WO2021221237A1 - 황화물 검출용 화학센서, 이를 포함하는 황화수소 검출키트, 및 그 제조방법 - Google Patents

황화물 검출용 화학센서, 이를 포함하는 황화수소 검출키트, 및 그 제조방법 Download PDF

Info

Publication number
WO2021221237A1
WO2021221237A1 PCT/KR2020/011960 KR2020011960W WO2021221237A1 WO 2021221237 A1 WO2021221237 A1 WO 2021221237A1 KR 2020011960 W KR2020011960 W KR 2020011960W WO 2021221237 A1 WO2021221237 A1 WO 2021221237A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen sulfide
sulfide
ferrocene
detection
compound
Prior art date
Application number
PCT/KR2020/011960
Other languages
English (en)
French (fr)
Inventor
안대준
권미아
민지숙
이준배
이동계
송병열
Original Assignee
대한민국(관리부서: 행정안전부 국립과학수사연구원장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200051884A external-priority patent/KR102314070B1/ko
Priority claimed from KR1020200080672A external-priority patent/KR102336338B1/ko
Application filed by 대한민국(관리부서: 행정안전부 국립과학수사연구원장) filed Critical 대한민국(관리부서: 행정안전부 국립과학수사연구원장)
Publication of WO2021221237A1 publication Critical patent/WO2021221237A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/29Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using visual detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • C07F17/02Metallocenes of metals of Groups 8, 9 or 10 of the Periodic System
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/783Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour for analysing gases

