第一电池内阻、所述第二电池单元的第二电池内阻相关,其中,所述第一电池单元和所述第二电池单元并联连接,且用于为负载提供电能;
基于所述充电控制参量,确定在不同预设条件下的所述第一电池单元与所述第二电池单元之间的电压差;
根据不同的预设条件下的电压差,确定与所述第一电池单元和所述第二电池单元相对应的供电条件。
其中,电池供电条件的确定装置的结构中还可以包括通信接口13,用于电子设备与其他设备或通信网络通信。
在一些实例中,充电控制参量为第一电池内阻与第二电池内阻的比值。
在一些实例中,在处理器11基于充电控制参量,确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差时,处理器11用于:确定所述第一电池单元的第一电池内阻;基于所述充电控制参量和所述第一电池内阻,确定在不同预设条件下的所述第二电池单元的第二电池内阻;基于所述第一电池内阻和不同预设条件下的第二电池内阻,确定在不同预设条件下的所述第一电池单元与所述第二电池单元之间的电压差。
在一些实例中,在处理器11基于第一电池内阻和不同预设条件下的第二电池内阻,确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差时,处理器11用于:在所述第一电池单元的电压大于所述第二电池单元的电压时,获取在不同预设条件下的所述第二电池单元所在支路的第二电流;基于所述第二电流,确定所述第一电池单元所在支路的第一电流;基于所述第一电池内阻、所述第一电流电流、所述第二电池内阻和所述第二电流,确定在不同预设条件下的所述第一电池单元与所述第二电池单元之间的电压差。
在一些实例中,在处理器11获取在不同预设条件下的第二电池单元所在支路的第二电流时,处理器11用于:获取与第二电池单元相对应的充电参数,充电参数用于标识不同预设条件与第二电池单元的充电电流之间的映射关系;基于充电参数,确定在不同预设条件下的第二电池单元所在支路的第二电流。
在一些实例中,充电参数包括:不同温度参数、与不同温度参数相对应的充电电流值、与不同温度参数相对应的充电电压值。
在一些实例中,在处理器11获取与第二电池单元相对应的充电参数时,处理器11用于:获取第二电池单元的电芯数据,电芯数据包括以下至少之一:温度数据、电流数据;基于电芯数据,确定与第二电池单元相对应的充电参数。
在一些实例中,第二电流为第二电池单元在不同预设条件下的充电电流阈值。
在一些实例中,在处理器11基于第二电流,确定第一电池单元所在支路的第一电流时,处理器11还用于:获取与负载相对应的第三充电电流;将第二电流与第三充电电流的和值,确定为第一电池单元所在支路的第一电流。
在一些实例中,在处理器11基于第一电池内阻、第一电流、第二电池内阻和第二电流,确定在不同预设条件下的第一电池单元与第二电池单元之间的电压差时,处理器11还用于:将第一电池内阻与第一电流的乘积值,确定为与第一电池单元相对应的第一内阻电压;将第二电池内阻与第二电流的乘积值,确定为与第二电池单元相对应的第二内阻电压;将第二内阻电压与第一内阻电压之间的差值,确定为在不同预设条件下的第一电池单元与第二电池单元之间的电压差。
在一些实例中,在处理器11根据不同的预设条件下的电压差,确定与第一电池单元和第二电池单元相对应的供电条件时,处理器11用于:在不同预设条件下的电压差中,确定差值最小的目标电压差;将目标电压差确定为与第一电池单元和第二电池单元相对应的供电条件。
在一些实例中,在确定差值最小的目标电压差之后,处理器11还用于:获取与目标电压差相对应的目标电量差;将目标电量差,确定为与第一电池单元和第二电池单元相对应的供电条件。
在一些实例中,在获取与目标电压差相对应的目标电量差之后,处理器11还用于:将目标电压差和目标电量差,确定为与第一电池单元和第二电池单元相对应的供电条件。
在一些实例中,所述第一电池单元包括:第一电芯;所述第二电池单元包括:第二电芯;所述第一电池单元和所述第二电池单元中的至少一个还包括:至少一个开关元件,所述至少一个开关元件与所述第一电芯串联,和/或,所述至少一个开关元件与所述第二电芯串联;在确定与第一电池单元和第二电池单元相对应的供电条件之后,处理器11还用于:在第一电池单元的电压大于第二电池单元的电压时,检测第一电池单元与第二电池单元是否满足供电条件;在第一电池单元与第二电池单元满足供电条件时,通过开关元件控制第一电池单元为第二电池单元进行充电;或者,在第二电池单元与第二电池单元不满足供电条件时,通过开关元件禁止第一电池单元为第二电池单元进行充电。
