WO2021220961A1 - 信号処理装置、信号処理方法、信号処理プログラム、撮像装置及びレンズ装置 - Google Patents

信号処理装置、信号処理方法、信号処理プログラム、撮像装置及びレンズ装置 Download PDF

Info

Publication number
WO2021220961A1
WO2021220961A1 PCT/JP2021/016459 JP2021016459W WO2021220961A1 WO 2021220961 A1 WO2021220961 A1 WO 2021220961A1 JP 2021016459 W JP2021016459 W JP 2021016459W WO 2021220961 A1 WO2021220961 A1 WO 2021220961A1
Authority
WO
WIPO (PCT)
Prior art keywords
offset
feature amount
output signal
unit
signal processing
Prior art date
Application number
PCT/JP2021/016459
Other languages
English (en)
French (fr)
Inventor
俊輝 小林
陽太 赤石
友也 平川
優太 渡邉
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022518020A priority Critical patent/JPWO2021220961A1/ja
Publication of WO2021220961A1 publication Critical patent/WO2021220961A1/ja
Priority to US18/049,590 priority patent/US11877061B2/en
Priority to US18/526,482 priority patent/US20240107164A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/683Vibration or motion blur correction performed by a processor, e.g. controlling the readout of an image memory
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position

Definitions

  • the present invention relates to a signal processing device, a signal processing method, a signal processing program, an imaging device and a lens device, and in particular, a signal processing device, a signal processing method, a signal processing program, an imaging device and a lens that process an output signal of a blur detection sensor. Regarding the device.
  • One embodiment according to the technique of the present disclosure provides a signal processing device, a signal processing method, a signal processing program, an imaging device, and a lens device capable of accurately removing an offset from an output signal of a blur detection sensor.
  • a blur detection sensor and a processor are provided, and the processor extracts a first feature amount related to an offset from the output signal of the blur detection sensor, a process of integrating the output signal, and a value obtained by integrating the output signal.
  • the process of extracting the second feature amount related to the offset from the output signal, the process of calculating the offset based on the first feature amount and the second feature amount, and the process of subtracting the calculated offset from the output signal are executed. , Signal processing equipment.
  • the processor is the signal processing device of (1), in which the quantity calculated from the slope of the cumulative integrated value of the output signal is used as the second feature quantity.
  • the processor is a signal processing device according to (1) or (2), wherein the DC component amount calculated from the output signal is used as the first feature amount.
  • the processor stores the calculated offset in the storage unit based on the first feature amount and the second feature amount, and the stored offset is used as an output signal.
  • the processor stores the calculated offset in the storage unit based on the first feature amount and the second feature amount, and the stored offset is used as an output signal.
  • the processor calculates the absolute value of the difference between the first feature amount and the second feature amount, and the absolute value of the difference between the first feature amount and the second feature amount becomes equal to or less than the first threshold value. In that case, the process of measuring the duration of the state below the first threshold value and the process of measuring the duration of the state below the first threshold value are further executed, and the time during which the state below the first threshold value continues is equal to or greater than the second threshold value.
  • a signal processing device according to any one of (1) to (4), which executes a process of storing an offset.
  • the processor is a signal processing device according to any one of (1) to (5), which calculates 1/2 of the sum of the first feature amount and the second feature amount as an offset.
  • the processor further executes a process of calculating the amount of change in the second feature amount, and when the calculated amount of change in the second feature amount exceeds the third threshold value, initializes the process related to the calculation of the offset. , (1) to (6), any one of the signal processing devices.
  • the processor further executes a process of determining the stationary state based on the output signal, and when it is determined to be in the stationary state, executes a process related to the calculation of the offset, any of (1) to (7). Offset signal processor.
  • the processor further executes a process of acquiring temperature information when the offset is calculated, and stores the calculated offset for each temperature.
  • the signal processing device according to any one of (4) to (8). ..
  • An imaging device including a blur detection sensor provided in the main body of the device and a signal processing device according to any one of (1) to (9) that processes the output signal of the blur detection sensor.
  • a lens device including a blur detection sensor provided in the main body of the device and a signal processing device according to any one of (1) to (9) that processes the output signal of the blur detection sensor.
  • a signal processing method for processing the output signal of the blur detection sensor which is a step of extracting the first feature amount related to offset from the output signal, a step of integrating the output signal, and an offset from the integrated value of the output signal.
  • a signal processing method including a step of extracting a second feature amount, a step of calculating an offset based on the first feature amount and the second feature amount, and a step of subtracting the calculated offset from the output signal. ..
  • a signal processing program that processes the output signal of the blur detection sensor, which is a process of extracting the first feature amount related to offset from the output signal, a process of integrating the output signal, and an offset from the integrated value of the output signal.
  • Block diagram showing the schematic configuration of a digital camera Conceptual diagram of movement of correction lens The figure which shows the schematic structure of the correction lens drive part The figure which shows the schematic structure of the 1st detection part and the 2nd detection part.
  • Block diagram of the functions realized by the system control unit regarding the control of image stabilization Block diagram of the function of the offset correction unit Block diagram of the function of the first correction amount calculation unit
  • Block diagram of the function of the second offset calculation unit Conceptual diagram of the extraction process of the second feature amount performed by the second feature amount extraction unit
  • Block diagram of the function of the second offset calculation unit Conceptual diagram of the second offset calculation process performed by the second offset calculation unit
  • Flowchart showing the processing procedure of image stabilization control Flowchart showing the processing procedure of the second offset operation
  • the figure which shows the extraction result of the 1st feature quantity The figure which shows the calculation result of the integral value
  • the figure which shows the time-dependent change of the 1st feature amount and the 2nd feature amount The figure which shows an example of the output signal of a gyro sensor when momentary vibration occurs in a stationary state.
  • the figure which shows the extraction result of the 1st feature quantity The figure which shows the calculation result of the integral value
  • the figure which shows the time-dependent change of the 1st feature amount and the 2nd feature amount The figure which shows an example of the output signal of the gyro sensor in a stationary state.
  • the figure which shows the extraction result of the 1st feature quantity The figure which shows the calculation result of the integral value
  • the figure which shows the time-dependent change of the 1st feature amount and the 2nd feature amount The figure which shows the estimation accuracy of the offset calculated by the method of this invention.
  • Block diagram of the main functions related to the calculation of the second offset The figure which shows an example of the output signal of a gyro sensor when the offset changes in the middle in a stationary state.
  • the figure which shows the time-dependent change of the 1st feature amount and the 2nd feature amount Block diagram of the function of the second offset calculation unit Flow chart showing the procedure of judgment processing performed by the initialization judgment unit
  • Block diagram of the function of the second offset calculation unit Block diagram of functions related to offset correction when offset correction is performed according to temperature
  • Flow chart showing the procedure of the update process of the second offset according to the temperature
  • Flowchart showing the procedure of offset correction processing according to temperature
  • a flowchart showing the processing procedure when the second offset calculation processing is executed at the timing when the power is turned off.
  • a digital camera equipped with a camera shake correction function also referred to as an image shake correction function
  • a camera shake correction function also referred to as an image shake correction function
  • a digital camera is an example of an imaging device.
  • the gyro sensor is an example of a blur detection sensor.
  • the amount of blur is obtained by integrating the output signal (angular velocity signal) of the gyro sensor.
  • the output signal of the gyro sensor has an error called an offset.
  • the offset is a reference value deviation (zero point deviation) in which the output signal does not become 0 even when the angular velocity is 0 [deg / s]. If the amount of blur is calculated with the output signal including an offset, an error will occur in the amount of blur and correct correction will not be possible. Therefore, it is necessary to remove the offset from the output signal of the gyro sensor.
  • the offset cannot be removed with a fixed value because it varies from individual to individual gyro sensor and also varies depending on the environmental temperature, changes over time, and the like. Therefore, when detecting blur with a gyro sensor, it is important how accurately the offset can be obtained and removed.
  • FIG. 1 is a block diagram showing a schematic configuration of a digital camera.
  • the digital camera 1 of the present embodiment is a digital camera having a so-called lens shift type image stabilization function.
  • the lens shift type image stabilization mechanism moves the image stabilization lens provided in the imaging optical system to correct the image stabilization.
  • the digital camera 1 includes an imaging optical system 10, an angular velocity detection unit 20, an imaging element 30, a main storage unit 40, a digital signal processing unit 41, an auxiliary storage unit 42, a display unit 43, an operation unit 44, and the like.
  • a system control unit 50 and the like are provided.
  • the imaging optical system 10 includes a zoom lens 11, a focus lens 12, a correction lens 13, and an aperture 14.
  • the zoom lens 11 is a lens for adjusting the focal length.
  • the focal length of the imaging optical system 10 is adjusted by moving the zoom lens 11 back and forth along the optical axis.
  • the zoom lens 11 is driven by the zoom lens driving unit 15 to operate.
  • the focus lens 12 is a lens for adjusting the focus.
  • the focus of the imaging optical system 10 is adjusted by moving the focus lens 12 back and forth along the optical axis.
  • the focus lens 12 is driven by the focus lens driving unit 16 to operate.
  • the correction lens 13 is a lens for image stabilization.
  • the correction lens 13 moves in a plane orthogonal to the optical axis to correct camera shake.
  • FIG. 2 is a conceptual diagram of the movement of the correction lens.
  • the optical axis is the z-axis, the axis orthogonal to the z-axis is the x-axis, and the z-axis and the axis orthogonal to the x-axis are the y-axis.
  • the x-axis is a horizontal (horizontal) axis.
  • the y-axis is a vertical axis (vertical direction).
  • the correction lens 13 moves along a plane (xy plane) defined by the x-axis and the y-axis. This surface (xy plane) is a surface parallel to the light receiving surface of the image sensor 30.
  • the correction lens 13 When correcting camera shake, move the correction lens 13 in the direction to cancel the blur.
  • the correction lens 13 is driven by the correction lens driving unit 17 to operate.
  • FIG. 3 is a diagram showing a schematic configuration of a correction lens driving unit.
  • the correction lens drive unit 17 has a first drive unit 17x and a second drive unit 17y.
  • the first drive unit 17x moves the correction lens 13 along the x-axis.
  • the second drive unit 17y moves the correction lens 13 along the y-axis.
  • the diaphragm 14 is composed of, for example, an iris diaphragm.
  • the amount of light passing through the imaging optical system 10 is adjusted by the aperture 14.
  • the diaphragm 14 is driven by the diaphragm drive unit 18 to operate.
  • the angular velocity detection unit 20 includes a first detection unit 20A and a second detection unit 20B.
  • the first detection unit 20A detects the angular velocity of the yaw direction Yaw of the digital camera main body (device main body).
  • the second detection unit 20B detects the angular velocity of the Pit in the pitch direction of the digital camera body.
  • the yaw direction Yaw is the rotation direction around the y-axis as shown in FIG.
  • the yaw direction Yaw is the horizontal (horizontal) rotation direction of the digital camera body.
  • the pitch direction Pit is the rotation direction around the x-axis as shown in FIG.
  • the pitch direction Pit is the rotation direction in the vertical direction (vertical direction) of the digital camera body.
  • FIG. 4 is a diagram showing a schematic configuration of a first detection unit and a second detection unit.
  • the first detection unit 20A and the second detection unit 20B are both configured to include gyro sensors 21A and 21B and ADC (Analog to Digital Converter) 22A and 22B.
  • the signals (angular velocity signals) output from the gyro sensors 21A and 21B are converted into digital signals by the ADCs 22A and 22B and taken into the system control unit 50.
  • the image sensor 30 is composed of, for example, a CMOS (CMOS: Complementary Mental-Oxide Semiconductor) type color image sensor.
  • the image sensor 30 includes a drive unit, an ADC (Analog to Digital Converter), a signal processing unit, and the like.
  • the image sensor 30 is driven by the built-in drive unit to operate.
  • the signal of each pixel is converted into a digital signal by the built-in ADC.
  • the signal of each pixel is subjected to processing such as correlation double sampling processing, gain processing, and correction processing by the built-in signal processing unit.
  • the signal processing may be performed on the analog signal of each pixel, or may be performed on the digital signal of each pixel.
  • the image sensor 30 can also be composed of an XY address type image sensor, a CCD (Counded Coupled Device) type image sensor, or the like.
  • the main storage unit 40 is used as a temporary storage area for data.
  • the signal (image signal) output from the image sensor 30 is stored in the main storage unit 40 for each frame.
  • the main storage unit 40 is composed of, for example, a semiconductor memory.
  • the digital signal processing unit 41 performs signal processing such as offset processing, gamma correction processing, demosaic processing, and RGB / YCrCb conversion processing on the image signal obtained by imaging to generate image data.
  • the digital signal processing unit 41 is composed of, for example, a microprocessor.
  • the auxiliary storage unit 42 functions as a storage unit for various data.
  • the auxiliary storage unit 42 is composed of, for example, a non-volatile semiconductor memory such as EEPROM (Electrically Erasable Programmable Read-only Memory).
  • EEPROM Electrically Erasable Programmable Read-only Memory
  • the data recorded in the auxiliary storage unit 42 includes image data obtained by shooting and data necessary for control (for example, offset information described later).
  • the display unit 43 is used as a monitor for reproducing the captured image, and also displays a live view image at the time of imaging and is used as a monitor for live view. It is also used as a monitor for settings when making various settings.
  • the display unit 43 is composed of, for example, a display such as an LCD (Liquid Crystal Display) or an OLED (Organic Light Emitting Diode).
  • the operation unit 44 includes various operation members for operating the digital camera 1.
  • the operation member includes various operation buttons in addition to the power button and the shutter button.
  • the display unit 43 is composed of a touch panel
  • the operation member constituting the operation unit 44 includes the touch panel.
  • the operation unit 44 outputs a signal corresponding to the operation of each operation member to the system control unit 50.
  • the system control unit 50 controls the entire digital camera 1 in an integrated manner. In addition, the system control unit 50 calculates various physical quantities required for control.
  • the system control unit 50 is composed of, for example, a microcomputer provided with a processor and a memory.
  • the processor is composed of, for example, a CPU (Central Processing Unit) or the like.
  • the memory is composed of, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), and the like.
  • a program executed by the processor for example, a signal processing program, etc.
  • various data are stored in the memory.
  • the control performed by the system control unit 50 includes control of image stabilization.
  • FIG. 5 is a block diagram of a function realized by the system control unit regarding the control of image stabilization.
  • the system control unit 50 has the offset correction units 60A and 60B, the first correction amount calculation unit 70A, the second correction amount calculation unit 70B, the first drive control unit 80A, and the first drive control unit 80A with respect to the control of camera shake correction. 2 It functions as a drive control unit 80B, a second offset calculation unit 100A, 100B, a second offset storage control unit 110A, 110B, and the like. These functions are realized by the processor constituting the system control unit 50 executing a predetermined control program.
  • the offset correction unit 60A performs a process (offset correction process) of removing an offset from the signal (angular velocity signal in the yaw direction) output from the first detection unit 20A based on the information stored in the offset storage unit 90A. conduct.
  • FIG. 6 is a block diagram of the function of the offset correction unit.
  • the offset correction unit 60A has the functions of the first subtraction unit 60A1 and the second subtraction unit 60A2.
  • the first subtraction unit 60A1 subtracts the first offset from the output signal of the first detection unit 20A.
  • the first offset is a standard offset and is a fixed value.
  • the first offset is set at the factory, for example. In this case, for example, the offset is detected at the time of shipment from the factory, and the detected offset is set as the first offset.
  • the second subtraction unit 60A2 subtracts the second offset from the signal after the first offset has been subtracted.
  • the second offset is the latest offset.
  • the second offset is an example of the offset of the present invention.
  • the second offset is calculated by the second offset calculation unit 100A.
  • the second offset calculation unit 100A calculates the second offset based on the signal after the first offset is subtracted. The details of the second offset calculation unit 100A will be described later.
  • the offset storage unit 90A is composed of an auxiliary storage unit 42.
  • the offset storage unit 90A stores information on the first offset and the second offset used by the offset correction unit 60A.
  • the information of the second offset calculated by the second offset calculation unit 100A is stored in the offset storage unit 90A by the second offset storage control unit 110A.
  • the offset storage unit 90A is an example of a storage unit.
  • the offset correction unit 60B performs a process of removing the offset from the signal (angular velocity signal in the pitch direction) output from the second detection unit 20B based on the information stored in the offset storage unit 90B.
  • the configuration of the offset correction unit 60B is the same as that of the offset correction unit 60A. Therefore, the description of the details will be omitted.
  • the offset storage unit 90B is composed of an auxiliary storage unit 42.
  • the offset storage unit 90B stores information on the first offset and the second offset used by the offset correction unit 60B.
  • the second offset is calculated by the second offset calculation unit 100B.
  • the second offset calculation unit 100B calculates the second offset based on the signal after the first offset is subtracted.
  • the calculated second offset information is stored in the offset storage unit 90B by the second offset storage control unit 110B.
  • the offset storage unit 90B is an example of a storage unit.
  • the configuration including the offset correction units 60A and 60B, the second offset calculation units 100A and 100B, the second offset storage control units 110A and 110B and the offset storage units 90A and 90B is an example of the signal processing device. ..
  • the first correction amount calculation unit 70A calculates the correction amount in the x-axis direction of the correction lens 13 based on the angular velocity signal in the yaw direction after the offset is removed by the offset correction unit 60A. That is, the amount of movement of the correction lens 13 in the x-axis direction for correcting the blur in the yaw direction is calculated.
  • FIG. 7 is a block diagram of the function of the first correction amount calculation unit.
  • the first correction amount calculation unit 70A has the functions of a high-pass filter (HPF) 71A, a sensitivity correction unit 72A, an integration unit 73A, and a correction amount calculation unit 74A.
  • HPF high-pass filter
  • the high-pass filter 71A performs a process of removing a low frequency component from the angular velocity signal in the yaw direction after the offset is removed.
  • the sensitivity correction unit 72A performs a process of multiplying the angular velocity signal after the high-pass filter process by the high-pass filter 71A by the sensitivity.
  • Sensitivity is a unitless coefficient uniquely determined with the position of the focus lens and the focal length (position of the zoom lens) as variables. Therefore, when the focus lens position and the focal length change from moment to moment, the sensitivity also changes from moment to moment.
