WO2021220711A1 - Electroconductive composition - Google Patents

Electroconductive composition Download PDF

Info

Publication number
WO2021220711A1
WO2021220711A1 PCT/JP2021/014032 JP2021014032W WO2021220711A1 WO 2021220711 A1 WO2021220711 A1 WO 2021220711A1 JP 2021014032 W JP2021014032 W JP 2021014032W WO 2021220711 A1 WO2021220711 A1 WO 2021220711A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
conductive filler
mass
conductive
type epoxy
Prior art date
Application number
PCT/JP2021/014032
Other languages
French (fr)
Japanese (ja)
Inventor
剛志 津田
裕明 梅田
英俊 野口
良太 藤川
政弘 山本
Original Assignee
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社 filed Critical タツタ電線株式会社
Priority to JP2022517572A priority Critical patent/JP7419505B2/en
Priority to CN202180030026.9A priority patent/CN115380076A/en
Publication of WO2021220711A1 publication Critical patent/WO2021220711A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the present invention relates to a conductive composition having excellent shielding properties.
  • SIP system-in-package
  • the mounting density of electronic components is increased in order to achieve both small size and light weight of electronic devices and high functionality.
  • the mounting density is increased, the number of electronic components affected by electromagnetic waves increases, and there is a risk of malfunction due to interference between adjacent electronic components.
  • a trench portion (groove) is formed between the electronic components sealed with a mold resin, and the trench portion is filled with a conductive paste.
  • a method of forming a shield layer between electronic components is known.
  • the viscosity of the conductive paste is reduced by adding a solvent, the solvent may volatilize when the conductive paste is thermally cured, and voids (bubbles) may be generated in the cured product of the conductive paste. If voids were generated in the cured product, there was a risk that the electromagnetic waves could not be sufficiently shielded.
  • the shielding characteristics tend to deteriorate. be.
  • the filling property into the trench portion formed in the mold resin tends to deteriorate. That is, the shield characteristic and the filling property to the trench portion are contradictory characteristics, and it is required to improve these characteristics in a well-balanced manner.
  • the present invention has been made in view of the above, and provides a conductive composition having a good shielding property against electromagnetic waves of 100 MHz to 1 GHz and excellent filling property in a trench portion formed of a mold resin.
  • the purpose is to do.
  • Patent Documents 1 to 3 describe the conductive paste, there is no description about the shielding property or the filling property into the trench formed in the mold resin.
  • the conductive composition of the present invention contains 400 to 600 parts by mass of a conductive filler with respect to 100 parts by mass of an epoxy resin containing 5 to 20 parts by mass of a dimer acid type epoxy resin, and the conductive filler is a laser. It contains a conductive filler (A) having an average particle size (D50) of 5 to 8 ⁇ m and a conductive filler (B) having an average particle size (D50) of 2 to 3 ⁇ m measured by a diffraction / scattering particle size distribution measurement method. It is assumed that the content ratio ((A): (B)) of the conductive filler (A) and the conductive filler (B) is 97: 3 to 50:50 in terms of mass ratio.
  • the dimer acid type epoxy resin can be a glycidyl-modified compound of dimer acid.
  • the epoxy resin may contain a glycidyl amine type epoxy resin and a glycidyl ether type epoxy resin.
  • the trench portion formed in the mold resin is excellently filled, and interference between electronic components due to electromagnetic waves of 100 MHz to 1 GHz can be prevented.
  • FIG. 1 It is a figure which shows the structure of the system used in the KEC method. It is a schematic cross-sectional view of the sample substrate used for the evaluation of the filling property and mass productivity of the conductive composition in the Dispens construction method. It is a schematic cross-sectional view of the sample substrate used for the evaluation of the filling property, mass productivity, and the appearance of the upper surface of the conductive composition in the vacuum printing method.
  • the conductive composition according to the present invention contains 400 to 600 parts by mass of a conductive filler with respect to 100 parts by mass of the epoxy resin containing 5 to 20 parts by mass of the dimer acid type epoxy resin, and is conductive.
  • the filler is a conductive filler (A) having an average particle diameter (D50) of 5 to 8 ⁇ m and a conductive filler (B) having an average particle diameter (D50) of 2 to 3 ⁇ m measured by a laser diffraction scattering type particle size distribution measurement method. It is assumed that the content ratio ((A): (B)) of the conductive filler (A) and the conductive filler (B) is 97: 3 to 50:50 in terms of mass ratio.
  • this conductive composition is not particularly limited, but it is suitably used as a shield layer formed between electronic components sealed with a mold resin in a system-in-package.
  • the epoxy resin other than the dimer acid type epoxy resin may be any epoxy resin having one or more epoxy groups in the molecule, and two or more kinds can be used in combination. Specific examples include bisphenol A type epoxy resin, brominated epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin, alicyclic epoxy resin, glycidylamine type epoxy resin, glycidyl ether type epoxy resin, and glycidyl ester type epoxy resin. , Heterocyclic epoxy resin and the like, and among these, those containing a glycidylamine type epoxy resin or a glycidyl ether type epoxy resin are preferable.
  • the epoxy equivalent of the epoxy resin other than the dimer acid type epoxy resin is not particularly limited, but is preferably 1500 g / eq or less, and more preferably 20 to 1000 g / eq. When the epoxy equivalent is within the above range, a conductive composition having a good balance of heat resistance, viscosity and adhesion can be easily obtained.
  • the dimer acid type epoxy resin may be an epoxy resin having one or more epoxy groups in the molecule and may be a modified dimer acid. Examples thereof include a glycidyl-modified compound of dimer acid, and two or more kinds thereof. Can also be used together. As such a resin, for example, those represented by the following general formulas (1) and (2) can be used.
  • N1 to n5 in equations (1) and (2) independently represent integers of 3 to 9.
  • N1 represents an integer of 3 to 9, preferably an integer of 4 to 8, more preferably 5 to 7, and particularly preferably 7.
  • n2 represents an integer of 3 to 9, preferably an integer of 5 to 9, more preferably 7 or 8, and particularly preferably 7.
  • n3 represents an integer of 3 to 9, preferably an integer of 4 to 8, more preferably 6 or 7, and particularly preferably 6.
  • n4 represents an integer of 3 to 9.
  • n5 represents an integer of 3 to 9, with an integer of 4 to 8 being preferred, 5 or 6 being more preferred, and 5 being particularly preferred.
  • the viscosity and thixotropic index (TI value) of the conductive composition tend to be lowered, and excellent filling property to the trench portion formed in the mold resin can be obtained.
  • TI value thixotropic index
  • the epoxy equivalent of the dimer acid type epoxy resin is not particularly limited, but is preferably 80 to 1500 g / eq, and more preferably 200 to 1000 g / eq.
  • the epoxy equivalent is within the above range, a conductive composition having a good balance of heat resistance, viscosity and adhesion can be easily obtained.
  • the conductive filler (A) Since the conductive filler (A) has an average particle size of 5 to 8 ⁇ m, it has good dispersibility and can prevent agglomeration, and has good connectivity with the ground circuit of the package and shield characteristics.
  • the conductive filler (B) Since the conductive filler (B) has an average particle diameter of 2 to 3 ⁇ m, it can fill the gaps between the conductive fillers having an average particle diameter of 5 to 8 ⁇ m, and thus has a shielding property against electromagnetic waves of 100 MHz to 1 GHz. It is possible to obtain a low-viscosity conductive composition.
  • the content of the conductive filler is not particularly limited as long as it is 400 to 600 parts by mass with respect to 100 parts by mass of the epoxy resin, but it is more preferably 450 to 550 parts by mass. When it is within the above range, it is easy to obtain a conductive composition having excellent shielding properties and filling property in the trench portion formed of the mold resin.
  • the content ratio ((A): (B)) of the conductive filler (A) and the conductive filler (B) is not particularly limited as long as the mass ratio is 97: 3 to 50:50, but is 95: 5 to 95: 5. It is more preferable that it is 70:30.
  • the conductive filler (A) and the conductive filler (B) are preferably copper powder, silver powder, gold powder, silver-coated copper powder or silver-coated copper alloy powder, and one of these should be used alone. In addition, two or more kinds may be used in combination, and from the viewpoint of cost reduction, copper powder, silver-coated copper powder, or silver-coated copper alloy powder is more preferable.
  • the silver-coated copper powder has a copper powder and a silver layer or a silver-containing layer that covers at least a part of the copper powder particles
  • the silver-coated copper alloy powder is a copper alloy powder and the copper alloy particles. It has a silver layer or a silver-containing layer that covers at least a part of the above.
  • the copper alloy particles have, for example, a nickel content of 0.5 to 20% by mass and a zinc content of 1 to 20% by mass, the balance of which is copper, and the balance of copper containing unavoidable impurities. You may be.
  • Examples of the shape of the conductive filler (A) include flakes (scaly), dendritic, spherical, fibrous, amorphous (polyhedron), etc., but the resistance value is lower and the shielding property is further improved. It is preferable that the shield layer is spherical from the viewpoint of obtaining the shield layer and improving the filling property.
  • the tap density of the conductive filler (A) is preferably 3.5 to 7.0 g / cm 3.
  • the conductivity of the shield layer tends to be better.
  • Examples of the shape of the conductive filler (B) include flakes (scaly), dendritic, spherical, fibrous, amorphous (polyhedron), etc., but the resistance value is lower and the shielding property is further improved. It is preferable that the shield layer is spherical from the viewpoint of obtaining the shield layer and improving the filling property.
  • the tap density of the conductive filler (B) is preferably 4.0 to 7.0 g / cm 3.
  • the conductivity of the shield layer tends to be better.
  • An epoxy resin curing agent can be used in the conductive composition according to the present invention.
  • the epoxy resin curing agent include a phenol-based curing agent, an imidazole-based curing agent, an amine-based curing agent, and a cationic-based curing agent. One of these may be used alone, or two or more thereof may be used in combination.
  • phenol-based curing agent examples include phenol novolac, naphthol-based compounds, and the like.
  • imidazole-based curing agent examples include imidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 1-benzyl-2-phenylimidazole, 2-ethyl-.
  • Examples thereof include 4-methyl-imidazole and 1-cyanoethyl-2-undecylimidazole.
  • amine-based curing agent examples include aliphatic polyamines such as diethylenetriamine and triethylenetetramine, and aromatic polyamines such as metaphenylenediamine, diaminodiphenylmethane, and diaminodiphenylsulfone.
  • cationic curing agents include amine salts of boron trifluoride, P-methoxybenzenediazonium hexafluorophosphate, diphenyliodonium hexafluorophosphate, triphenylsulfonium, tetra-n-butylphosphonium tetraphenylborate, and tetra-.
  • examples thereof include onium compounds typified by n-butylphosphonium-o, o-diethylphosphologithioate and the like.