在一些实例中,预设条件包括以下至少之一:环境条件、应用条件,其中,所述环境条件包括以下至少之一:温度条件、湿度条件、大气压强条件,所述应用条件包括:使用时间、使用寿命。
图14为本发明实施例提供的一种电池的结构示意图;参考附图14所示, 本实施例提供了一种电池,该电池可以包括:
壳体21;
上述图13实施例中的电池供电条件的确定装置22,安装在壳体21内;
一个或多个电芯23,安装在壳体21内,并且与确定装置22电连接,用于在确定装置22所确定的电池供电条件下进行充电操作。
图15为本发明实施例提供的一种可移动平台的结构示意图;参考附图15所示,本实施例提供一种可移动平台,其中,可移动平台可以是手持电话、手持云台、无人机、无人车、无人船、机器人或自动驾驶汽车等。具体的,本实施例中的可移动平台可以包括:
机身31;
上述图14实施例中的电池32,设置于机身31上,用于为可移动平台提供电能。
下面以无人机作为可移动平台为例进行说明,具体的,参考附图16所示,无人机100可以包括显示设备130和遥控设备140。其中,无人机110可以包括动力系统150、双电池并联供电系统170、飞行控制系统160、机架和承载在机架上的云台120。无人机100可以与遥控设备140和显示设备130进行无线通信。其中,双电池并联供电系统170用于为动力系统150/飞行控制系统160/显示设备130/遥控设备140提供电能。
具体的,机架可以包括机身和脚架(也称为起落架)。机身可以包括中心架以及与中心架连接的一个或多个机臂,一个或多个机臂呈辐射状从中心架延伸出。脚架与机身连接,用于在无人机100着陆时起支撑作用。
动力系统150可以包括一个或多个电子调速器(简称为电调)151、一个或多个螺旋桨153以及与一个或多个螺旋桨153相对应的一个或多个电机152,其中,电机152连接在电子调速器151与螺旋桨153之间,电机152和螺旋桨153设置在无人机100的机臂上;电子调速器151用于接收飞行控制系统160产生的驱动信号,并根据驱动信号提供驱动电流给电机152,以控制电机152的转速。电机152用于驱动螺旋桨旋转,从而为无人机100的飞行提供动力,该动力使得无人机100能够实现一个或多个自由度的运动。在某些实施例中,无人机100可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴(Roll)、偏航轴(Yaw)和俯仰轴(pitch)。可以理解的是,电机152可以是直流电机,也可以交流电机。另外,电机152可以是无刷电机,也可以是有刷电机。
飞行控制系统160可以包括飞行控制器161和传感系统162。传感系统162用于测量无人机的姿态信息,即无人机100在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感系统162例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星系统和气压计等传感器中的至少一种。例如,全球导航卫星系统可以是全球定位系统(Global Positioning System,GPS)。飞行控制器161用于控制无人机100的飞行,例如,可以根据传感系统162测量的姿态信息控制无人机100的飞行。可以理解的是,飞行控制器161可以按照预先编好的程序指令对无人机100进行控制,也可以通过响应来自遥控设备140的一个或多个遥控信号对无人机100进行控制。
云台120可以包括电机122。云台用于携带拍摄装置123。飞行控制器161可以通过电机122控制云台120的运动。可选的,作为另一实施例,云台120还可以包括控制器,用于通过控制电机122来控制云台120的运动。可以理解的是,云台120可以独立于无人机100,也可以为无人机100的一部分。可以理解的是,电机122可以是直流电机,也可以是交流电机。另外,电机122可以是无刷电机,也可以是有刷电机。此外,云台可以位于无人机100的顶部,也可以位于无人机100的底部。
拍摄装置123可以是照相机或摄像机等用于捕获图像的设备,拍摄装置123可以与飞行控制器通信,并在飞行控制器的控制下进行拍摄。本实施例的拍摄装置123至少包括感光元件,该感光元件例如为互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)传感器或电荷耦合元件(Charge-coupled Device,CCD)传感器。可以理解的是,拍摄装置123也可直接固定于无人机100上,从而云台120可以省略。
