JP7419505B2 - conductive composition - Google Patents

conductive composition Download PDF

Info

Publication number
JP7419505B2
JP7419505B2 JP2022517572A JP2022517572A JP7419505B2 JP 7419505 B2 JP7419505 B2 JP 7419505B2 JP 2022517572 A JP2022517572 A JP 2022517572A JP 2022517572 A JP2022517572 A JP 2022517572A JP 7419505 B2 JP7419505 B2 JP 7419505B2
Authority
JP
Japan
Prior art keywords
conductive filler
epoxy resin
conductive
mass
type epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022517572A
Other languages
Japanese (ja)
Other versions
JPWO2021220711A1 (en
Inventor
剛志 津田
裕明 梅田
英俊 野口
良太 藤川
政弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Publication of JPWO2021220711A1 publication Critical patent/JPWO2021220711A1/ja
Application granted granted Critical
Publication of JP7419505B2 publication Critical patent/JP7419505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Conductive Materials (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、シールド特性に優れた導電性組成物に関する。 The present invention relates to a conductive composition with excellent shielding properties.

携帯電話やタブレット端末等の電子機器においては、小型化、高機能化の要請から複数の半導体チップを一つのパッケージに収め、一つのシステムとして機能させるシステム・イン・パッケージ(SIP)が求められている。 In electronic devices such as mobile phones and tablet terminals, demands for miniaturization and higher functionality have created a demand for system-in-package (SIP), which allows multiple semiconductor chips to be housed in a single package and function as a single system. There is.

このようなシステム・イン・パッケージでは、電子機器の小型軽量化と高機能化を両立させるため、電子部品の実装密度が高められている。しかしながら、実装密度を高めると電磁波の影響を受ける電子部品も増えてしまい、隣接する電子部品間の干渉により誤作動を起こすおそれがある。 In such a system-in-package, the packaging density of electronic components is increased in order to make electronic devices both smaller and lighter and more functional. However, increasing the packaging density increases the number of electronic components that are affected by electromagnetic waves, which may cause malfunctions due to interference between adjacent electronic components.

このような問題に対して、電子部品間の干渉を防止する方法として、モールド樹脂によって封止された電子部品間にトレンチ部(溝)を形成し、このトレンチ部を導電性ペーストで埋めることで、電子部品と電子部品との間にシールド層を形成する方法(いわゆる、コンパートメントシールド)が知られている。 To solve this problem, one way to prevent interference between electronic components is to form trenches (grooves) between electronic components sealed with molded resin and fill these trenches with conductive paste. 2. Description of the Related Art A method of forming a shield layer between electronic components (so-called compartment shielding) is known.

上記の方法により十分なシールド特性を得るためにはトレンチ部の底面まで導電性ペーストを充填させる必要があり、導電性ペーストに溶剤を添加し、導電性ペーストを低粘度化する必要があった。 In order to obtain sufficient shielding properties using the above method, it was necessary to fill the conductive paste to the bottom of the trench, and it was necessary to add a solvent to the conductive paste to lower its viscosity.

しかしながら、溶剤の添加により導電性ペーストを低粘度化した場合、導電性ペーストを熱硬化させる際に、溶剤が揮発し、導電性ペーストの硬化物にボイド(泡)が発生することがある。硬化物にボイドが発生すると、電磁波を十分にシールドすることができないおそれがあった。 However, when the conductive paste is made to have a low viscosity by adding a solvent, the solvent evaporates when the conductive paste is thermally cured, and voids (bubbles) may be generated in the cured conductive paste. When voids occur in the cured product, there is a risk that it will not be able to sufficiently shield electromagnetic waves.

また、導電性ペーストを低粘度化する方法としては、溶剤の添加の他、導電性フィラーの含有量を減らすことが考えられるが、導電性フィラーの含有量を減らすとシールド特性が悪化する傾向にある。一方で、シールド特性を高めるために、導電性フィラーの含有量を増やすとモールド樹脂に形成されたトレンチ部への充填性が悪化する傾向にある。すなわち、シールド特性と、トレンチ部への充填性とは背反特性であり、これらの特性をバランスよく改善することが求められている。 In addition to adding a solvent, reducing the content of conductive filler can be considered as a method of lowering the viscosity of the conductive paste, but reducing the content of conductive filler tends to deteriorate the shielding properties. be. On the other hand, if the content of the conductive filler is increased in order to improve the shielding properties, the filling properties of the trench portion formed in the mold resin tend to deteriorate. That is, shielding characteristics and trench filling properties are contradictory characteristics, and it is desired to improve these characteristics in a well-balanced manner.