  • the content of the curing agent is preferably 0.3 to 40 parts by mass, and more preferably 0.5 to 35 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • the content of the curing agent is 0.3 parts by mass or more, the conductive composition is sufficiently cured, the conductivity becomes good, and a shield layer having an excellent shielding effect can be easily obtained, and 40 parts by mass or less. If this is the case, a conductive composition having excellent storage stability can be easily obtained.
  • additives such as defoamers, thickeners, pressure-sensitive adhesives, fillers, flame retardants, and colorants may be added to the conductive composition according to the present invention within a range that does not impair the object of the invention. can.
  • the conductive composition according to the present invention has a low viscosity and has a thixotropic index (TI value) so that the conductive composition can be applied to the trench portion of the package by the dispensing method or the vacuum printing method. It is preferably low.
  • the dispense method refers to a method of extruding a conductive composition from the tip of a syringe-shaped nozzle and applying it.
  • the vacuum printing method uses a plate with a screen of chemical fibers for stencil printing, and optically forms a plate film on the screen to close the eyes other than the necessary strokes to make a plate. It refers to a method of printing on the printed surface of an object to be printed placed under a plate by rubbing ink through the holes of the plate film under vacuum.
  • the viscosity of the conductive composition according to the present invention is preferably adjusted as appropriate according to the application and the equipment used for coating, and is not particularly limited, but as a general guideline, the temperature of the conductive composition is 25 ° C. , 600 dPa ⁇ s or less, and more preferably 500 dPa ⁇ s or less. When it is 600 dPa ⁇ s or less, clogging of the nozzle in the dispensing method and clogging of the screen in the vacuum printing method are unlikely to occur, and excellent filling property to the trench portion can be easily obtained.
  • the viscosity measurement method conforms to JIS K7117-1, and a single cylindrical rotational viscometer (so-called B-type or BH-type viscometer) is used to measure the rotor number. It can be measured at 10 rpm using 7. As long as the viscosity can be measured by a single cylindrical rotational viscometer, there is no problem even if it is low.
  • the thixotropic index (TI value) of the conductive composition according to the present invention is preferably adjusted as appropriate according to the application and the equipment used for coating, and is not particularly limited, but as a general guideline, it is 4.5 or less. It is preferable to have.
  • the TI value is 4.5 or less, excellent filling property to the trench portion is easily obtained, the surface is easily smoothed when applied by the vacuum printing method, and bumps are difficult to be formed. This makes it possible to reduce the height of the system-in-package, and effectively utilize the space in the device on which the system-in-package is mounted.
  • the conductive composition according to the present invention preferably does not contain a solvent from the viewpoint of preventing the generation of voids.
  • Examples, comparative examples A conductive filler and a curing agent were mixed with 100 parts by mass of the epoxy resin shown below in the proportions shown in Tables 1 to 4 to obtain a conductive composition. Details of each component used are as follows.
  • Viscosity of Conductive Composition The viscosity of the conductive composition obtained above at 25 ° C. is measured by a single cylindrical rotary viscometer (so-called B-type viscometer) in accordance with JIS K7117-1. .. It was measured at 10 rpm using 7.
  • the conductive composition obtained above is printed on a polyimide film having a thickness of about 100 ⁇ m using a bar film applicator (manufactured by BIC-Gardner), heated at 80 ° C. for 60 minutes, and further heated at 160 ° C. for 60 minutes. It was cured by heating to form a coating film having a thickness of about 150 ⁇ m. Sample 1 was obtained by cutting the obtained coating film into 15 cm squares.
  • FIG. 1 is a schematic diagram showing the configuration of the system used in the KEC method.
  • the system used in the KEC method includes an electromagnetic wave shielding effect measuring device 211a, a spectrum analyzer 221, an attenuator 222 that attenuates 10 dB, an attenuator 223 that attenuates 3 dB, and a preamplifier 224.
  • a U3741 manufactured by Advantest Co., Ltd. was used as the spectrum analyzer 221. Further, HP8447F manufactured by Agilent Technologies was used as the preamplifier.
  • the electric field wave shield effect evaluation device 211a is provided with two measuring jigs 213 facing each other.
  • the sample 1 to be measured is sandwiched between the measuring jigs 213 and 213.
  • the measuring jig 213 incorporates the dimensional distribution of a TEM cell (Transverse Electro Magical Cell), and has a structure symmetrically divided in a plane perpendicular to the transmission axis direction.
  • the flat plate-shaped center conductor 214 is arranged with a gap between it and each measuring jig 213.
  • the signal output from the spectrum analyzer 221 is input to the measuring jig 213 on the transmitting side via the attenuator 222. Then, the signal received by the measuring jig 213 on the receiving side is amplified by the preamplifier 224 via the attenuator 223, and then the signal level is measured by the spectrum analyzer 221.
  • the spectrum analyzer 221 outputs the amount of attenuation when the sample 1 is installed in the electromagnetic wave shielding effect measuring device 211a, based on the state in which the sample 1 is not installed in the electromagnetic wave shielding effect measuring device 211a.
  • a sample 2 for measurement was prepared by the Dispensing method.
  • a ground circuit 11 was formed on the substrate 10, the substrate 10 and the ground circuit 11 were sealed with the mold resin 12, and the trench portion 13 was formed on the mold resin 12.
  • the conductive composition is applied to the trench portion 13 of the sample substrate shown in FIG. 2 under the following discharge conditions.
  • sample 2 was obtained. Then, the obtained sample 2 was cured by heating at 80 ° C. for 60 minutes and further heating at 160 ° C. for 60 minutes.
  • the trench portion 13 was observed under the following measurement conditions using an X-ray transmission device “Y. Cheetah ⁇ HD” manufactured by Exlon International Co., Ltd., and the presence or absence of voids was observed. It was confirmed. Those without voids were evaluated as " ⁇ " because of their excellent filling property, and those with voids were evaluated as "x" because of their poor filling property.
  • ⁇ Dispensation condition Valve temperature: 60 ° C Substrate temperature: 60 ° C Nozzle inner diameter: 100 ⁇ m Dispens gap: 100 ⁇ m Dispensing speed: 1.2 mm / sec ⁇ Measurement conditions> Voltage: 50kV Current: 80 ⁇ A Power: 4W
  • a sample 3 for measurement was prepared by the vacuum printing method.
  • a ground circuit 11 was formed on the substrate 10, the substrate 10 and the ground circuit 11 were sealed with the mold resin 12, and the trench portion 13 was formed on the mold resin 12.
  • the conductive composition was applied to the trench portion 13 of the sample substrate shown in FIG. 3 under the following printing conditions to obtain sample 3. .. Then, the obtained sample 3 was cured by heating at 80 ° C. for 60 minutes and further heating at 160 ° C. for 60 minutes.
  • the trench portion 13 was observed under the following measurement conditions using an X-ray transmission device "Y. Cheetah ⁇ HD” manufactured by Exlon International Co., Ltd., and the presence or absence of voids was observed. It was confirmed. Those without voids were evaluated as " ⁇ " because of their excellent filling property, and those with voids were evaluated as "x" because of their poor filling property.
  • Printing pressure 0.5 MPa Squeegee angle: 10 ° Squeegee speed: 15mm / sec Clearance: 2.0mm Vacuum degree: 0.13 kPa Urethane squeegee hardness: 80 degrees ⁇ Measurement conditions> Voltage: 50kV Current: 80 ⁇ A Power: 4W
  • Comparative Example 1-1 is an example in which the dimer acid type epoxy resin is not contained, the viscosity and TI value of the conductive composition are high, and the filling property is inferior in both the dispensing method and the vacuum printing method. .. In addition, the appearance of the upper surface was slightly inferior in the vacuum printing method. Further, Comparative Example 1-2 is an example in which the content of the dimer acid type epoxy resin exceeds the upper limit value, and the electric field shielding characteristics with respect to 100 MHz and 1 GHz are inferior.
  • Comparative Example 2-1 is an example in which the conductive filler (A) is contained alone as the conductive filler, and the electric field shielding characteristic with respect to 100 MHz is inferior.
  • Comparative Examples 2-2 and 2-3 are examples in which the content ratio of the conductive filler (A) and the conductive filler (B) is out of the predetermined range, the viscosity and the TI value are high, and the dispensing method and the vacuum printing method are used. In each of the above, the filling property was inferior. In addition, the appearance of the upper surface was slightly inferior in the vacuum printing method.
  • Comparative Example 2-4 is an example in which the conductive filler (B) is contained alone as the conductive filler, and the shielding property with respect to 100 MHz is inferior.
  • the TI value of the conductive composition was high, and the appearance of the upper surface in the vacuum printing method was inferior.
  • Comparative Example 3-1 is an example in which the total amount of the conductive filler is less than the lower limit value, and the shielding characteristics with respect to 100 MHz and 1 GHz are inferior.
  • Comparative Example 3-2 is an example in which the total amount of the conductive filler exceeds the upper limit value, the viscosity of the conductive composition is high, and the filling property is inferior in both the dispensing method and the vacuum printing method.
  • the TI value of the conductive composition was high, and the appearance of the upper surface in the vacuum printing method was slightly inferior.
  • Comparative Example 4-1 is an example in which, instead of the conductive filler (A), a conductive filler having an average particle diameter less than the lower limit of the average particle diameter of the conductive filler (A) is contained.
  • the viscosity of the sex composition was high, and the filling property was inferior in both the dispensing method and the vacuum printing method. In addition, the appearance of the upper surface was slightly inferior in the vacuum printing method.
  • Comparative Example 4-2 is an example in which, instead of the conductive filler (A), a conductive filler having an average particle size exceeding the upper limit of the average particle size of the conductive filler (A) is contained, with respect to 100 MHz and 1 GHz.
  • the shield characteristics were inferior.
  • the average particle size of the conductive filler is large, the nozzles are clogged in the dispense method, and the mesh of the printing plate of the vacuum printing machine is clogged in the vacuum printing method. It was inferior.
  • Comparative Example 4-3 is an example in which, instead of the conductive filler (B), a conductive filler having an average particle diameter less than the lower limit of the average particle diameter of the conductive filler (B) is contained, and the conductive composition.
  • the viscosity of the material was high, and the filling property was inferior in both the dispensing method and the vacuum printing method. In addition, the appearance of the upper surface was slightly inferior in the vacuum printing method.
  • Comparative Example 4-4 is an example in which, instead of the conductive filler (B), a conductive filler having an average particle size exceeding the upper limit of the average particle size of the conductive filler (B) is contained, and the shielding property with respect to 100 MHz. Was inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Conductive Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