Definitions

  • the present invention relates to a ferrocene-based compound having high selectivity and excellent sensitivity to a specific anion, and proposes a ferrocene compound chemical sensor having high selectivity for a sulfide ion and a method for manufacturing the same.
  • the present invention proposes a new detection kit that includes a ferrocene-based compound having high selectivity and excellent sensitivity to sulfide ions and capable of fast detection of hydrogen sulfide gas as well as hydrogen sulfide solution.
  • H 2 S hydrogen sulfide
  • organic matter such as petroleum refining, pharmaceutical manufacturing, wastewater and waste work
  • an unpleasant odor such as rotting eggs.
  • It is mainly a respiratory toxic substance that enters the body through respiration, causing serious irritation in the mucous membrane of the human body, and can cause lung damage if inhaled at high concentrations.
  • the sense of smell is paralyzed, and there are frequent cases of sudden death due to gas poisoning without detecting danger.
  • the source of generating such a poisonous gas, hydrogen sulfide is a sulfide ion (S 2- ), and when the sulfide ion is placed in an acidic environment, hydrogen sulfide gas is generated.
  • ion-selective electrode potentiometry, spectrometry, ion-chromatography, etc. are available as a selective detection method for sulfide ions.
  • Most of these sulfide ion detection assays are not only very difficult to detect in the presence of various interfering ion substances, but also consist of expensive and complex devices, and have problems in that it takes a lot of time and money to analyze them.
  • the hydrogen sulfide sensing layer is manufactured including the step of performing a sputtering process using a copper target in a state where the partial pressure ratio of argon gas and oxygen gas is greater than 95:5 and 97:3 or less under a temperature range of 300 to 700 ° C.
  • the hydrogen sulfide sensor is formed on a base substrate, and a sensing layer including a copper oxide (CuO)-copper (Cu) composite in the form of a rod or tree arranged randomly, and two electrodes spaced apart from each other on the sensing layer include those
  • a sensing layer including a copper oxide (CuO)-copper (Cu) composite in the form of a rod or tree arranged randomly, and two electrodes spaced apart from each other on the sensing layer include those
  • the substrate a single-layer graphene sheet positioned on the substrate; and metal nanoparticles positioned on the graphene sheet, wherein the metal nanoparticles are a mixture containing 4.76 wt% iron nanoparticles and 95.24 wt% silver nanoparticles. sensors have been proposed. Although this technology was said to be capable of inspecting hydrogen sulfide leakage at a landfill site or biogas generation site at room temperature, it requires a graphene sheet and metal nanoparticles, so the manufacturing cost is high and it is difficult to detect hydrogen sulfide in an aqueous solution.
  • hydrogen sulfide (hydrogen sulfide, H 2 S) is a colorless and toxic gas that is commonly generated in the decomposition of organic matter such as petroleum refining, pharmaceutical manufacturing, wastewater and waste work, and is an unpleasant gas such as rotting eggs. It is a gas with a foul odor. It is mainly a respiratory toxic substance that enters the body through respiration, causing serious irritation in the mucous membrane of the human body, and can cause lung damage if inhaled at high concentrations. In particular, when exposed to high concentrations, the sense of smell is paralyzed, and there are frequent cases of sudden death due to gas poisoning without detecting danger.
  • the source of generating such a poisonous gas, hydrogen sulfide is a sulfide ion (S 2- ), and when the sulfide ion is placed in an acidic environment, hydrogen sulfide gas is generated.
  • the gas In order to detect gaseous substances at the site where harmful substances such as hydrogen sulfide are generated, the gas is collected, detected, and analyzed. In this case, it is difficult to detect in the gas phase, expensive equipment is required to detect the wastewater, and the process of pre-treatment and target control is complicated, making it impossible to quickly detect hazardous substances at the accident site.
  • FIG. 6 the existing gas analysis and sulfide ion analysis equipment is shown.
  • the portable gas collection equipment has a problem that it takes a long time to collect gas and causes malfunctions when liquid is introduced.
  • the portable gas detector has a problem that the built-in sensor malfunctions when analyzing high concentrations of hydrogen sulfide, is expensive equipment, and has limitations in that it is impossible to analyze the state of sulfide ions and hydrogen sulfide solution.
  • the sulfide ion analysis equipment has a complex analysis process such as pre-treatment target control of the object to be analyzed, takes at least 7 days to obtain the analysis result, and the maintenance cost is excessive due to the expensive equipment, while only sulfide ion liquid can be analyzed.
  • This technology pulverizes the dye powder to a nanometer or sub-micron size through a high-energy ball milling grinding process, and mixes the fine dye powder with a polymer and a solvent to prepare an electrospinning solution in which the dye powder is uniformly dispersed.
  • the dye powder is bound to the polymer nanofibers obtained through spinning, but the manufacturing process is complicated and the manufacturing cost is high, and in the case of other commercial products for detecting hydrogen sulfide using lead acetate, a heavy metal, production was stopped.
  • the hydrogen sulfide sensing layer is manufactured including the step of performing a sputtering process using a copper target in a state where the partial pressure ratio of argon gas and oxygen gas is greater than 95:5 and 97:3 or less under a temperature range of 300 to 700 ° C.
  • the hydrogen sulfide sensor is formed on a base substrate, and a sensing layer including a copper oxide (Cu 2 O)-copper (Cu) complex in the form of a rod or tree arranged randomly, and 2 spaced apart from each other on the sensing layer It contains four electrodes.
  • a sensing layer including a copper oxide (Cu 2 O)-copper (Cu) complex in the form of a rod or tree arranged randomly, and 2 spaced apart from each other on the sensing layer It contains four electrodes.
  • the substrate a single-layer graphene sheet positioned on the substrate; and metal nanoparticles positioned on the graphene sheet, wherein the metal nanoparticles are a mixture containing 4.76 wt% iron nanoparticles and 95.24 wt% silver nanoparticles. sensors have been proposed. Although this technology was said to be capable of inspecting hydrogen sulfide leakage at a landfill site or biogas generation site at room temperature, it requires a graphene sheet and metal nanoparticles, so the manufacturing cost is high and it is difficult to detect hydrogen sulfide in an aqueous solution.
  • the present invention has been devised under the technical background described above, and an object of the present invention is to provide a chemical sensor capable of real-time and fast visual detection of sulfide ions, which are source materials of hydrogen sulfide.
  • Another object of the present invention is to provide reliable detection results even for low-concentration sulfide ions in a solution state through a simple operation.
  • Another object of the present invention is to provide a sulfide ion-selective chemical sensor that can be economically manufactured, has excellent stability, and can be easily used at the scene of an incident.
  • Another object of the present invention is to provide a kit capable of real-time and fast visual detection of hydrogen sulfide.
  • Another object of the present invention is to provide a kit that is economically producible and capable of detecting hydrogen sulfide gas as well as hydrogen sulfide solution with high sensitivity.
  • Another object of the present invention is to provide a hydrogen sulfide detection kit that has excellent stability in use and storage, and can be easily used at the scene of an incident.
  • the present invention provides a chemical sensor comprising a ferrocene-based compound represented by the following Chemical Formula 1, wherein the color is changed by selectively reacting with a sulfide ion.
  • R 1 and R 2 is an organic compound independently selected from each other from nitrile (CN), methyl ester (CO 2 Me) and ethyl ester (CO 2 Et), R 1 and R 2 may be the same as or different from each other.
  • the present invention is obtained by dissolving 0.001 w/v % to 1.00 w/v % of the compound represented by Formula 1 in one or more organic solvents selected from saturated or unsaturated hydrocarbons, ethers, esters, alcohols, amines, and ketones.
  • organic solvents selected from saturated or unsaturated hydrocarbons, ethers, esters, alcohols, amines, and ketones.
  • the present invention also comprises the steps of mixing and reacting a ferrocene starting material with at least one organic compound selected from nitrile (CN), methyl ester (CO 2 Me) and ethyl ester (CO 2 Et) in a solvent in the same molar ratio; filtering and depressurizing the solid product produced by the reaction to remove the solvent to obtain a ferrocene-based compound of Formula 1; and dissolving 0.001 w/v % to 1.00 w/v % of the compound represented by Formula 1 in one or more organic solvents selected from saturated or unsaturated hydrocarbons, ethers, esters, alcohols, amines, and ketones. It provides a method for manufacturing a sulfide ion-selective chemical sensor comprising:
  • a sealed container including an openable door or a detection material inlet, and a detection unit composed of paper or textile paper loaded in the sealed container and adsorbed with a ferrocene compound, and the It is stored inside or outside an airtight container and includes a basic reaction reagent for generating sulfide ions from hydrogen sulfide, wherein the ferrocene compound provides a hydrogen sulfide detection kit represented by Formula 1 above.
  • the basic reaction reagent for generating sulfide ions by reacting with hydrogen sulfide is LiOH, NaOH, KOH, Mg(OH) 2 , Ca(OH) 2 , trimethylamine, triethylamine, pyridine, piperidine, any one selected from Can be used.
  • the present invention provides an airtight container including an openable door or a detection material inlet, a detection unit composed of paper or textile paper loaded in the sealed container and adsorbed with a ferrocene compound, and a basic reaction for generating sulfide ions from hydrogen sulfide
  • a basic reaction reagent is applied or put into the detection part, the sealed container is partially opened to discharge a part of the detection part to the outside of the sealed container, and then exposed to a hydrogen sulfide solution or hydrogen sulfide gas or the It provides a method for detecting hydrogen sulfide, characterized in that a hydrogen sulfide solution or hydrogen sulfide gas is introduced into the inlet, and the presence of hydrogen sulfide is determined by changing the color of the detection unit from purple to yellow.
  • a chemical sensor can be manufactured in an economical way by synthesizing a ferrocene-based compound in an easy way by reacting a commercially widely used starting material, and diluting it in an organic solvent.
  • a source material for generating hydrogen sulfide by reacting with an unknown solution to be analyzed, the presence or absence of sulfide ions, a source material for generating hydrogen sulfide, can be visually confirmed through color change in real time in the field.
  • the chemical sensor of the present invention can detect sulfide ions within a few seconds and with high sensitivity, so it can be applied in various fields. By detecting it, the spread of danger can be prevented at an early stage.
  • hydrogen sulfide can be detected simply by visually observing a color change using a ferrocene-based compound, and a complex pretreatment step of a sample containing sulfide ions, special chemical reaction conditions, and expensive analysis equipment don't need the back
  • 3a and 3b show the chemical formula before sulfide iontophoresis and the visible-ultraviolet spectrum peak
  • 4A and 4B are chemical formulas and visible-ultraviolet spectral peaks after sulfide ion introduction.
  • 7A and 7B are photographs of a detection test for hydrogen sulfide gas.
  • 8A and 8B are photographs of a detection test for a hydrogen sulfide solution.
  • FIG. 10 is a schematic diagram showing an embodiment of the hydrogen sulfide detection kit of the present invention
  • FIG. 11 is a schematic diagram showing another example of the hydrogen sulfide detection kit of the present invention.
  • the present invention proposes a ferrocene-based compound having high selectivity and excellent sensitivity to a specific anion, a chemosensor using the same, and a manufacturing method thereof.
  • the present invention provides a ferrocene-based chemical sensor capable of visually discriminating the color change of a solution to be analyzed by synthesizing a ferrocene-based compound, preparing a chemical sensor by diluting it in an organic solvent, and reacting it with an aqueous sulfide ion solution. .
  • the present invention provides a ferrocene-based compound characterized by the following Chemical Formula 1 as a chemical sensor having high selectivity and sensitivity to sulfide ions (S 2 - ), which is a source material of hydrogen sulfide (H 2 S).
  • R 1 and R 2 may be an organic compound, independently of each other, nitrile (CN), methyl ester (CO 2 Me) or ethyl ester (CO 2 Et), R 1 and R 2 may be the same or different materials.
  • the ferrocene-based compound of Formula 1 can be mass-produced in an economical and stable manner using commercially available ferrocene compounds and organic compounds as starting materials.
  • a ferrocene-based compound may be prepared through a reaction according to Chemical Formula 2 below. After the ferrocene starting material and the organic compound are mixed in a solvent in the same molar ratio and reacted, the resulting solid product is filtered and reduced pressure to remove the solvent to obtain a final compound.
  • a chemical sensor for detecting sulfide ions can be prepared by dissolving a ferrocene-based compound in an organic solvent.
  • a ferrocene-based compound for example, one selected from 0.001 w/v % to 1.00 w/v % of the compound of Formula 2 and saturated or unsaturated hydrocarbons, ethers (including cyclic ethers), esters, alcohols, amines (including cyclic amines), ketones, etc.
  • it can be used in the form of a composition containing more than the remaining amount of the organic compound.
  • the organic solvent may be used without limitation as long as it is a component that does not cause a chemical reaction while dissolving the ferrocene-based compound, and is not particularly limited as long as it can dilute the compound of Formula 2 above.
  • saturated or unsaturated hydrocarbons include pentane, hexane, heptane, octane, metene, ethene, propene, butene, pentene, hexene, heptene, octene, methine, ethyne, propyne, butyne, pentyne, hexine, heptine, octyne.
  • aliphatic hydrocarbons such as; Cyclopropane, cyclobutane, cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane, decahydronaphthalene, bicycloheptane, tricyclodecane, hexahydroindenecyclo alicyclic hydrocarbons such as hexane and cyclooctane; aromatic hydrocarbons such as benzene, toluene, xylene, and mesitylene; or mixtures thereof, but is not limited thereto.
  • ethers include, but are not limited to, tetrahydrofuran, diethyl ether, methyl t-butyl ether, or mixtures thereof.
  • esters include, but are not limited to, methyl acetate, ethyl acetate, butyl acetate, butyl cellosolve acetate, propylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, or mixtures thereof.
  • alcohols include, but are not limited to, methanol, ethanol, propanol, butanol, or mixtures thereof.
  • amides include, but are not limited to, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, or mixtures thereof.
  • ketones include, but are not limited to, acetone, dimethyl ketone, methyl ethyl ketone, diethyl ketone, or mixtures thereof.
  • the present invention proposes a hydrogen sulfide detection kit including a ferrocene-based compound having high selectivity for sulfide ions and excellent sensitivity.
  • the detection kit of the present invention includes a detection unit composed of paper or textile paper loaded in an airtight container and adsorbed with a ferrocene compound, and a basic reaction reagent stored inside or outside the airtight container and generating sulfide ions from hydrogen sulfide.
  • the sealed container is made of a material that is stable against chemicals, and may include an openable door or a detection material inlet.
  • Ferrocene is an early known compound among sandwich compounds, and has a molecular formula (C 5 H 5 ) 2 Fe, and is a transition metal compound in which two organic ring systems are symmetrically bonded to metal atoms. Ferrocene is stable at room temperature and has properties of a general chemical level in handling, and has only a risk of, for example, acetone. It is widely used as a material.
  • the ferrocene compound may be represented by Formula 1 below.
  • R 1 and R 2 is preferably an organic compound independently selected from each other from nitrile (CN), methyl ester (CO 2 Me) and ethyl ester (CO 2 Et), R 1 and R 2 may be the same or different materials.
  • the ferrocene-based compound of Formula 1 can be mass-produced in an economical and stable manner using commercially available ferrocene compounds and organic compounds as starting materials.
  • a ferrocene-based compound may be prepared through a reaction according to Scheme 1 below. After the ferrocene starting material and the organic compound are mixed in a solvent in the same molar ratio and reacted, the resulting solid product is filtered and reduced pressure to remove the solvent to obtain a final compound.
  • the detection unit for the hydrogen sulfide detection kit can be prepared by dissolving a solid ferrocene-based compound in an organic solvent at room temperature.
  • a solid ferrocene-based compound for example, one selected from 0.001 w/v % to 1.00 w/v % of the compound of Formula 2 and saturated or unsaturated hydrocarbons, ethers (including cyclic ethers), esters, alcohols, amines (including cyclic amines), ketones, etc.
  • it can be used in the form of a composition containing the remaining amount of organic compounds and can be adsorbed on paper or fabric which is the material of the detection unit.
  • the organic solvent may be used without limitation as long as it is a component that does not cause a chemical reaction while dissolving the ferrocene-based compound, and is not particularly limited as long as it can dilute the compound of Formula 2 above.
  • the inventors of the present application have confirmed that the ferrocene-based compound has selectivity for sulfide ions, and after dissolving the compound of Formula 2 in an ethanol solvent in FIG. 1 to prepare a 0.05 w/v % solution, various aqueous anion solutions are introduced
  • the color change is shown when a is the color of the chemical sensor solution itself before adding an anion
  • b is sodium sulfide (Na 2 S)
  • c sodium fluoride
  • NaF sodium fluoride
  • KF potassium fluoride
  • e sodium chloride
  • f is The colors are shown after each sodium iodide (NaI) aqueous solution is added to the chemical sensor solution.
  • sodium fluoride, potassium fluoride, chloro, sodium iodide, sodium hydroxide solution after the addition before the chemical sensor solution, whereas there is no color change, the addition of sodium sulfide (Na 2 S) aqueous solution immediately turns yellow solution from purple solution ( Within a few seconds), it was confirmed that the color change occurred.
  • a basic reaction reagent that reacts with hydrogen sulfide to generate sulfide ions is used in addition to the above-described ferrocene-based compound.
  • This reaction reagent instantaneously reacts with liquid or gaseous hydrogen sulfide to generate sulfide ions, and when the sulfide ions generated in this way are exposed to a detection unit to which a ferrocene-based compound is adsorbed, a color change occurs by a reaction described later.
  • the basic reaction reagent can be any substance that can react with hydrogen sulfide to generate sulfide ions.
  • any one material selected from trimethylamine, triethylamine, pyridine, and piperidine may be used.
  • the hydrogen sulfide detection method is a detection kit comprising a detection unit composed of paper or fabric paper on which a ferrocene compound is adsorbed inside an airtight container and a basic reaction reagent for generating sulfide ions from hydrogen sulfide, in the detection unit a basic reaction reagent After discharging a part of the detection part to the outside of the sealed container by partially opening the sealed container, exposing it to a hydrogen sulfide solution or hydrogen sulfide gas, or injecting a hydrogen sulfide solution or hydrogen sulfide gas into the inlet, and the color of the detection part You can proceed by visually confirming the change from purple to yellow.
  • This hydrogen sulfide detection mechanism specifically includes the following two-step reaction.
  • gaseous or liquid hydrogen sulfide reacts with a basic reaction reagent to generate sulfide ions, and when sodium hydroxide is used as a reaction reagent, sulfide ions are generated according to the following reaction formula.
  • reaction between the generated sulfide ion and the ferrocene compound proceeds as follows.
  • a ferrocene-based compound was prepared as a kit for detecting hydrogen sulfide. After adding ferrocene aldehyde and malononitrile as starting materials in the same molar ratio to the reactor under anhydrous ethanol solvent, piperidine as a catalyst was added, followed by refluxing for 6 hours to terminate the reaction. do. The reactor temperature was gradually cooled to room temperature, the resulting solid product was filtered, and the solvent was removed under reduced pressure to prepare a compound of Formula 2 (1,1-Dicyanovinyl-2-ferrocene). After 0.05 g of the prepared ferrocene compound was put into a 200 mL glass vial, 99.95 mL of ethanol was added. After closing the stopper of the glass vial and shaking the container for 5 minutes to dissolve, a 0.05 w/v % detection solution was prepared. The color of the prepared ferrocene compound solution was purple.
  • FIG. 7A and 7B are photographs of a detection test for hydrogen sulfide gas, after applying a ferrocene compound to cotton paper, and partially applying sodium hydroxide to the detection part as a reaction reagent. Results of exposure to hydrogen sulfide gas will show Initially, the cotton fibers had a purple color due to the ferrocene compound (FIG. 7a). It was confirmed that immediately after the hydrogen sulfide gas collected in the glass bottle was supplied to the cotton fiber through the supply pipe, the portion coated with sodium hydroxide changed to yellow ( FIG. 7b ).
  • FIG. 8A and 8B are photographs of a detection test for a hydrogen sulfide solution.
  • white cotton fibers were twisted and immersed in an acetone solution containing a ferrocene compound and then left at room temperature, the same as in the above experimental example, the cotton fibers turned purple ( Fig. 8a).
  • Fig. 8a After soaking a part of the ends of the purple cotton fibers with sodium hydroxide solution, and immersing them in a hydrogen sulfide solution, it was confirmed that the ends of the first purple cotton fibers immediately changed to yellow ( FIG. 8b ).
  • the hydrogen sulfide detection kit according to the present invention has a detection unit including the ferrocene compound, and it is necessary to include a structure and function that is easy to carry as a whole and has excellent stability in storage and use.
  • FIG. 10 is a schematic diagram showing an embodiment of the hydrogen sulfide detection kit 100 of the present invention, the detection unit 130 is charged inside the sealed container 110, and an openable door 112 is provided on one side of the container surface.
  • the detection unit may be exposed to the outside through the door by linearly moving the guide handle 115 along the guide rail 114 while seated on the upper surface of the moving piece 120 .
  • the detection unit is stored inside an airtight container in a state in which, for example, the ferrocene compound 132 is applied, adsorbed, or deposited on cloth or paper material, and is exposed to the outside of the container only when hydrogen sulfide is detected. is prevented
  • the basic reaction reagent may be stored inside or outside the sealed container, and in this embodiment, the reaction reagent 134 is integrated and stored at one end of the detection unit inside the sealed container.
  • Such a reaction reagent may be stored, for example, in a capsule-type container in a state in which the reaction reagent is stored, press the capsule opener 135 during use to burst the capsule, and the reaction reagent may be dripped or applied to the ferrocene compound of the detection unit.
  • the reaction reagent is not integrated with the detection unit, and is spaced apart from the detection unit and charged inside an airtight container or stored on the outer surface of the airtight container, so that when hydrogen sulfide is detected, the reaction reagent may be applied or injected into the detection unit in advance.
  • 11 is a schematic view showing another example of the hydrogen sulfide detection kit of the present invention, it can be seen that the reaction reagent 134 is mounted on the side of the sealed container.
  • the reaction reagent can be put into the detection unit through the inlet 116 of the sealed container before the detection of hydrogen sulfide, and then the detection target material is supplied to the inlet to react with the reaction reagent and the ferrocene compound of the detection unit to check whether the color changes.
  • a transparent window 111 for visual observation may be provided on the surface of the sealed container, and it can be directly confirmed through the transparent window that the color of the detection unit is changed due to the hydrogen sulfide solution or hydrogen sulfide gas administered to the detection unit.
  • a ferrocene-based compound is synthesized in an easy way by reacting a commercially widely used starting material, and diluted in an organic solvent to prepare a hydrogen sulfide detection kit in an economical way.
  • the detection kit of the present invention can detect hydrogen sulfide with high sensitivity and fast time within a few seconds, so it can be applied in various fields. It is expected that the spread of risk can be prevented at an early stage.
  • a ferrocene-based compound was prepared.
  • Example 2 After 3 mL of the chemical sensor solution prepared in Example 1 was added to a 10 mL glass vial, 3 mL of a 6.4 ppm sulfide ion aqueous solution was added, the glass vial was closed, and the container was shaken by hand for 1 minute so that the color of the solution changes from purple to yellow. that was observed.
  • a is the color of the chemical sensor solution itself before adding an anion
  • b is sodium sulfide (Na 2 S)
  • c is sodium fluoride (NaF)
  • d is potassium fluoride (KF)
  • e is sodium chloride (NaCl)
  • f is The colors are shown after each sodium iodide (NaI) aqueous solution is added to the chemical sensor solution.
  • the color change mechanism when an aqueous solution of sulfide ions is added to the chemical sensor solution of the present invention can be explained as follows.
  • FIG. 2 the visible-ultraviolet spectrum before and after addition of sulfide ions to the chemical sensor solution of the present invention was shown, and absorption wavelengths of 329.6 nm and 528.2 nm were observed in the visible-UV region before the addition of sulfide ions (left), and sulfide ions were observed. After ion addition (right), a single absorption wavelength at 391.8 nm was observed.
  • the two peaks have a pi orbital function through a double bond between a ferrocenyl group and a dinitrile group of Formula 2 as shown in FIG.
  • the double bond between the ferrocenyl group and the dinitrile group exists on a plane as an sp2 hybrid orbital function, and two peaks are observed because free rotation is impossible (FIG. 3b).
  • the chemical sensor using the ferrocene-based compound of the present invention and the detection of sulfide ions using the same do not require complicated pretreatment steps of samples containing sulfide ions, special chemical reaction conditions, and expensive analysis equipment, and quickly and accurately detect sulfide ions. It can be detected with high sensitivity.
  • the presence or absence of sulfide ions, the source material of hydrogen sulfide can be visually checked through color change in real time, and can be detected quickly and with high sensitivity without being affected by environmental factors such as temperature and humidity. Therefore, sulfide ions can be detected in real time at the site of an accident, and it is expected to be actively utilized for on-site verification of aqueous hydrogen sulfide solutions, not gaseous phases.
  • detection unit 132 ferrocene compound
  • Reaction reagent 135 Capsule opener