  • the integrating unit 73A performs a process of integrating the angular velocity signal after the sensitivity is corrected by the sensitivity correction unit 72A. As a result, the amount of blur in the yaw direction is calculated.
  • the correction amount calculation unit 74A calculates the correction amount in the x-axis direction of the correction lens 13 based on the blur amount in the yaw direction calculated by the integration unit 73A. That is, the amount of movement of the correction lens 13 in the x-axis direction required to cancel the blur in the yaw direction is calculated.
  • the second correction amount calculation unit 70B calculates the correction amount in the y-axis direction of the correction lens 13 based on the angular velocity signal in the pitch direction after the offset is removed by the offset correction unit 60B. That is, the amount of movement of the correction lens 13 in the y-axis direction required to cancel the blur in the pitch direction is calculated.
  • the configuration of the second correction amount calculation unit 70B is the same as the configuration of the first correction amount calculation unit 70A. Therefore, the details thereof will be omitted.
  • the first drive control unit 80A controls the drive of the first drive unit 17x to control the movement of the correction lens 13 in the x-axis direction.
  • the first drive control unit 80A controls the drive of the first drive unit 17x based on the correction amount in the x-axis direction of the correction lens 13 calculated by the first correction amount calculation unit 70A.
  • the second drive control unit 80B controls the drive of the second drive unit 17y to control the movement of the correction lens 13 in the y-axis direction.
  • the second drive control unit 80B controls the drive of the second drive unit 17y based on the correction amount in the y-axis direction of the correction lens 13 calculated by the second correction amount calculation unit 70B.
  • the control of image stabilization is executed by the following procedure.
  • the offset correction unit 60A and the offset correction unit 60B perform a process of removing the offset from the signals (angular velocity signals) output from the first detection unit 20A and the second detection unit 20B.
  • the correction amount in the x-axis direction and the y-axis direction of the correction lens 13 is calculated by the first correction amount calculation unit 70A and the second correction amount calculation unit 70B based on the signal from which the offset has been removed.
  • the first drive unit 17x and the second drive unit 17y are driven by the first drive control unit 80A and the second drive control unit 80B based on the calculated correction amount.
  • the correction lens 13 is moved so as to cancel the blur, and the camera shake is corrected.
  • the second offset is calculated by the second offset calculation units 100A and 100B.
  • the functions of the second offset calculation units 100A and 100B will be described.
  • the configuration of the second offset calculation unit 100A and the second offset calculation unit 100B is the same. Therefore, here, only the second offset calculation unit 100A will be described, and the description of the second offset calculation unit 100B will be omitted.
  • FIG. 8 is a block diagram of the function of the second offset calculation unit.
  • the second offset calculation unit 100A has the functions of the first feature amount extraction unit 101A, the integration unit 102A, the second feature amount extraction unit 103A, and the second offset calculation unit 104A.
  • the first feature amount extraction unit 101A performs a process of extracting the first feature amount related to the second offset from the output signal of the first detection unit 20A after removing the first offset. Specifically, a process of calculating a direct current component amount (DC (Direct Current) component amount) from the output signal of the first detection unit 20A after removing the first offset is performed, and the calculated direct current component amount is used as the first feature amount. Output.
  • the first feature amount extraction unit 101A performs low-pass filter processing (Low-pass filter: LPF) or band-pass filter processing (Band-pass filter: BPF) on the output signal of the first detection unit 20A after removing the first offset. Is applied to calculate the amount of the DC component which is the first feature amount. This point will be described below.
  • f (t) be the random noise generated by the gyro sensor
  • g (t) be the angular velocity signal generated by the gyro sensor
  • O be the offset (constant) generated by the gyro sensor.
  • the output ⁇ _OUT from the gyro sensor is expressed by the following equation (1).
  • ⁇ _OUT f (t) + O + g (t) ...
  • the offset O generated from the gyro sensor is the first feature amount to be obtained. Since the offset O is a DC component, the components of f (t) and g (t) can be removed by applying a low-pass filter or a band-pass filter to the above equation (1). Therefore, the first feature amount can be extracted by performing low-pass filter processing or band-pass filter processing on the output signal of the first detection unit 20A after removing the first offset.
  • the integrating unit 102A performs a process of integrating the output signal of the first detecting unit 20A after removing the first offset. By this process, an angle signal is obtained.
  • the angle signal deg_out is calculated by the following equation (2) by integrating the above equation (1).
  • the second feature amount extraction unit 103A performs a process of extracting the second feature amount related to the offset from the output of the integration unit 102A. That is, the second feature amount is extracted from the integrated value (angle signal) of the output signal of the first detection unit 20A. Specifically, the slope of the cumulative integrated value is calculated from the output of the integrating unit 102A and used as the second feature amount.
  • the second feature amount extraction unit 103A obtains a linear approximation curve of the cumulative integral value, calculates the slope thereof, and extracts the second feature amount.
  • FIG. 9 is a conceptual diagram of the extraction process of the second feature amount performed by the second feature amount extraction unit.
  • the initial value is the integrated value when the calculation of the second feature amount (slope of the cumulative integrated value) is started.
  • the initial value is deg_out [0].
  • timer count the count is incremented by 1 for each control cycle. After that, the value of the control cycle (Ts) [s] is multiplied.
  • Time_out time_count * (Ts) Assuming that the second feature amount (slope of the cumulative integrated value) is O2, O2 is calculated by the following equation.
  • the second offset calculation unit 104A calculates the second offset based on the first feature amount and the second feature amount extracted by the first feature amount extraction unit 101A and the second feature amount extraction unit 103A. Specifically, it is determined whether or not the first feature amount and the second feature amount satisfy a certain condition, and if they are satisfied, 1/2 of the sum of the two is calculated as the second offset. That is, the arithmetic mean of both is calculated as the second offset.
  • the condition that the first feature amount and the second feature amount should be satisfied is that the absolute value of the difference between the first feature amount and the second feature amount is equal to or less than the threshold value, and the state below the threshold value continues for a specified time or longer. ..
  • FIG. 10 is a block diagram of the function of the second offset calculation unit.
  • the second offset calculation unit 104A has the functions of the difference calculation unit 104A1, the determination unit 104A2, and the calculation unit 104A3.
  • the difference calculation unit 104A1 calculates the absolute value of the difference between the first feature amount and the second feature amount.
  • the determination unit 104A2 determines whether or not the absolute value of the difference between the first feature amount and the second feature amount calculated by the difference calculation unit 104A1 is equal to or less than the threshold value and the state continues for a specified time or longer. In this case, first, the determination unit 104A2 determines whether or not the absolute value of the difference between the first feature amount and the second feature amount is equal to or less than the threshold value. If it is determined that the value is equal to or less than the threshold value, the determination unit 104A2 determines whether or not the state below the threshold value has continued for a predetermined time or longer.
  • the determination unit 104A2 counts (measures) the duration thereof.
  • the threshold is an example of the first threshold.
  • the specified time is an example of the second threshold value. The threshold value and the specified time are predetermined and stored in the memory.
  • the calculation unit 104A3 calculates the second offset based on the first feature amount and the second feature amount when the determination unit 104A2 determines that the above conditions are satisfied. Specifically, the determination unit 104A2 calculates 1/2 of the sum of the first feature amount and the second feature amount at the time when it is determined that the above conditions are satisfied, and calculates the second offset.
  • FIG. 11 is a conceptual diagram of the second offset calculation process performed by the second offset calculation unit.
  • O1 be the first feature amount extracted by the first feature amount extraction unit 101A
  • O2 be the second feature amount extracted by the second feature amount extraction unit 103A.
  • the specified time is set as threshold and the threshold is set as threshold.
  • ) of the difference between the first feature amount O1 and the second feature amount O2 is calculated.
  • the second offset is calculated based on the first feature amount O1 and the second feature amount O2 at that time. That is, the following calculation is executed to calculate the second offset.
  • Second offset (O1 + O2) / 2
  • the calculated information on the second offset is stored in the offset storage unit 90A by the second offset storage control unit 110A. That is, the information of the second offset stored in the offset storage unit 90A is updated. As a result, the information of the second offset stored in the offset storage unit 90A is maintained up to date.
  • the initial value of the second offset stored in the offset storage unit 90A is 0.
  • two feature amounts (first feature amount and second feature amount) related to offset are extracted from the output signal of the first detection unit 20A, and the two extracted feature amounts are constant conditions.
  • the second offset is obtained from the two features. That is, when the two features are substantially the same, 1/2 of the sum is calculated to obtain the second offset.
  • the determination performed by the determination unit 104A2 is to determine whether or not the first feature amount and the second feature amount match.
  • the first feature amount is equal to or less than the threshold value (first threshold value or less) and the state continues for a specified time or more (second threshold value or more)
  • the first feature amount It is assumed that the second feature amount and the second feature amount match, and the second offset is calculated.
  • the second offset can be accurately obtained by obtaining the two features and obtaining the second offset. That is, it is difficult to obtain an accurate second offset with only one feature amount, but it is possible to accurately obtain the second offset by using the two feature amounts.
  • the angle signal includes ⁇ (g (t)) dt and ⁇ (f (t)) dt as a function of time t. Therefore, when the second offset (slope of the cumulative integral value) is obtained only from the angle signal, the accurate value is obtained due to the influence of the time t function [ ⁇ (g (t)) dt + ⁇ (f (t)) dt]. There may be cases where it is not required.
  • the second offset can be accurately obtained by obtaining the second offset from the two features.
  • the first feature amount is extracted by applying a filter process to the output signal (angular velocity signal) of the first detection unit 20A.
  • the reason is that if the integrated value (angle signal) of the output signal of the first detection unit 20A is filtered, the value of the offset O, which is the originally desired feature amount, may change.
  • FIG. 12 is a flowchart showing a processing procedure of image stabilization control.
  • the angular velocity corresponding to the blurring amount is detected by the first detection unit 20A and the second detection unit 20B (step S1).
  • the first detection unit 20A and the second detection unit 20B detect the angular velocities in the yaw direction and the pitch direction with the gyro sensors 21A and 21B.
  • the angular velocity signals detected by the gyro sensors 21A and 21B are converted into digital signals by the ADCs 22A and 22B and output.
  • the first offset is subtracted from the signals output from the first detection unit 20A and the second detection unit 20B (step S2).
  • the first offset is a standard offset and is an offset that does not take into account changes over time.
  • the signal from which the first offset has been subtracted is then subtracted from the second offset (step S3).
  • the second offset is the latest offset. That is, it is an offset that takes into account changes over time. By removing the second offset, an accurate angular velocity signal that reflects the current situation can be obtained.
  • step S4 The signal from which the first offset and the second offset have been subtracted is then subjected to high-pass filtering (step S4).
  • the high-pass filtered signal is then multiplied by the sensitivity and the sensitivity is corrected (step S5).
  • the signal after this sensitivity correction is integrated, and the amount of blurring in the yaw direction and the pitch direction is calculated (step S6).
  • the amount of correction in the x-axis direction and the y-axis direction of the correction lens 13 is calculated based on the calculated amount of blur in each direction (step S7).
  • the first drive unit 17x and the second drive unit 17y are driven to correct the blur (step S8).
  • FIG. 13 is a flowchart showing a processing procedure of the second offset calculation.
  • the first feature amount O1 and the second feature amount O2 are extracted from the output signals of the first detection unit 20A and the second detection unit 20B (steps S11 and S12).
  • the output signal here is an output signal after removing the first offset.
  • the first feature amount O1 is extracted by subjecting the output signals of the first detection unit 20A and the second detection unit 20B to a predetermined filter process. That is, the output signals of the first detection unit 20A and the second detection unit 20B are subjected to low-pass filter processing or band-pass filter processing, and are extracted by calculating the amount of DC components.
  • the second feature amount O2 is extracted by integrating the output signals of the first detection unit 20A and the second detection unit 20B and obtaining the slope of the cumulative integrated value.
  • ) of the difference between the extracted first feature amount O1 and the second feature amount O2 is calculated and compared with the threshold value (threshold). That is, it is determined whether or not the absolute value (
  • the duration thereof is counted (step S14). Then, it is determined whether or not the counted duration exceeds the specified time (step S15).
  • step S16 1/2 of the sum of the first feature amount O1 and the second feature amount O2 at the time when it is determined that the specified time has been exceeded is calculated and used as the value of the second offset.
  • the calculated value of the second offset is stored in the offset storage units 90A and 90B (step S17). More specifically, the information of the second offset stored in the offset storage units 90A and 90B is rewritten. By this process, the information of the second offset stored in the offset storage units 90A and 90B is updated.
  • step S18 the process related to the calculation of the second offset is initialized (step S18). That is, the filter processing is reset with respect to the calculation of the first feature amount, and the start position of the calculation is initialized with respect to the calculation of the second feature amount.
  • the above series of processes are repeatedly executed at regular intervals while the digital camera is operating. If the second offset is not calculated during one calculation cycle (when the difference between the first feature amount and the second feature amount does not satisfy the condition), the processing related to the calculation is initialized and the next Calculation is performed in a cycle. In this case, the detected value is maintained for the second offset.
  • two feature amounts (first feature amount and second feature amount) related to the offset are extracted, and the two feature amounts are compared to obtain the second offset, so that the second offset is obtained with high accuracy.
  • the second offset can be obtained.
  • FIG. 14 is a diagram showing an example of an output signal of a gyro sensor in a stationary state.
  • the figure shows the output signal of the gyro sensor when the offset is 0.02 [dps].
  • the unit [dps] means "degree per second" (degrees per second).
  • FIG. 15 is a diagram showing the extraction result of the first feature amount. That is, the result of extracting the DC component amount from the output signal of the gyro sensor shown in FIG. 14 is shown.
  • the cutoff frequency (cutoff frequency) was set to 0.1 [Hz]
  • the output signal was subjected to low-pass filter processing
  • the first feature amount (DC component amount) was extracted.
  • FIG. 16 is a diagram showing the calculation result of the integrated value. That is, the result of integrating the output signal of the gyro sensor shown in FIG. 14 is shown.
  • the angle is calculated by integrating the output signal of the gyro sensor.
  • the unit of angle [deg] means "degre" (degrees).
  • the second feature amount is calculated by calculating the slope of the graph shown in the figure.
  • FIG. 17 is a diagram showing changes over time between the first feature amount and the second feature amount.
  • reference numeral O1 indicates a change with time of the first feature amount.
  • the reference numeral O2 indicates a change with time of the second feature amount.
  • the offset can be accurately specified by comparing the first feature amount O1 and the second feature amount O2. That is, it can be confirmed that the offset can be accurately specified by detecting the state in which the two match.
  • the fact that the two match can be determined by detecting that the absolute value of the difference between the two continues to be equal to or less than the threshold value for a specified time or longer. For example, in FIG. 17, by detecting the state of the region S surrounded by the broken line, it can be detected that the two coincide with each other.
  • Example 2 it is verified whether or not an accurate offset can be detected even when a momentary vibration occurs.
  • FIG. 18 is a diagram showing an example of an output signal of the gyro sensor when momentary vibration occurs in a stationary state.
  • the figure shows the output signal of the gyro sensor when the offset is 0.02 [dps].
  • FIG. 19 is a diagram showing the extraction result of the first feature amount. That is, the result of extracting the DC component amount from the output signal of the gyro sensor shown in FIG. 18 is shown. Similar to Example 1, the cutoff frequency was set to 0.1 [Hz], the output signal was subjected to low-pass filtering, and the first feature amount was extracted. As shown in the figure, it can be seen that it is difficult to accurately characterize the offset only with the first feature quantity.
  • FIG. 20 is a diagram showing the calculation result of the integrated value. That is, the result of integrating the output signal of the gyro sensor shown in FIG. 14 is shown.
  • the second feature amount is calculated by calculating the slope of the graph shown in the figure.
  • FIG. 21 is a diagram showing changes over time between the first feature amount and the second feature amount.
  • reference numeral O1 indicates a change with time of the first feature amount.
  • reference numeral O2 indicates a change with time of the second feature amount.
  • the offset can be accurately specified by comparing the first feature amount O1 and the second feature amount O2 even when a momentary vibration occurs. That is, it can be confirmed that the offset can be accurately specified by detecting the state in which the two match. In this example, for example, by detecting the state of the region S surrounded by the broken line, it is possible to detect that the two match.
  • FIG. 22 is a diagram showing an example of the output signal of the gyro sensor in the stationary state.
  • the figure shows the output signal of the gyro sensor when the offset is 0.02 [dps].
  • the difference from the output signal in the first embodiment is the output period of the signal.
  • Example 1 shows an output signal for a period of 10 [s]
  • this example shows an output signal for a period of 60 [s].
  • FIG. 23 is a diagram showing the extraction result of the first feature amount. That is, the result of extracting the DC component amount from the output signal of the gyro sensor shown in FIG. 22 is shown.
  • the cutoff frequency was set to 0.01 [Hz]
  • the output signal was subjected to low-pass filtering, and the first feature amount was extracted. That is, the first feature amount is extracted by lowering the cutoff frequency with respect to the first embodiment. As shown in the figure, by lowering the cutoff frequency, the first feature quantity converges smoothly. On the other hand, it can be seen that it takes time to converge.
  • FIG. 24 is a diagram showing the calculation result of the integrated value. That is, the result of integrating the output signal of the gyro sensor shown in FIG. 22 is shown.
  • the second feature amount O2 is calculated by calculating the slope of the graph shown in the figure.
  • FIG. 25 is a diagram showing changes over time between the first feature amount and the second feature amount.
  • reference numeral O1 indicates a change with time of the first feature amount.
  • reference numeral O2 indicates a change with time of the second feature amount.
  • Example 1 From the comparison between Example 1 and Example 3, it can be seen that it is effective to raise the cutoff frequency in order to detect the matching state of the first feature amount and the second feature amount at an early stage.