Provided is an electroconductive composition that has good shielding properties against electromagnetic waves of 100 MHz to 1 GHz, and excellent filling properties for a trench portion formed in a molded resin. An electroconductive composition comprising 400-600 parts by mass of an electroconductive filler with respect to 100 parts by mass of an epoxy resin containing 5-20 parts by mass of a dimer acid-type epoxy resin, wherein the electroconductive filler contains an electroconductive filler (A) having an average particle size (D50) of 5-8 μm as measured by a laser diffraction scattering-type particle size distribution measurement technique, and an electroconductive filler (B) having an average particle size (D50) of 2-3 μm, and the content ratio ((A):(B)) by mass of the electroconductive filler (A) and the electroconductive filler (B) is 97:3 to 50:50.

Description

導電性組成物Conductive composition
 本発明は、シールド特性に優れた導電性組成物に関する。 The present invention relates to a conductive composition having excellent shielding properties.
 携帯電話やタブレット端末等の電子機器においては、小型化、高機能化の要請から複数の半導体チップを一つのパッケージに収め、一つのシステムとして機能させるシステム・イン・パッケージ(SIP)が求められている。 In electronic devices such as mobile phones and tablet terminals, there is a demand for a system-in-package (SIP) in which multiple semiconductor chips are contained in one package and function as one system due to the demand for miniaturization and high functionality. There is.
 このようなシステム・イン・パッケージでは、電子機器の小型軽量化と高機能化を両立させるため、電子部品の実装密度が高められている。しかしながら、実装密度を高めると電磁波の影響を受ける電子部品も増えてしまい、隣接する電子部品間の干渉により誤作動を起こすおそれがある。 In such a system-in-package, the mounting density of electronic components is increased in order to achieve both small size and light weight of electronic devices and high functionality. However, if the mounting density is increased, the number of electronic components affected by electromagnetic waves increases, and there is a risk of malfunction due to interference between adjacent electronic components.
 このような問題に対して、電子部品間の干渉を防止する方法として、モールド樹脂によって封止された電子部品間にトレンチ部(溝)を形成し、このトレンチ部を導電性ペーストで埋めることで、電子部品と電子部品との間にシールド層を形成する方法(いわゆる、コンパートメントシールド)が知られている。 To deal with such problems, as a method of preventing interference between electronic components, a trench portion (groove) is formed between the electronic components sealed with a mold resin, and the trench portion is filled with a conductive paste. , A method of forming a shield layer between electronic components (so-called compartment shield) is known.
 上記の方法により十分なシールド特性を得るためにはトレンチ部の底面まで導電性ペーストを充填させる必要があり、導電性ペーストに溶剤を添加し、導電性ペーストを低粘度化する必要があった。 In order to obtain sufficient shielding characteristics by the above method, it was necessary to fill the bottom surface of the trench with the conductive paste, and it was necessary to add a solvent to the conductive paste to reduce the viscosity of the conductive paste.
 しかしながら、溶剤の添加により導電性ペーストを低粘度化した場合、導電性ペーストを熱硬化させる際に、溶剤が揮発し、導電性ペーストの硬化物にボイド(泡)が発生することがある。硬化物にボイドが発生すると、電磁波を十分にシールドすることができないおそれがあった。 However, if the viscosity of the conductive paste is reduced by adding a solvent, the solvent may volatilize when the conductive paste is thermally cured, and voids (bubbles) may be generated in the cured product of the conductive paste. If voids were generated in the cured product, there was a risk that the electromagnetic waves could not be sufficiently shielded.
 また、導電性ペーストを低粘度化する方法としては、溶剤の添加の他、導電性フィラーの含有量を減らすことが考えられるが、導電性フィラーの含有量を減らすとシールド特性が悪化する傾向にある。一方で、シールド特性を高めるために、導電性フィラーの含有量を増やすとモールド樹脂に形成されたトレンチ部への充填性が悪化する傾向にある。すなわち、シールド特性と、トレンチ部への充填性とは背反特性であり、これらの特性をバランスよく改善することが求められている。 Further, as a method of reducing the viscosity of the conductive paste, it is conceivable to reduce the content of the conductive filler in addition to the addition of the solvent, but if the content of the conductive filler is reduced, the shielding characteristics tend to deteriorate. be. On the other hand, if the content of the conductive filler is increased in order to improve the shielding characteristics, the filling property into the trench portion formed in the mold resin tends to deteriorate. That is, the shield characteristic and the filling property to the trench portion are contradictory characteristics, and it is required to improve these characteristics in a well-balanced manner.
特開2004-55543号公報Japanese Unexamined Patent Publication No. 2004-55543 特開2016-126878号公報Japanese Unexamined Patent Publication No. 2016-126878 特許4037619号公報Japanese Patent No. 4037619
 本発明は上記に鑑みてなされたものであり、100MHz~1GHzの電磁波に対して良好なシールド性を有し、モールド樹脂に形成されたトレンチ部への充填性に優れた導電性組成物を提供することを目的とする。 The present invention has been made in view of the above, and provides a conductive composition having a good shielding property against electromagnetic waves of 100 MHz to 1 GHz and excellent filling property in a trench portion formed of a mold resin. The purpose is to do.
 なお、特許文献1~3には、導電性ペーストが記載されているが、シールド特性やモールド樹脂に形成されたトレンチ部への充填性についての記載はない。 Although Patent Documents 1 to 3 describe the conductive paste, there is no description about the shielding property or the filling property into the trench formed in the mold resin.
 本発明の導電性組成物は、ダイマー酸型エポキシ樹脂5~20質量部を含む、エポキシ樹脂100質量部に対して、導電性フィラー400~600質量部を含有し、上記導電性フィラーが、レーザー回折散乱式粒度分布測定法により測定した平均粒子径(D50)5~8μmの導電性フィラー(A)と、平均粒子径(D50)2~3μmの導電性フィラー(B)とを含有し、上記導電性フィラー(A)と上記導電性フィラー(B)との含有割合((A):(B))が、質量比で97:3~50:50であるものとする。 The conductive composition of the present invention contains 400 to 600 parts by mass of a conductive filler with respect to 100 parts by mass of an epoxy resin containing 5 to 20 parts by mass of a dimer acid type epoxy resin, and the conductive filler is a laser. It contains a conductive filler (A) having an average particle size (D50) of 5 to 8 μm and a conductive filler (B) having an average particle size (D50) of 2 to 3 μm measured by a diffraction / scattering particle size distribution measurement method. It is assumed that the content ratio ((A): (B)) of the conductive filler (A) and the conductive filler (B) is 97: 3 to 50:50 in terms of mass ratio.
 上記ダイマー酸型エポキシ樹脂は、ダイマー酸のグリシジル変性化合物であるものとすることができる。 The dimer acid type epoxy resin can be a glycidyl-modified compound of dimer acid.
 上記エポキシ樹脂は、グリシジルアミン型エポキシ樹脂、及びグリシジルエーテル型エポキシ樹脂を含有するものとすることができる。 The epoxy resin may contain a glycidyl amine type epoxy resin and a glycidyl ether type epoxy resin.
 本発明の導電性組成物によれば、モールド樹脂に形成されたトレンチ部への充填性に優れ、100MHz~1GHzの電磁波による電子部品間の干渉を防止することができる。 According to the conductive composition of the present invention, the trench portion formed in the mold resin is excellently filled, and interference between electronic components due to electromagnetic waves of 100 MHz to 1 GHz can be prevented.
KEC法で用いられるシステムの構成を示す図である。It is a figure which shows the structure of the system used in the KEC method. ディスペンス工法における導電性組成物の充填性及び量産性の評価に用いたサンプル基板の模式断面図である。It is a schematic cross-sectional view of the sample substrate used for the evaluation of the filling property and mass productivity of the conductive composition in the Dispens construction method. 真空印刷工法における導電性組成物の充填性、量産性、及び上面外観の評価に用いたサンプル基板の模式断面図である。It is a schematic cross-sectional view of the sample substrate used for the evaluation of the filling property, mass productivity, and the appearance of the upper surface of the conductive composition in the vacuum printing method.
 本発明に係る導電性組成物は、上記の通り、ダイマー酸型エポキシ樹脂5~20質量部を含む、エポキシ樹脂100質量部に対して、導電性フィラー400~600質量部を含有し、導電性フィラーが、レーザー回折散乱式粒度分布測定法により測定した平均粒子径(D50)5~8μmの導電性フィラー(A)と、平均粒子径(D50)2~3μmの導電性フィラー(B)とを含有し、導電性フィラー(A)と導電性フィラー(B)との含有割合((A):(B))が、質量比で97:3~50:50であるものとする。 As described above, the conductive composition according to the present invention contains 400 to 600 parts by mass of a conductive filler with respect to 100 parts by mass of the epoxy resin containing 5 to 20 parts by mass of the dimer acid type epoxy resin, and is conductive. The filler is a conductive filler (A) having an average particle diameter (D50) of 5 to 8 μm and a conductive filler (B) having an average particle diameter (D50) of 2 to 3 μm measured by a laser diffraction scattering type particle size distribution measurement method. It is assumed that the content ratio ((A): (B)) of the conductive filler (A) and the conductive filler (B) is 97: 3 to 50:50 in terms of mass ratio.
 この導電性組成物の用途は特に限定されるわけではないが、システム・イン・パッケージにおいて、モールド樹脂によって封止された電子部品間に形成されるシールド層として好適に使用される。 The use of this conductive composition is not particularly limited, but it is suitably used as a shield layer formed between electronic components sealed with a mold resin in a system-in-package.
 ダイマー酸型エポキシ樹脂以外のエポキシ樹脂は、分子内にエポキシ基を1個以上有するものであればよく、2種以上を併用することもできる。具体例としては、ビスフェノールA型エポキシ樹脂、臭素化エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、複素環式エポキシ樹脂等が挙げられ、これらの中でも、グリシジルアミン型エポキシ樹脂やグリシジルエーテル型エポキシ樹脂を含有するものが好ましい。 The epoxy resin other than the dimer acid type epoxy resin may be any epoxy resin having one or more epoxy groups in the molecule, and two or more kinds can be used in combination. Specific examples include bisphenol A type epoxy resin, brominated epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin, alicyclic epoxy resin, glycidylamine type epoxy resin, glycidyl ether type epoxy resin, and glycidyl ester type epoxy resin. , Heterocyclic epoxy resin and the like, and among these, those containing a glycidylamine type epoxy resin or a glycidyl ether type epoxy resin are preferable.
 ダイマー酸型エポキシ樹脂以外のエポキシ樹脂のエポキシ当量は、特に限定されないが、1500g/eq以下であることが好ましく、20~1000g/eqであることがより好ましい。エポキシ当量が上記範囲内である場合、耐熱性、粘性、密着性のバランスが良い導電性組成物が得られやすい。 The epoxy equivalent of the epoxy resin other than the dimer acid type epoxy resin is not particularly limited, but is preferably 1500 g / eq or less, and more preferably 20 to 1000 g / eq. When the epoxy equivalent is within the above range, a conductive composition having a good balance of heat resistance, viscosity and adhesion can be easily obtained.
 ダイマー酸型エポキシ樹脂は、分子内にエポキシ基を1個以上有するエポキシ樹脂であって、ダイマー酸を変性したものであればよく、ダイマー酸のグリシジル変性化合物などが例として挙げられ、2種以上を併用することもできる。このような樹脂としては、例えば、下記一般式(1)、(2)で表されるものを使用できる。 The dimer acid type epoxy resin may be an epoxy resin having one or more epoxy groups in the molecule and may be a modified dimer acid. Examples thereof include a glycidyl-modified compound of dimer acid, and two or more kinds thereof. Can also be used together. As such a resin, for example, those represented by the following general formulas (1) and (2) can be used.
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000001
 