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

본 발명은 황화 이온에 대해 고 선택성을 갖는 페로센 계열 화합물에 관한 것으로, 페로센 출발 물질과 니트릴, 메틸에스테르 및 에틸에스테르에서 선택되는 하나 이상의 유기 화합물을 반응시켜 페로센 계열 화합물을 얻고, 이 화합물을 유기용매와 혼합하여 용액 상태의 화학센서를 제조한다. 본 발명에 따른 황화 이온에 대해 높은 선택성과 저농도에 대해서도 민감성을 가지며, 황화 이온에 대해 육안식별이 가능하여 용액 상태의 황화수소 검출용 화학센서로 활용될 수 있다. 또한, 본 발명은 개폐형 도어 또는 검출물질 투입구를 포함하는 밀폐용기와, 상기 밀폐용기 내부에 장입되어 있고, 페로센 화합물이 흡착되어 있는 페이퍼 또는 직물지로 구성되는 검출부, 및 상기 밀폐용기 내부 또는 외부에 저장되며 황화수소로부터 황화 이온을 발생시키는 염기성 반응시약을 포함하는 황화수소 검출 키트를 제공한다. 본 발명에 따르면, 기상 또는 액상의 황화수소로부터 황화 이온을 생성한 후 검출 키트의 페로센 화합물의 색상 변화를 육안으로 식별하여 실시간으로 황화수소 검출이 가능하다.