显示设备130位于无人机100的地面端,可以通过无线方式与无人机100进行通信,并且可以用于显示无人机100的姿态信息。另外,还可以在显示设备130上显示拍摄装置123拍摄的图像。可以理解的是,显示设备130可以是独立的设备,也可以集成在遥控设备140中。
遥控设备140位于无人机100的地面端,可以通过无线方式与无人机100进行通信,用于对无人机100进行远程操纵。
可以理解的是,上述对于无人机100的各组成部分的命名仅是出于标识的 目的,并不应理解为对本申请的实施例的限制。
本实施例的另一方面提供了一种计算机可读存储介质,存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,程序指令用于实现上述图1-图12所对应实施例中的电池供电条件的确定方法。
以上各个实施例中的技术方案、技术特征在与本相冲突的情况下均可以单独,或者进行组合,只要未超出本领域技术人员的认知范围,均属于本申请保护范围内的等同实施例。
在本发明所提供的几个实施例中,应该理解到,所揭露的相关遥控装置和方法,可以通过其它的方式实现。例如,以上所描述的遥控装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,遥控装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算机处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (33)

  1. 一种电池供电条件的确定方法,其特征在于,包括:
    在不同的预设条件下,获取与第一电池单元和第二电池单元相对应的充电控制参量,所述充电控制参量与所述第一电池单元的第一电池内阻、所述第二电池单元的第二电池内阻相关,其中,所述第一电池单元和所述第二电池单元并联连接,且用于为负载提供电能;
    基于所述充电控制参量,确定在不同预设条件下的所述第一电池单元与所述第二电池单元之间的电压差;
    根据不同的预设条件下的电压差,确定与所述第一电池单元和所述第二电池单元相对应的供电条件。
  2. 根据权利要求1所述的方法,其特征在于,所述充电控制参量为所述第一电池内阻与所述第二电池内阻的比值。
  3. 根据权利要求1所述的方法,其特征在于,基于所述充电控制参量,确定在不同预设条件下的所述第一电池单元与所述第二电池单元之间的电压差,包括:
    确定所述第一电池单元的第一电池内阻;
    基于所述充电控制参量和所述第一电池内阻,确定在不同预设条件下的所述第二电池单元的第二电池内阻;
    基于所述第一电池内阻和不同预设条件下的第二电池内阻,确定在不同预设条件下的所述第一电池单元与所述第二电池单元之间的电压差。
  4. 根据权利要求3所述的方法,其特征在于,基于所述第一电池内阻和不同预设条件下的第二电池内阻,确定在不同预设条件下的所述第一电池单元与所述第二电池单元之间的电压差,包括:
    在所述第一电池单元的电压大于所述第二电池单元的电压时,获取在不同预设条件下的所述第二电池单元所在支路的第二电流;
    基于所述第二电流,确定所述第一电池单元所在支路的第一电流;
    基于所述第一电池内阻、所述第一电流、所述第二电池内阻和所述第二电流,确定在不同预设条件下的所述第一电池单元与所述第二电池单元之间的电压差。
  5. 根据权利要求4所述的方法,其特征在于,获取在不同预设条件下的所述第二电池单元所在支路的第二电流,包括:
    获取与所述第二电池单元相对应的充电参数,所述充电参数用于标识不同预设条件与所述第二电池单元的充电电流之间的映射关系;
    基于所述充电参数,确定在不同预设条件下的所述第二电池单元所在支路的第二电流。
  6. 根据权利要求5所述的方法,其特征在于,所述充电参数包括:不同温度参数、与不同温度参数相对应的充电电流值、与不同温度参数相对应的充电电压值。
  7. 根据权利要求5所述的方法,其特征在于,获取与所述第二电池单元相对应的充电参数,包括:
    获取所述第二电池单元的电芯数据,所述电芯数据包括以下至少之一:温度数据、电流数据;
    基于所述电芯数据,确定与所述第二电池单元相对应的充电参数。
  8. 根据权利要求5所述的方法,其特征在于,所述第二电流为所述第二电池单元在不同预设条件下的充电电流阈值。