 式(1)、(2)中のn1~n5はそれぞれ独立に3~9の整数を表す。 N1 to n5 in equations (1) and (2) independently represent integers of 3 to 9.
 n1は3~9の整数を表し、4~8の整数が好ましく、5~7がより好ましく、7が特に好ましい。n2は3~9の整数を表し、5~9の整数が好ましく、7又は8がより好ましく、7が特に好ましい。n3は3~9の整数を表し、4~8の整数が好ましく、6又は7がより好ましく、6が特に好ましい。n4は3~9の整数を表す。n5は3~9の整数を表し、4~8の整数が好ましく、5又は6がより好ましく、5が特に好ましい。 N1 represents an integer of 3 to 9, preferably an integer of 4 to 8, more preferably 5 to 7, and particularly preferably 7. n2 represents an integer of 3 to 9, preferably an integer of 5 to 9, more preferably 7 or 8, and particularly preferably 7. n3 represents an integer of 3 to 9, preferably an integer of 4 to 8, more preferably 6 or 7, and particularly preferably 6. n4 represents an integer of 3 to 9. n5 represents an integer of 3 to 9, with an integer of 4 to 8 being preferred, 5 or 6 being more preferred, and 5 being particularly preferred.
 このようなダイマー酸型エポキシ樹脂を含有することにより、導電性組成物の粘度やチキソトロピックインデックス(TI値)が低くなりやすく、モールド樹脂に形成されたトレンチ部への優れた充填性が得られやすい。 By containing such a dimer acid type epoxy resin, the viscosity and thixotropic index (TI value) of the conductive composition tend to be lowered, and excellent filling property to the trench portion formed in the mold resin can be obtained. Cheap.
 ダイマー酸型エポキシ樹脂のエポキシ当量は、特に限定されないが、80~1500g/eqであることが好ましく、200~1000g/eqであることがより好ましい。エポキシ当量が上記範囲内である場合、耐熱性、粘性、密着性のバランスが良い導電性組成物が得られやすい。 The epoxy equivalent of the dimer acid type epoxy resin is not particularly limited, but is preferably 80 to 1500 g / eq, and more preferably 200 to 1000 g / eq. When the epoxy equivalent is within the above range, a conductive composition having a good balance of heat resistance, viscosity and adhesion can be easily obtained.
 導電性フィラー(A)は、平均粒子径が5~8μmであることにより、分散性が良好で凝集が防止でき、パッケージのグランド回路との接続性やシールド特性が良好である。 Since the conductive filler (A) has an average particle size of 5 to 8 μm, it has good dispersibility and can prevent agglomeration, and has good connectivity with the ground circuit of the package and shield characteristics.
 導電性フィラー(B)は、平均粒子径が2~3μmであることにより、平均粒子径が5~8μmの導電性フィラー同士の間隙を充填することができるため、100MHz~1GHzの電磁波に対するシールド性を向上させ、かつ、低粘度の導電性組成物を得ることができる。 Since the conductive filler (B) has an average particle diameter of 2 to 3 μm, it can fill the gaps between the conductive fillers having an average particle diameter of 5 to 8 μm, and thus has a shielding property against electromagnetic waves of 100 MHz to 1 GHz. It is possible to obtain a low-viscosity conductive composition.
 導電性フィラーの含有量は、エポキシ樹脂100質量部に対して、400~600質量部であれば特に限定されないが、450~550質量部であることがより好ましい。上記範囲内である場合、シールド特性や、モールド樹脂に形成されたトレンチ部への充填性に優れた導電性組成物が得られやすい。 The content of the conductive filler is not particularly limited as long as it is 400 to 600 parts by mass with respect to 100 parts by mass of the epoxy resin, but it is more preferably 450 to 550 parts by mass. When it is within the above range, it is easy to obtain a conductive composition having excellent shielding properties and filling property in the trench portion formed of the mold resin.
 導電性フィラー(A)と導電性フィラー(B)との含有割合((A):(B))は、質量比で97:3~50:50であれば特に限定されないが、95:5~70:30であることがより好ましい。 The content ratio ((A): (B)) of the conductive filler (A) and the conductive filler (B) is not particularly limited as long as the mass ratio is 97: 3 to 50:50, but is 95: 5 to 95: 5. It is more preferable that it is 70:30.
 導電性フィラー(A)及び導電性フィラー(B)は、銅粉、銀粉、金粉、銀被覆銅粉又は銀被覆銅合金粉であることが好ましく、これらの中から1種を単独で使用することもでき、2種以上を併用してもよく、コスト削減の観点からは、銅粉、銀被覆銅粉、又は銀被覆銅合金粉であることがより好ましい。 The conductive filler (A) and the conductive filler (B) are preferably copper powder, silver powder, gold powder, silver-coated copper powder or silver-coated copper alloy powder, and one of these should be used alone. In addition, two or more kinds may be used in combination, and from the viewpoint of cost reduction, copper powder, silver-coated copper powder, or silver-coated copper alloy powder is more preferable.
 銀被覆銅粉は、銅粉と、この銅粉粒子の少なくとも一部を被覆する銀層又は銀含有層とを有するものであり、銀被覆銅合金粉は、銅合金粉と、この銅合金粒子の少なくとも一部を被覆する銀層又は銀含有層とを有するものである。銅合金粒子は、例えば、ニッケルの含有量が0.5~20質量%であり、かつ亜鉛の含有量が1~20質量%であり、残部が銅からなり、残部の銅は不可避不純物を含んでいてもよい。このように銀被覆層を有する銅合金粒子を用いることにより、シールド性、及び耐変色性に優れたシールドパッケージが得られ易い。 The silver-coated copper powder has a copper powder and a silver layer or a silver-containing layer that covers at least a part of the copper powder particles, and the silver-coated copper alloy powder is a copper alloy powder and the copper alloy particles. It has a silver layer or a silver-containing layer that covers at least a part of the above. The copper alloy particles have, for example, a nickel content of 0.5 to 20% by mass and a zinc content of 1 to 20% by mass, the balance of which is copper, and the balance of copper containing unavoidable impurities. You may be. By using the copper alloy particles having the silver coating layer in this way, it is easy to obtain a shield package having excellent shielding properties and discoloration resistance.
 導電性フィラー(A)の形状の例としては、フレーク状(鱗片状)、樹枝状、球状、繊維状、不定形(多面体)等が挙げられるが、抵抗値がより低く、シールド性がより向上したシールド層が得られ、充填性を高める観点から、球状であることが好ましい。 Examples of the shape of the conductive filler (A) include flakes (scaly), dendritic, spherical, fibrous, amorphous (polyhedron), etc., but the resistance value is lower and the shielding property is further improved. It is preferable that the shield layer is spherical from the viewpoint of obtaining the shield layer and improving the filling property.
 また、導電性フィラー(A)が球状である場合は、導電性フィラー(A)のタップ密度は3.5~7.0g/cmであることが好ましい。タップ密度が上記範囲内である場合、シールド層の導電性がより良好となりやすい。 When the conductive filler (A) is spherical, the tap density of the conductive filler (A) is preferably 3.5 to 7.0 g / cm 3. When the tap density is within the above range, the conductivity of the shield layer tends to be better.
 導電性フィラー(B)の形状の例としては、フレーク状(鱗片状)、樹枝状、球状、繊維状、不定形(多面体)等が挙げられるが、抵抗値がより低く、シールド性がより向上したシールド層が得られ、充填性を高める観点から、球状であることが好ましい。 Examples of the shape of the conductive filler (B) include flakes (scaly), dendritic, spherical, fibrous, amorphous (polyhedron), etc., but the resistance value is lower and the shielding property is further improved. It is preferable that the shield layer is spherical from the viewpoint of obtaining the shield layer and improving the filling property.
 また、導電性フィラー(B)が球状である場合は、導電性フィラー(B)のタップ密度は4.0~7.0g/cmであることが好ましい。タップ密度が上記範囲内である場合、シールド層の導電性がより良好となりやすい。 When the conductive filler (B) is spherical, the tap density of the conductive filler (B) is preferably 4.0 to 7.0 g / cm 3. When the tap density is within the above range, the conductivity of the shield layer tends to be better.
 本発明に係る導電性組成物には、エポキシ樹脂硬化剤を使用することができる。エポキシ樹脂硬化剤としては、フェノール系硬化剤、イミダゾール系硬化剤、アミン系硬化剤、カチオン系硬化剤などが挙げられる。これらは1種を単独で使用することもでき、2種以上を併用してもよい。 An epoxy resin curing agent can be used in the conductive composition according to the present invention. Examples of the epoxy resin curing agent include a phenol-based curing agent, an imidazole-based curing agent, an amine-based curing agent, and a cationic-based curing agent. One of these may be used alone, or two or more thereof may be used in combination.
 フェノール系硬化剤としては、例えばフェノールノボラック、ナフトール系化合物等が挙げられる。 Examples of the phenol-based curing agent include phenol novolac, naphthol-based compounds, and the like.
 イミダゾール系硬化剤としては、例えばイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2-エチル-4-メチル-イミダゾール、1-シアノエチル-2-ウンデシルイミダゾールが挙げられる。 Examples of the imidazole-based curing agent include imidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 1-benzyl-2-phenylimidazole, 2-ethyl-. Examples thereof include 4-methyl-imidazole and 1-cyanoethyl-2-undecylimidazole.
 アミン系硬化剤としては、例えば、ジエチレントリアミン、トリエチレンテトラミンなどの脂肪族ポリアミン、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族ポリアミンなどが挙げられる。 Examples of the amine-based curing agent include aliphatic polyamines such as diethylenetriamine and triethylenetetramine, and aromatic polyamines such as metaphenylenediamine, diaminodiphenylmethane, and diaminodiphenylsulfone.
 カチオン系硬化剤の例としては、三フッ化ホウ素のアミン塩、P-メトキシベンゼンジアゾニウムヘキサフルオロホスフェート、ジフェニルイオドニウムヘキサフルオロホスフェート、トリフェニルスルホニウム、テトラ-n-ブチルホスホニウムテトラフェニルボレート、テトラ-n-ブチルホスホニウム-o,o-ジエチルホスホロジチオエート等に代表されるオニウム系化合物が挙げられる。 Examples of cationic curing agents include amine salts of boron trifluoride, P-methoxybenzenediazonium hexafluorophosphate, diphenyliodonium hexafluorophosphate, triphenylsulfonium, tetra-n-butylphosphonium tetraphenylborate, and tetra-. Examples thereof include onium compounds typified by n-butylphosphonium-o, o-diethylphosphologithioate and the like.
 硬化剤の含有量は、エポキシ樹脂100質量部に対して0.3~40質量部であることが好ましく、0.5~35質量部であることがより好ましい。硬化剤の含有量が0.3質量部以上である場合、導電性組成物が十分に硬化し、導電性が良好となって、シールド効果に優れたシールド層が得られやすく、40質量部以下である場合、保存安定性に優れた導電性組成物が得られやすい。 The content of the curing agent is preferably 0.3 to 40 parts by mass, and more preferably 0.5 to 35 parts by mass with respect to 100 parts by mass of the epoxy resin. When the content of the curing agent is 0.3 parts by mass or more, the conductive composition is sufficiently cured, the conductivity becomes good, and a shield layer having an excellent shielding effect can be easily obtained, and 40 parts by mass or less. If this is the case, a conductive composition having excellent storage stability can be easily obtained.
 本発明に係る導電性組成物には、発明の目的を損なわない範囲内において、消泡剤、増粘剤、粘着剤、充填剤、難燃剤、着色剤等、公知の添加剤を加えることができる。 Known additives such as defoamers, thickeners, pressure-sensitive adhesives, fillers, flame retardants, and colorants may be added to the conductive composition according to the present invention within a range that does not impair the object of the invention. can.
 本発明に係る導電性組成物は、導電性組成物をディスペンス工法や、真空印刷工法によりパッケージのトレンチ部に塗布できるようにするためには、低粘度であり、チキソトロピックインデックス(TI値)が低いものであることが好ましい。 The conductive composition according to the present invention has a low viscosity and has a thixotropic index (TI value) so that the conductive composition can be applied to the trench portion of the package by the dispensing method or the vacuum printing method. It is preferably low.
 ここで、ディスペンス工法とは、シリンジ形状のノズル先端から導電性組成物を押し出して塗布する方法のことをいう。また、真空印刷工法とは、孔版印刷として版に化学繊維のスクリーンを張ったものを利用し、そのスクリーンに光学的に版膜を作って必要な画線以外の目を塞ぎ、版を作り、真空下でその版膜の孔を介してインクを擦りつけることにより版の下に設置した被印刷物の印刷面に印刷を行う方法のことをいう。 Here, the dispense method refers to a method of extruding a conductive composition from the tip of a syringe-shaped nozzle and applying it. In addition, the vacuum printing method uses a plate with a screen of chemical fibers for stencil printing, and optically forms a plate film on the screen to close the eyes other than the necessary strokes to make a plate. It refers to a method of printing on the printed surface of an object to be printed placed under a plate by rubbing ink through the holes of the plate film under vacuum.