  • FIG. 26 is a diagram showing the estimation accuracy of the offset calculated by the method of the present invention.
  • the figure shows the estimation accuracy in a stationary state with an offset of 0.01 [dps] to 0.01 [dps].
  • the offset is calculated under the following conditions.
  • Cutoff frequency of the low-pass filter when extracting the first feature 0.1 [Hz] Absolute threshold of the difference between the first feature and the second feature: 0.001 [dps] Duration of the state below the threshold (specified time): 10 [ms] As shown in the figure, it can be confirmed that the offset can be calculated with an error within 0.001 [dps].
  • the stationary state of the digital camera main body is detected, and when the stationary state is detected, the calculation process of the second offset is executed.
  • FIG. 27 is a block diagram of the main functions related to the calculation of the second offset.
  • the figure differs from the digital camera of the first embodiment in that it further has stationary determination units 120A and 120B.
  • the functions of the stationary determination units 120A and 120B are realized by the system control unit 50.
  • the rest determination units 120A and 120B determine the rest state based on the output signals of the first detection unit 20A and the second detection unit 20B. That is, it is determined whether or not the digital camera body is stationary.
  • the offset correction units 60A and 60B perform low-pass filter processing or band-pass filter processing on the output signals of the first detection unit 20A and the second detection unit 20B after the first offset is subtracted. By doing so, the stationary state is determined. That is, it is detected that the signal after the filtering process continues to be equal to or lower than the threshold value for a certain period of time, and is determined to be in a stationary state.
  • the second offset calculation units 100A and 100B execute the calculation process of the second offset when the rest determination units 120A and 120B determine that the state is stationary.
  • the second offset can be calculated stably by executing the process related to the calculation of the second offset.
  • the storage process can be executed when it is determined to be in a stationary state. That is, the second offset calculation process may be constantly executed, and when it is determined that the state is stationary, the calculated second offset may be stored (updated) in the offset storage units 90A and 90B. In this case, when it is determined that the state is stationary, it is preferable to initialize (reset) the process related to the calculation of the second offset and start the calculation.
  • the second offset calculation process is always executed, and if it is determined to be in a stationary state, the cutoff frequency of the low-pass filter when extracting the first feature amount is switched, and the second offset calculation process is executed. good.
  • the first feature amount extraction unit normally (non-stationary state), the first feature amount extraction unit performs low-pass filter processing at the first cutoff frequency to extract the first feature amount.
  • a low-pass filter process is performed at a second cutoff frequency higher than the first cutoff frequency, and the first feature amount is extracted.
  • a stable signal is output, so that the first feature amount can be stably extracted even if the cutoff frequency is set high. As a result, the second offset can be calculated earlier.
  • FIG. 28 is a diagram showing an example of an output signal of the gyro sensor when the offset changes in the middle in a stationary state.
  • the figure shows the output signal of the gyro sensor when the offset changes from 0.02 [dps] to 0.04 [dps] in the middle in the stationary state.
  • FIG. 29 is a diagram showing the result of extracting the first feature amount from the output signal of the gyro sensor shown in FIG. 28.
  • the cutoff frequency was set to 0.1 [Hz]
  • the output signal was subjected to low-pass filtering, and the first feature amount was extracted.
  • the offset changes in the middle, the signal gradually converges toward the changed offset.
  • FIG. 31 is a diagram showing changes over time between the first feature amount and the second feature amount.
  • reference numeral O1 indicates a change with time of the first feature amount.
  • the reference numeral O2 indicates a change with time of the second feature amount. As shown in the figure, if the offset changes in the middle, the second feature amount O2 cannot be calculated accurately.
  • the second offset calculation units 100A and 100B have a calculation initialization function. It is the same as the digital camera of the first or second embodiment except that the second offset calculation units 100A and 100B have an initialization function.
  • the functions of the two second offset calculation units 100A and 100B are the same. Therefore, here, only the function of the second offset calculation unit 100A will be described.
  • FIG. 32 is a block diagram of the function of the second offset calculation unit of the present embodiment.
  • the second offset calculation unit 100A of the present embodiment further has the function of the initialization determination unit 105A.
  • the initialization determination unit 105A determines whether or not the processing related to the calculation of the second offset needs to be initialized based on the second feature amount extracted by the second feature amount extraction unit 103A.
  • the amount of change in the second feature amount (slope of the cumulative integrated value) extracted by the second feature amount extraction unit 103A is calculated, and when the calculated amount of change exceeds the threshold value, it is determined that initialization is necessary.
  • the amount of change in the second feature amount is calculated by differentiating the second feature amount.
  • the initialization determination unit 105A determines that initialization is necessary when the value obtained by differentiating the second feature amount continuously converts within a certain range and then exceeds a threshold value (third threshold value).
  • FIG. 33 is a flowchart showing a procedure of determination processing performed by the initialization determination unit.
  • the second feature amount extracted by the second feature amount extraction unit 103A is differentiated (step S21). As a result, the amount of change in the second feature amount is calculated.
  • step S22 it is determined whether or not the calculated differential value of the second feature amount is equal to or less than the predetermined first specified value (step S22).
  • the duration thereof is counted (step S23). That is, the time during which the state of the first specified value or less continues is counted.
  • step S24 it is determined whether or not the counted duration exceeds a predetermined predetermined time (step S24). That is, it is continuously determined whether or not the change has occurred within a certain range.
  • the differential value of the second feature amount exceeds the predetermined second specified value (step S25).
  • the second specified value is an example of the third threshold value.
  • the case where the differential value of the second feature amount exceeds the second specified value is the case where the amount of change in the second feature amount is equal to or greater than the threshold value (third threshold value). In this case, the offset is changing.
  • step S26 when the differential value of the second feature amount exceeds the second specified value, it is determined that the processing related to the calculation of the second offset needs to be initialized.
  • the initialization determination unit 105A determines that the processing related to the calculation of the second offset needs to be initialized, the calculation processing of the first feature amount extraction unit 101A and the second feature amount extraction unit 103A is initialized. .. That is, the filter processing is reset with respect to the calculation of the first feature amount. Further, regarding the calculation of the second feature amount, the start position of the calculation is initialized.
  • the change of the second offset is detected from the change amount of the second feature amount, but the method of detecting the change of the second offset is not limited to this.
  • the change in offset can be estimated from the mode of change in the two features.
  • the method of convergence of the first feature amount changes depending on the cutoff frequency at the time of extraction. That is, when the cutoff frequency is lowered, it converges smoothly. On the other hand, it takes time to converge (see FIGS. 15 and 23).
  • the cutoff frequency is switched stepwise when extracting the first feature amount. More specifically, the cutoff frequency is gradually lowered to extract the first feature amount.
  • FIG. 34 is a diagram showing the extraction result of the first feature amount when the cutoff frequency is switched stepwise.
  • the figure shows an example in which the cutoff frequency is gradually switched with respect to the output signal of the gyro sensor shown in FIG. 14 and the first feature amount is extracted.
  • the first feature amount is extracted by gradually lowering the cutoff frequency at regular time intervals. Specifically, the cutoff frequency is gradually lowered in the order of 0.5 [Hz], 0.1 [Hz], 0.05 [Hz], and 0.01 [Hz] to extract the first feature amount. doing.
  • FIG. 35 is a diagram showing changes over time between the first feature amount and the second feature amount when the first feature amount extracted by gradually switching the cutoff frequency.
  • reference numeral O1 indicates a change with time of the first feature amount.
  • the reference numeral O2 indicates a change with time of the second feature amount.
  • the first feature amount can be converged at an early stage although it is rough. Therefore, when the first feature amount is extracted by gradually lowering the cutoff frequency as in this example, it can be used when the offset is quickly and roughly extracted.
  • FIG. 36 is a block diagram of the function of the second offset calculation unit of the present embodiment.
  • the second offset calculation unit 100A of the present embodiment further has a function of the LPF switching unit 106A (LPF: Low-pass filter).
  • LPF Low-pass filter
  • the LPF switching unit 106A switches the low-pass filter used in the first feature amount extraction unit 101A. More specifically, the cutoff frequency in the low-pass filter processing performed by the first feature amount extraction unit 101A is switched. The switching is performed stepwise at predetermined time intervals. The cutoff frequency to be switched is predetermined and is set so as to gradually decrease.
  • the cutoff frequency is gradually switched in the first feature amount extraction unit 101A to extract the first feature amount.
  • the number of switchings is not particularly limited. It only needs to be switched at least once.
  • the offset of the gyro sensor also fluctuates depending on the environmental temperature.
  • the offset is managed for each temperature. Therefore, in the digital camera of the present embodiment, when calculating the offset, the temperature information is acquired and the calculated offset is stored for each temperature. Further, in the case of offset correction, the correction process is executed using the offset according to the temperature.
  • FIG. 37 is a block diagram of a function related to offset correction when offset correction is performed according to temperature.
  • the digital camera of the present embodiment is further provided with the function of the offset selection unit 130A with respect to the offset correction.
  • the function of the offset selection unit 130A is realized by the system control unit 50.
  • the offset selection unit 130A reads the information of the first offset and the second offset according to the temperature from the offset storage unit 90A and adds them to the first subtraction unit 60A1 and the second subtraction unit 60A2.
  • the temperature information is acquired from the first detection unit 20A. More specifically, it is acquired from the gyro sensor 21A provided in the first detection unit 20A.
  • the gyro sensor 21A outputs temperature information together with the angular velocity. Since this type of gyro sensor (gyro sensor having a temperature detection function) is known, a detailed description thereof will be omitted.
  • the offset selection unit 130A acquires temperature information from the first detection unit 20A, and reads the information of the first offset and the second offset corresponding to the acquired temperature from the offset storage unit 90A.
  • the offset storage unit 90A stores the information of the first offset and the second offset in a table format.
  • the table that stores the information of the first offset is referred to as the first offset storage table
  • the table that stores the information of the second offset is referred to as the second offset storage table.
  • the first offset storage table stores the information of the first offset for each temperature.
  • the second offset storage table stores the information of the second offset for each temperature.
  • "for each temperature” here means every certain temperature range. For example, when storing in units of 1 ° C., the temperature after the decimal point is truncated and stored.
  • the first offset storage table is a fixed table.
  • the second offset storage table is a table that is updated at any time.
  • the second offset storage control unit 110A stores the second offset calculated by the second offset calculation unit 100A in the offset storage unit 90A
  • the second offset storage control unit 110A acquires temperature information from the first detection unit 20A and stores the second offset. Update the information in the table. That is, the information of the second offset stored in the acquired temperature position is rewritten with the calculated second offset value. As a result, the value of the second offset is updated for each temperature.
  • FIG. 38 is a flowchart showing a procedure for updating the second offset according to the temperature.
  • step S31 the calculation process of the second offset is performed (step S31).
  • step S32 it is determined whether or not the second offset has been calculated.
  • step S33 the temperature information is acquired (step S33).
  • step S34 the information in the second offset storage table stored in the offset storage unit is updated. In this case, the information of the second offset stored in the acquired temperature position is rewritten.
  • step S35 it is determined whether or not the calculation process of the second offset is completed.
  • the second offset calculation process is terminated, for example, when the power of the digital camera is turned off.
  • the update process is also completed.
  • step S36 the process related to the calculation is initialized (step S36), and the calculation process is performed in the next calculation cycle.
  • FIG. 39 is a flowchart showing a procedure of offset correction processing according to temperature.
  • the temperature information is acquired (step S41).
  • the first offset is selected based on the acquired temperature (step S42).
  • the first offset according to the temperature is set.
  • a second offset is selected based on the acquired temperature (step S43).
  • the second offset according to the temperature is set.
  • the output signals of the first detection unit 20A and the second detection unit 20B are offset-corrected by the set first offset and second offset. That is, first, the first offset is subtracted from the output signal, and the first offset correction is performed (step S44).
  • the second offset is subtracted from the output signal after the first offset is subtracted, and the second offset correction is performed (step S45). As a result, the offset is removed from the output signals of the first detection unit 20A and the second detection unit 20B.
  • offset correction is performed according to the temperature. Also, the second offset is updated according to the temperature. As a result, the offset can be corrected more accurately.
  • a gyro sensor having a temperature detection function is used to acquire temperature information from the gyro sensor, but the means for acquiring the temperature information is not limited to this. No.
  • the temperature may be detected by a temperature sensor separately provided in the digital camera body.
  • the configuration is such that the digital camera is always calculated while the digital camera is operating (while the power is on), or is calculated when it is determined to be in a stationary state.
  • the calculation process of the second offset is executed at a predetermined timing. For example, it is executed when the power of the digital camera is turned off.
  • FIG. 40 is a flowchart showing a processing procedure when the second offset calculation processing is executed at the timing when the power is turned off.
  • step S51 it is determined whether or not the power of the digital camera is turned off. More specifically, it is determined whether or not an operation of turning off the power has been performed.
  • the calculation process of the second offset is performed (step S52).
  • the process here also includes a process of storing the calculated second offset in the offset storage unit.
  • step S53 the power supply of the digital camera (so-called main power supply) is turned off.
  • the timing of executing the second offset calculation process may be, for example, a configuration to be executed when the state of no operation continues for a predetermined period.
  • the configuration may be such that the digital camera is executed while the power is off.
  • it may be configured to be executed periodically at a predetermined time.
  • the second offset can be calculated more accurately.
  • the second feature which is the slope of the cumulative integrated value of the output signal of the gyro sensor, has a dynamic range using a bit shift in order to perform long-term integration. It may be configured to expand. In this case, it is preferable to determine the range of the dynamic range so that the calculation for which the slope can be obtained can be performed with a resolution equivalent to that of the gyro sensor itself. More preferably, a range capable of measuring a deviation of at least 1 [mdps] is used.
  • the integral of the output of the gyro sensor is calculated by the following formula.
  • OUT [k] (INTERG [k] -OUT_INIT) * (1 / (COUNT * (1 / N))) OUT: Slope (second feature amount)
  • OUT_INIT Initial value of integration at the start of calculation
  • COUNT Value of adding 1 for each control cycle from the start of calculation (initial value is 0)
  • GYRO [k] * (1 / N) and * (1 / (COUNT * (1 / N))) and * (1 / NN) are calculated by bit shifting according to the values of n and N. Reproduce so that the slope can be extracted with [mdps].
  • the image pickup device of the present invention includes not only an image pickup device composed of a single unit but also an image pickup device integrally incorporated in a device having a function other than imaging.
  • an imaging device incorporated in a smartphone, a personal computer, or the like is also included.
  • the present invention can be applied to the interchangeable lens.
  • the function of the signal processing device is realized by the system control unit provided in the interchangeable lens.
  • the interchangeable lens in this case is an example of a lens device.
  • the present invention can be widely applied to devices having a camera shake correction function other than the image pickup device.
  • it can be applied to optical devices such as binoculars having an image stabilization function.
  • the camera shake correction is not limited to the so-called lens shift method, and the present invention can be applied not only to the case where the image sensor shift method is adopted.
  • the image sensor shift method is a camera shake correction function of a method of correcting camera shake by moving an image sensor (imaging element) according to camera shake. Further, the present invention can be applied even when so-called electronic image stabilization is adopted.
  • the present invention can also be applied to applications other than image stabilization.
  • the camera shake correction of an imaging device or the like has high required blur detection accuracy, it works particularly effectively when applied to the camera shake correction blur detection.
  • the offset is removed in two steps, but it is also possible to remove only the second offset. That is, the step of removing the first offset can be omitted.
  • the processor that realizes each function of the signal processing device is a general-purpose processor such as a CPU (Central Processing Unit) or an FPGA (Field Programmable Gate Array) whose circuit configuration can be changed after manufacturing.
  • a dedicated electric circuit which is a processor having a circuit configuration specially designed for executing a specific process such as a programmable logic device (PLD) or an ASIC (Application Special Integrated Circuit), is included.
  • Each function of the signal processing device may be realized by one of these various processors, or by two or more processors of the same type or different types (for example, a plurality of FPGAs or a combination of a CPU and an FPGA). It may be realized.
  • each function of the signal processing device may be realized by one processor.
  • one processor is configured by a combination of one or more CPUs and software, and this processor realizes each function of the signal processing device. There is a form to do.
  • SoC System On Chip
  • a processor that realizes the functions of the entire signal processing device with one IC (Integrated Circuit) chip is used.
  • each function of the signal processing device is realized by using one or more of the above-mentioned various processors as a hardware structure.
  • the hardware structure of these various processors is, more specifically, an electric circuit that combines circuit elements such as semiconductor elements.
  • Aperture drive unit 20 Aperture speed detection Unit 20A 1st detection unit 20B 2nd detection unit 21A Gyro sensor 21B Gyro sensor 22A, 22B ADC 30 Imaging element 40 Main storage unit 41 Digital signal processing unit 42 Auxiliary storage unit 43 Display unit 44 Operation unit 50 System control unit 60A Offset correction unit 60A1 First subtraction unit 60A2 Second subtraction unit 60B Offset correction unit 70A First correction amount calculation Unit 70B Second correction amount calculation unit 71A High-pass filter 72A Sensitivity correction unit 73A Integration unit 74A Correction amount calculation unit 80A First drive control unit 80B Second drive control unit 90A Offset storage unit 90B Offset storage unit 100A Second offset calculation unit 100B 2nd offset calculation unit 101A 1st feature amount extraction unit 102A Integration unit 103A 2nd feature amount extraction unit 104A 2