Description

황화물 검출용 화학센서, 이를 포함하는 황화수소 검출키트, 및 그 제조방법
본 발명은 특정 음이온에 대한 높은 선택성과 우수한 감도를 갖는 페로센(ferrocene) 계열 화합물에 관한 것으로, 황화 이온에 대해 고 선택성을 갖는 페로센 화합물 화학센서 및 그 제조방법을 제안한다.
또한, 본 발명은 황화이온에 대한 높은 선택성과 우수한 감도를 갖는 페로센 계열 화합물을 포함하며 황화수소 기체는 물론 황화수소 용액에 대해 빠른 검출이 가능한 새로운 검출 키트를 제안한다.
산업, 생활환경 또는 사고현장에서 유해가스 및 유해화학물질을 신속하게 분석하기 위한 노력이 활발히 진행 중이다.
특히, 황화수소(hydrogen sulfide, H2S)는 석유정제, 약품 제조과정, 폐수 및 폐기물 작업 등의 유기물 분해과정에서 흔하게 발생하는 무색의 맹독성 가스로, 달걀이 썩는 것과 같은 불쾌한 악취를 가진 가스이다. 주로 호흡기계 독성물질로 호흡을 통해 체내에 유입되어 인체의 점막에서 심각한 자극을 유발하고, 고농도로 흡입할 경우에는 폐 손상을 일으킬 수 있다. 특히, 고농도에 노출될 경우에는 후각이 마비되어 위험을 감지하지 못하고 가스중독으로 인한 돌연사를 일으키는 사례가 빈번하다. 이러한 맹독성 가스인 황화수소가 생성되는 원천은 황화 이온(S2-)으로서, 황화 이온이 산성의 환경에 놓이게 되면 황화수소 가스가 발생하게 된다.
황화 이온의 선택적 검출방법으로는 현재 이온선택성 전극(ion-selective electrode), 전류법(potentiometry), 분광광도법(spectrometry), 이온-크로마토그래피법(ion-chromatography) 등이 있다. 이러한 대부분의 황화 이온 검출 분석법들은 여러 방해이온물질 존재하에서 검출하는 것은 매우 어려울 뿐만 아니라, 값 비싸고 복잡한 장치들로 구성되어 있으며, 분석하는데 시간과 비용이 많이 드는 문제점이 있다.
황화수소 등의 유해물질이 발생한 현장에서 가스상의 물질을 검출하기 위해서는 해당 가스를 포집하여 검출 및 감정하는 과정을 거치게 되는데 기존의 센서는 고장이 잦아 가스 감지에 어려움이 있을 뿐만 아니라, 황화수소가 물에 녹아 있는 경우 가스상으로는 검출이 안 되어 해당 폐수를 검출하는데 고가의 장비가 필요하고 전처리, 표적 대조 등의 과정이 복잡하여 사고 현장에서 신속히 유해물질을 검출하는 것이 불가능하였다.
종래에 다양한 황화물 관련 검출 기술이 공지되었는데, 예를 들어 등록특허 10-1715476호에 따르면, 황화수소를 센싱하는 센싱층을 대면적에서 균일하게 제조하여 황화수소에 대한 선택성 및 감응성을 향상시키는 방안이 제안된 바 있다. 구체적으로 황화수소 센싱층은 300 내지 700 ℃의 온도 범위 하에서 아르곤 가스와 산소 가스의 분압 비율이 95:5 초과 97:3 이하인 상태에서 구리 타겟을 이용하여 스퍼터링 공정을 수행하는 단계를 포함하여 제조되며, 황화수소 센서는 베이스 기판 상에 형성되고, 랜덤하게 배치된 로드 또는 트리 형태의 산화구리(Cu2O)-구리(Cu) 복합체를 포함하는 센싱층과, 상기 센싱층 상에 서로 이격되어 배치된 2개의 전극들을 포함한다. 이 기술의 경우 제조 과정에서 고가의 장비가 필요하고 제조 비용이 과다하며 특히 온도에 따른 감도 특성의 변화가 크고 황화수소에 대한 응답속도도 5분 정도로 매우 느려 사고 현장 등에서 신속한 황화 이온 감지가 어려운 단점이 있다.
또한, 등록특허 10-1898584호에 따르면 기판; 상기 기판 상부에 위치하는 단층의 그래핀 시트; 및 상기 그래핀 시트 상부에 위치하는 금속 나노 입자를 포함하고, 상기 금속 나노 입자는 4.76 중량% 철 나노 입자와 95.24 중량% 은 나노 입자를 포함하는 혼합물인 것을 특징으로 하는 기체상 0.5ppm 이상의 황화수소 검출 센서를 제안한 바 있다. 이 기술은 쓰레기 매립지 또는 바이오가스 발생 현장에서의 황화수소 누출을 상온에서 검사할 수 있다고 하였으나, 그래핀 시트와 금속 나노 입자 등이 요구되어 제조 단가가 높고 수용액 상태의 황화수소 검출은 어려운 단점이 있다.
이와 같은 종래 기술의 수준을 고려할 때, 치명적인 황화수소를 발생시킬 수 있는 원천인 황화 이온을 사고 현장에서도 실시간으로 모니터링 할 수 있는 새로운 화학센서 개발이 필요하다. 특히, 용액 상태의 황화 이온에 대해 높은 선택성과 민감성을 가질 뿐만 아니라 민감성을 가지면서, 제조가 용이하고 육안식별을 통해 쉽게 황화 이온을 검출할 수 있는 화학센서가 요구되고 있다.
한편, 앞서 언급된 바와 같이, 황화수소(hydrogen sulfide, H2S)는 석유정제, 약품 제조과정, 폐수 및 폐기물 작업 등의 유기물 분해과정에서 흔하게 발생하는 무색의 맹독성 가스로, 달걀이 썩는 것과 같은 불쾌한 악취를 가진 가스이다. 주로 호흡기계 독성물질로 호흡을 통해 체내에 유입되어 인체의 점막에서 심각한 자극을 유발하고, 고농도로 흡입할 경우에는 폐 손상을 일으킬 수 있다. 특히, 고농도에 노출될 경우에는 후각이 마비되어 위험을 감지하지 못하고 가스중독으로 인한 돌연사를 일으키는 사례가 빈번하다. 이러한 맹독성 가스인 황화수소가 생성되는 원천은 황화 이온(S2-)으로서, 황화 이온이 산성의 환경에 놓이게 되면 황화수소 가스가 발생하게 된다.
황화수소 등의 유해물질이 발생한 현장에서 가스상의 물질을 검출하기 위해서는 해당 가스를 포집하여 검출 및 감정하는 과정을 거치게 되는데 기존의 센서는 고장이 잦아 가스 감지에 어려움이 있을 뿐만 아니라, 황화수소가 물에 녹아 있는 경우 가스상으로는 검출이 어렵고 해당 폐수를 검출하는데 고가의 장비가 필요하고 전처리, 표적 대조 등의 과정이 복잡하여 사고 현장에서 신속히 유해물질을 검출하는 것이 불가능하였다. 예를 들어, 도 6을 참조하면 기존의 가스분석 및 황화이온 감정장비를 보인 것으로, 휴대용 가스포집 장비는 기체 포집 시 장시간이 소요되며 액체 유입 시 고장의 원인이 되는 문제점이 있다. 휴대용 가스검출기는 고농도의 황화수소 분석 시 내장센서의 고장이 발생하는 문제가 있고 고가의 장비이며 황화이온과 황화수소 용액 상태 분석이 불가능한 한계가 있다. 또한, 황화이온 감정 장비는 감정물 전처리 표적대조 등 분석과정이 복잡하고, 감정결과를 얻기까지 최소 7일이 소요되며 장비가 고가이어서 유지비용이 과다한 반면 황화이온 액체만 분석 가능한 단점이 있다.
한편, 종래에 다양한 황화수소 검출 기술이 공지되었는데, 예를 들어 등록특허 10-1792363호에 따르면, 황화수소 가스와 반응하여 갈색계열로 색전이가 일어나는 염료물질인 Lead(II) acetate(Pb(CH3COO)2) 분말이 1 차원 고분자 나노섬유의 내부와 외부에 균일하게 결착되어 있는 Lead(II) acetate/고분자 복합 색변화 나노섬유 센서를 제안하고 있다. 이 기술은 고에너지 볼밀링 분쇄과정을 통해 염료분말을 나노미터 내지는 서브마이크론 크기로 분쇄하고, 미세한 염료분말들을 고분자와 용매에 혼합시켜 염료분말들이 균일하게 분산되어 있는 전기방사용액을 제조하며, 전기방사를 통해 얻어진 고분자 나노섬유에 염료분말을 결착시키는데, 제조 과정에 복잡하며 제조 비용이 큰 단점이 있으며, 중금속인 납아세테이트를 사용하는 다른 황화수소 검출용 상용 제품의 경우 생산이 중단되기도 하였다.
또한, 등록특허 10-1715476호에 따르면, 황화수소를 검지하는 센싱층을 대면적에서 균일하게 제조하여 황화수소에 대한 선택성 및 감응성을 향상시키는 방안이 제안된 바 있다. 구체적으로 황화수소 센싱층은 300 내지 700℃의 온도 범위 하에서 아르곤 가스와 산소 가스의 분압 비율이 95:5 초과 97:3 이하인 상태에서 구리 타겟을 이용하여 스퍼터링 공정을 수행하는 단계를 포함하여 제조되며, 황화수소 센서는 베이스 기판 상에 형성되고, 랜덤하게 배치된 로드 또는 트리 형태의 산화구리(Cu2O)-구리(Cu) 복합체를 포함하는 센싱층과, 상기 센싱층 상에 서로 이격되어 배치된 2개의 전극들을 포함한다. 이 기술의 경우 제조 과정에서 고가의 장비가 필요하고 제조 비용이 과다하며 특히 온도에 따른 감도 특성의 변화가 크고 황화수소에 대한 응답속도도 5분 정도로 매우 느려 사고 현장 등에서 신속한 황화수소 감지가 어려운 단점이 있다.
또한, 등록특허 10-1898584호에 따르면 기판; 상기 기판 상부에 위치하는 단층의 그래핀 시트; 및 상기 그래핀 시트 상부에 위치하는 금속 나노 입자를 포함하고, 상기 금속 나노 입자는 4.76 중량% 철 나노 입자와 95.24 중량% 은 나노 입자를 포함하는 혼합물인 것을 특징으로 하는 기체상 0.5ppm 이상의 황화수소 검출 센서를 제안한 바 있다. 이 기술은 쓰레기 매립지 또는 바이오가스 발생 현장에서의 황화수소 누출을 상온에서 검사할 수 있다고 하였으나, 그래핀 시트와 금속 나노 입자 등이 요구되어 제조 단가가 높고 수용액 상태의 황화수소 검출은 어려운 단점이 있다.
황화수소 발생 유무를 사고 현장에서 실시간으로 모니터링하기 위해서는 높은 감도와 빠른 반응성을 갖는 검출 키트가 필요하며, 특히 사용상의 안정성이 우수하고 제조가 용이한 검출 키트의 개발이 필요하다.
본 발명은 전술한 기술적 배경하에서 창안된 것으로, 본 발명의 목적은 황화수소의 원천물질인 황화 이온에 대해 실시간으로 빠르고 육안 검출이 가능한 화학센서를 제공하는 것이다.
본 발명의 다른 목적은 간단한 조작으로 용액 상태의 저농도 황화 이온에 대해서도 신뢰성 있는 검출 결과를 제공하는 것이다.
본 발명의 또 다른 목적은 경제적으로 제조 가능하고 안정성이 뛰어나며 사건 현장에서 쉽게 사용할 수 있는 황화 이온 선택성 화학센서를 제공하는 것이다.
또한, 본 발명의 또 다른 목적은 황화수소에 대해 실시간으로 빠르고 육안 검출이 가능한 키트를 제공하는 것이다.
본 발명의 또 다른 목적은 경제적으로 제조 가능하고 높은 감도로 황화수소 기체는 물론 황화수소 용액에 대해서도 검출 가능한 키트를 제공하는 것이다.
본 발명의 또 다른 목적은 사용 및 보관상의 안정성이 뛰어나며, 사건 현장에서 쉽게 사용할 수 있는 황화수소 검출 키트를 제공하는 것이다.
기타, 본 발명의 또 다른 목적 및 기술적 특징은 이하의 상세한 설명에서 보다 구체적으로 제시될 것이다.
상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 페로센 계열 화합물을 포함하며, 황화 이온에 선택적으로 반응하여 색상이 변화되는 것을 특징으로 하는 화학센서를 제공한다.
[화학식 1]
Figure PCTKR2020011960-appb-I000001
상기 화학식 1에서, R1 R2는 니트릴(CN), 메틸에스테르(CO2Me) 및 에틸에스테르(CO2Et)에서 서로 독립적으로 선택되는 유기 화합물이며, R1 R2는 서로 동일하거나 다를 수 있다.
본 발명은 상기 화학식 1로 표시되는 화합물 0.001 w/v % ~ 1.00 w/v % 을 포화 또는 불포화 탄화수소류, 에테르류, 에스테르류, 알코올류, 아민류, 케톤류 에서 선택되는 하나 이상의 유기 용매에 용해시켜 용액 상태의 화학 센서로서 사고 현장 등에서 용이하게 활용할 수 있다.
본 발명은 또한, 페로센 출발 물질과 니트릴(CN), 메틸에스테르(CO2Me) 및 에틸에스테르(CO2Et)에서 선택되는 하나 이상의 유기 화합물을 동일한 몰비로 용매에 혼합하여 반응시키는 단계; 반응에 의해 생성된 고체생성물을 여과 및 감압하여 용매를 제거하여 상기 화학식 1의 페로센 계열 화합물을 얻는 단계; 및 상기 화학식 1로 표시되는 화합물 0.001 w/v % ~ 1.00 w/v % 을 포화 또는 불포화 탄화수소류, 에테르류, 에스테르류, 알코올류, 아민류, 케톤류 에서 선택되는 하나 이상의 유기 용매에 용해시키는 단계를 포함하는 황화 이온 선택성 화학 센서 제조 방법을 제공한다.
또한, 본 발명은 상기 목적을 달성하기 위하여, 개폐형 도어 또는 검출물질 투입구를 포함하는 밀폐용기와, 상기 밀폐용기 내부에 장입되어 있고, 페로센 화합물이 흡착되어 있는 페이퍼 또는 직물지로 구성되는 검출부, 및 상기 밀폐용기 내부 또는 외부에 저장되며 황화수소로부터 황화 이온을 발생시키는 염기성 반응시약을 포함하며, 상기 페로센 화합물은 상기 화학식 1로 표현되는 황화수소 검출키트를 제공한다.
본 발명에 있어서, 황화수소와 반응하여 황화 이온을 발생시키는 상기 염기성 반응시약은 LiOH, NaOH, KOH, Mg(OH)2, Ca(OH)2, trimethylamine, triethylamine, pyridine, piperidine 중에서 선택되는 어느 하나를 사용할 수 있다.