特開2004-55543号公報Japanese Patent Application Publication No. 2004-55543 特開2016-126878号公報Japanese Patent Application Publication No. 2016-126878 特許4037619号公報Patent No. 4037619

本発明は上記に鑑みてなされたものであり、100MHz~1GHzの電磁波に対して良好なシールド性を有し、モールド樹脂に形成されたトレンチ部への充填性に優れた導電性組成物を提供することを目的とする。 The present invention has been made in view of the above, and provides a conductive composition that has good shielding properties against electromagnetic waves of 100 MHz to 1 GHz and is excellent in filling a trench portion formed in a molded resin. The purpose is to

なお、特許文献1~3には、導電性ペーストが記載されているが、シールド特性やモールド樹脂に形成されたトレンチ部への充填性についての記載はない。 Incidentally, although Patent Documents 1 to 3 describe conductive pastes, there is no description regarding shielding properties or the ability to fill a trench portion formed in a molded resin.

本発明の導電性組成物は、ダイマー酸型エポキシ樹脂5~20質量部を含む、エポキシ樹脂100質量部に対して、導電性フィラー400~600質量部を含有し、上記導電性フィラーが、レーザー回折散乱式粒度分布測定法により測定した平均粒子径(D50)5~8μmの導電性フィラー(A)と、平均粒子径(D50)2~3μmの導電性フィラー(B)とを含有し、上記導電性フィラー(A)と上記導電性フィラー(B)との含有割合((A):(B))が、質量比で97:3~50:50であるものとする。 The conductive composition of the present invention contains 400 to 600 parts by mass of a conductive filler to 100 parts by mass of an epoxy resin, including 5 to 20 parts by mass of a dimer acid type epoxy resin, and the conductive filler is Contains a conductive filler (A) with an average particle diameter (D50) of 5 to 8 μm measured by a diffraction scattering particle size distribution measurement method, and a conductive filler (B) with an average particle diameter (D50) of 2 to 3 μm, and the above-mentioned The content ratio ((A):(B)) of the conductive filler (A) and the conductive filler (B) is 97:3 to 50:50 in terms of mass ratio.

上記ダイマー酸型エポキシ樹脂は、ダイマー酸のグリシジル変性化合物であるものとすることができる。 The dimer acid type epoxy resin may be a glycidyl-modified compound of dimer acid.

上記エポキシ樹脂は、グリシジルアミン型エポキシ樹脂、及びグリシジルエーテル型エポキシ樹脂を含有するものとすることができる。 The epoxy resin may contain a glycidyl amine type epoxy resin and a glycidyl ether type epoxy resin.

本発明の導電性組成物によれば、モールド樹脂に形成されたトレンチ部への充填性に優れ、100MHz~1GHzの電磁波による電子部品間の干渉を防止することができる。 The conductive composition of the present invention has excellent filling properties into the trench portion formed in the mold resin, and can prevent interference between electronic components due to electromagnetic waves of 100 MHz to 1 GHz.

KEC法で用いられるシステムの構成を示す図である。1 is a diagram showing the configuration of a system used in the KEC method. ディスペンス工法における導電性組成物の充填性及び量産性の評価に用いたサンプル基板の模式断面図である。FIG. 2 is a schematic cross-sectional view of a sample substrate used to evaluate the filling properties and mass productivity of the conductive composition in the dispensing method. 真空印刷工法における導電性組成物の充填性、量産性、及び上面外観の評価に用いたサンプル基板の模式断面図である。FIG. 2 is a schematic cross-sectional view of a sample substrate used to evaluate the filling properties, mass productivity, and top surface appearance of a conductive composition in a vacuum printing method.