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

ブレ検出センサの出力信号からオフセットを精度よく除去できる信号処理装置、信号処理方法、信号処理プログラム、撮像装置及びレンズ装置を提供する。ブレ検出センサと、プロセッサと、を備え、プロセッサが、ブレ検出センサの出力信号からオフセットに関する第1特徴量を抽出する処理と、出力信号を積分する処理と、出力信号を積分した値からオフセットに関する第2特徴量を抽出する処理と、第1特徴量及び第2特徴量に基づいて、オフセットを算出する処理と、出力信号に対し、算出したオフセットを減算する処理と、を実行する。

Description

信号処理装置、信号処理方法、信号処理プログラム、撮像装置及びレンズ装置
 本発明は、信号処理装置、信号処理方法、信号処理プログラム、撮像装置及びレンズ装置に係り、特にブレ検出センサの出力信号を処理する信号処理装置、信号処理方法、信号処理プログラム、撮像装置及びレンズ装置に関する。
 ブレ検出センサの出力信号にオフセットが存在する場合、出力信号からオフセットを除去する処理が行われる(たとえば、特許文献1、2等)。
特開2008-283443号公報 特開2018-197772号公報
 本開示の技術に係る1つの実施形態は、ブレ検出センサの出力信号からオフセットを精度よく除去できる信号処理装置、信号処理方法、信号処理プログラム、撮像装置及びレンズ装置を提供する。
 (1)ブレ検出センサと、プロセッサと、を備え、プロセッサが、ブレ検出センサの出力信号からオフセットに関する第1特徴量を抽出する処理と、出力信号を積分する処理と、出力信号を積分した値からオフセットに関する第2特徴量を抽出する処理と、第1特徴量及び第2特徴量に基づいて、オフセットを算出する処理と、出力信号に対し、算出したオフセットを減算する処理と、を実行する、信号処理装置。
 (2)プロセッサは、出力信号の累積積分値の傾きから算出した量を、第2特徴量とする、(1)の信号処理装置。
 (3)プロセッサは、出力信号から算出した直流成分量を、第1特徴量とする、(1)又は(2)の信号処理装置。
 (4)算出したオフセットを記憶する記憶部を更に備え、プロセッサは、算出したオフセットを、第1特徴量と第2特徴量とに基づいて、記憶部に記憶し、記憶したオフセットを出力信号に対し、減算する処理を実行する、(1)から(3)のいずれか一の信号処理装置。
 (5)プロセッサは、第1特徴量と第2特徴量との差の絶対値を算出する処理と、第1特徴量と第2特徴量との差の絶対値が、第1閾値以下となった場合に、第1閾値以下の状態が継続している時間を計測する処理と、を更に実行し、第1閾値以下の状態が継続している時間が、第2閾値以上となった場合に、オフセットを記憶する処理を実行する、(1)から(4)のいずれか一の信号処理装置。
 (6)プロセッサは、第1特徴量と第2特徴量との和の1/2をオフセットとして算出する、(1)から(5)のいずれか一の信号処理装置。
 (7)プロセッサは、第2特徴量の変化量を算出する処理を更に実行し、算出した第2特徴量の変化量が第3閾値を超えた場合、オフセットの算出に係わる処理を初期化する、(1)から(6)のいずれか一の信号処理装置。
 (8)プロセッサは、出力信号に基づいて、静止状態を判定する処理を更に実行し、静止状態と判定した場合に、オフセットの算出に係わる処理を実行する、(1)から(7)のいずれか一の信号処理装置。
 (9)プロセッサは、オフセットを算出した際の温度の情報を取得する処理を更に実行し、算出したオフセットを、温度ごとに記憶する、(4)から(8)のいずれか一の信号処理装置。
 (10)装置本体に備えられるブレ検出センサと、ブレ検出センサの出力信号を処理する(1)から(9)のいずれか一の信号処理装置と、を備えた撮像装置。
 (11)装置本体に備えられるブレ検出センサと、ブレ検出センサの出力信号を処理する(1)から(9)のいずれか一の信号処理装置と、を備えたレンズ装置。
 (12)ブレ検出センサの出力信号を処理する信号処理方法であって、出力信号からオフセットに関する第1特徴量を抽出するステップと、出力信号を積分するステップと、出力信号を積分した値からオフセットに関する第2特徴量を抽出するステップと、第1特徴量及び第2特徴量に基づいて、オフセットを算出するステップと、出力信号に対し、算出したオフセットを減算するステップと、を含む信号処理方法。
 (13)ブレ検出センサの出力信号を処理する信号処理プログラムであって、出力信号からオフセットに関する第1特徴量を抽出する処理と、出力信号を積分する処理と、出力信号を積分した値からオフセットに関する第2特徴量を抽出する処理と、第1特徴量及び第2特徴量に基づいて、オフセットを算出する処理と、出力信号に対し、算出したオフセットを減算する処理と、をコンピュータに実行させる信号処理プログラム。
デジタルカメラの概略構成を示すブロック図 補正レンズの移動の概念図 補正レンズ駆動部の概略構成を示す図 第1検出部及び第2検出部の概略構成を示す図 手振れ補正の制御に関してシステム制御部が実現する機能のブロック図 オフセット補正部が有する機能のブロック図 第1補正量演算部が有する機能のブロック図 第2オフセット演算部が有する機能のブロック図 第2特徴量抽出部が行う第2特徴量の抽出処理の概念図 第2オフセット算出部が有する機能のブロック図 第2オフセット算出部が行う第2オフセットの算出処理の概念図 手振れ補正制御の処理手順を示すフローチャート 第2オフセットの演算の処理手順を示すフローチャート 静止状態のジャイロセンサの出力信号の一例を示す図 第1特徴量の抽出結果を示す図 積分値の算出結果を示す図 第1特徴量と第2特徴量の経時変化を示す図 静止状態で瞬間的な振動が発生した場合のジャイロセンサの出力信号の一例を示す図 第1特徴量の抽出結果を示す図 積分値の算出結果を示す図 第1特徴量と第2特徴量の経時変化を示す図 静止状態のジャイロセンサの出力信号の一例を示す図 第1特徴量の抽出結果を示す図 積分値の算出結果を示す図 第1特徴量と第2特徴量の経時変化を示す図 本発明の手法で算出されるオフセットの推定精度を示す図 第2オフセットの算出に係わる主な機能のブロック図 静止状態においてオフセットが途中で変化した場合のジャイロセンサの出力信号の一例を示す図 図28に示すジャイロセンサの出力信号から第1特徴量を抽出した結果を示す図 図28に示すジャイロセンサの出力信号を積分した結果を示す図 第1特徴量と第2特徴量の経時変化を示す図 第2オフセット演算部が有する機能のブロック図 初期化判定部が行う判定の処理の手順を示すフローチャート 遮断周波数を段階的に切り替えた場合の第1特徴量の抽出結果を示す図 遮断周波数を段階的に切り替えて抽出した第1特徴量した場合の第1特徴量と第2特徴量の経時変化を示す図 第2オフセット演算部が有する機能のブロック図 温度に応じてオフセット補正する場合のオフセット補正に係わる機能のブロック図 温度に応じた第2オフセットの更新処理の手順を示すフローチャート 温度に応じたオフセット補正の処理の手順を示すフローチャート 電源がオフされたタイミングで第2オフセットの算出処理を実行する場合の処理の手順を示すフローチャート
 以下、添付図面に従って本発明の好ましい実施の形態について詳説する。
 [第1の実施の形態]
 ここでは、手振れ補正機能(像振れ補正機能ともいう)を備えたデジタルカメラにおいて、装置本体のブレ(振動)をジャイロセンサで検出する場合を例に説明する。デジタルカメラは、撮像装置の一例である。また、ジャイロセンサは、ブレ検出センサの一例である。
 ジャイロセンサでブレを検出する場合、ブレ量(角度ブレ量)は、ジャイロセンサの出力信号(角速度信号)を積分して求める。しかし、ジャイロセンサの出力信号には、オフセットと呼ぶ誤差が存在する。オフセットとは、角速度が0[deg/s]の状態であっても、出力信号が0にならない基準値ずれ(ゼロ点ずれ)のことである。出力信号にオフセットを含んだ状態でブレ量を求めると、ブレ量に誤差が発生し、正しい補正ができなくなる。したがって、ジャイロセンサの出力信号からオフセットを除去する必要がある。しかし、オフセットは、ジャイロセンサごとに個体差があり、また、環境温度、経時変化等によっても変動するため、固定値で除去することはできない。したがって、ジャイロセンサでブレを検出する場合は、いかに精度よくオフセットを求めて除去できるかが重要になる。
 [デジタルカメラの構成]
 図1は、デジタルカメラの概略構成を示すブロック図である。
 本実施の形態のデジタルカメラ1は、いわゆるレンズシフト方式の手振れ補正機能を備えたデジタルカメラである。レンズシフト方式の手振れ補正機構は、撮像光学系に備えられた補正レンズを動かして、手振れを補正する。
 図1に示すように、デジタルカメラ1は、撮像光学系10、角速度検出部20、撮像素子30、主記憶部40、デジタル信号処理部41、補助記憶部42、表示部43、操作部44及びシステム制御部50等を備える。
 撮像光学系10は、ズームレンズ11、フォーカスレンズ12、補正レンズ13及び絞り14を含んで構成される。
 ズームレンズ11は、焦点距離調節用のレンズである。撮像光学系10は、ズームレンズ11を光軸に沿って前後移動させることにより、焦点距離が調節される。ズームレンズ11は、ズームレンズ駆動部15に駆動されて動作する。
 フォーカスレンズ12は、焦点調節用のレンズである。撮像光学系10は、フォーカスレンズ12を光軸に沿って前後移動させることにより、焦点調節される。フォーカスレンズ12は、フォーカスレンズ駆動部16に駆動されて動作する。
 補正レンズ13は、手振れ補正用のレンズである。補正レンズ13は、光軸と直交する面内を移動して、手振れを補正する。
 図2は、補正レンズの移動の概念図である。
 光軸をz軸、z軸と直交する軸をx軸、z軸及びx軸と直交する軸をy軸とする。x軸は水平方向(横方向)の軸である。y軸は鉛直方向(縦方向)の軸である。補正レンズ13は、x軸及びy軸によって規定される面(xy平面)に沿って移動する。この面(xy平面)は、撮像素子30の受光面と平行な面である。
 手振れ補正する場合は、ブレを打ち消す方向に補正レンズ13を移動させる。補正レンズ13は、補正レンズ駆動部17に駆動されて動作する。
 図3は、補正レンズ駆動部の概略構成を示す図である。
 補正レンズ駆動部17は、第1駆動部17x及び第2駆動部17yを有する。第1駆動部17xは、補正レンズ13をx軸に沿って移動させる。第2駆動部17yは、補正レンズ13をy軸に沿って移動させる。
 絞り14は、たとえば、アイリス絞りで構成される。撮像光学系10を通過する光量は、絞り14によって調節される。絞り14は、絞り駆動部18に駆動されて動作する。
 角速度検出部20は、図2に示すように、第1検出部20A及び第2検出部20Bを備える。第1検出部20Aは、デジタルカメラ本体(装置本体)のヨー方向Yawの角速度を検出する。第2検出部20Bは、デジタルカメラ本体のピッチ方向Pitの角速度を検出する。
 ここで、ヨー方向Yawとは、図2に示すように、y軸回りの回転方向である。ヨー方向Yawは、デジタルカメラ本体における水平方向(横方向)の回転方向である。
 また、ピッチ方向Pitとは、図2に示すように、x軸回りの回転方向である。ピッチ方向Pitは、デジタルカメラ本体における鉛直方向(縦方向)の回転方向である。
 図4は、第1検出部及び第2検出部の概略構成を示す図である。
 第1検出部20A及び第2検出部20Bは、共にジャイロセンサ21A、21B及びADC(Analog to Digital Converter)22A、22Bを含んで構成される。ジャイロセンサ21A、21Bから出力された信号(角速度信号)は、ADC22A、22Bでデジタル信号に変換されて、システム制御部50に取り込まれる。
 撮像素子30は、たとえば、CMOS(CMOS:Complementary Mental-Oxide Semiconductor)型のカラーイメージセンサで構成される。本実施の形態のデジタルカメラ1では、撮像素子30が、駆動部、ADC(Analog to Digital Converter)及び信号処理部等を含んで構成される。この場合、撮像素子30は、内蔵する駆動部に駆動されて動作する。また、各画素の信号は、内蔵するADCによってデジタル信号に変換される。更に、各画素の信号は、内蔵する信号処理部によって、相関二重サンプリング処理、ゲイン処理、補正処理等の処理が施される。信号処理は、各画素のアナログ信号に対して行う構成とすることもできるし、各画素のデジタル信号に対して行う構成とすることもできる。
 なお、撮像素子30は、CMOS型のイメージセンサの他、XYアドレス型、CCD(CCD:Charged Coupled Device)型等のイメージセンサで構成することもできる。
 主記憶部40は、データの一時記憶領域として使用される。撮像素子30から出力される信号(画像信号)は、1フレームごとに主記憶部40に格納される。主記憶部40は、たとえば、半導体メモリで構成される。
 デジタル信号処理部41は、撮像により得られた画像信号に対し、オフセット処理、ガンマ補正処理、デモザイク処理、RGB/YCrCb変換処理等の信号処理を施して、画像データを生成する。デジタル信号処理部41は、たとえば、マイクロプロセッサで構成される。
 補助記憶部42は、各種データの記憶部として機能する。補助記憶部42は、たとえば、EEPROM(Electrically Erasable Programmable Read-only Memory)等の不揮発性を有する半導体メモリで構成される。補助記憶部42に記録されるデータには、撮影により得られた画像データの他、制御に必要なデータ(たとえば、後述するオフセット情報等)が含まれる。
 表示部43は、撮像した画像の再生用モニタとして使用される他、撮像の際にライブビュー画像が表示されて、ライブビュー用のモニタとして使用される。また、各種設定を行う際に設定用のモニタとして使用される。表示部43は、たとえば、LCD(Liquid Crystal Display)、OLED(Organic Light Emitting Diode)などのディスプレイで構成される。
 操作部44は、デジタルカメラ1を操作するための各種操作部材を含んで構成される。操作部材には、電源ボタン、シャッタボタンの他、各種操作ボタン類が含まれる。また、表示部43が、タッチパネルで構成される場合、操作部44を構成する操作部材には、タッチパネルが含まれる。操作部44は、各操作部材の操作に応じた信号をシステム制御部50に出力する。
 システム制御部50は、デジタルカメラ1の全体を統括制御する。また、システム制御部50は、制御に必要な各種物理量を算出する。システム制御部50は、たとえば、プロセッサ及びメモリを備えたマイクロコンピュータで構成される。プロセッサは、たとえば、CPU(Central Processing Unit)等で構成される。メモリは、たとえば、RAM(Ramdom Access Memory)及びROM(Read Only Memory)等で構成される。メモリには、プロセッサが実行するプログラム(たとえば、信号処理プログラム等)及び各種データが格納される。システム制御部50が行う制御には、手振れ補正の制御が含まれる。
 [手振れ補正制御のシステム構成]
 図5は、手振れ補正の制御に関してシステム制御部が実現する機能のブロック図である。
 同図に示すように、システム制御部50は、手振れ補正の制御に関して、オフセット補正部60A、60B、第1補正量演算部70A、第2補正量演算部70B、第1駆動制御部80A、第2駆動制御部80B、第2オフセット演算部100A、100B及び第2オフセット記憶制御部110A、110B等として機能する。これらの機能は、システム制御部50を構成するプロセッサが、所定の制御プログラムを実行することにより実現される。
 オフセット補正部60Aは、オフセット記憶部90Aに記憶された情報に基づいて、第1検出部20Aから出力される信号(ヨー方向の角速度信号)に対し、オフセットを除去する処理(オフセット補正処理)を行う。
 図6は、オフセット補正部が有する機能のブロック図である。
 同図に示すように、オフセット補正部60Aは、第1減算部60A1及び第2減算部60A2の機能を有する。
 第1減算部60A1は、第1検出部20Aの出力信号から第1オフセットを減算する。第1オフセットは、標準のオフセットであり、固定値である。第1オフセットは、たとえば、工場出荷時に設定される。この場合、たとえば、工場出荷時にオフセットを検出し、検出されたオフセットが第1オフセットとして設定される。