또한, 본 발명은 개폐형 도어 또는 검출물질 투입구를 포함하는 밀폐용기와, 상기 밀폐용기 내부에 장입되어 있고 페로센 화합물이 흡착되어 있는 페이퍼 또는 직물지로 구성되는 검출부, 및 황화수소로부터 황화이온을 발생시키는 염기성 반응시약을 포함하는 검출키트에 있어서, 상기 검출부에 염기성 반응시약을 도포하거나 투입하고, 상기 밀폐용기를 부분적으로 개방시켜 검출부의 일부분을 밀폐용기 외부로 배출한 후 황화수소 용액 또는 황화수소 가스에 노출시키거나 상기 투입구에 황화수소 용액 또는 황화수소 가스를 투입하고, 상기 검출부의 색상이 자주색에서 노란색으로 변화하는 것을 통해 황화수소의 존재를 판단하는 것을 특징으로 하는 황화수소 검출 방법을 제공한다.
본 발명에 따르면, 상업적으로 널리 사용되는 출발 물질을 반응시켜 손쉬운 방법으로 페로센 계열 화합물을 합성하고, 유기용매에 희석하여 경제적인 방법으로 화학센서를 제조할 수 있다
또한, 본 발명은 분석하고자 하는 미지의 용액과 반응시켜, 황화 수소의 발생 원천물질인 황화 이온 존재 유무를 현장에서 실시간으로 색상 변화를 통하여 육안으로 확인할 수 있다.
본 발명의 화학 센서는 수 초 이내의 빠른 시간과 높은 감도로 황화 이온을 검출할 수 있어 다양한 분야에서 응용될 수 있고, 특히 오염 물질 누출 사고가 발생한 현장에서 저농도에서 고농도의 황화 이온을 빠른 시간내에 검출하여 위험의 확산을 조기에 방지할 수 있다.
또한, 본 발명에 따르면, 페로센 계열 화합물을 이용하여 색상 변화를 육안으로 관찰하는 방법으로 간단히 황화수소를 검출할 수 있으며, 황화 이온이 포함된 시료의 복잡한 전처리 단계, 특수한 화학반응 조건 및 고가의 분석 장비 등을 필요로 하지 않는다.
특히, 사용상의 안정성이 뛰어나고 황화수소 검출 정확성 및 민감성이 우수하여 온도, 습도와 같은 환경요인에 영향을 받지 않고 빠른 시간과 높은 감도로 검출할 수 있다.
또한, 기체상의 황화수소는 물론, 용액상의 황화수소 검출이 가능하며, 사고 현장에서 검출 관련 전문가는 물론 경찰의 사고처리 전문 인원 등이 유효하게 활용 가능하다.
도 1은 본 발명의 페로센 계열 화학센서와 다양한 음이온들을 반응시켜 색상이 변화된 결과를 보인 사진
도 2는 화학센서의 가시-자외선 스펙트럼 변화 그래프
도 3a 및 3b는 황화 이온 도입 전의 화학식과 가시-자외선 스펙트럼 피크
도 4a 및 4b는 황화 이온 도입 후의 화학식과 가시-자외선 스펙트럼 피크
도 5는 황화 이온의 농도 변화에 따른 화학 센서의 가시-자외선 스펙트럼 흡수 파장 변화 그래프
도 6은 기존의 가스분석 및 황화이온 감정장비를 보인 사진
도 7a 및 7b는 황화수소 기체에 대한 검출 테스트를 수행한 사진
도 8a 및 8b는 황화수소 용액에 대한 검출 테스트를 수행한 사진
도 9는 황화이온 용액에 대한 검출 테스트 사진
도 10은 본 발명의 황화수소 검출 키트의 일 실시예를 보인 모식도
도 11은 본 발명의 황화수소 검출 키트의 다른 예를 보인 모식도
본 발명은 특정 음이온에 대한 높은 선택성과 우수한 감도를 갖는 페로센(ferrocene) 계열 화합물 및 이를 이용한 화학센서(chemosensor), 그리고 그 제조방법을 제안한다.
보다 구체적으로 본 발명은 페로센 계열 화합물을 합성한 후 유기용매에 희석하여 화학센서를 제조한 후 황화 이온 수용액과 반응시켜 분석하고자 하는 용액의 색상 변화를 육안으로 식별이 가능한 페로센 계열 화학센서를 제공한다.
본 발명은 황화수소(H2S)의 원천물질인 황화 이온(S2-)에 대해 높은 선택성과 민감성을 갖는 화학센서로서, 하기 화학식 1로 특징되는 페로센 계열 화합물을 제공한다.
[화학식 1]
Figure PCTKR2020011960-appb-I000002
상기 화학식 1에서, R1 R2는 유기화합물로서 서로 독립적으로 니트릴(CN), 메틸에스테르(CO2Me) 또는 에틸에스테르(CO2Et)일 수 있고, R1 R2는 각각 동일하거나 다른 물질일 수 있다.
화학식 1의 페로센 계열 화합물은 상용화된 페로센 화합물과 유기화합물을 출발 물질을 사용하여 경제적이고 안정한 방법으로 대량 생산이 가능하다. 본 발명의 페로센 계열 화합물의 제조 방법의 일례로서, 하기 화학식 2에 따른 반응을 통해 페로센 계열 화합물을 제조할 수 있다. 페로센 출발 물질과 유기 화합물을 동일한 몰비로 용매에 혼합하여 반응시킨 후, 생성된 고체생성물을 여과 및 감압하여 용매를 제거하여 최종 화합물을 얻는다.
[반응식 1]
Figure PCTKR2020011960-appb-I000003
생성된 최종 화합물의 바람직한 예를 하기 화학식 2에 나타내었으며, 유기화합물(R1, R2)은 모두 니트릴(CN)이 사용되었다.
[화학식 2]
Figure PCTKR2020011960-appb-I000004
황화이온을 검출하기 위한 화학센서 제조는 페로센 계열 화합물을 유기용매에 용해시켜 제조할 수 있다. 예를 들어 화학식 2의 화합물 0.001 w/v % ~ 1.00 w/v %와 포화 또는 불포화 탄화수소류, 에테르류(고리에테르 포함), 에스테르류, 알코올류, 아민류(고리아민 포함), 케톤류 등에서 선택된 하나 또는 그 이상의 유기화합물 잔여량을 포함하는 조성물 형태로 사용할 수 있다.
상기 유기용매는 페로센 계열 화합물을 용해시키면서 화학적 반응을 일으키지 않는 성분이라면 유기용매를 제한 없이 사용할 수 있으며, 상기 화학식 2의 화합물을 희석시킬 수 있는 것이면 특별히 한정되지 않는다. 즉, 포화 또는 불포화 탄화수소의 예로는 펜탄, 헥산, 헵탄,옥탄, 메텐, 에텐, 프로펜, 부텐, 펜텐, 헥센, 헵텐, 옥텐, 메틴, 에틴, 프로핀, 부틴, 펜틴, 헥신, 헵틴, 옥틴 등의 지방족 탄화수소; 시클로프로판, 시클로부탄,시클로펜탄, 시클로헥산, 메틸시클로헥산, 디메틸시클로헥산, 트리메틸시클로헥산, 에틸시클로헥산, 디에틸시클로헥산, 데카히드로나프탈렌, 비시클로헵탄, 트리시클로데칸, 헥사하이드로인덴시클로헥산, 시클로옥탄등의 지환족 탄화수소; 벤젠, 톨루엔, 자일렌, 메시틸렌 등의 방향족 탄화수소; 또는 이들의 혼합물들을 들 수가 있으나, 이에 한정되지 않는다. 에테르류(고리에테르 포함)의 예로는 예컨대 테트라히드로푸란, 디에틸 에테르, 메틸 t-부틸에테르 또는 이들의 혼합물을 들 수가 있으나, 이에 한정되지 않는다.
에스테르류의 예로는 예컨대 아세트산메틸, 아세트산에틸, 아세트산부틸, 부틸셀로솔브 아세테이트, 프로필렌글리콜 모노메틸에테르 아세테이트, 디에틸렌글리콜 모노에틸에테르 아세테이트 또는 이들의 혼합물을 들 수가 있으나, 이에 한정되지 않는다. 알코올류의 예로는 예컨대 메탄올, 에탄올, 프로판올, 뷰탄올 또는 이들의 혼합물을 들 수가 있으나, 이에 한정되지 않는다. 아미드류(고리아미드 포함)의 예로는 예컨대 N,N-디메틸포름아미드, N,N-디메틸아세트아미드, N-메틸피롤리돈 또는 이들의 혼합물을 들 수가 있으나, 이에 한정되지 않는다. 케톤류의 예로는 예컨대 아세톤, 디메틸케톤, 메틸에틸케톤, 디에틸케톤 또는 이들의 혼합물을 들 수가 있으나, 이에 한정되지 않는다.
한편, 본 발명은 황화 이온에 대한 높은 선택성과 우수한 감도를 갖는 페로센(ferrocene) 계열 화합물을 포함하는 황화수소 검출 키트를 제안한다.
구체적으로 본 발명의 검출 키트는 밀폐용기 내부에 장입되어 있고 페로센 화합물이 흡착되어 있는 페이퍼 또는 직물지로 구성되는 검출부, 및 상기 밀폐용기 내부 또는 외부에 저장되며 황화수소로부터 황화 이온을 발생시키는 염기성 반응시약을 포함한다. 밀폐용기는 화학물질에 대해 안정한 재질로 제조되며, 개폐형 도어 또는 검출물질 투입구를 포함할 수 있다.
페로센은 샌드위치 화합물 중에서 일찍 알려진 화합물로서 분자식은 (C5H5)2Fe이고, 2개의 유기 고리계가 금속 원자와 대칭적으로 결합되어 있는 전이금속화합물이다. 페로센은 상온에서 안정하고, 취급상으로도 일반적인 화학물질 수준의 성질을 지닌 물질로서 예를 들어 아세톤 정도의 위험성만을 갖고 있고, 상업적으로는 소화제 약제, PE 또는 PP 등의 플라스틱 제조용 촉매, 탄소나노튜브 재료 등으로 널리 활용되고 있다.
본 발명의 황화수소 검출 키트에 있어서, 상기 페로센 화합물은 하기의 화학식 1로 표현될 수 있다.
[화학식 1]
Figure PCTKR2020011960-appb-I000005
상기 화학식에서 R1 R2는 니트릴(CN), 메틸에스테르(CO2Me) 및 에틸에스테르(CO2Et)에서 서로 독립적으로 선택되는 유기 화합물인 것이 바람직하며, R1 R2는 각각 동일하거나 다른 물질일 수 있다.
화학식 1의 페로센 계열 화합물은 상용화된 페로센 화합물과 유기화합물을 출발 물질을 사용하여 경제적이고 안정한 방법으로 대량 생산 가능하다. 페로센 계열 화합물의 제조 방법의 일례로서, 하기 반응식 1에 따른 반응을 통해 페로센 계열 화합물을 제조할 수 있다. 페로센 출발 물질과 유기 화합물을 동일한 몰비로 용매에 혼합하여 반응시킨 후, 생성된 고체생성물을 여과 및 감압하여 용매를 제거하여 최종 화합물을 얻는다.
[반응식 1]
Figure PCTKR2020011960-appb-I000006
생성된 최종 화합물의 바람직한 예를 하기 화학식 2에 나타내었으며, 유기화합물(R1, R2)은 모두 니트릴(CN)이 사용되었다.
[화학식 2]
Figure PCTKR2020011960-appb-I000007
황화수소 검출 키트를 위한 검출부는 상온에서 고상인 페로센 계열 화합물을 유기용매에 용해시켜 제조할 수 있다. 예를 들어 화학식 2의 화합물 0.001 w/v % ~ 1.00 w/v %와 포화 또는 불포화 탄화수소류, 에테르류(고리에테르 포함), 에스테르류, 알코올류, 아민류(고리아민 포함), 케톤류 등에서 선택된 하나 또는 그 이상의 유기화합물 잔여량을 포함하는 조성물 형태로 사용하여 검출부 재질인 페이퍼나 직물지에 흡착시킬 수 있다.
상기 유기용매는 페로센 계열 화합물을 용해시키면서 화학적 반응을 일으키지 않는 성분이라면 유기용매를 제한 없이 사용할 수 있으며, 상기 화학식 2의 화합물을 희석시킬 수 있는 것이면 특별히 한정되지 않는다.
본 출원의 발명자들은 페로센 계열 화합물이 황화 이온에 대해 선택성이 있는 것을 확인한 바 있으며, 도 1에 화학식 2의 화합물을 에탄올 용매에 용해시켜 0.05 w/v % 용액을 제조한 후, 다양한 음이온 수용액을 투입했을 때의 색상변화를 나타내었다. ⓐ는 음이온 첨가 전 화학센서 용액 자체의 색상이고, ⓑ는 황화 나트륨(Na2S), ⓒ는 불화 나트륨(NaF), ⓓ는 불화 칼륨(KF), ⓔ는 클로로화 나트륨(NaCl), ⓕ는 요오드화 나트륨(NaI) 수용액을 화학센서 용액에 각각 첨가한 후의 색상을 보이고 있다.
불화 나트륨, 불화 칼륨, 클로로화 나트륨, 요오드화 나트륨 수용액을 화학센서 용액에 첨가 전과 후의 경우 색상변화가 없는 반면, 황화 나트륨(Na2S) 수용액을 첨가한 경우에는 자주색 용액에서 노랑색 용액으로 즉각적으로(수 초 이내에) 색상변화가 일어난 것을 확인하였다.
황화수소 검출을 위해 본 발명에서는 전술한 페로센 계열 화합물과 더불어, 황화수소와 반응하여 황화 이온을 발생시키는 염기성 반응시약을 사용한다. 이 반응시약은 액상 또는 기상의 황화수소와 순간적으로 반응하여 황화 이온을 생성하며, 이렇게 발생한 황화 이온이 페로센 계열 화합물이 흡착되어 있는 검출부에 노출되면 후술하는 반응에 의해 색상 변화가 일어나게 된다. 염기성 반응시약으로는 황화수소와 반응하여 황화 이온을 발생시킬 수 있는 물질이라면 어떤 것도 가능하며, 검출 키트의 화학적, 취급상의 안전을 고려하여 예를 들어 LiOH, NaOH, KOH, Mg(OH)2, Ca(OH)2, trimethylamine, triethylamine, pyridine, piperidine 중에서 선택되는 어느 하나의 물질을 사용할 수 있다.
본 발명에 있어서, 황화수소 검출 방법은 밀폐용기 내부에 페로센 화합물이 흡착되어 있는 페이퍼 또는 직물지로 구성되는 검출부 및 황화수소로부터 황화이온을 발생시키는 염기성 반응시약을 포함하는 검출키트에서, 상기 검출부에 염기성 반응시약을 도포하거나 투입하고, 상기 밀폐용기를 부분적으로 개방시켜 검출부의 일부분을 밀폐용기 외부로 배출한 후 황화수소 용액 또는 황화수소 가스에 노출시키거나 상기 투입구에 황화수소 용액 또는 황화수소 가스를 투입하고, 상기 검출부의 색상이 자주색에서 노란색으로 변화하는 것을 육안으로 확인하여 진행할 수 있다.
이와 같은 황화수소 검출 메커니즘은 구체적으로 아래와 같은 2단계의 반응을 포함한다.
먼저, 황화 이온 생성 단계로서, 기상 또는 액상의 황화수소가 염기성 반응시약과 반응하여 황화이온을 생성하며, 반응시약으로 예를 들어 수산화나트륨을 사용한 경우 아래의 반응식에 따라 황화이온이 생성된다.