本発明に係る導電性組成物は、上記の通り、ダイマー酸型エポキシ樹脂5~20質量部を含む、エポキシ樹脂100質量部に対して、導電性フィラー400~600質量部を含有し、導電性フィラーが、レーザー回折散乱式粒度分布測定法により測定した平均粒子径(D50)5~8μmの導電性フィラー(A)と、平均粒子径(D50)2~3μmの導電性フィラー(B)とを含有し、導電性フィラー(A)と導電性フィラー(B)との含有割合((A):(B))が、質量比で97:3~50:50であるものとする。 As described above, the conductive composition according to the present invention contains 400 to 600 parts by mass of a conductive filler to 100 parts by mass of epoxy resin, including 5 to 20 parts by mass of dimer acid type epoxy resin, and has a conductive composition. The filler is a conductive filler (A) with an average particle diameter (D50) of 5 to 8 μm measured by laser diffraction scattering particle size distribution measurement method, and a conductive filler (B) with an average particle diameter (D50) of 2 to 3 μm. The content ratio of the conductive filler (A) and the conductive filler (B) ((A):(B)) shall be 97:3 to 50:50 in mass ratio.

この導電性組成物の用途は特に限定されるわけではないが、システム・イン・パッケージにおいて、モールド樹脂によって封止された電子部品間に形成されるシールド層として好適に使用される。 Although the use of this conductive composition is not particularly limited, it is suitably used as a shield layer formed between electronic components sealed with a mold resin in a system-in-package.

ダイマー酸型エポキシ樹脂以外のエポキシ樹脂は、分子内にエポキシ基を1個以上有するものであればよく、2種以上を併用することもできる。具体例としては、ビスフェノールA型エポキシ樹脂、臭素化エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、複素環式エポキシ樹脂等が挙げられ、これらの中でも、グリシジルアミン型エポキシ樹脂やグリシジルエーテル型エポキシ樹脂を含有するものが好ましい。 Epoxy resins other than dimer acid type epoxy resins may have one or more epoxy groups in the molecule, and two or more types can also be used in combination. Specific examples include bisphenol A epoxy resin, brominated epoxy resin, bisphenol F epoxy resin, novolac epoxy resin, alicyclic epoxy resin, glycidylamine epoxy resin, glycidyl ether epoxy resin, and glycidyl ester epoxy resin. , heterocyclic epoxy resins, etc. Among these, those containing glycidyl amine type epoxy resins and glycidyl ether type epoxy resins are preferred.

ダイマー酸型エポキシ樹脂以外のエポキシ樹脂のエポキシ当量は、特に限定されないが、1500g/eq以下であることが好ましく、20~1000g/eqであることがより好ましい。エポキシ当量が上記範囲内である場合、耐熱性、粘性、密着性のバランスが良い導電性組成物が得られやすい。 The epoxy equivalent of the epoxy resin other than the dimer acid type epoxy resin is not particularly limited, but is preferably 1500 g/eq or less, more preferably 20 to 1000 g/eq. When the epoxy equivalent is within the above range, it is easy to obtain a conductive composition with a good balance of heat resistance, viscosity, and adhesion.

ダイマー酸型エポキシ樹脂は、分子内にエポキシ基を1個以上有するエポキシ樹脂であって、ダイマー酸を変性したものであればよく、ダイマー酸のグリシジル変性化合物などが例として挙げられ、2種以上を併用することもできる。このような樹脂としては、例えば、下記一般式(1)、(2)で表されるものを使用できる。 The dimer acid type epoxy resin is an epoxy resin having one or more epoxy groups in the molecule, and may be one obtained by modifying dimer acid. Examples include glycidyl-modified compounds of dimer acid. Can also be used together. As such a resin, for example, those represented by the following general formulas (1) and (2) can be used.

Figure 0007419505000001
Figure 0007419505000001

式(1)、(2)中のn1~n5はそれぞれ独立に3~9の整数を表す。 n1 to n5 in formulas (1) and (2) each independently represent an integer of 3 to 9.

n1は3~9の整数を表し、4~8の整数が好ましく、5~7がより好ましく、7が特に好ましい。n2は3~9の整数を表し、5~9の整数が好ましく、7又は8がより好ましく、7が特に好ましい。n3は3~9の整数を表し、4~8の整数が好ましく、6又は7がより好ましく、6が特に好ましい。n4は3~9の整数を表す。n5は3~9の整数を表し、4~8の整数が好ましく、5又は6がより好ましく、5が特に好ましい。 n1 represents an integer of 3 to 9, preferably an integer of 4 to 8, more preferably 5 to 7, and particularly preferably 7. n2 represents an integer of 3 to 9, preferably an integer of 5 to 9, more preferably 7 or 8, and particularly preferably 7. n3 represents an integer of 3 to 9, preferably an integer of 4 to 8, more preferably 6 or 7, and particularly preferably 6. n4 represents an integer from 3 to 9. n5 represents an integer of 3 to 9, preferably an integer of 4 to 8, more preferably 5 or 6, and particularly preferably 5.