 第2減算部60A2は、第1オフセットが減算された後の信号から第2オフセットを減算する。第2オフセットは、最新のオフセットである。第2オフセットは、本発明のオフセットの一例である。第2オフセットは、第2オフセット演算部100Aで算出される。第2オフセット演算部100Aは、第1オフセットが減算された後の信号に基づいて、第2オフセットを算出する。第2オフセット演算部100Aの詳細については後述する。
 オフセット記憶部90Aは、補助記憶部42で構成される。オフセット記憶部90Aは、オフセット補正部60Aで使用する第1オフセット及び第2オフセットの情報を記憶する。第2オフセット演算部100Aで算出された第2オフセットの情報は、第2オフセット記憶制御部110Aによって、オフセット記憶部90Aに記憶される。オフセット記憶部90Aは、記憶部の一例である。
 オフセット補正部60Bは、オフセット記憶部90Bに記憶された情報に基づいて、第2検出部20Bから出力される信号(ピッチ方向の角速度信号)に対し、オフセットを除去する処理を行う。オフセット補正部60Bの構成は、オフセット補正部60Aと同じである。したがって、その詳細についての説明は省略する。
 オフセット記憶部90Bは、補助記憶部42で構成される。オフセット記憶部90Bは、オフセット補正部60Bで使用する第1オフセット及び第2オフセットの情報を記憶する。なお、第2オフセットは、第2オフセット演算部100Bで算出される。第2オフセット演算部100Bは、第1オフセットが減算された後の信号に基づいて、第2オフセットを算出する。算出された第2オフセットの情報は、第2オフセット記憶制御部110Bによって、オフセット記憶部90Bに記憶される。オフセット記憶部90Bは、記憶部の一例である。
 本実施の形態において、オフセット補正部60A、60B、第2オフセット演算部100A、100B、第2オフセット記憶制御部110A、110B及びオフセット記憶部90A、90Bを含む構成は、信号処理装置の一例である。
 第1補正量演算部70Aは、オフセット補正部60Aでオフセットが除去された後のヨー方向の角速度信号に基づいて、補正レンズ13のx軸方向の補正量を算出する。すなわち、ヨー方向のブレを補正するための補正レンズ13のx軸方向の移動量を算出する。
 図7は、第1補正量演算部が有する機能のブロック図である。
 同図に示すように、第1補正量演算部70Aは、ハイパスフィルタ(High-pass filter:HPF)71A、敏感度補正部72A、積分部73A及び補正量算出部74Aの機能を有する。
 ハイパスフィルタ71Aは、オフセットが除去された後のヨー方向の角速度信号から低周波成分を除去する処理を行う。
 敏感度補正部72Aは、ハイパスフィルタ71Aでハイパスフィルタ処理が施された後の角速度信号に対し、敏感度を乗じる処理を行う。敏感度は、フォーカスレンズの位置と焦点距離(ズームレンズの位置)を変数として、一意に定められる無単位の係数である。したがって、フォーカスレンズ位置と焦点距離が時々刻々と変化する場合は、敏感度も時々刻々と変化することとなる。
 積分部73Aは、敏感度補正部72Aで敏感度が補正された後の角速度信号を積分する処理を行う。これにより、ヨー方向のブレ量が算出される。
 補正量算出部74Aは、積分部73Aで算出されたヨー方向のブレ量に基づいて、補正レンズ13のx軸方向の補正量を算出する。すなわち、ヨー方向のブレを相殺するのに必要な補正レンズ13のx軸方向の移動量を算出する。
 第2補正量演算部70Bは、オフセット補正部60Bでオフセットが除去された後のピッチ方向の角速度信号に基づいて、補正レンズ13のy軸方向の補正量を算出する。すなわち、ピッチ方向のブレを相殺するのに必要な補正レンズ13のy軸方向の移動量を算出する。第2補正量演算部70Bの構成は、第1補正量演算部70Aの構成と同じである。したがって、その詳細については、説明を省略する。
 第1駆動制御部80Aは、第1駆動部17xの駆動を制御して、補正レンズ13のx軸方向の移動を制御する。第1駆動制御部80Aは、第1補正量演算部70Aで算出された補正レンズ13のx軸方向の補正量に基づいて、第1駆動部17xの駆動を制御する。
 第2駆動制御部80Bは、第2駆動部17yの駆動を制御して、補正レンズ13のy軸方向の移動を制御する。第2駆動制御部80Bは、第2補正量演算部70Bで算出された補正レンズ13のy軸方向の補正量に基づいて、第2駆動部17yの駆動を制御する。
 手振れ補正の制御は、次の手順で実行される。まず、第1検出部20A及び第2検出部20Bから出力される信号(角速度信号)に対し、オフセット補正部60A及びオフセット補正部60Bにおいて、オフセットを除去する処理が行われる。次いで、オフセットが除去された信号に基づいて、第1補正量演算部70A及び第2補正量演算部70Bで補正レンズ13のx軸方向及びy軸方向の補正量が算出される。次いで、算出された補正量に基づいて、第1駆動部17x及び第2駆動部17yが、第1駆動制御部80A及び第2駆動制御部80Bによって駆動される。これにより、ブレを相殺するように補正レンズ13が動かされ、手振れが補正される。
 [第2オフセット演算部]
 上記のように、第2オフセットは、第2オフセット演算部100A、100Bで算出される。以下、第2オフセット演算部100A、100Bの機能について説明する。なお、第2オフセット演算部100A及び第2オフセット演算部100Bの構成は同じである。したがって、ここでは、第2オフセット演算部100Aについてのみ説明し、第2オフセット演算部100Bについての説明は省略する。
 図8は、第2オフセット演算部が有する機能のブロック図である。
 同図に示すように、第2オフセット演算部100Aは、第1特徴量抽出部101A、積分部102A、第2特徴量抽出部103A及び第2オフセット算出部104Aの機能を有する。
 第1特徴量抽出部101Aは、第1オフセット除去後の第1検出部20Aの出力信号から第2オフセットに関する第1特徴量を抽出する処理を行う。具体的には、第1オフセット除去後の第1検出部20Aの出力信号から直流成分量(DC(Direct Current)成分量)を算出する処理を行い、算出した直流成分量を第1特徴量として出力する。第1特徴量抽出部101Aは、第1オフセット除去後の第1検出部20Aの出力信号に対し、ローパスフィルタ処理(Low-pass filter:LPF)又はバンドパスフィルタ処理(Band-pass filter:BPF)を施すことにより、第1特徴量である直流成分量を算出する。以下、この点について説明する。
 ジャイロセンサから生じるランダムノイズをf(t)、ジャイロセンサから生じる角速度信号をg(t)、ジャイロセンサから生じるオフセット(定数)をOとする。ジャイロセンサからの出力ω_OUTは、次式(1)で表現される。
 ω_OUT=f(t)+O+g(t)…(1)
 ジャイロセンサから生じるオフセットOが、求めたい第1特徴量である。オフセットOは、直流成分であることから、上式(1)にローパスフィルタ又はバンドパスフィルタをかけることで、f(t)及びg(t)の成分を除去できる。よって、第1オフセット除去後の第1検出部20Aの出力信号に対し、ローパスフィルタ処理又はバンドパスフィルタ処理を施すことにより、第1特徴量を抽出できる。
 積分部102Aは、第1オフセット除去後の第1検出部20Aの出力信号を積分する処理を行う。本処理により、角度信号が得られる。
 角度信号deg_outは、上式(1)を積分して、次式(2)により算出される。
 deg_out=∫(ω_OUT)dt
        =∫(g(t))dt+∫(f(t))dt+Ot+C…(2)
  C:積分定数
 第2特徴量抽出部103Aは、積分部102Aの出力からオフセットに関する第2特徴量を抽出する処理を行う。すなわち、第1検出部20Aの出力信号を積分した値(角度信号)から第2特徴量を抽出する。具体的には、積分部102Aの出力から累積積分値の傾きを算出し、第2特徴量とする。第2特徴量抽出部103Aは、たとえば、累積積分値の一次近似曲線を求めて、その傾きを算出し、第2特徴量を抽出する。すなわち、上記式(2)より、充分な時間が経った後、Ot>>∫(g(t))dt+∫(f(t))dtとなれば、deg_outの一次近似曲線の傾きからオフセットOを推定することが可能である。
 図9は、第2特徴量抽出部が行う第2特徴量の抽出処理の概念図である。
 ∫(g(t))dt=G[t]、∫(f(t))dt=F[t]とし、積分値をdeg_out[t]とすると、積分値deg_out[t]は、deg_out[t]≒G[t]+F[t]+Otとなる。
 初期値は、第2特徴量(累積積分値の傾き)の演算を開始する際の積分値である。初期値をdeg_out[0]とする。
 タイマーカウントでは、制御周期ごとにカウントを+1する。その後、制御周期(Ts)[s]の値をかける。
 Time_out=time_count*(Ts)
 第2特徴量(累積積分値の傾き)をO2とすると、O2は、次式により算出される。
 O2=(deg_out[t]-deg_out[0])/Time_out
 第2オフセット算出部104Aは、第1特徴量抽出部101A及び第2特徴量抽出部103Aで抽出された第1特徴量及び第2特徴量に基づいて、第2オフセットを算出する。具体的には、第1特徴量及び第2特徴量が一定の条件を満たすか否か判定し、満たされた場合に、両者の和の1/2を第2オフセットとして算出する。すなわち、両者の算術平均を第2オフセットとして算出する。第1特徴量及び第2特徴量が満たすべき条件とは、第1特徴量及び第2特徴量の差の絶対値が閾値以下となり、かつ、閾値以下の状態が規定時間以上継続することである。
 図10は、第2オフセット算出部が有する機能のブロック図である。
 同図に示すように、第2オフセット算出部104Aは、差分算出部104A1、判定部104A2、算出部104A3の機能を有する。
 差分算出部104A1は、第1特徴量及び第2特徴量の差の絶対値を算出する。
 判定部104A2は、差分算出部104A1で算出された第1特徴量及び第2特徴量の差の絶対値が、閾値以下となり、かつ、その状態が規定時間以上継続したか否かを判定する。この場合、まず、判定部104A2は、第1特徴量と第2特徴量の差の絶対値が閾値以下となったか否かを判定する。閾値以下となったと判定すると、判定部104A2は、閾値以下の状態が、規定時間以上継続したか否かを判定する。したがって、判定部104A2は、第1特徴量と第2特徴量の差の絶対値が閾値以下となると、その継続時間をカウント(計測)する。閾値は、第1閾値の一例である。規定時間は、第2閾値の一例である。閾値及び規定時間は、あらかじめ定められて、メモリに記憶される。
 算出部104A3は、判定部104A2で上記条件を満たすと判定された場合に、第1特徴量及び第2特徴量に基づいて、第2オフセットを算出する。具体的には、判定部104A2で上記条件を満たすと判定された時点の第1特徴量と第2特徴量の和の1/2を算出し、第2オフセットを算出する。
 図11は、第2オフセット算出部が行う第2オフセットの算出処理の概念図である。
 第1特徴量抽出部101Aで抽出される第1特徴量をO1、第2特徴量抽出部103Aで抽出される第2特徴量をO2とする。また、規定時間をthresh_time、閾値をthreshholdとする。
 まず、第1特徴量O1と第2特徴量O2の差の絶対値(|O2-O1|)を算出する。
 カウントでは、|O2-O1|とthreshholdとを比較し、|O2-O1|≦threshholdならば、カウントを+1する。|O2-O1|>threshholdならば、カウントを0にする。
 カウント>thresh_timeの場合、その時点での第1特徴量O1及び第2特徴量O2に基づいて、第2オフセットを算出する。すなわち、次の演算を実行して、第2オフセットを算出する。
 第2オフセット=(O1+O2)/2
 第2オフセットが算出された場合、第2オフセットの算出に係わる処理が初期化(リセット)される。すなわち、第1特徴量抽出部101Aにおいて、フィルタ処理がリセットされる。また、第2特徴量抽出部103Aにおいて、演算の開始位置が初期化される。具体的には、t=0に戻され、初期値deg_out[0]が更新される。
 また、第2オフセットが算出された場合、算出された第2オフセットの情報が、第2オフセット記憶制御部110Aによって、オフセット記憶部90Aに記憶される。すなわち、オフセット記憶部90Aに記憶されている第2オフセットの情報が更新される。これにより、オフセット記憶部90Aに記憶されている第2オフセットの情報が最新のものに維持される。なお、オフセット記憶部90Aに記憶される第2オフセットの初期値は0である。
 このように、本実施の形態では、第1検出部20Aの出力信号からオフセットに関する2つの特徴量(第1特徴量及び第2特徴量)を抽出し、抽出した2つの特徴量が一定の条件を満たす場合に、その2つの特徴量から第2オフセットを求める。すなわち、2つの特徴量がほぼ一致した場合に、その和の1/2を算出して、第2オフセットを求める。判定部104A2が行う判定は、第1特徴量と第2特徴量が一致したか否かを判定するものである。すなわち、第1特徴量と第2特徴量の差の絶対値が閾値以下(第1閾値以下)となり、かつ、その状態が規定時間以上(第2閾値以上)継続した場合に、第1特徴量と第2特徴量が一致したものとみなして、第2オフセットを算出する構成としている。
 このように、2つの特徴量を求めて、第2オフセットを求めることにより、正確に第2オフセットを求めることができる。すなわち、一方の特徴量のみでは、正確な第2オフセットを求めることは困難であるが、2つの特徴量を利用することにより、正確に第2オフセットを求めることができる。
 たとえば、第1特徴量のみから第2オフセットを求める場合を考える。この場合、フィルタ処理後の信号にバラツキがあるため、正確な第2オフセットの推定が困難である。
 同様に、第2特徴量のみから第2オフセットを求める場合を考える。角度信号には、上記式(2)に示すように、時間tの関数として、∫(g(t))dt及び∫(f(t))dtが含まれる。よって、角度信号のみから第2オフセット(累積積分値の傾き)を求めると、時間tの関数[∫(g(t))dt+∫(f(t))dt]の影響により、正確な値が求められない場合が生じ得る。
 しかし、両者の値がほぼ一致している場合は、正確なオフセットの値を示していると考えられる。したがって、2つの特徴量から第2オフセットを求めることにより、第2オフセットを正確に求めることができる。
 なお、第1特徴量は、第1検出部20Aの出力信号(角速度信号)に対し、フィルタ処理を施して抽出している。その理由は、第1検出部20Aの出力信号の積分値(角度信号)にフィルタ処理を施すと、本来求めたい特徴量であるオフセットOの値が変化してしまうおそれがあるためである。
 [手振れ補正の処理]
 図12は、手振れ補正制御の処理手順を示すフローチャートである。
 デジタルカメラ本体にブレが発生すると、そのブレ量に応じた角速度が、第1検出部20A及び第2検出部20Bで検出される(ステップS1)。第1検出部20A及び第2検出部20Bは、ジャイロセンサ21A、21Bでヨー方向及びピッチ方向の角速度を検出する。ジャイロセンサ21A、21Bで検出された角速度の信号は、ADC22A、22Bでデジタル信号に変換されて出力される。
 第1検出部20A及び第2検出部20Bから出力された信号は、まず、第1オフセットが減算される(ステップS2)。上記のように、第1オフセットは、標準のオフセットであり、経時変化等が考慮されていないオフセットである。
 第1オフセットが減算された信号は、次に、第2オフセットが減算される(ステップS3)。第2オフセットは、最新のオフセットである。すなわち、経時変化等が考慮されたオフセットである。第2オフセットを除去することにより、現状を反映した正確な角速度信号が得られる。
 第1オフセット及び第2オフセットが減算された信号は、次いで、ハイパスフィルタ処理が施される(ステップS4)。ハイパスフィルタ処理が施された信号は、次に、敏感度が乗じられ、敏感度補正が行われる(ステップS5)。この敏感度補正後の信号が積分され、ヨー方向及びピッチ方向のブレ量が算出される(ステップS6)。
 ヨー方向及びピッチ方向のブレ量が算出されると、算出された各方向のブレ量に基づいて、補正レンズ13のx軸方向及びy軸方向の補正量が算出される(ステップS7)。算出された補正量に基づいて、第1駆動部17x及び第2駆動部17yが駆動され、ブレが補正される(ステップS8)。
 [第2オフセットの演算処理]
 図13は、第2オフセットの演算の処理手順を示すフローチャートである。
 まず、第1検出部20A及び第2検出部20Bの出力信号から第1特徴量O1及び第2特徴量O2が抽出される(ステップS11及びS12)。なお、ここでの出力信号は、第1オフセット除去後の出力信号である。