  9. 根据权利要求4所述的方法,其特征在于,基于所述第二电流,确定所述第一电池单元所在支路的第一电流,包括:
    获取与所述负载相对应的第三充电电流;
    将所述第二电流与所述第三充电电流的和值,确定为所述第一电池单元所在支路的第一电流。
  10. 根据权利要求4所述的方法,其特征在于,基于所述第一电池内阻、所述第一电流、所述第二电池内阻和所述第二电流,确定在不同预设条件下的所述第一电池单元与所述第二电池单元之间的电压差,包括:
    将所述第一电池内阻与所述第一电流的乘积值,确定为与所述第一电池单元相对应的第一内阻电压;
    将所述第二电池内阻与所述第二电流的乘积值,确定为与所述第二电池单元相对应的第二内阻电压;
    将所述第二内阻电压与所述第一内阻电压之间的差值,确定为在不同预设条件下的所述第一电池单元与所述第二电池单元之间的电压差。
  11. 根据权利要求1-10中任意一项所述的方法,其特征在于,根据不同的预设条件下的电压差,确定与所述第一电池单元和所述第二电池单元相对应的供电条件,包括:
    在不同预设条件下的电压差中,确定差值最小的目标电压差;
    将所述目标电压差确定为与所述第一电池单元和所述第二电池单元相对应的供电条件。
  12. 根据权利要求11所述的方法,其特征在于,在确定差值最小的目标电压差之后,所述方法还包括:
    获取与所述目标电压差相对应的目标电量差;
    将所述目标电量差,确定为与所述第一电池单元和所述第二电池单元相对应的供电条件。
  13. 根据权利要求12所述的方法,其特征在于,在获取与所述目标电压差相对应的目标电量差之后,所述方法还包括:
    将所述目标电压差和所述目标电量差,确定为与所述第一电池单元和所述第二电池单元相对应的供电条件。
  14. 根据权利要求1-10中任意一项所述的方法,其特征在于,所述第一电池单元包括:第一电芯;所述第二电池单元包括:第二电芯;所述第一电池单元和所述第二电池单元中的至少一个还包括:至少一个开关元件,所述至少一个开关元件与所述第一电芯串联,和/或,所述至少一个开关元件与所述第二电芯串联;
    在确定与所述第一电池单元和所述第二电池单元相对应的供电条件之后,所述方法还包括:
    在所述第一电池单元的电压大于所述第二电池单元的电压时,检测所述第一电池单元与所述第二电池单元是否满足所述供电条件;
    在所述第一电池单元与所述第二电池单元满足所述供电条件时,通过所述开关元件控制所述第一电池单元为所述第二电池单元进行充电;或者,在所述第二电池单元与所述第二电池单元不满足所述供电条件时,通过所述开关元件禁止所述第一电池单元为所述第二电池单元进行充电。
  15. 根据权利要求1-10中任意一项所述的方法,其特征在于,所述预设条件包括以下至少之一:环境条件、应用条件,其中,所述环境条件包括以下至少之一:温度条件、湿度条件、大气压强条件,所述应用条件包括:使用时间、使用寿命。
  16. 一种电池供电条件的确定装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于运行所述存储器中存储的计算机程序以实现:
    在不同的预设条件下,获取与第一电池单元和第二电池单元相对应的充电控制参量,所述充电控制参量与所述第一电池单元的第一电池内阻、所述第二电池单元的第二电池内阻相关,所述第一电池单元与所述第二电池单元并联连接,且用于为负载提供电能;
    基于所述充电控制参量,确定在不同预设条件下的所述第一电池单元与所述第二电池单元之间的电压差;
    根据不同的预设条件下的电压差,确定与所述第一电池单元和所述第二电池单元相对应的供电条件。
  17. 根据权利要求16所述的装置,其特征在于,所述充电控制参量为所述第一电池内阻与所述第二电池内阻的比值。
  18. 根据权利要求16所述的装置,其特征在于,在所述处理器基于所述充电控制参量,确定在不同预设条件下的所述第一电池单元与所述第二电池单元之间的电压差时,所述处理器用于:
    确定所述第一电池单元的第一电池内阻;
    基于所述充电控制参量和所述第一电池内阻,确定在不同预设条件下的所述第二电池单元的第二电池内阻;
    基于所述第一电池内阻和不同预设条件下的第二电池内阻,确定在不同预设条件下的所述第一电池单元与所述第二电池单元之间的电压差。
  19. 根据权利要求18所述的装置,其特征在于,在所述处理器基于所述第一电池内阻和不同预设条件下的第二电池内阻,确定在不同预设条件下的所述第一电池单元与所述第二电池单元之间的电压差时,所述处理器用于:
    在所述第一电池单元的电压大于所述第二电池单元的电压时,获取在不同预设条件下的所述第二电池单元所在支路的第二电流;
    基于所述第二电流,确定所述第一电池单元所在支路的第一电流;
    基于所述第一电池内阻、所述第一电流、所述第二电池内阻和所述第二电流,确定在不同预设条件下的所述第一电池单元与所述第二电池单元之间的电压差。
  20. 根据权利要求19所述的装置,其特征在于,在所述处理器获取在不同预设条件下的所述第二电池单元所在支路的第二电流时,所述处理器用于:
    获取与所述第二电池单元相对应的充电参数,所述充电参数用于标识不 同预设条件与所述第二电池单元的充电电流之间的映射关系;
    基于所述充电参数,确定在不同预设条件下的所述第二电池单元所在支路的第二电流。
  21. 根据权利要求20所述的装置,其特征在于,所述充电参数包括:不同温度参数、与不同温度参数相对应的充电电流值、与不同温度参数相对应的充电电压值。
  22. 根据权利要求20所述的装置,其特征在于,在所述处理器获取与所述第二电池单元相对应的充电参数时,所述处理器用于:
    获取所述第二电池单元的电芯数据,所述电芯数据包括以下至少之一:温度数据、电流数据;
    基于所述电芯数据,确定与所述第二电池单元相对应的充电参数。
  23. 根据权利要求20所述的装置,其特征在于,所述第二电流为所述第二电池单元在不同预设条件下的充电电流阈值。
  24. 根据权利要求19所述的装置,其特征在于,在所述处理器基于所述第二电流,确定所述第一电池单元所在支路的第一电流时,所述处理器还用于:
    获取与所述负载相对应的第三充电电流;
    将所述第二电流与所述第三充电电流的和值,确定为所述第一电池单元所在支路的第一电流。
  25. 根据权利要求19所述的装置,其特征在于,在所述处理器基于所述第一电池内阻、所述第一电流、所述第二电池内阻和所述第二电流,确定在不同预设条件下的所述第一电池单元与所述第二电池单元之间的电压差时,所述处理器还用于:
    将所述第一电池内阻与所述第一电流的乘积值,确定为与所述第一电池单元相对应的第一内阻电压;
    将所述第二电池内阻与所述第二电流的乘积值,确定为与所述第二电池单元相对应的第二内阻电压;
    将所述第二内阻电压与所述第一内阻电压之间的差值,确定为在不同预设条件下的所述第一电池单元与所述第二电池单元之间的电压差。
  26. 根据权利要求16-25中任意一项所述的装置,其特征在于,在所述处理器根据不同的预设条件下的电压差,确定与所述第一电池单元和所述第二 电池单元相对应的供电条件时,所述处理器用于:
    在不同预设条件下的电压差中,确定差值最小的目标电压差;
    将所述目标电压差确定为与所述第一电池单元和所述第二电池单元相对应的供电条件。
  27. 根据权利要求26所述的装置,其特征在于,在确定差值最小的目标电压差之后,所述处理器还用于:
    获取与所述目标电压差相对应的目标电量差;
    将所述目标电量差,确定为与所述第一电池单元和所述第二电池单元相对应的供电条件。
  28. 根据权利要求27所述的装置,其特征在于,在获取与所述目标电压差相对应的目标电量差之后,所述处理器还用于:
    将所述目标电压差和所述目标电量差,确定为与所述第一电池单元和所述第二电池单元相对应的供电条件。
  29. 根据权利要求16-25中任意一项所述的装置,其特征在于,所述第一电池单元包括:第一电芯;所述第二电池单元包括:第二电芯;所述第一电池单元和所述第二电池单元中的至少一个还包括:至少一个开关元件,所述至少一个开关元件与所述第一电芯串联,和/或,所述至少一个开关元件与所述第二电芯串联;
    在确定与所述第一电池单元和所述第二电池单元相对应的供电条件之后,所述处理器还用于:
    在所述第一电池单元的电压大于所述第二电池单元的电压时,检测所述第一电池单元与所述第二电池单元是否满足所述供电条件;
    在所述第一电池单元与所述第二电池单元满足所述供电条件时,通过所述开关元件控制所述第一电池单元为所述第二电池单元进行充电;或者,在所述第二电池单元与所述第二电池单元不满足所述供电条件时,通过所述开关元件禁止所述第一电池单元为所述第二电池单元进行充电。
  30. 根据权利要求1-10中任意一项所述的装置,其特征在于,