 本発明に係る導電性組成物の粘度は用途や塗布に使用する機器に応じて適宜調整するのが好ましく、特に限定されないが、一般的な目安としては、導電性組成物の温度が25℃において、600dPa・s以下であることが好ましく、500dPa・s以下であることがより好ましい。600dPa・s以下である場合、ディスペンス工法におけるノズルの目詰まりや、真空印刷工法におけるスクリーンの詰まりが生じにくく、トレンチ部への優れた充填性が得られやすい。粘度の測定方法は、JIS K7117-1に準拠し、単一円筒形回転粘度計(いわゆるB型又はBH型粘度計)でローターNo.7を用いて10rpmで測定することができる。なお、単一円筒形回転粘度計で測定可能な粘度であれば、低くとも問題はない。 The viscosity of the conductive composition according to the present invention is preferably adjusted as appropriate according to the application and the equipment used for coating, and is not particularly limited, but as a general guideline, the temperature of the conductive composition is 25 ° C. , 600 dPa · s or less, and more preferably 500 dPa · s or less. When it is 600 dPa · s or less, clogging of the nozzle in the dispensing method and clogging of the screen in the vacuum printing method are unlikely to occur, and excellent filling property to the trench portion can be easily obtained. The viscosity measurement method conforms to JIS K7117-1, and a single cylindrical rotational viscometer (so-called B-type or BH-type viscometer) is used to measure the rotor number. It can be measured at 10 rpm using 7. As long as the viscosity can be measured by a single cylindrical rotational viscometer, there is no problem even if it is low.
 本発明に係る導電性組成物のチキソトロピックインデックス(TI値)は用途や塗布に使用する機器に応じて適宜調整するのが好ましく、特に限定されないが、一般的な目安としては4.5以下であることが好ましい。TI値が4.5以下である場合、トレンチ部への優れた充填性が得られやすく、真空印刷工法によって塗布した際の表面が平滑になりやすく、バンプを形成しにくい。これによりシステム・イン・パッケージの低背化が可能となり、システム・イン・パッケージを実装する装置においてスペースを有効活用できる。ここで、TI値は、下記式で求めることができる。
TI値=(2rpmで測定した粘度)/(20rpmで測定した粘度)
The thixotropic index (TI value) of the conductive composition according to the present invention is preferably adjusted as appropriate according to the application and the equipment used for coating, and is not particularly limited, but as a general guideline, it is 4.5 or less. It is preferable to have. When the TI value is 4.5 or less, excellent filling property to the trench portion is easily obtained, the surface is easily smoothed when applied by the vacuum printing method, and bumps are difficult to be formed. This makes it possible to reduce the height of the system-in-package, and effectively utilize the space in the device on which the system-in-package is mounted. Here, the TI value can be obtained by the following formula.
TI value = (viscosity measured at 2 rpm) / (viscosity measured at 20 rpm)
 本発明に係る導電性組成物には、ボイドの発生を防止する観点から、溶剤を含まないことが好ましい。 The conductive composition according to the present invention preferably does not contain a solvent from the viewpoint of preventing the generation of voids.
 以下、本発明の内容を実施例に基づいて詳細に説明するが、本発明は以下に限定されるものではない。また、以下において「部」又は「%」とあるのは、特にことわらない限り質量基準とする。 Hereinafter, the content of the present invention will be described in detail based on examples, but the present invention is not limited to the following. In addition, the term "part" or "%" in the following is based on mass unless otherwise specified.
[実施例、比較例]
 次に示すエポキシ樹脂100質量部に対して、導電性フィラー、及び硬化剤を表1~4に記載された割合で配合して混合し、導電性組成物を得た。使用した各成分の詳細は以下の通りである。
[Examples, comparative examples]
A conductive filler and a curing agent were mixed with 100 parts by mass of the epoxy resin shown below in the proportions shown in Tables 1 to 4 to obtain a conductive composition. Details of each component used are as follows.
・エポキシ樹脂(a):グリシジルアミン型エポキシ樹脂、(株)ADEKA製「EP-3905S」、エポキシ当量=95g/eq
・エポキシ樹脂(b):グリシジルエーテル型エポキシ樹脂、(株)ADEKA製「ED502」、エポキシ当量=320g/eq
・ダイマー酸型エポキシ樹脂:上記式(2)において、n1=7、n2=7、n4=4、n5=5のものを使用した。
-Epoxy resin (a): glycidylamine type epoxy resin, "EP-3905S" manufactured by ADEKA Corporation, epoxy equivalent = 95 g / eq
-Epoxy resin (b): glycidyl ether type epoxy resin, "ED502" manufactured by ADEKA Corporation, epoxy equivalent = 320 g / eq
-Dimeric acid type epoxy resin: In the above formula (2), n1 = 7, n2 = 7, n4 = 4, n5 = 5 were used.
・導電性フィラー(a):銀コート銅粒子、D50=10μm、球状
・導電性フィラー(b):銀コート銅粒子、D50=8μm、球状
・導電性フィラー(c):銀コート銅粒子、D50=6μm、球状
・導電性フィラー(d):銀コート銅粒子、D50=5μm、球状
・導電性フィラー(e):銀粒子、D50=4μm、球状
・導電性フィラー(f):銀コート銅粒子、D50=3μm、球状
・導電性フィラー(g):銀粒子、D50=2μm、球状
・導電性フィラー(h):銀粒子、D50=1μm、球状
-Conducting filler (a): silver-coated copper particles, D50 = 10 μm, spherical / conductive filler (b): silver-coated copper particles, D50 = 8 μm, spherical / conductive filler (c): silver-coated copper particles, D50 = 6 μm, spherical / conductive filler (d): silver-coated copper particles, D50 = 5 μm, spherical / conductive filler (e): silver particles, D50 = 4 μm, spherical / conductive filler (f): silver-coated copper particles , D50 = 3 μm, spherical / conductive filler (g): silver particles, D50 = 2 μm, spherical / conductive filler (h): silver particles, D50 = 1 μm, spherical
・硬化剤(a):イミダゾール系硬化剤、四国化成工業(株)製「2E4MZ」
・硬化剤(b):フェノールノボラック系硬化剤、荒川化学工業(株)製「タマノル758」
-Curing agent (a): Imidazole-based curing agent, "2E4MZ" manufactured by Shikoku Kasei Kogyo Co., Ltd.
-Curing agent (b): Phenol novolac-based curing agent, "Tamanor 758" manufactured by Arakawa Chemical Industry Co., Ltd.
 上記実施例及び比較例の導電性組成物の評価を以下の通り行った。結果を表1~4に示す。 The conductive compositions of the above Examples and Comparative Examples were evaluated as follows. The results are shown in Tables 1 to 4.
(1)導電性組成物の粘度
 上記で得られた導電性組成物の25℃における粘度を、JIS K7117-1に準拠し、単一円筒形回転粘度計(いわゆるB型粘度計)でローターNo.7を用いて10rpmで測定した。
(1) Viscosity of Conductive Composition The viscosity of the conductive composition obtained above at 25 ° C. is measured by a single cylindrical rotary viscometer (so-called B-type viscometer) in accordance with JIS K7117-1. .. It was measured at 10 rpm using 7.
(2)チキソトロピックインデックス(TI値)
 上記で得られた導電性組成物の25℃における粘度を、JIS K7117-1に準拠し、単一円筒形回転粘度計(いわゆるB型粘度計)でローターNo.7を用いて、2rpm及び20rpmで測定した。得られた粘度値を下記式に代入し、TI値を求めた。
TI値=(2rpmで測定した粘度)/(20rpmで測定した粘度)
(2) Thixotropic index (TI value)
The viscosity of the conductive composition obtained above at 25 ° C. was measured with a single cylindrical rotational viscometer (so-called B-type viscometer) in accordance with JIS K7117-1. 7 was used and measured at 2 rpm and 20 rpm. The obtained viscosity value was substituted into the following formula to obtain the TI value.
TI value = (viscosity measured at 2 rpm) / (viscosity measured at 20 rpm)
(3)電界シールド特性(100MHz、1GHz)
 IEC62333-1,IEC62333-2に準拠して、KEC法により、100MHz、及び1GHzの電磁波に対するシールド特性を評価した。測定条件は、温度25℃、相対湿度30~50%の雰囲気とした。
(3) Electric field shield characteristics (100 MHz, 1 GHz)
Shielding characteristics against electromagnetic waves of 100 MHz and 1 GHz were evaluated by the KEC method in accordance with IEC6233-1 and IEC623332. The measurement conditions were an atmosphere with a temperature of 25 ° C. and a relative humidity of 30 to 50%.
 厚さ約100μmのポリイミドフィルムにバーフィルムアプリケータ(ビック-ガードナー社製)を用いて、上記で得られた導電性組成物を印刷後、80℃で60分間加熱し、さらに160℃で60分間加熱することにより硬化させて厚さ約150μmの塗膜を形成した。得られた塗膜を15cm四方に裁断したものをサンプル1とした。 The conductive composition obtained above is printed on a polyimide film having a thickness of about 100 μm using a bar film applicator (manufactured by BIC-Gardner), heated at 80 ° C. for 60 minutes, and further heated at 160 ° C. for 60 minutes. It was cured by heating to form a coating film having a thickness of about 150 μm. Sample 1 was obtained by cutting the obtained coating film into 15 cm squares.
 図1は、KEC法で用いられるシステムの構成を示す模式図である。KEC法で用いられるシステムは、電磁波シールド効果測定装置211aと、スペクトラム・アナライザ221と、10dBの減衰を行うアッテネータ222と、3dBの減衰を行うアッテネータ223と、プリアンプ224とで構成される。 FIG. 1 is a schematic diagram showing the configuration of the system used in the KEC method. The system used in the KEC method includes an electromagnetic wave shielding effect measuring device 211a, a spectrum analyzer 221, an attenuator 222 that attenuates 10 dB, an attenuator 223 that attenuates 3 dB, and a preamplifier 224.
 なお、スペクトラム・アナライザ221には、株式会社アドバンテスト社製のU3741を用いた。また、プリアンプにはアジレントテクノロジーズ社製のHP8447Fを用いた。 A U3741 manufactured by Advantest Co., Ltd. was used as the spectrum analyzer 221. Further, HP8447F manufactured by Agilent Technologies was used as the preamplifier.
 電界波シールド効果評価装置211aには、2つの測定治具213が相対向して設けられている。この測定治具213・213間に、測定対象のサンプル1が挟持されるように設置される。測定治具213には、TEMセル(Transverse Electro Magnetic Cell)の寸法配分が取り入れられ、その伝送軸方向に垂直な面内で左右対称に分割した構造になっている。但し、サンプル1の挿入によって短絡回路が形成されることを防止するために、平板状の中心導体214は各測定治具213との間に隙間を設けて配置されている。 The electric field wave shield effect evaluation device 211a is provided with two measuring jigs 213 facing each other. The sample 1 to be measured is sandwiched between the measuring jigs 213 and 213. The measuring jig 213 incorporates the dimensional distribution of a TEM cell (Transverse Electro Magical Cell), and has a structure symmetrically divided in a plane perpendicular to the transmission axis direction. However, in order to prevent a short-circuit circuit from being formed by inserting the sample 1, the flat plate-shaped center conductor 214 is arranged with a gap between it and each measuring jig 213.
 KEC法は、先ず、スペクトラム・アナライザ221から出力した信号を、アッテネータ222を介して送信側の測定治具213に入力する。そして、受信側の測定治具213で受けた信号を、アッテネータ223を介してプリアンプ224で増幅してから、スペクトラム・アナライザ221により信号レベルを測定する。尚、スペクトラム・アナライザ221は、サンプル1を電磁波シールド効果測定装置211aに設置していない状態を基準として、サンプル1を電磁波シールド効果測定装置211aに設置した場合の減衰量を出力する。 In the KEC method, first, the signal output from the spectrum analyzer 221 is input to the measuring jig 213 on the transmitting side via the attenuator 222. Then, the signal received by the measuring jig 213 on the receiving side is amplified by the preamplifier 224 via the attenuator 223, and then the signal level is measured by the spectrum analyzer 221. The spectrum analyzer 221 outputs the amount of attenuation when the sample 1 is installed in the electromagnetic wave shielding effect measuring device 211a, based on the state in which the sample 1 is not installed in the electromagnetic wave shielding effect measuring device 211a.
 100MHzの電磁波に対するシールド効果の評価は、減衰量が70dB以上であるものはシールド効果に優れていると評価した。1GHzの電磁波に対するシールド効果の評価は、減衰量が63dB以上であるものはシールド効果に優れていると評価した。 In the evaluation of the shielding effect against electromagnetic waves of 100 MHz, it was evaluated that the one having an attenuation amount of 70 dB or more was excellent in the shielding effect. In the evaluation of the shielding effect against an electromagnetic wave of 1 GHz, it was evaluated that the one having an attenuation amount of 63 dB or more was excellent in the shielding effect.
(4)ディスペンス工法における充填性
 図2に示すサンプル基板を用いて、ディスペンス工法により、測定用のサンプル2を作製した。サンプル基板としては、基板10上にグランド回路11が形成され、基板10及びグランド回路11がモールド樹脂12により封止され、モールド樹脂12にトレンチ部13が形成されたものを用いた。ノードソンアシムテック社製のディスペンサー「S2-920N-P」、及びバルブ「DV-8000」を用いて、図2に示すサンプル基板のトレンチ部13に、以下のディスペンス条件にて導電性組成物を塗布し、サンプル2を得た。そして、得られたサンプル2を、80℃で60分間加熱し、さらに160℃で60分間加熱することにより硬化させた。得られたサンプル2について、硬化前、及び硬化後に、エクスロン・インターナショナル社製のX線透過装置「Y.Cheetah μHD」を用いて、以下の測定条件にてトレンチ部13を観察し、ボイドの有無を確認した。ボイドが生じていないものは、充填性が優れているとして「○」と評価し、ボイドが生じていたものは、充填性が劣っているとして「×」と評価した。
(4) Fillability in the Dispensing Method Using the sample substrate shown in FIG. 2, a sample 2 for measurement was prepared by the Dispensing method. As the sample substrate, a ground circuit 11 was formed on the substrate 10, the substrate 10 and the ground circuit 11 were sealed with the mold resin 12, and the trench portion 13 was formed on the mold resin 12. Using the dispenser "S2-920N-P" manufactured by Nordson Asimtech and the valve "DV-8000", the conductive composition is applied to the trench portion 13 of the sample substrate shown in FIG. 2 under the following discharge conditions. And sample 2 was obtained. Then, the obtained sample 2 was cured by heating at 80 ° C. for 60 minutes and further heating at 160 ° C. for 60 minutes. With respect to the obtained sample 2, before and after curing, the trench portion 13 was observed under the following measurement conditions using an X-ray transmission device “Y. Cheetah μHD” manufactured by Exlon International Co., Ltd., and the presence or absence of voids was observed. It was confirmed. Those without voids were evaluated as "◯" because of their excellent filling property, and those with voids were evaluated as "x" because of their poor filling property.