 第1特徴量O1は、第1検出部20A及び第2検出部20Bの出力信号に対し、所定のフィルタ処理を施すことにより抽出される。すなわち、第1検出部20A及び第2検出部20Bの出力信号にローパスフィルタ処理又はバンドパスフィルタ処理を施して、直流成分量を算出することにより、抽出される。
 第2特徴量O2は、第1検出部20A及び第2検出部20Bの出力信号を積分し、その累積積分値の傾きを求めることで抽出される。
 次に、抽出された第1特徴量O1及び第2特徴量O2の差の絶対値(|O1-O2|)が算出され、閾値(threshhold)と比較される。すなわち、第1特徴量O1及び第2特徴量O2の差の絶対値(|O1-O2|)が閾値以下か否かが判定される(ステップS13)。
 第1特徴量O1及び第2特徴量O2の差の絶対値(|O1-O2|)が閾値以下と判定されると、その継続時間がカウントされる(ステップS14)。そして、カウントされた継続時間が、規定時間以上となったか否かが判定される(ステップS15)。
 閾値以下の状態が規定時間以上と判定された場合は、第1特徴量O1と第2特徴量O2とが一致したものとみなして、第2オフセットが算出される(ステップS16)。すなわち、規定時間以上になったと判定された時点での第1特徴量O1と第2特徴量O2との和の1/2が算出され、第2オフセットの値とされる。
 第2オフセットが算出されると、算出された第2オフセットの値が、オフセット記憶部90A、90Bに記憶される(ステップS17)。より具体的には、オフセット記憶部90A、90Bに記憶済みの第2オフセットの情報が書き換えられる。この処理により、オフセット記憶部90A、90Bに記憶されている第2オフセットの情報が更新される。
 算出された第2オフセットの値が、オフセット記憶部90A、90Bに記憶されると、第2オフセットの算出に係わる処理が初期化される(ステップS18)。すなわち、第1特徴量の算出に関して、フィルタ処理がリセットされ、かつ、第2特徴量の算出に関して、演算の開始位置が初期化される。
 上記一連の処理を、デジタルカメラの作動中、一定の周期で繰り返し実行する。1回の算出周期中に第2オフセットが算出されなかった場合(第1特徴量及び第2特徴量の差分が条件を満たさなかった場合)は、算出に係わる処理が初期化されて、次の周期での算出が行われる。この場合、第2オフセットは、検出済みの値が維持される。
 このように、本実施の形態では、オフセットに関する2つの特徴量(第1特徴量及び第2特徴量)を抽出し、その2つの特徴量を比較して、第2オフセットを求めるので、精度よく第2オフセットを求めることができる。
 [実施例]
 (1)実施例1
 図14は、静止状態のジャイロセンサの出力信号の一例を示す図である。
 同図は、オフセットが0.02[dps]の場合のジャイロセンサの出力信号を示している。なお、単位の[dps]は、「degree per second」(度毎秒)の意味である。
 図15は、第1特徴量の抽出結果を示す図である。すなわち、図14に示すジャイロセンサの出力信号から直流成分量を抽出した結果を示している。本例では、遮断周波数(カットオフ周波数)を0.1[Hz]として、出力信号にローパスフィルタ処理を施し、第1特徴量(直流成分量)を抽出した。同図に示すように、第1特徴量だけでは、オフセットを正確に特徴することが困難であることが分かる。
 図16は、積分値の算出結果を示す図である。すなわち、図14に示すジャイロセンサの出力信号を積分した結果を示している。ジャイロセンサの出力信号を積分することにより角度が算出される。角度の単位の[deg]は、「degree」(度)の意味である。同図に示すグラフの傾きを算出することにより、第2特徴量が算出される。
 図17は、第1特徴量と第2特徴量の経時変化を示す図である。同図において、符号O1は第1特徴量の経時変化を示している。また、符号O2は第2特徴量の経時変化を示している。
 同図に示すように、第1特徴量O1と第2特徴量O2とを比較することで、オフセットを正確に特定できることが確認できる。すなわち、両者が一致する状態を検出することで、オフセットを正確に特定できることが確認できる。両者が一致したことについては、両者の差の絶対値が規定時間以上継続して閾値以下となったことを検出することで判別できる。たとえば、図17においては、破線で囲った領域Sの状態を検出することで、両者が一致したこと検出できる。
 (2)実施例2
 ここでは、瞬間的な振動が発生した場合においても、正確なオフセットを検出できるか否かを検証する。
 図18は、静止状態で瞬間的な振動が発生した場合のジャイロセンサの出力信号の一例を示す図である。
 同図は、オフセットが0.02[dps]の場合のジャイロセンサの出力信号を示している。
 図19は、第1特徴量の抽出結果を示す図である。すなわち、図18に示すジャイロセンサの出力信号から直流成分量を抽出した結果を示している。実施例1と同様に、遮断周波数を0.1[Hz]として、出力信号にローパスフィルタ処理を施し、第1特徴量を抽出した。同図に示すように、第1特徴量だけでは、オフセットを正確に特徴することが困難であることが分かる。
 図20は、積分値の算出結果を示す図である。すなわち、図14に示すジャイロセンサの出力信号を積分した結果を示している。同図に示すグラフの傾きを算出することにより、第2特徴量が算出される。
 図21は、第1特徴量と第2特徴量の経時変化を示す図である。同図において、符号O1は第1特徴量の経時変化を示している。また、符号O2は第2特徴量の経時変化を示している。
 同図に示すように、瞬間的な振動が発生した場合であっても、第1特徴量O1と第2特徴量O2とを比較することで、オフセットを正確に特定できることが確認できる。すなわち、両者が一致する状態を検出することで、オフセットを正確に特定できることが確認できる。本例では、たとえば、破線で囲った領域Sの状態を検出することで、両者が一致したこと検出できる。
 (3)実施例3
 ここでは、第1特徴量を抽出する際の遮断周波数が及ぼす影響について検証する。
 図22は、静止状態のジャイロセンサの出力信号の一例を示す図である。
 同図は、オフセットが0.02[dps]の場合のジャイロセンサの出力信号を示している。なお、実施例1における出力信号との相違は、信号の出力期間である。実施例1が、10[s]の期間の出力信号を示しているのに対し、本例では、60[s]の期間の出力信号を示している。
 図23は、第1特徴量の抽出結果を示す図である。すなわち、図22に示すジャイロセンサの出力信号から直流成分量を抽出した結果を示している。本例では、遮断周波数を0.01[Hz]として、出力信号にローパスフィルタ処理を施し、第1特徴量を抽出した。すなわち、実施例1に対して、遮断周波数を下げて、第1特徴量を抽出している。同図に示すように、遮断周波数を下げることで、第1特徴量は滑らかに収束する。その一方で収束に時間がかかることが分かる。
 図24は、積分値の算出結果を示す図である。すなわち、図22に示すジャイロセンサの出力信号を積分した結果を示している。同図に示すグラフの傾きを算出することにより、第2特徴量O2が算出される。
 図25は、第1特徴量と第2特徴量の経時変化を示す図である。同図において、符号O1は第1特徴量の経時変化を示している。また、符号O2は第2特徴量の経時変化を示している。
 同図に示すように、遮断周波数を下げた場合、第1特徴量の収束に時間がかかる結果、第1特徴量O1と第2特徴量O2とが一致する状態を検出するまでに時間がかかることが分かる。
 実施例1と実施例3との対比から、第1特徴量と第2特徴量の一致状態を早期に検出するには、遮断周波数を上げることが有効であることが分かる。
 その一方で遮断周波数を上げると、正確に一致状態を検出することが難しくなる。この点については、閾値及び閾値以下の状態が満たすべき規定時間を最適化することで対応できる。規定時間を短くする場合は、閾値を狭く設定する。閾値を広く取る場合は、規定時間を長く設定する。
 (4)実施例4
 図26は、本発明の手法で算出されるオフセットの推定精度を示す図である。
 同図は、オフセットが0.01[dps]~0.01[dps]までの静止状態での推定精度を示している。オフセットは、次の条件で算出している。
 第1特徴量を抽出する際のローパスフィルタの遮断周波数:0.1[Hz]
 第1特徴量と第2特徴量との差の絶対値の閾値:0.001[dps]
 閾値以下の状態の継続時間(規定時間):10[ms]
 同図に示すように、0.001[dps]以内の誤差でオフセットを算出できることが確認できる。
 [第2の実施の形態]
 本実施の形態のデジタルカメラでは、デジタルカメラ本体の静止状態を検出し、静止状態が検出された場合に、第2オフセットの算出処理を実行する。
 図27は、第2オフセットの算出に係わる主な機能のブロック図である。
 同図に示すように、静止判定部120A、120Bを更に有する点で上記第1の実施の形態のデジタルカメラと相違する。静止判定部120A、120Bの機能は、システム制御部50によって実現される。
 静止判定部120A、120Bは、第1検出部20A及び第2検出部20Bの出力信号に基づいて、静止状態を判定する。すなわち、デジタルカメラ本体が静止しているか否かを判定する。本実施の形態では、オフセット補正部60A、60Bにおいて、第1オフセットが減算された後の第1検出部20A及び第2検出部20Bの出力信号に対し、ローパスフィルタ処理又はバンドパスフィルタ処理を施すことにより、静止状態を判定する。すなわち、フィルタ処理後の信号が、一定時間継続して閾値以下となったことを検出して、静止状態と判定する。
 第2オフセット演算部100A、100Bは、静止判定部120A、120Bで静止状態と判定されると、第2オフセットの算出処理を実行する。
 このように、静止状態と判定した場合に、第2オフセットの算出に係わる処理を実行することにより、安定して第2オフセットを算出できる。
 なお、静止状態と判定された場合に、記憶処理を実行する構成とすることもできる。すなわち、常時、第2オフセットの算出処理を実行し、静止状態と判定された場合に、算出された第2オフセットをオフセット記憶部90A、90Bに記憶(更新)する構成とすることもできる。この場合、静止状態と判定された場合に、第2オフセットの算出に係わる処理を初期化(リセット)し、演算を開始することが好ましい。
 [変形例]
 常に第2オフセットの算出処理を実行し、静止状態と判定された場合は、第1特徴量を抽出する際のローパスフィルタの遮断周波数を切り換えて、第2オフセットの算出処理を実行する構成としてもよい。たとえば、通常(非静止状態)は、第1特徴量抽出部において、第1の遮断周波数でローパスフィルタ処理を行い、第1特徴量を抽出する。一方、静止状態と判定された場合は、第1の遮断周波数よりも高い第2の遮断周波数でローパスフィルタ処理を行い、第1特徴量を抽出する。静止状態と判定された場合は、安定した信号が出力されるので、高い遮断周波数に設定しても、安定して第1特徴量を抽出できる。これにより、より早期に第2オフセットを算出できる。
 [第3の実施の形態]
 オフセットの算出中にオフセットが変化することもあり得る。たとえば、落下などによりデジタルカメラ本体に衝撃が加わった様な場合には、オフセットが変化する事態が生じ得る。ここでは、オフセットの算出中に何らかの原因でオフセットが変化した場合の対応について説明する。
 図28は、静止状態においてオフセットが途中で変化した場合のジャイロセンサの出力信号の一例を示す図である。
 同図は、静止状態において、オフセットが途中で0.02[dps]から0.04[dps]に変化した場合のジャイロセンサの出力信号を示している。
 図29は、図28に示すジャイロセンサの出力信号から第1特徴量を抽出した結果を示す図である。本例では、遮断周波数を0.1[Hz]として、出力信号にローパスフィルタ処理を施し、第1特徴量を抽出した。同図に示すように、オフセットが途中で変化すると、変化後のオフセットに向かって信号が次第に収束してゆくことが分かる。
 図30は、図28に示すジャイロセンサの出力信号を積分した結果を示す図である。同図に示すように、オフセットが途中で変化すると、傾きが途中で変化することが分かる。上記のように、第2特徴量O2は、O2=(deg_out[t]-deg_out[0])/Time_outで算出される。よって、傾きが途中で変化すると、正確に第2特徴量を算出できなくなる。
 図31は、第1特徴量と第2特徴量の経時変化を示す図である。同図において、符号O1は第1特徴量の経時変化を示している。また、符号O2は第2特徴量の経時変化を示している。同図に示すように、オフセットが途中で変化すると、第2特徴量O2が正確に算出できなくなる。
 したがって、オフセットの算出中にオフセットが変化した場合には、その時点でオフセットの算出に係わる処理を初期化し、オフセットの算出の処理をやり直すことが好ましい。
 本実施の形態のデジタルカメラは、第2オフセット演算部100A、100Bが演算の初期化機能を有する。なお、第2オフセット演算部100A、100Bが初期化機能を有する点以外は、上記第1又は第2の実施の形態のデジタルカメラと同じである。2つの第2オフセット演算部100A、100Bが有する機能は、同じである。したがって、ここでは、第2オフセット演算部100Aが有する機能についてのみ説明する。
 図32は、本実施の形態の第2オフセット演算部が有する機能のブロック図である。
 同図に示すように、本実施の形態の第2オフセット演算部100Aは、初期化判定部105Aの機能を更に有する。
 初期化判定部105Aは、第2特徴量抽出部103Aで抽出される第2特徴量に基づいて、第2オフセットの算出に係わる処理の初期化の要否を判定する。第2特徴量抽出部103Aで抽出される第2特徴量(累積積分値の傾き)の変化量を算出し、算出した変化量が閾値を超えた場合に、初期化が必要と判定する。第2特徴量の変化量は、第2特徴量を微分することにより算出する。初期化判定部105Aは、第2特徴量を微分した値が、継続して一定以内で変換した後、閾値(第3閾値)を超えた場合に、初期化が必要と判定する。
 図33は、初期化判定部が行う判定の処理の手順を示すフローチャートである。
 まず、第2特徴量抽出部103Aで抽出される第2特徴量を微分する(ステップS21)。これにより、第2特徴量の変化量が算出される。
 次に、算出された第2特徴量の微分値が、あらかじめ定められた第1規定値以下か否かを判定する(ステップS22)。算出された第2特徴量の微分値が、第1規定値以下の場合、その継続時間をカウントする(ステップS23)。すなわち、第1規定値以下の状態が継続している時間をカウントする。そして、カウントした継続時間が、あらかじめ定められた規定時間以上になったか否かを判定する(ステップS24)。すなわち、継続して一定以内で変化したか否かを判定する。
 第1規定値以下の状態が、規定時間以上継続していると判定すると、第2特徴量の微分値が、あらかじめ定められた第2規定値を超えたか否かを判定する(ステップS25)。第2規定値は、第3閾値の一例である。
 第2特徴量の微分値が第2規定値を超えた場合とは、第2特徴量の変化量が、閾値(第3閾値)以上の場合である。この場合、オフセットが変化している場合である。
 よって、第2特徴量の微分値が第2規定値を超えた場合は、第2オフセットの算出に係わる処理の初期化が必要と判定する(ステップS26)。
 初期化判定部105Aにおいて、第2オフセットの算出に係わる処理の初期化が必要と判定されると、第1特徴量抽出部101A及び第2特徴量抽出部103Aの算出の処理が初期化される。すなわち、第1特徴量の算出に関して、フィルタ処理がリセットされる。また、第2特徴量の算出に関して、演算の開始位置が初期化される。
 これにより、オフセットの算出中にオフセットが変化した場合であっても、誤った数値で第2オフセットが更新されるのを防止できる。また、オフセットが変化した場合は、直ちに算出の処理を初期化して、再演算を開始するので、変化に迅速に対応できる。
 なお、本実施の形態では、第2特徴量の変化量から第2オフセットの変化を検出する構成としているが、第2オフセットの変化を検出する方法は、これに限定されるものではない。たとえば、図31のグラフに示すように、オフセットが変化すると、第1特徴量及び第2特徴量は、互いに異なる態様で、その値が変化する。したがって、2つの特徴量の変化の態様からもオフセットの変化を推定できる。
 [第4の実施の形態]
 上記のように、第1特徴量は、抽出する際の遮断周波数によって収束の仕方が変わる。すなわち、遮断周波数を下げると、滑らかに収束する。その一方で収束に時間がかかる(図15及び図23参照)。