    所述预设条件包括以下至少之一:环境条件、应用条件,其中,所述环境条件包括以下至少之一:温度条件、湿度条件、大气压强条件,所述应用条件包括:使用时间、使用寿命。
  31. 一种电池,其特征在于,包括:
    壳体;
    权利要求16-30中任意一项所述的电池供电条件的确定装置,安装在所述壳体内;
    一个或多个电芯,安装在所述壳体内,并且与所述确定装置电连接,用于在所述确定装置所确定的电池供电条件下进行充电操作。
  32. 一种可移动平台,其特征在于,包括:
    机身;
    权利要求31中所述的电池,设置于所述机身上,用于为所述可移动平台提供电能。
  33. 一种计算机可读存储介质,其特征在于,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于实现权利要求1-15中任意一项所述的电池供电条件的确定方法。
PCT/CN2020/088771 2020-05-06 2020-05-06 电池供电条件的确定方法、装置、电池和可移动平台 WO2021223100A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080004701.6A CN112655129A (zh) 2020-05-06 2020-05-06 电池供电条件的确定方法、装置、电池和可移动平台
PCT/CN2020/088771 WO2021223100A1 (zh) 2020-05-06 2020-05-06 电池供电条件的确定方法、装置、电池和可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088771 WO2021223100A1 (zh) 2020-05-06 2020-05-06 电池供电条件的确定方法、装置、电池和可移动平台

Publications (1)

Publication Number Publication Date
WO2021223100A1 true WO2021223100A1 (zh) 2021-11-11

Family

ID=75368443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088771 WO2021223100A1 (zh) 2020-05-06 2020-05-06 电池供电条件的确定方法、装置、电池和可移动平台

Country Status (2)

Country Link
CN (1) CN112655129A (zh)
WO (1) WO2021223100A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113682481B (zh) * 2021-08-03 2023-06-30 深圳市道通智能航空技术股份有限公司 一种电池管理方法、装置及无人机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180134205A (ko) * 2017-06-08 2018-12-18 엘지이노텍 주식회사 차량의 충전 릴레이 융착 검출 방법
CN110682828A (zh) * 2019-10-15 2020-01-14 北京牛电信息技术有限责任公司 并联双电池包的控制方法以及控制系统
CN110768361A (zh) * 2019-11-19 2020-02-07 常州格力博有限公司 电动工具
CN110785909A (zh) * 2018-08-01 2020-02-11 深圳市大疆创新科技有限公司 智能电池的控制方法、智能电池及无人机
WO2020064151A1 (en) * 2018-09-25 2020-04-02 Ctek Sweden Ab Method to detect vehicle battery type before charge
CN110949178A (zh) * 2019-12-13 2020-04-03 重庆美顺电子科技有限公司 一种智能化锂电池并联管理控制系统及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033751B (zh) * 2011-09-29 2015-06-24 联想(北京)有限公司 一种电池检测方法、电池及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180134205A (ko) * 2017-06-08 2018-12-18 엘지이노텍 주식회사 차량의 충전 릴레이 융착 검출 방법