<ディスペンス条件>
バルブ温度:60℃
基板温度:60℃
ノズル内径:100μm
ディスペンスギャップ:100μm
ディスペンススピード:1.2mm/秒
<測定条件>
電圧:50kV
電流:80μA
電力:4W
<Dispensation condition>
Valve temperature: 60 ° C
Substrate temperature: 60 ° C
Nozzle inner diameter: 100 μm
Dispens gap: 100 μm
Dispensing speed: 1.2 mm / sec <Measurement conditions>
Voltage: 50kV
Current: 80 μA
Power: 4W
(5)ディスペンス工法における量産性
 上記サンプル2の作製時に、ノズルに詰まりが発生しなかったものは、量産性に優れているとして「○」と評価し、ノズルに詰まりが発生したものは、量産性に劣っているとして「×」と評価した。
(5) Mass productivity in the dispense method Those in which the nozzles were not clogged during the production of the above sample 2 were evaluated as "○" because of their excellent mass productivity, and those in which the nozzles were clogged were mass-produced. It was evaluated as "x" because it was inferior in sex.
(6)真空印刷工法における充填性
 図3に示すサンプル基板を用いて、真空印刷工法により、測定用のサンプル3を作製した。サンプル基板としては、基板10上にグランド回路11が形成され、基板10及びグランド回路11がモールド樹脂12により封止され、モールド樹脂12にトレンチ部13が形成されたものを用いた。東レエンジニアリング(株)製の真空印刷機「VE-700」を用いて、図3に示すサンプル基板のトレンチ部13に、以下の印刷条件にて導電性組成物を塗布し、サンプル3を得た。そして、得られたサンプル3を、80℃で60分間加熱し、さらに160℃で60分間加熱することにより硬化させた。得られたサンプル3について、硬化前、及び硬化後に、エクスロン・インターナショナル社製のX線透過装置「Y.Cheetah μHD」を用いて、以下の測定条件にてトレンチ部13を観察し、ボイドの有無を確認した。ボイドが生じていないものは、充填性が優れているとして「○」と評価し、ボイドが生じていたものは、充填性が劣っているとして「×」と評価した。
(6) Fillability in the vacuum printing method Using the sample substrate shown in FIG. 3, a sample 3 for measurement was prepared by the vacuum printing method. As the sample substrate, a ground circuit 11 was formed on the substrate 10, the substrate 10 and the ground circuit 11 were sealed with the mold resin 12, and the trench portion 13 was formed on the mold resin 12. Using a vacuum printing machine "VE-700" manufactured by Toray Engineering Co., Ltd., the conductive composition was applied to the trench portion 13 of the sample substrate shown in FIG. 3 under the following printing conditions to obtain sample 3. .. Then, the obtained sample 3 was cured by heating at 80 ° C. for 60 minutes and further heating at 160 ° C. for 60 minutes. With respect to the obtained sample 3, before and after curing, the trench portion 13 was observed under the following measurement conditions using an X-ray transmission device "Y. Cheetah μHD" manufactured by Exlon International Co., Ltd., and the presence or absence of voids was observed. It was confirmed. Those without voids were evaluated as "◯" because of their excellent filling property, and those with voids were evaluated as "x" because of their poor filling property.
<印刷条件>
印圧:0.5MPa
スキージ角度:10°
スキージ速度:15mm/秒
クリアランス:2.0mm
真空度:0.13kPa
ウレタンスキージ硬度:80度
<測定条件>
電圧:50kV
電流:80μA
電力:4W
<Printing conditions>
Printing pressure: 0.5 MPa
Squeegee angle: 10 °
Squeegee speed: 15mm / sec Clearance: 2.0mm
Vacuum degree: 0.13 kPa
Urethane squeegee hardness: 80 degrees <Measurement conditions>
Voltage: 50kV
Current: 80 μA
Power: 4W
(7)真空印刷工法における量産性
 上記サンプル3の作成時に、真空印刷機の印刷版のメッシュに詰まりが発生しなかったものは、量産性に優れているとして「○」と評価し、メッシュに詰まりが発生したものは、量産性に劣っているとして「×」と評価した。
(7) Mass productivity in the vacuum printing method When the sample 3 was prepared, if the mesh of the printing plate of the vacuum printing machine was not clogged, it was evaluated as "○" because of its excellent mass productivity, and the mesh was made into a mesh. Those with clogging were evaluated as "x" because they were inferior in mass productivity.
(8)真空印刷工法における上面外観
 上記サンプル3に形成されたトレンチ部13の開口部において、モールド樹脂12とトレンチ部13に充填された導電性組成物とが平滑な面を形成しているかを評価した。具体的には、モールド樹脂12が形成する表面と導電性組成物が形成する表面との差が30μm未満であれば、上面外観が優れているとして「○」と評価し、30~60μmであれば、上面外観がやや劣るとして「△」と評価し、61μm以上であれば、上面外観が劣っているとして「×」と評価した。
(8) Appearance of the upper surface in the vacuum printing method Whether the mold resin 12 and the conductive composition filled in the trench 13 form a smooth surface in the opening of the trench 13 formed in the sample 3 above. evaluated. Specifically, if the difference between the surface formed by the mold resin 12 and the surface formed by the conductive composition is less than 30 μm, it is evaluated as “◯” as having an excellent top surface appearance, and it may be 30 to 60 μm. For example, if the upper surface appearance is slightly inferior, it is evaluated as “Δ”, and if it is 61 μm or more, it is evaluated as “x” because the upper surface appearance is inferior.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
 表1に示す結果から、ダイマー酸型エポキシ樹脂の含有量が所定範囲内である実施例1-1~実施例1-4は、いずれの評価結果も優れていた。一方、比較例1-1は、ダイマー酸型エポキシ樹脂を含有しない例であり、導電性組成物の粘度及びTI値が高く、ディスペンス工法、真空印刷工法のいずれにおいても、充填性が劣っていた。また、真空印刷工法において、上面外観もやや劣っていた。また、比較例1-2は、ダイマー酸型エポキシ樹脂の含有量が上限値を超える例であり、100MHz及び1GHzに対する電界シールド特性が劣っていた。 From the results shown in Table 1, all the evaluation results of Examples 1-1 to 1-4 in which the content of the dimer acid type epoxy resin was within the predetermined range were excellent. On the other hand, Comparative Example 1-1 is an example in which the dimer acid type epoxy resin is not contained, the viscosity and TI value of the conductive composition are high, and the filling property is inferior in both the dispensing method and the vacuum printing method. .. In addition, the appearance of the upper surface was slightly inferior in the vacuum printing method. Further, Comparative Example 1-2 is an example in which the content of the dimer acid type epoxy resin exceeds the upper limit value, and the electric field shielding characteristics with respect to 100 MHz and 1 GHz are inferior.
 表2に示す結果から、導電性フィラー(A)と導電性フィラー(B)との含有割合が所定範囲内である実施例2-1~実施例2-4は、いずれの評価結果も優れていた。一方、比較例2-1は、導電性フィラーとして導電性フィラー(A)を単独で含有する例であり、100MHzに対する電界シールド特性が劣っていた。比較例2-2,2-3は、導電性フィラー(A)と導電性フィラー(B)との含有割合が所定範囲外の例であり、粘度及びTI値が高く、ディスペンス工法、真空印刷工法のいずれにおいても、充填性が劣っていた。また、真空印刷工法において、上面外観もやや劣っていた。 From the results shown in Table 2, all the evaluation results of Examples 2-1 to 2-4 in which the content ratios of the conductive filler (A) and the conductive filler (B) are within a predetermined range are excellent. rice field. On the other hand, Comparative Example 2-1 is an example in which the conductive filler (A) is contained alone as the conductive filler, and the electric field shielding characteristic with respect to 100 MHz is inferior. Comparative Examples 2-2 and 2-3 are examples in which the content ratio of the conductive filler (A) and the conductive filler (B) is out of the predetermined range, the viscosity and the TI value are high, and the dispensing method and the vacuum printing method are used. In each of the above, the filling property was inferior. In addition, the appearance of the upper surface was slightly inferior in the vacuum printing method.
 比較例2-4は、導電性フィラーとして導電性フィラー(B)を単独で含有する例であり、100MHzに対するシールド特性が劣っていた。また、導電性組成物のTI値が高く、真空印刷工法における上面外観が劣っていた。 Comparative Example 2-4 is an example in which the conductive filler (B) is contained alone as the conductive filler, and the shielding property with respect to 100 MHz is inferior. In addition, the TI value of the conductive composition was high, and the appearance of the upper surface in the vacuum printing method was inferior.
 表3に示す結果から、導電性フィラーの合計量が所定範囲内である実施例3-1,3-2は、いずれの評価結果も優れていた。一方、比較例3-1は、導電性フィラーの合計量が下限値未満の例であり、100MHz及び1GHzに対するシールド特性が劣っていた。比較例3-2は、導電性フィラーの合計量が上限値を超える例であり、導電性組成物の粘度が高く、ディスペンス工法、真空印刷工法のいずれにおいても、充填性が劣っていた。また、導電性組成物のTI値が高く、真空印刷工法における上面外観がやや劣っていた。 From the results shown in Table 3, all of the evaluation results of Examples 3-1 and 3-2 in which the total amount of the conductive filler was within the predetermined range were excellent. On the other hand, Comparative Example 3-1 is an example in which the total amount of the conductive filler is less than the lower limit value, and the shielding characteristics with respect to 100 MHz and 1 GHz are inferior. Comparative Example 3-2 is an example in which the total amount of the conductive filler exceeds the upper limit value, the viscosity of the conductive composition is high, and the filling property is inferior in both the dispensing method and the vacuum printing method. In addition, the TI value of the conductive composition was high, and the appearance of the upper surface in the vacuum printing method was slightly inferior.
 表4に示す結果から、導電性フィラー(A)と導電性フィラー(B)とを含有する実施例4-1~実施例4-3は、いずれの評価結果も優れていた。一方、比較例4-1は、導電性フィラー(A)の代わりに、平均粒子径が導電性フィラー(A)の平均粒子径の下限値未満である導電性フィラーを含有する例であり、導電性組成物の粘度が高く、ディスペンス工法、真空印刷工法のいずれにおいても、充填性が劣っていた。また、真空印刷工法において、上面外観もやや劣っていた。 From the results shown in Table 4, all the evaluation results of Examples 4-1 to 4-3 containing the conductive filler (A) and the conductive filler (B) were excellent. On the other hand, Comparative Example 4-1 is an example in which, instead of the conductive filler (A), a conductive filler having an average particle diameter less than the lower limit of the average particle diameter of the conductive filler (A) is contained. The viscosity of the sex composition was high, and the filling property was inferior in both the dispensing method and the vacuum printing method. In addition, the appearance of the upper surface was slightly inferior in the vacuum printing method.
 比較例4-2は、導電性フィラー(A)の代わりに、平均粒子径が導電性フィラー(A)の平均粒子径の上限値を超える導電性フィラーを含有する例であり、100MHz及び1GHzに対するシールド特性が劣っていた。また、導電性フィラーの平均粒子径が大きいため、ディスペンス工法においてはノズルに詰まりが発生し、真空印刷工法においては、真空印刷機の印刷版のメッシュに詰まりが発生し、いずれにおいても量産性が劣っていた。 Comparative Example 4-2 is an example in which, instead of the conductive filler (A), a conductive filler having an average particle size exceeding the upper limit of the average particle size of the conductive filler (A) is contained, with respect to 100 MHz and 1 GHz. The shield characteristics were inferior. In addition, since the average particle size of the conductive filler is large, the nozzles are clogged in the dispense method, and the mesh of the printing plate of the vacuum printing machine is clogged in the vacuum printing method. It was inferior.
 比較例4-3は、導電性フィラー(B)の代わりに、平均粒子径が導電性フィラー(B)の平均粒子径の下限値未満である導電性フィラーを含有する例であり、導電性組成物の粘度が高く、ディスペンス工法、真空印刷工法のいずれにおいても、充填性が劣っていた。また、真空印刷工法において、上面外観もやや劣っていた。 Comparative Example 4-3 is an example in which, instead of the conductive filler (B), a conductive filler having an average particle diameter less than the lower limit of the average particle diameter of the conductive filler (B) is contained, and the conductive composition. The viscosity of the material was high, and the filling property was inferior in both the dispensing method and the vacuum printing method. In addition, the appearance of the upper surface was slightly inferior in the vacuum printing method.
 比較例4-4は、導電性フィラー(B)の代わりに、平均粒子径が導電性フィラー(B)の平均粒子径の上限値を超える導電性フィラーを含有する例であり、100MHzに対するシールド特性が劣っていた。 Comparative Example 4-4 is an example in which, instead of the conductive filler (B), a conductive filler having an average particle size exceeding the upper limit of the average particle size of the conductive filler (B) is contained, and the shielding property with respect to 100 MHz. Was inferior.
 211a……電界波シールド効果評価装置
 213……測定治具
 214……中心導体
 221……スペクトラム・アナライザ
 222……アッテネータ
 223……アッテネータ
 224……プリアンプ
 10……基板
 11……グランド回路
 12……モールド樹脂
 13……トレンチ部