[반응식 2]
Figure PCTKR2020011960-appb-I000008
다음으로, 생성된 황화 이온과 페로센 화합물의 반응이 아래와 같이 진행된다.
[반응식 3]
Figure PCTKR2020011960-appb-I000009
황화 이온 첨가전, 페로센 화합물의 페로센닐기(ferrocenyl group)와 디니트릴기(dinitrile group) 사이에 이중결합이 존재하였으나, 페로센 화합물에 황화 이온(S2-)이 도입되면서 페로센닐기와 디니트릴기 사이에 단일결합이 생성된다. 이러한 결합 구조의 변경으로 인하여 페로센 화합물의 색상이 변화된다.
황화수소를 검출하기 위한 키트로서 페로센 계열 화합물을 제조하였다. 무수 에탄올 용매 하에서 출발물질로 페로센알데히드(ferrocene aldehyde)와 말로노니트릴(malononitrile)을 각각 동일한 몰 비로 반응기에 투입한 후 피페리딘(piperidine)을 촉매로 첨가하고 이어서 6시간 동안 환류하여 반응을 종결한다. 반응기 온도를 상온으로 서서히 식혀 생성된 고체 생성물을 여과하고 감압 하에서 용매를 제거하여 화학식 2의 화합물(1,1-Dicyanovinyl-2-ferrocene)을 제조하였다. 제조된 페로센 화합물 0.05g을 200mL 유리 바이알에 투입한 후 에탄올 99.95mL을 첨가하였다. 유리 바이알의 마개를 닫고 5분간 용기를 흔들어 용해시킨 후 0.05 w/v % 검출 용액을 제조하였다. 제조된 페로센 화합물 용액의 색상은 자주색 색상을 나타내었다.
제조된 페로센 검출 용액으로 황화수소 기체 및 황화수소 용액에 대한 변색 실험을 진행하였다.
도 7a 및 7b는 황화수소 기체에 대한 검출 테스트를 수행한 사진으로서, 면섬유(cotton paper)에 페로센 화합물을 도포한 후, 반응시약으로서 검출부에 부분적으로 수산화나트륨을 도포한 상태에서 황화수소 기체에 노출시킨 결과를 보인 것이다. 최초 면섬유는 페로센 화합물로 인하여 자주색을 띄었다(도 7a). 유리병에 포집되어 있는 황화수소 기체가 공급관을 통해 면섬유에 공급된 후 곧바로 수산화나트륨이 도포된 부분이 노란색으로 변화되는 것을 확인하였다(도 7b).
도 8a 및 b는 황화수소 용액에 대한 검출 테스트를 수행한 사진으로서, 흰색 면섬유를 꼬아 페로센 화합물이 포함된 아세톤 용액에 담근 후의 상온에서 방치하였을 때 전술한 실험예와 동일하게 면섬유가 자주색으로 변하였다(도 8a). 자주색 면섬유의 끝단 일부에 수산화나트륨 용액을 적신 후, 황화수소 용액에 침적한 결과 최초 자주색의 면섬유 끝단이 노란색으로 곧바로 변화하는 것을 확인하였다(도 8b).
도 9는 황화이온 용액에 대한 검출 테스트를 보인 것으로, 얇은 종이를 페로센 화합물이 용해된 아세톤 용액에 담근 후 상온에서 방치하여 앞선 실험 예와 동일하게 종이가 자주색으로 변하였다. 이 자주색 종이의 끝단 일부에 황화이온 용액에 침적한 결과 최초 자주색의 종이 끝단이 연한 노란색으로 곧바로 변화하는 것을 확인하였다.
본 발명에 따른 황화수소 검출키트는 상기 페로센 화합물을 포함하는 검출부를 구비하며, 전체적으로 휴대가 용이하고 보관상 및 사용상 안정성이 뛰어난 구조 및 기능을 포함할 필요가 있다.
도 10은 본 발명의 황화수소 검출 키트(100)의 일 실시예를 보인 모식도로서, 밀폐용기(110) 내부에 검출부(130)가 장입되어 있고 용기 표면 일측에는 개폐형 도어(112)가 마련되어 있다. 검출부는 이동편(120) 상면에 안착된 상태에서 가이드 손잡이(115)를 가이드 레일(114)을 따라 직선 이동시킴으로써 도어를 통해 외부로 노출될 수 있다.
검출부는 예를 들어 천, 종이 재질에 페로센 화합물(132)을 도포, 흡착, 또는 침적된 상태로 밀폐용기 내부에 보관되며, 황화수소 검출 시에만 용기 외부로 노출되므로 보관상 페로센 화합물의 변형이나 오염이 방지된다. 염기성 반응 시약은 밀폐용기 내부 또는 외부에 저장될 수 있는데, 본 실시예에서는 밀폐용기 내부의 검출부 일단에 반응시약(134)이 일체화되어 보관된다. 이러한 반응시약은 예를 들어 캡슐형 용기에 반응시약이 저장된 상태로 보관하고 사용 시 캡슐 오프너(135)를 눌러 캡슐을 터뜨리고 반응시약이 검출부의 페로센 화합물에 점적 내지 도포되도록 할 수 있다. 반응시약이 페로센 화합물에 도포된 상태에서 밀폐용기 외부로 일부 노출된 검출부를 검출 대상 물질에 노출시키거나 침적시키면 황화수소가 존재할 경우 전술한 2단계의 반응을 통해 황화수소로부터 황화이온을 발생시키고 황화이온은 페로센 화합물과 반응하여 색상이 변화되는 것을 실시간으로 직접 확인할 수 있다.
반응 시약은 검출부에 일체화되지 않고, 검출부와 이격되어 밀폐용기 내부에 장입되거나 밀폐용기 외면에 보관되어, 황화수소 검출 시 미리 검출부에 반응시약을 도포하거나 투입할 수 있다. 도 11은 본 발명의 황화수소 검출 키트의 다른 예를 보인 모식도로서, 밀폐용기 측면에 반응시약(134)이 장착되어 있는 것을 볼 수 있다. 반응시약은 황화수소 검출 전에 밀폐용기의 투입구(116)를 통해 검출부에 투입할 수 있으며, 이후 검출대상 물질을 투입구에 공급하여 검출부의 반응시약 및 페로센 화합물과 반응하여 색상 변화 여부를 확인할 수 있다. 이를 위하여 육안 관찰용 투명창(111)이 밀폐용기 표면에 마련될 수 있으며, 검출부에 투여된 황화수소 용액 또는 황화수소 가스로 인하여 검출부의 색상이 변화되는 것을 투명창을 통해 직접 확인할 수 있다.
본 발명은 상업적으로 널리 사용되는 출발 물질을 반응시켜 손쉬운 방법으로 페로센 계열 화합물을 합성하고, 유기용매에 희석하여 경제적인 방법으로 황화수소 검출 키트를 제조할 수 있다. 본 발명의 검출 키트는 수 초 이내의 빠른 시간과 높은 감도로 황화수소를 검출할 수 있어 다양한 분야에서 응용될 수 있고, 특히 오염 물질 누출 사고가 발생한 현장에서 저농도에서 고농도의 황화수소를 빠른 시간내에 검출하여 위험의 확산을 조기에 방지할 수 있을 것으로 기대된다.
이상에서 바람직한 실시예를 통하여 본 발명을 예시적으로 설명하였으나, 본 발명은 이와 같은 특정 실시예에만 한정되는 것은 아니며 본 발명에서 제시한 기술적 사상, 구체적으로는 특허청구범위에 기재된 범주 내에서 다양한 형태로 수정, 변경, 또는 개선될 수 있을 것이다.
실시예
a) 페로센 계열 화합물 제조
황화 이온을 검출하기 위한 화학센서로서 먼저 상기 화학식 2으로 표현되는 페로센 계열 화합물을 제조하였다.
무수 에탄올 용매 하에서 출발물질로 페로센알데히드(ferrocene aldehyde)와 말로노니트릴(malononitrile)을 각각 동일한 몰 비로 반응기에 투입한 후 피페리딘(piperidine)을 촉매로 첨가하고 이어서 6시간 동안 환류하여 반응을 종결한다. 반응기 온도를 상온으로 서서히 식혀 생성된 고체 생성물을 여과하고 감압 하에서 용매를 제거하여 화학식 2의 화합물(1,1-Dicyanovinyl-2-ferrocene)을 제조하였다.
b) 황화이온 검출용 화학센서 용액
제조된 페로센계열 화합물 0.05g을 200mL 유리 바이알에 투입한 후 에탄올 99.95mL을 첨가하였다. 유리 바이알의 마개를 닫고 5분간 손으로 용기를 흔들어 용해시킨 후 0.05 w/v % 화학센서 용액을 제조하였다. 제조된 화학센서 용액의 색상은 자주색 색상을 나타내었다.
c) 화학센서 용액을 이용한 황화이온 검출
100mL 용량 플라스크에 황화 나트륨(Na2S) 15.6mg을 투입한 후 표시선까지 증류수를 채워 64ppm 황화이온 수용액을 제조하였다. 이 용액 10mL를 분취하여 100mL 용량플라스크에 투입한 후 표시선까지 증류수를 채워 6.4ppm 황화이온 수용액을 제조하였다.
10mL 유리 바이알에 실시예 1에서 제조된 화학센서 용액 3mL를 투입한 후 6.4ppm 황화이온 수용액 3mL을 투입한 후 유리 바이알의 마개를 닫고 1분간 손으로 용기를 흔들어 용액의 색상이 자주색에서 노랑색으로 변하는 것을 관찰하였다.
황화 이온 선택성 테스트
도 1은 화학식 2의 화합물을 에탄올 용매에 용해시켜 0.05 w/v % 용액을 제조한 후, 다양한 음이온 수용액을 투입했을 때의 색상변화를 나타낸다.
ⓐ는 음이온 첨가 전 화학센서 용액 자체의 색상이고, ⓑ는 황화 나트륨(Na2S), ⓒ는 불화 나트륨(NaF), ⓓ는 불화 칼륨(KF), ⓔ는 클로로화 나트륨(NaCl), ⓕ는 요오드화 나트륨(NaI) 수용액을 화학센서 용액에 각각 첨가한 후의 색상을 보이고 있다.
불화 나트륨, 불화 칼륨, 클로로화 나트륨, 요오드화 나트륨 수용액을 화학센서 용액에 첨가 전과 후의 경우 색상변화가 없는 반면, 황화 나트륨(Na2S) 수용액을 첨가한 경우에는 자주색 용액에서 노랑색 용액으로 즉각적으로(수 초 이내에) 색상변화가 일어난 것을 확인하였다. 이러한 결과로부터 본 발명의 화학센서는 황화 이온에 대한 선택적 반응성이 있음을 알 수 있다.
황화 이온에 대한 색상 변화 메커니즘
황화 이온 수용액을 본 발명의 화학센서 용액에 첨가하였을 때의 색상변화 메커니즘은 다음과 같이 설명될 수 있다.
도 2를 참조하면, 본 발명의 화학센서 용액에 황화 이온 첨가 전후의 가시-자외선 스펙트럼을 보인 것으로, 황화 이온 첨가전에는(왼쪽) 가시-자외선 영역에서 329.6nm와 528.2nm 흡수파장이 관찰되었고, 황화 이온 첨가 후에(오른쪽) 391.8nm에서 단일 흡수파장이 관찰되었다.
황화 이온 첨가전 관찰되는 두 개의 피크는 도 3a에서와 같이 화학식 2의 페로센닐기(ferrocenyl group)와 디니트릴기(dinitrile group) 사이에 이중결합을 통하여 파이 궤도함수(π orbital funtion)가 컨쥬게이션(conjugation)된 시스템이나, 페로센닐기와 디니트릴기 사이의 이중결합은 sp2 혼성궤도함수로서 평면상에 존재하며 자유회전(free rotation)이 불가함으로 두 개의 피크가 관찰된다(도 3b).
반면 도 4a에서와 같이 화학식 2으로 표현되는 본 발명의 페로센계열 화합물에서 페로센닐기와 디니트릴기 사이 이중결합에 황화 이온(S2-)이 도입되면서 페로센닐기와 디니트릴기 사이에 단일결합이 생성되고, 생성된 단일결합은 sp3 혼성궤도함수로서 자유회전이 가능하여 단일 피크가 관찰된다(도 4b). 또한, 황화 이온(S2-)이 도입되면서 생성된 전자는 강한 전자 받게(electron acceptor)인 두 개의 니트릴기(nitrile group)가 전자를 강하게 당겨 주게 되어 안정화된다.
황화 이온 민감성 테스트
황화 이온 선택적 반응에 대한 민감도를 확인하여 위하여 황화 이온 농도를 달리하여 반응성을 테스트하였다.
에탄올 용매에 용해된 0.05 w/v % 화학식 2의 화학센서 용액에 황화 나트륨(Na2S) 수용액을 농도를 다르게 하여 투입한 후의 가시·자외선 스펙트럼 변화를 관찰하였다. 도 5에 황화 이온 농도에 따른 가시-자외선 스펙트럼 변화를 나타내었다.
1.28ppm에서 64ppm으로 황화 나트륨(Na2S) 수용액의 농도를 증가시킴에 따라 329.6nm와 528.2nm의 흡수파장 세기는 감소됨과 동시에 391.8nm으로 단일 흡수파장이 관찰되었다. 특히, 1.28ppm 황화 나트륨(Na2S) 수용액의 저농도에서도 급격히 329.6nm와 528.2nm 파장세기가 감소하는 것을 볼 수 있다. 이와 같은 결과는 본 발명의 화학센서가 저농도의 황화이온에서도 매우 높은 감도를 나타내는 것을 알 수 있다.
본 발명의 페로센 계열 화합물을 이용한 화학센서 및 이를 이용한 황화 이온 검출은 황화 이온이 포함된 시료의 복잡한 전처리 단계, 특수한 화학반응 조건 및 고가의 분석 장비 등을 필요로 하지 않고, 신속하고 정확하게 황화 이온을 고감도로 검출할 수 있다.
특히 황화수소의 발생 원천물질인 황화 이온 존재 유무를 실시간으로 색상 변화를 통하여 육안으로 확인할 수 있으며, 또한 온도, 습도와 같은 환경요인에 영향을 받지 않고 빠른 시간과 높은 감도로 검출할 수 있다. 따라서, 황화 이온을 사고 현장에서 실시간으로 검출할 수 있으며, 기체상이 아닌 황화수소 수용액의 현장 검증에 적극 활용할 수 있을 것으로 기대된다.
이상에서 바람직한 실시예를 통하여 본 발명을 예시적으로 설명하였으나, 본 발명은 이와 같은 특정 실시예에만 한정되는 것은 아니며 본 발명에서 제시한 기술적 사상, 구체적으로는 특허청구범위에 기재된 범주 내에서 다양한 형태로 수정, 변경, 또는 개선될 수 있을 것이다.
[부호의 설명]
100:검출 키트 110:밀폐용기
111:투명창 112:개폐형 도어
114:가이드 레일 115:가이드 손잡이
116:투입구 120:검출부 이동편
130:검출부 132:페로센 화합물
134:반응시약 135:캡슐 오프너