 本実施の形態のデジタルカメラでは、第1特徴量を抽出する際、遮断周波数を段階的に切り替える。より具体的には、遮断周波数を段階的に下げて、第1特徴量を抽出する。
 図34は、遮断周波数を段階的に切り替えた場合の第1特徴量の抽出結果を示す図である。同図は、図14に示すジャイロセンサの出力信号に対し、遮断周波数を段階的に切り替えて、第1特徴量を抽出した場合の例を示している。本例では、一定の時間間隔で段階的に遮断周波数を下げて、第1特徴量を抽出している。具体的には、0.5[Hz]、0.1[Hz]、0.05[Hz]、0.01[Hz]の順で段階的に遮断周波数を下げて、第1特徴量を抽出している。
 同図に示すように、遮断周波数を段階的に下げて第1特徴量を抽出することにより、荒くではあるが、収束を早めることができる。
 図35は、遮断周波数を段階的に切り替えて抽出した第1特徴量した場合の第1特徴量と第2特徴量の経時変化を示す図である。同図において、符号O1は第1特徴量の経時変化を示している。また、符号O2は第2特徴量の経時変化を示している。
 上記のように、遮断周波数を段階的に下げて抽出することにより、第1特徴量は、荒くではあるが、早期に収束させることができる。したがって、本例のように、遮断周波数を段階的に下げて第1特徴量を抽出する場合は、オフセットを素早く荒く抽出する場合に使用できる。
 図36は、本実施の形態の第2オフセット演算部が有する機能のブロック図である。
 なお、2つの第2オフセット演算部100A、100Bの機能は、同じであるので、ここでは、第2オフセット演算部100Aが有する機能についてのみ説明する。
 図36に示すように、本実施の形態の第2オフセット演算部100Aは、LPF切替部106A(LPF:Low-pass filter)の機能を更に有する。
 LPF切替部106Aは、第1特徴量抽出部101Aで使用するローパスフィルタを切り替える。より具体的には、第1特徴量抽出部101Aで行われるローパスフィルタ処理での遮断周波数を切り替える。切り替えは、あらかじめ定められた時間間隔で段階的に行われる。切り替える遮断周波数は、あらかじめ定められ、段階的に下がるように設定される。
 以上のように構成される本実施の形態の第2オフセット演算部100Aによれば、第1特徴量抽出部101Aにおいて、遮断周波数が段階的に切り替えられて、第1特徴量が抽出される。なお、切り替えの回数は、特に限定されない。少なくとも1回切り替えられればよい。
 [第5の実施の形態]
 上記のように、ジャイロセンサのオフセットは、環境温度によっても変動する。本実施の形態のデジタルカメラでは、温度ごとにオフセットを管理する。このため、本実施の形態のデジタルカメラでは、オフセットを算出する際に、温度の情報を取得し、算出したオフセットを温度ごとに記憶する。また、オフセット補正する場合は、温度に応じたオフセットを用いて、補正処理を実行する。
 図37は、温度に応じてオフセット補正する場合のオフセット補正に係わる機能のブロック図である。
 なお、第1検出部20Aの出力信号をオフセット補正する場合と、第2検出部20Bの出力信号をオフセットする場合は同じである。したがって、ここでは、第1検出部20Aの出力信号をオフセット補正する場合についてのみ説明し、第2検出部20Bの出力信号をオフセット補正する場合についての説明は省略する。
 図37に示すように、本実施の形態のデジタルカメラには、オフセット補正に関して、オフセット選択部130Aの機能が更に備えられる。オフセット選択部130Aの機能は、システム制御部50によって実現される。
 オフセット選択部130Aは、温度に応じた第1オフセット及び第2オフセットの情報をオフセット記憶部90Aから読み出して、第1減算部60A1及び第2減算部60A2に加える。
 ここで、温度の情報は、第1検出部20Aから取得する。より具体的には、第1検出部20Aに備えられたジャイロセンサ21Aから取得する。ジャイロセンサ21Aは、角速度と共に温度の情報を出力する。なお、この種のジャイロセンサ(温度の検出機能を備えたジャイロセンサ)は、公知であるので、その詳細についての説明は省略する。
 オフセット選択部130Aは、第1検出部20Aから温度の情報を取得し、取得した温度に対応する第1オフセット及び第2オフセットの情報をオフセット記憶部90Aから読み出す。
 オフセット記憶部90Aは、第1オフセット及び第2オフセットの情報をテーブル形式で記憶する。第1オフセットの情報を記憶するテーブルを第1オフセット記憶テーブルとし、第2オフセットの情報を記憶するテーブルを第2オフセット記憶テーブルとする。第1オフセット記憶テーブルは、第1オフセットの情報を温度ごとに記憶する。第2オフセット記憶テーブルは、第2オフセットの情報を温度ごとに記憶する。なお、ここでの「温度ごと」とは、一定の温度範囲ごとの意味である。たとえば、1℃ずつの単位で記憶する場合は、小数点以下の温度が切り捨てられて記憶される。
 第1オフセット記憶テーブルは、固定のテーブルである。一方、第2オフセット記憶テーブルは、随時更新されるテーブルである。第2オフセット記憶制御部110Aは、第2オフセット演算部100Aで算出された第2オフセットをオフセット記憶部90Aに記憶させる際、第1検出部20Aから温度の情報を取得して、第2オフセット記憶テーブルの情報を更新する。すなわち、取得した温度の位置に記憶されている第2オフセットの情報を、算出された第2オフセットの値で書き換える。これにより、第2オフセットの値が温度ごとに更新される。
 図38は、温度に応じた第2オフセットの更新処理の手順を示すフローチャートである。
 まず、第2オフセットの算出処理が行われる(ステップS31)。次いで、第2オフセットが算出されたか否かが判定される(ステップS32)。第2オフセットが算出された場合は、温度情報が取得される(ステップS33)。取得した温度に応じて、第2オフセットがオフセット記憶部に記憶される(ステップS34)。すなわち、オフセット記憶部に記憶されている第2オフセット記憶テーブルの情報が更新される。この場合、取得した温度の位置に記憶されている第2オフセットの情報が書き換えられる。
 この後、第2オフセットの算出処理が終了されたか否かが判定される(ステップS35)。第2オフセットの算出処理は、たとえば、デジタルカメラの電源がオフされると、終了される。第2オフセットの算出処理が終了すると、更新の処理も終了する。
 一方、第2オフセットの算出処理が継続している場合は、算出に係わる処理が初期化され(ステップS36)、次の算出の周期での算出処理が行われる。
 図39は、温度に応じたオフセット補正の処理の手順を示すフローチャートである。
 まず、温度情報が取得される(ステップS41)。次に、取得された温度に基づいて、第1オフセットが選択される(ステップS42)。これにより、温度に応じた第1オフセットが設定される。同様に、取得された温度に基づいて、第2オフセットが選択される(ステップS43)。これにより、温度に応じた第2オフセットが設定される。この後、設定された第1オフセット及び第2オフセットによって、第1検出部20A及び第2検出部20Bの出力信号がオフセット補正される。すなわち、まず、出力信号から第1オフセットが減算されて、第1オフセット補正が行われる(ステップS44)。次いで、第1オフセットが減算された後の出力信号から第2オフセットが減算され、第2オフセット補正が行われる(ステップS45)。これにより、第1検出部20A及び第2検出部20Bの出力信号からオフセットが除去される。
 このように、本実施の形態のデジタルカメラによれば、温度に応じてオフセット補正が行われる。また、温度に応じて第2オフセットが更新される。これにより、より精度よくオフセットを補正できる。
 なお、本実施の形態では、温度の検出機能を備えたジャイロセンサを使用して、ジャイロセンサから温度情報を取得する構成としているが、温度情報を取得する手段は、これに限定されるものではない。たとえば、デジタルカメラ本体に別途備えられた温度センサによって温度を検出する構成とすることもできる。
 [第6の実施の形態]
 第2オフセットの算出処理に関して、上記実施の形態では、デジタルカメラの作動中(電源オンの間)、常時、算出する構成、又は、静止状態と判定された場合に算出する構成とされている。
 本実施の形態では、あらかじめ定められたタイミングで第2オフセットの算出処理を実行する。たとえば、デジタルカメラの電源がオフされたタイミングで実行する。
 図40は、電源がオフされたタイミングで第2オフセットの算出処理を実行する場合の処理の手順を示すフローチャートである。
 まず、デジタルカメラの電源がオフされたか否かが判定される(ステップS51)。より具体的には、電源をオフする操作が行われたか否かが判定される。
 デジタルカメラの電源がオフされると、第2オフセットの算出処理が行われる(ステップS52)。なお、ここでの処理には、算出された第2オフセットをオフセット記憶部に記憶させる処理も含まれる。
 第2オフセットの算出処理が終了すると、デジタルカメラの電源(いわゆる主電源)がオフされる(ステップS53)。
 このように、電源がオフされた場合に第2オフセットの算出処理を実行する構成とすることにより、システム制御の負荷を低減できる。
 第2オフセットの算出処理を実行するタイミングは、この他、たとえば、あらかじめ定められた期間、無操作の状態が継続した場合に実行する構成としてもよい。
 また、デジタルカメラの電源がオフ中に実行する構成としてもよい。この場合、たとえば、あらかじめ定められた時刻に定期的に実行する構成としてもよい。
 なお、第2オフセットの算出処理を実行する場合は、静止状態の判定処理を組み合わせ、静止状態と判定された場合に実行することが好ましい。これにより、より精度よく第2オフセットを算出できる。
 [その他の実施の形態]
 (1)第2特徴量の算出の他の実施の形態
 ジャイロセンサの出力信号の累積積分値の傾きである第2特徴量については、長時間積分を行うため、ビットシフトを用いて、ダイナミックレンジを広げる構成としてもよい。この場合、ジャイロセンサ自体の分解能と同等の分解能で傾きを求められる計算を行えるように、ダイナミックレンジの範囲を決めることが好ましい。より好ましくは、最低でも1[mdps]のずれを測定できるレンジを用いる。
 たとえば、ジャイロセンサからの出力が、常に1LSB(n[mdps])であり、制御周期がN[Hz]であるとする。
 ジャイロセンサの出力の積分は、次式で算出される。
 INTEG[k]=(INTEG[k-1]+GYRO[k]*(1/n))*(1/nn)
  GYRO:ジャイロセンサの出力
  INTEG:積分の出力
 累積積分値の傾きは、次式で算出される。
 OUT[k]=(INTEG[k]-OUT_INIT)*(1/(COUNT*(1/N)))
  OUT:傾き(第2特徴量)
  OUT_INIT:計算開始時の積分の初期値
  COUNT:計算開始時から制御周期ごとに1を足していく値(初期値は0)
 GYRO[k]*(1/N)と*(1/(COUNT*(1/N)))と*(1/NN)の計算を、nとNの値に応じて、ビットシフトによりn[mdps]で傾きを抽出できるように再現する。
 (2)本発明が適用される装置
 上記実施の形態では、手振れ補正機能を備えたデジタルカメラに本発明を適用した場合を例に説明したが、本発明の適用は、これに限定されるものではない。この他、手振れ補正機能を備えたビデオカメラ、テレビカメラ、シネカメラ等の各種撮像装置に本発明は適用できる。
 また、本発明の撮像装置には、単体で構成される撮像装置の他、撮像以外の機能を有する装置に一体的に組み込まれた撮像装置も含まれる。たとえば、スマートフォン、パーソナルコンピュータ等に組み込まれた撮像装置も含まれる。
 また、たとえば、レンズ交換式のデジタルカメラなどにおいて、交換レンズに手振れ補正機能が備えられる場合には、交換レンズに本発明を適用することができる。この場合、たとえば、交換レンズに備えられたシステム制御部によって、信号処理装置の機能が実現される。この場合の交換レンズは、レンズ装置の一例である。
 また、本発明は、撮像装置以外にも手振れ補正機能を備えた機器に広く適用できる。たとえば、手振れ補正機能を備えた双眼鏡などの光学機器にも適用できる。
 また、手振れ補正については、いわゆるレンズシフト方式に限らず、イメージセンサシフト方式を採用している場合にも本発明は適用できる。イメージセンサシフト方式とは、イメージセンサ(撮像素子)を手振れに応じて移動させることにより、手振れ補正する方式の手振れ補正機能のことである。更に、いわゆる電子式の手振れ補正を採用している場合にも本発明は適用できる。
 また、本発明は、手振れ補正以外の用途にも適用できる。しかし、撮像装置等の手振れ補正は、要求されるブレの検出精度が高いことから、手振れ補正のブレ検出に適用した場合に特に有効に作用する。
 (3)ブレ検出センサ
 上記実施の形態では、ジャイロセンサの出力信号を処理する場合を例に説明したが、本発明の適用は、これに限定されるものではない。出力信号にオフセットが含まれるセンサ、特に、オフセットを固定値で除去できないセンサの出力信号を処理する場合に適用できる。
 (4)オフセット補正
 上記実施の形態では、2回に分けてオフセットを除去する構成としているが、第2オフセットのみを除去する構成とすることもできる。すなわち、第1オフセットを除去する工程については、省略することもできる。
 (5)システム構成
 信号処理装置の各機能を実現するプロセッサには、汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)などの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路などが含まれる。
 信号処理装置の各機能は、これら各種のプロセッサのうちの1つで実現されていてもよいし、同種又は異種の2つ以上のプロセッサ(たとえば、複数のFPGA、あるいはCPUとFPGAの組み合わせ)で実現されてもよい。
 また、信号処理装置の各機能を1つのプロセッサで実現してもよい。信号処理装置の各機能を1つのプロセッサで実現する例としては、第1に、1つ以上のCPUとソフトウェアの組合せで1つのプロセッサを構成し、このプロセッサが、信号処理装置の各機能を実現する形態がある。第2に、システムオンチップ(System On Chip:SoC)などに代表されるように、信号処理装置全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。
 このように、信号処理装置の各機能は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて実現される。
 更に、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた電気回路である。
1 デジタルカメラ
10 撮像光学系
11 ズームレンズ
12 フォーカスレンズ
13 補正レンズ
14 絞り
15 ズームレンズ駆動部
16 フォーカスレンズ駆動部
17 補正レンズ駆動部
17x 第1駆動部
17y 第2駆動部
18 絞り駆動部
20 角速度検出部
20A 第1検出部
20B 第2検出部
21A ジャイロセンサ
21B ジャイロセンサ
22A、22B ADC
30 撮像素子
40 主記憶部
41 デジタル信号処理部
42 補助記憶部
43 表示部
44 操作部
50 システム制御部
60A オフセット補正部
60A1 第1減算部
60A2 第2減算部
60B オフセット補正部
70A 第1補正量演算部
70B 第2補正量演算部
71A ハイパスフィルタ
72A 敏感度補正部
73A 積分部
74A 補正量算出部
80A 第1駆動制御部
80B 第2駆動制御部
90A オフセット記憶部
90B オフセット記憶部
100A 第2オフセット演算部
100B 第2オフセット演算部
101A 第1特徴量抽出部
102A 積分部
103A 第2特徴量抽出部
104A 第2オフセット算出部
104A1 差分算出部
104A2 判定部
104A3 算出部
105A 初期化判定部
106A LPF切替部
110A 第2オフセット記憶制御部
110B 第2オフセット記憶制御部
120A 静止判定部
120B 静止判定部
130A オフセット選択部
O オフセット
O1 第1特徴量
O2 第2特徴量
Pit ピッチ方向
Yaw ヨー方向
S1~S8 手振れ補正制御の処理手順
S11~S18 第2オフセットの演算の処理手順
S21~S26 初期化判定部が行う判定の処理の手順
S31~S36 温度に応じた第2オフセットの更新処理の手順
S41~SS45 温度に応じたオフセット補正の処理の手順
S51~S53 電源がオフされたタイミングで第2オフセットの算出処理を実行する場合の処理の手順