 
211a …… Electric field shield effect evaluation device 213 …… Measuring jig 214 …… Center conductor 221 …… Spectrum analyzer 222 …… Attenuator 223 …… Attenuator 224 …… Preamplifier 10 …… Board 11 …… Ground circuit 12 …… Mold resin 13 …… Trench part

Claims (3)

  1.  ダイマー酸型エポキシ樹脂5~20質量部を含む、エポキシ樹脂100質量部に対して、導電性フィラー400~600質量部を含有し、
     前記導電性フィラーが、レーザー回折散乱式粒度分布測定法により測定した平均粒子径(D50)5~8μmの導電性フィラー(A)と、平均粒子径(D50)2~3μmの導電性フィラー(B)とを含有し、
     前記導電性フィラー(A)と前記導電性フィラー(B)との含有割合((A):(B))が、質量比で97:3~50:50である、導電性組成物。
    It contains 400 to 600 parts by mass of the conductive filler with respect to 100 parts by mass of the epoxy resin, which contains 5 to 20 parts by mass of the dimer acid type epoxy resin.
    The conductive fillers are a conductive filler (A) having an average particle size (D50) of 5 to 8 μm and a conductive filler (B) having an average particle size (D50) of 2 to 3 μm measured by a laser diffraction / scattering type particle size distribution measurement method. ) And
    A conductive composition in which the content ratio ((A): (B)) of the conductive filler (A) to the conductive filler (B) is 97: 3 to 50:50 in terms of mass ratio.
  2.  前記ダイマー酸型エポキシ樹脂が、ダイマー酸のグリシジル変性化合物である、請求項1に記載の導電性組成物。 The conductive composition according to claim 1, wherein the dimer acid type epoxy resin is a glycidyl-modified compound of dimer acid.
  3.  前記エポキシ樹脂が、グリシジルアミン型エポキシ樹脂、及びグリシジルエーテル型エポキシ樹脂を含有する、請求項1又は2に記載の導電性組成物。