Claims (10)

  1. 하기 화학식 1로 표시되는 페로센 계열 화합물을 포함하며, 황화 이온에 선택적으로 반응하여 색상이 변화되는 것을 특징으로 하는 황화 이온 선택성 화학센서:
    [화학식 1]
    Figure PCTKR2020011960-appb-I000010
    (상기 화학식 1에서,
    R1 R2는 니트릴(CN), 메틸에스테르(CO2Me) 및 에틸에스테르(CO2Et)에서 서로 독립적으로 선택되는 유기 화합물이며, R1 R2는 서로 동일하거나 다를 수 있음)
  2. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물에서 R1 R2 모두 니트릴(CN)인 것을 특징으로 하는 화학센서.
  3. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물 0.001 w/v % ~ 1.00 w/v % 을 포화 또는 불포화 탄화수소류, 에테르류, 에스테르류, 알코올류, 아민류, 케톤류에서 선택되는 하나 이상의 유기 용매에 용해시킨 것을 특징으로 하는 화학 센서.
  4. 페로센 출발 물질과 니트릴(CN), 메틸에스테르(CO2Me) 및 에틸에스테르(CO2Et)에서 선택되는 하나 이상의 유기 화합물을 동일한 몰비로 용매에 혼합하여 반응시키는 단계;
    반응에 의해 생성된 고체생성물을 여과 및 감압하여 용매를 제거하여 하기 화학식 1의 페로센 계열 화합물을 얻는 단계, 여기서 화학식 1의 R1 R2는 니트릴(CN), 메틸에스테르(CO2Me) 및 에틸에스테르(CO2Et)에서 서로 독립적으로 선택되는 유기 화합물이며, R1 R2는 서로 동일하거나 다를 수 있음;
    [화학식 1]
    Figure PCTKR2020011960-appb-I000011
    상기 화학식 1로 표시되는 화합물 0.001 w/v % ~ 1.00 w/v % 을 포화 또는 불포화 탄화수소류, 에테르류, 에스테르류, 알코올류, 아민류, 케톤류 에서 선택되는 하나 이상의 유기 용매에 용해시키는 단계를 포함하는
    황화 이온 선택성 화학 센서 제조 방법.
  5. 개폐형 도어 또는 검출물질 투입구를 포함하는 밀폐용기와,
    상기 밀폐용기 내부에 장입되어 있고, 페로센 화합물이 흡착되어 있는 페이퍼 또는 직물지로 구성되는 검출부, 및 상기 밀폐용기 내부 또는 외부에 저장되며 황화수소로부터 황화 이온을 발생시키는 염기성 반응시약을 포함하며,
    상기 페로센 화합물은 하기의 화학식으로 표현되고
    [화학식 1]
    Figure PCTKR2020011960-appb-I000012
    상기 화학식에서 R1 R2는 니트릴(CN), 메틸에스테르(CO2Me) 및 에틸에스테르(CO2Et)에서 서로 독립적으로 선택되는 유기 화합물인 것을 특징으로 하는
    황화수소 검출키트.
  6. 제5항에 있어서,
    황화수소와 반응하여 황화 이온을 발생시키는 상기 염기성 반응시약은 LiOH, NaOH, KOH, Mg(OH)2, Ca(OH)2, trimethylamine, triethylamine, pyridine, piperidine 중에서 선택되는 어느 하나인 것을 특징으로 하는 황화수소 검출키트.
  7. 제5항에 있어서,
    상기 검출부에 투여된 황화수소 용액 또는 검출부에 노출된 황화수소 가스로 인하여 검출부의 색상이 변화되는 것을 확인할 수 있는 투명창이 상기 밀폐용기 표면에 마련되어 있는 것을 특징으로 하는 황화수소 검출키트.
  8. 제5항에 있어서,
    상기 염기성 반응시약은 검출부의 일단에 결합된 캡슐형 용기에 저장되 사용 시 캡슐을 터뜨려 검출부의 페로센 화합물에 점적 또는 도포되는 것을 특징으로 하는 황화수소 검출키트.
  9. 제5항에 있어서,
    상기 염기성 반응시약은 검출부와 이격되어 밀폐용기 내부에 장입되거나 밀폐용기 외면에 보관되며, 황화수소 검출 시 미리 검출부에 반응시약을 도포하거나 투입하는 것을 특징으로 하는 황화수소 검출키트.
  10. 개폐형 도어 또는 검출물질 투입구를 포함하는 밀폐용기와, 상기 밀폐용기 내부에 장입되어 있고 페로센 화합물이 흡착되어 있는 페이퍼 또는 직물지로 구성되는 검출부, 및 황화수소로부터 황화이온을 발생시키는 염기성 반응시약을 포함하는 검출키트에 있어서,
    상기 검출부에 염기성 반응시약을 도포하거나 투입하고,
    상기 밀폐용기를 부분적으로 개방시켜 검출부의 일부분을 밀폐용기 외부로 배출한 후 황화수소 용액 또는 황화수소 가스에 노출시키거나 상기 투입구에 황화수소 용액 또는 황화수소 가스를 투입하고,
    상기 검출부의 색상이 자주색에서 노란색으로 변화하는 것을 통해 황화수소의 존재를 판단하며,
    상기 페로센 화합물은 하기의 화학식으로 표현되고
    [화학식 1]
    Figure PCTKR2020011960-appb-I000013
    상기 화학식에서 R1 R2는 니트릴(CN), 메틸에스테르(CO2Me) 및 에틸에스테르(CO2Et)에서 서로 독립적으로 선택되는 유기 화합물인 것을 특징으로 하는
    황화수소 검출 방법.
PCT/KR2020/011960 2020-04-28 2020-09-04 황화물 검출용 화학센서, 이를 포함하는 황화수소 검출키트, 및 그 제조방법 WO2021221237A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020200051884A KR102314070B1 (ko) 2020-04-28 2020-04-28 황화 이온 선택성 화학센서 및 그 제조방법
KR10-2020-0051884 2020-04-28
KR1020200080672A KR102336338B1 (ko) 2020-07-01 2020-07-01 황화수소 검출 키트
KR10-2020-0080672 2020-07-01