Claims (14)

  1.  ブレ検出センサと、
     プロセッサと、
     を備え、
     前記プロセッサが、
     前記ブレ検出センサの出力信号からオフセットに関する第1特徴量を抽出する処理と、
     前記出力信号を積分する処理と、
     前記出力信号を積分した値から前記オフセットに関する第2特徴量を抽出する処理と、
     前記第1特徴量及び前記第2特徴量に基づいて、前記オフセットを算出する処理と、
     前記出力信号に対し、前記算出した前記オフセットを減算する処理と、
     を実行する、
     信号処理装置。
  2.  前記プロセッサは、前記出力信号の累積積分値の傾きから算出した量を、前記第2特徴量とする、
     請求項1に記載の信号処理装置。
  3.  前記プロセッサは、前記出力信号から算出した直流成分量を、前記第1特徴量とする、
     請求項1又は2に記載の信号処理装置。
  4.  前記算出した前記オフセットを記憶する記憶部を更に備え、
     前記プロセッサは、
     前記算出した前記オフセットを、前記第1特徴量と前記第2特徴量とに基づいて、前記記憶部に記憶し、
     前記記憶した前記オフセットを前記出力信号に対し、減算する処理を実行する、
     請求項1から3のいずれか1項に記載の信号処理装置。
  5.  前記プロセッサは、
     前記第1特徴量と前記第2特徴量との差の絶対値を算出する処理と、
     前記第1特徴量と前記第2特徴量との差の絶対値が、第1閾値以下となった場合に、前記第1閾値以下の状態が継続している時間を計測する処理と、
     を更に実行し、
     前記第1閾値以下の状態が継続している時間が、第2閾値以上となった場合に、前記オフセットを記憶する処理を実行する、
     請求項1から4のいずれか1項に記載の信号処理装置。
  6.  前記プロセッサは、前記第1特徴量と前記第2特徴量との和の1/2を前記オフセットとして算出する、
     請求項1から5のいずれか1項に記載の信号処理装置。
  7.  前記プロセッサは、
     前記第2特徴量の変化量を算出する処理を更に実行し、
     前記算出した前記第2特徴量の変化量が第3閾値を超えた場合、前記オフセットの算出に係わる処理を初期化する、
     請求項1から6のいずれか1項に記載の信号処理装置。
  8.  前記プロセッサは、
     前記出力信号に基づいて、静止状態を判定する処理を更に実行し、
     静止状態と判定した場合に、前記オフセットの算出に係わる処理を実行する、
     請求項1から7のいずれか1項に記載の信号処理装置。
  9.  前記プロセッサは、
     前記オフセットを算出した際の温度の情報を取得する処理を更に実行し、
     前記算出した前記オフセットを、温度ごとに記憶する、
     請求項4から8のいずれか1項に記載の信号処理装置。
  10.  装置本体に備えられるブレ検出センサと、
     前記ブレ検出センサの出力信号を処理する請求項1から9のいずれか1項に記載の信号処理装置と、
     を備えた撮像装置。
  11.  装置本体に備えられるブレ検出センサと、
     前記ブレ検出センサの出力信号を処理する請求項1から9のいずれか1項に記載の信号処理装置と、
     を備えたレンズ装置。
  12.  ブレ検出センサの出力信号を処理する信号処理方法であって、
     前記出力信号からオフセットに関する第1特徴量を抽出するステップと、
     前記出力信号を積分するステップと、
     前記出力信号を積分した値から前記オフセットに関する第2特徴量を抽出するステップと、
     前記第1特徴量及び前記第2特徴量に基づいて、前記オフセットを算出するステップと、
     前記出力信号に対し、算出した前記オフセットを減算するステップと、
     を含む信号処理方法。
  13.  ブレ検出センサの出力信号を処理する信号処理プログラムであって、
     前記出力信号からオフセットに関する第1特徴量を抽出する処理と、
     前記出力信号を積分する処理と、
     前記出力信号を積分した値から前記オフセットに関する第2特徴量を抽出する処理と、
     前記第1特徴量及び前記第2特徴量に基づいて、前記オフセットを算出する処理と、
     前記出力信号に対し、算出した前記オフセットを減算する処理と、
     をコンピュータに実行させる信号処理プログラム。
  14.  非一時的かつコンピュータ読取可能な記録媒体であって、請求項13に記載のプログラムが記録された記録媒体。
PCT/JP2021/016459 2020-04-28 2021-04-23 信号処理装置、信号処理方法、信号処理プログラム、撮像装置及びレンズ装置 WO2021220961A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022518020A JPWO2021220961A1 (ja) 2020-04-28 2021-04-23
US18/049,590 US11877061B2 (en) 2020-04-28 2022-10-25 Signal processing device, signal processing method, signal processing program, imaging apparatus and lens apparatus
US18/526,482 US20240107164A1 (en) 2020-04-28 2023-12-01 Signal processing device, signal processing method, signal processing program, imaging apparatus and lens apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020079187 2020-04-28
JP2020-079187 2020-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/049,590 Continuation US11877061B2 (en) 2020-04-28 2022-10-25 Signal processing device, signal processing method, signal processing program, imaging apparatus and lens apparatus

Publications (1)

Publication Number Publication Date
WO2021220961A1 true WO2021220961A1 (ja) 2021-11-04

Family

ID=78373562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016459 WO2021220961A1 (ja) 2020-04-28 2021-04-23 信号処理装置、信号処理方法、信号処理プログラム、撮像装置及びレンズ装置

Country Status (3)

Country Link
US (2) US11877061B2 (ja)
JP (1) JPWO2021220961A1 (ja)
WO (1) WO2021220961A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005043780A (ja) * 2003-07-25 2005-02-17 Nikon Corp 撮影レンズ、およびカメラシステム
JP2017138493A (ja) * 2016-02-04 2017-08-10 リコーイメージング株式会社 撮像装置
JP2018180302A (ja) * 2017-04-13 2018-11-15 キヤノン株式会社 像ブレ補正装置、交換レンズ、カメラアシステム、および像ブレ補正方法
JP2018180288A (ja) * 2017-04-13 2018-11-15 キヤノン株式会社 制御装置、交換レンズ、カメラシステム、および制御装置の制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050018051A1 (en) 2003-07-25 2005-01-27 Nikon Corporation Shooting lens having vibration reducing function and camera system for same
US20050128309A1 (en) * 2003-07-25 2005-06-16 Nikon Corporation Shooting lens having vibration reducing function and camera system for same
JP2008283443A (ja) 2007-05-10 2008-11-20 Olympus Imaging Corp 撮像装置
JP2018197772A (ja) 2017-05-23 2018-12-13 キヤノン株式会社 像ブレ補正装置、レンズ装置、撮像装置、像ブレ補正装置の制御方法、プログラム、および、記憶媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005043780A (ja) * 2003-07-25 2005-02-17 Nikon Corp 撮影レンズ、およびカメラシステム
JP2017138493A (ja) * 2016-02-04 2017-08-10 リコーイメージング株式会社 撮像装置
JP2018180302A (ja) * 2017-04-13 2018-11-15 キヤノン株式会社 像ブレ補正装置、交換レンズ、カメラアシステム、および像ブレ補正方法
JP2018180288A (ja) * 2017-04-13 2018-11-15 キヤノン株式会社 制御装置、交換レンズ、カメラシステム、および制御装置の制御方法

Also Published As

Publication number Publication date
US11877061B2 (en) 2024-01-16
US20230069038A1 (en) 2023-03-02
JPWO2021220961A1 (ja) 2021-11-04
US20240107164A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
US10313593B2 (en) Image stabilization apparatus and image stabilization method
US9912869B2 (en) Image stabilization apparatus and image stabilization method
US9635258B2 (en) Image pickup apparatus, method of controlling image pickup apparatus, image processing apparatus, and image processing method
US10425584B2 (en) Image pickup system, control method thereof, image pickup apparatus, and lens device
US7583889B2 (en) Imaging apparatus
US11290650B2 (en) Image blur information acquisition apparatus and method, and storage medium
WO2007119680A1 (ja) 撮像装置
US7787018B2 (en) Apparatus and method for shake detection, and imaging device
US7791644B2 (en) Shake-amount detecting device and imaging device
CN110062131B (zh) 图像模糊校正装置及其控制方法和摄像装置
WO2021220961A1 (ja) 信号処理装置、信号処理方法、信号処理プログラム、撮像装置及びレンズ装置
JP2013054264A (ja) レンズ鏡筒および撮像装置
JP2009008936A (ja) 撮像装置
US20220191399A1 (en) Blur detection device, imaging device, lens device, imaging device main body, blur detection method, and blur detection program
JP2019134438A (ja) 画像処理装置、撮像装置及び画像処理プログラム
WO2022065277A1 (ja) 信号処理装置、信号処理方法、信号処理プログラム、撮像装置及びレンズ装置
JP5213237B2 (ja) 撮像位置判定方法及び撮像位置判定装置
JP6847317B2 (ja) 撮像装置、撮像方法、及びプログラム
JP6489150B2 (ja) 画像処理装置及び撮像装置
JP2009300784A (ja) 手ブレ補正装置および手ブレ補正方法ならびに撮影装置
JP2007264074A (ja) 撮影装置及びその制御方法
US20180321464A1 (en) Imaging apparatus
JP2021044653A (ja) 動きベクトル検出装置及び動きベクトル検出方法
JP2021012259A (ja) 像ブレ補正装置及びその制御方法、撮像システム、プログラム
JP2006145984A (ja) 焦点検出装置およびその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21795479

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022518020

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21795479

Country of ref document: EP

Kind code of ref document: A1