     
    The conductive composition according to claim 1 or 2, wherein the epoxy resin contains a glycidyl amine type epoxy resin and a glycidyl ether type epoxy resin.

PCT/JP2021/014032 2020-04-30 2021-03-31 Electroconductive composition WO2021220711A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022517572A JP7419505B2 (en) 2020-04-30 2021-03-31 conductive composition
CN202180030026.9A CN115380076A (en) 2020-04-30 2021-03-31 Conductive composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-080744 2020-04-30
JP2020080744 2020-04-30

Publications (1)

Publication Number Publication Date
WO2021220711A1 true WO2021220711A1 (en) 2021-11-04

Family

ID=78332377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014032 WO2021220711A1 (en) 2020-04-30 2021-03-31 Electroconductive composition

Country Status (3)

Country Link
JP (1) JP7419505B2 (en)
CN (1) CN115380076A (en)
WO (1) WO2021220711A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261778A (en) * 2000-03-15 2001-09-26 Harima Chem Inc Electroconductive silver paste for making flexible circuit board
JP2003141929A (en) * 2001-10-30 2003-05-16 Mitsui Mining & Smelting Co Ltd Copper powder for copper paste
JP2011029204A (en) * 2006-04-13 2011-02-10 Hitachi Chem Co Ltd Conductive paste and prepreg using the same, metal foiled laminated plate, and printed wiring board
WO2016051700A1 (en) * 2014-09-30 2016-04-07 タツタ電線株式会社 Conductive coating material and method for producing shield package using same
WO2016136204A1 (en) * 2015-02-27 2016-09-01 タツタ電線株式会社 Conductive paste and multilayer substrate using same
US20160268216A1 (en) * 2015-03-10 2016-09-15 Samsung Electronics Co., Ltd. Semiconductor packages and methods of fabricating the same
WO2018012017A1 (en) * 2016-07-14 2018-01-18 タツタ電線株式会社 Electroconductive coating material and process for producing shielded packages using same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261778A (en) * 2000-03-15 2001-09-26 Harima Chem Inc Electroconductive silver paste for making flexible circuit board
JP2003141929A (en) * 2001-10-30 2003-05-16 Mitsui Mining & Smelting Co Ltd Copper powder for copper paste
JP2011029204A (en) * 2006-04-13 2011-02-10 Hitachi Chem Co Ltd Conductive paste and prepreg using the same, metal foiled laminated plate, and printed wiring board
WO2016051700A1 (en) * 2014-09-30 2016-04-07 タツタ電線株式会社 Conductive coating material and method for producing shield package using same
WO2016136204A1 (en) * 2015-02-27 2016-09-01 タツタ電線株式会社 Conductive paste and multilayer substrate using same
US20160268216A1 (en) * 2015-03-10 2016-09-15 Samsung Electronics Co., Ltd. Semiconductor packages and methods of fabricating the same
WO2018012017A1 (en) * 2016-07-14 2018-01-18 タツタ電線株式会社 Electroconductive coating material and process for producing shielded packages using same

Also Published As

Publication number Publication date
CN115380076A (en) 2022-11-22
TW202146507A (en) 2021-12-16
JP7419505B2 (en) 2024-01-22
JPWO2021220711A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
EP3202866B1 (en) Conductive coating material and method for producing shield package using same
JP6992083B2 (en) Shield package
JP6921573B2 (en) Conductive paint and method for manufacturing shield packages using it
TWI722136B (en) Conductive paint and manufacturing method of shielding package body using the same
KR100966260B1 (en) Electrically Conductive Adhesive Compositions for Die Adhesion Having Enhanced Moisture Resistance and Reliability
JP6831731B2 (en) Conductive paint and manufacturing method of shield package using it
WO2018012017A1 (en) Electroconductive coating material and process for producing shielded packages using same
WO2021220711A1 (en) Electroconductive composition
WO2021250963A1 (en) Method for manufacturing electromagnetic-wave blocking package by using conductive composition
KR20150139414A (en) Conductive adhesive, and electronic component using the same
TWI841833B (en) Conductive composition
US20230151228A1 (en) Conductive composition and method for producing shielded package using same
JP7482093B2 (en) Antenna integrated module
WO2023027158A1 (en) Thermally conductive composition
EP4209562A1 (en) Conductive adhesive, electronic circuit using same, and method for producing same
JP4888295B2 (en) Conductive paste

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022517572

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796547

Country of ref document: EP

Kind code of ref document: A1