CN110785909A (zh) * 2018-08-01 2020-02-11 深圳市大疆创新科技有限公司 智能电池的控制方法、智能电池及无人机
WO2020064151A1 (en) * 2018-09-25 2020-04-02 Ctek Sweden Ab Method to detect vehicle battery type before charge
CN110682828A (zh) * 2019-10-15 2020-01-14 北京牛电信息技术有限责任公司 并联双电池包的控制方法以及控制系统
CN110768361A (zh) * 2019-11-19 2020-02-07 常州格力博有限公司 电动工具
CN110949178A (zh) * 2019-12-13 2020-04-03 重庆美顺电子科技有限公司 一种智能化锂电池并联管理控制系统及方法

Also Published As

Publication number Publication date
CN112655129A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
WO2020156079A1 (zh) 一种飞行器电池监控方法、装置、电池及飞行器
US11607972B2 (en) Battery and unmanned aerial vehicle with battery indicator and venting opening
JP2019071787A (ja) バッテリー及びバッテリー付き無人機
US10797499B2 (en) Battery management system
US10901437B2 (en) Unmanned aerial vehicle including an omnidirectional depth sensing and obstacle avoidance aerial system and method of operating same
WO2021142676A1 (zh) 电池异常检测方法、系统、电池和可移动平台
WO2018076193A1 (zh) 电池温度检测方法、控制系统、电池及无人飞行器
WO2018086142A1 (en) Multi-battery system and management thereof
WO2020062904A1 (zh) 传输控制方法、装置、控制器、拍摄设备及飞行器
WO2021223100A1 (zh) 电池供电条件的确定方法、装置、电池和可移动平台
WO2021081774A1 (zh) 一种参数优化方法、装置及控制设备、飞行器
WO2019227287A1 (zh) 无人机的数据处理方法和设备
KR20210034266A (ko) 비행 실시 전 진단 비행을 수행하는 무인 비행 장치 및 방법
WO2020042159A1 (zh) 一种云台的转动控制方法、装置及控制设备、移动平台
RU2628924C1 (ru) Система и способ защиты данных при взаимодействии мобильного устройства с компьютером
WO2021142675A1 (zh) 电池电量计算方法、系统、电池和可移动平台
WO2021217355A1 (zh) 无人机的控制方法、系统和无人机
WO2020037542A1 (zh) 数据指令处理方法、存储芯片、存储系统和可移动平台
WO2021217464A1 (zh) 电池自放电控制方法、电池、充电装置、系统及计算机可读存储介质
WO2021142667A1 (zh) 电池均衡方法、系统、电池和可移动平台
US20240235231A1 (en) Battery management system
WO2021189324A1 (zh) 电池加热方法、充电装置、系统、电池和可移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934307

Country of ref document: EP

Kind code of ref document: A1