Publications (1)

Publication Number Publication Date
WO2021221237A1 true WO2021221237A1 (ko) 2021-11-04

Family

ID=78222052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011960 WO2021221237A1 (ko) 2020-04-28 2020-09-04 황화물 검출용 화학센서, 이를 포함하는 황화수소 검출키트, 및 그 제조방법

Country Status (2)

Country Link
US (1) US11644414B2 (ko)
WO (1) WO2021221237A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101722998B1 (ko) * 2015-12-30 2017-04-05 중앙대학교 산학협력단 니트로벤조사디아졸-댄실 화합물을 이용한 수분 함량 변화에 따른 황화 이온 및 아지드 이온 검출용 조성물, 및 이를 포함하는 스트립
KR20170114192A (ko) * 2016-04-05 2017-10-13 한국과학기술연구원 황화수소 검출 센서용 조성물 및 이의 제조 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201017547D0 (en) * 2010-10-18 2010-12-01 Univ Cardiff Method and device for the detection of sulphur containing species
KR102257497B1 (ko) 2014-07-21 2021-05-31 삼성전자주식회사 가스 센서, 이를 포함하는 냉장고 및 그 제어 방법
KR101715476B1 (ko) 2015-05-21 2017-03-10 경북대학교 산학협력단 황화수소 센싱층의 제조 방법, 황화수소 센서 및 이를 이용한 황화수소의 감지 방법
KR101792363B1 (ko) 2015-12-17 2017-10-31 한국과학기술원 황화수소가스 감지용 염료가 결착된 1차원 고분자 나노섬유를 이용한 직물형 색변화 가스센서용 부재, 색변화 가스센서 및 그 제조방법
KR101898584B1 (ko) 2017-03-17 2018-09-14 한국과학기술연구원 황화물 검출 센서, 이를 포함하는 황화물 검출 장치 및 이를 제조하는 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101722998B1 (ko) * 2015-12-30 2017-04-05 중앙대학교 산학협력단 니트로벤조사디아졸-댄실 화합물을 이용한 수분 함량 변화에 따른 황화 이온 및 아지드 이온 검출용 조성물, 및 이를 포함하는 스트립
KR20170114192A (ko) * 2016-04-05 2017-10-13 한국과학기술연구원 황화수소 검출 센서용 조성물 및 이의 제조 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KUMAR VINOD, RAVIRAJU G., RANA HEMLATA, RAO VEPA KAMESWARA, GUPTA ARVIND K.: "Highly selective and sensitive chromogenic detection of nerve agents (sarin, tabun and VX): a multianalyte detection approach", CHEMICAL COMMUNICATIONS, vol. 53, no. 96, 1 January 2017 (2017-01-01), UK , pages 12954 - 12957, XP055862097, ISSN: 1359-7345, DOI: 10.1039/C7CC07823D *
ROBINSON KAY L, LAWRENCE NATHAN S: "A VINYLANTHRACENE AND VINYLFERROCENE-CONTAINING COPOLYMER: A NEW DUAL PH/SULFIDE SENSOR", ELECTROANALYSIS, vol. 18, no. 7, 1 April 2006 (2006-04-01), US , pages 677 - 683, XP009072908, ISSN: 1040-0397, DOI: 10.1002/elan.200503456 *
SOLA ANTONIA, TÁRRAGA ALBERTO, MOLINA PEDRO: "The ferrocene-pyrylium dyad as a selective colorimetric chemodosimeter for the toxic cyanide and hydrogen sulfide anions in water", ORGANIC & BIOMOLECULAR CHEMISTRY, vol. 12, no. 16, 1 January 2014 (2014-01-01), pages 2547 - 2551, XP055862492, ISSN: 1477-0520, DOI: 10.1039/C4OB00157E *

Also Published As

Publication number Publication date
US20210333199A1 (en) 2021-10-28
US11644414B2 (en) 2023-05-09

Similar Documents

Publication Publication Date Title
US20180348129A1 (en) Nanofibril Materials for Highly Sensitive and Selective Sensing of Amines
Chen et al. A portable chromogenic and fluorogenic membrane sensor for ultrasensitive, specific and instantaneous visualizing of lethal phosgene
CN108774227B (zh) 一种快速检出光气的比色、荧光探针及其合成方法
Hu et al. Fabricating a mechanochromic AIE luminogen into a wearable sensor for volatile organic compound (VOC) detection
Jin et al. A bi-functionalized metal-organic framework based on N-methylation and Eu3+ post-synthetic modification for highly sensitive detection of 4-Aminophenol (4-AP), a biomarker for aniline in urine
CN106748976A (zh) 一种用于沙林毒剂及其模拟物检测的荧光探针及其合成方法和应用
WO2021221237A1 (ko) 황화물 검출용 화학센서, 이를 포함하는 황화수소 검출키트, 및 그 제조방법
Xu et al. Fluorescence sensing of iodide and bromide in aqueous solution: anion ligand exchanging and metal ion removing
CN103525413B (zh) 一种双色纳米复合物与基于该复合物的可视化检测梯恩梯的纸质传感器及其制备方法
Hu et al. Highly sensitive and selective turn-on fluorescent chemodosimeter for Hg2+ based on thiorhodamine 6G-amide and its applications for biological imaging
Tian et al. Tetraphenylethene-modified colorimetric and fluorescent chemosensor for Hg2+ with aggregation-induced emission enhancement, solvatochromic, and mechanochromic fluorescence features
WO2014021500A1 (ko) 색상 변화를 이용한 유해가스 및 유해화학물질 검출장치 및 그 검출방법
CN110862392B (zh) 一种纳米荧光传感材料及其荧光传感薄膜的制备方法和应用
Zhao et al. Antibiotic quantitative fluorescence chemical sensor based on Zn-MOF aggregation-induced emission characteristics
KR102336338B1 (ko) 황화수소 검출 키트
Zhang et al. Fluorescent probe/hydrogel-based portable platform for ultrasensitive on-site detection of explosive particles containing nitrite
Ghodake et al. Mechanistic study of colorimetric and absorbance sensor developed for trivalent yttrium (Y3+) using chlortetracycline-functionalized silver nanoparticles
CN112062752A (zh) 一种有机荧光分子及其制备方法、荧光传感器及其应用、标准荧光卡片
CN106518792A (zh) 一种氰离子荧光传感器分子及其合成和应用
CN112209953B (zh) 一种基于荧光能量共振转移机理的双光子探针及应用
CN111777575B (zh) 一种用于检测草酰氯的高灵敏度荧光探针及其制备方法与应用
CN109053711A (zh) 一种用于汞离子检测的探针化合物及其制备方法和应用
KR20140018822A (ko) 색상 변화를 이용한 암모니아 검출장치 및 그 검출방법
KR102314070B1 (ko) 황화 이온 선택성 화학센서 및 그 제조방법
Ahn et al. Highly selective chromogenic probe for cesium ions prepared from an electrospun film of self-assembled benzenetricarboxyamide nanofibers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933135

Country of ref document: EP

Kind code of ref document: A1