このようなダイマー酸型エポキシ樹脂を含有することにより、導電性組成物の粘度やチキソトロピックインデックス(TI値)が低くなりやすく、モールド樹脂に形成されたトレンチ部への優れた充填性が得られやすい。 By containing such a dimer acid type epoxy resin, the viscosity and thixotropic index (TI value) of the conductive composition tend to be lowered, and excellent filling properties to the trench portion formed in the mold resin can be obtained. Cheap.

ダイマー酸型エポキシ樹脂のエポキシ当量は、特に限定されないが、80~1500g/eqであることが好ましく、200~1000g/eqであることがより好ましい。エポキシ当量が上記範囲内である場合、耐熱性、粘性、密着性のバランスが良い導電性組成物が得られやすい。 The epoxy equivalent of the dimer acid type epoxy resin is not particularly limited, but is preferably 80 to 1500 g/eq, more preferably 200 to 1000 g/eq. When the epoxy equivalent is within the above range, it is easy to obtain a conductive composition with a good balance of heat resistance, viscosity, and adhesion.

導電性フィラー(A)は、平均粒子径が5~8μmであることにより、分散性が良好で凝集が防止でき、パッケージのグランド回路との接続性やシールド特性が良好である。 Since the conductive filler (A) has an average particle diameter of 5 to 8 μm, it has good dispersibility and can prevent agglomeration, and has good connectivity with the ground circuit of the package and shielding properties.

導電性フィラー(B)は、平均粒子径が2~3μmであることにより、平均粒子径が5~8μmの導電性フィラー同士の間隙を充填することができるため、100MHz~1GHzの電磁波に対するシールド性を向上させ、かつ、低粘度の導電性組成物を得ることができる。 Since the conductive filler (B) has an average particle size of 2 to 3 μm, it can fill the gaps between conductive fillers with an average particle size of 5 to 8 μm, so it has good shielding properties against electromagnetic waves of 100 MHz to 1 GHz. It is possible to obtain an electrically conductive composition with improved properties and low viscosity.

導電性フィラーの含有量は、エポキシ樹脂100質量部に対して、400~600質量部であれば特に限定されないが、450~550質量部であることがより好ましい。上記範囲内である場合、シールド特性や、モールド樹脂に形成されたトレンチ部への充填性に優れた導電性組成物が得られやすい。 The content of the conductive filler is not particularly limited as long as it is 400 to 600 parts by weight, but is more preferably 450 to 550 parts by weight, based on 100 parts by weight of the epoxy resin. When it is within the above range, it is easy to obtain a conductive composition that has excellent shielding properties and excellent filling properties into a trench portion formed in a molded resin.

導電性フィラー(A)と導電性フィラー(B)との含有割合((A):(B))は、質量比で97:3~50:50であれば特に限定されないが、95:5~70:30であることがより好ましい。 The content ratio of the conductive filler (A) and the conductive filler (B) ((A):(B)) is not particularly limited as long as the mass ratio is 97:3 to 50:50, but it is 95:5 to More preferably, the ratio is 70:30.

導電性フィラー(A)及び導電性フィラー(B)は、銅粉、銀粉、金粉、銀被覆銅粉又は銀被覆銅合金粉であることが好ましく、これらの中から1種を単独で使用することもでき、2種以上を併用してもよく、コスト削減の観点からは、銅粉、銀被覆銅粉、又は銀被覆銅合金粉であることがより好ましい。 The conductive filler (A) and the conductive filler (B) are preferably copper powder, silver powder, gold powder, silver-coated copper powder, or silver-coated copper alloy powder, and one type from these may be used alone. It is also possible to use two or more kinds in combination, and from the viewpoint of cost reduction, copper powder, silver-coated copper powder, or silver-coated copper alloy powder is more preferable.

銀被覆銅粉は、銅粉と、この銅粉粒子の少なくとも一部を被覆する銀層又は銀含有層とを有するものであり、銀被覆銅合金粉は、銅合金粉と、この銅合金粒子の少なくとも一部を被覆する銀層又は銀含有層とを有するものである。銅合金粒子は、例えば、ニッケルの含有量が0.5~20質量%であり、かつ亜鉛の含有量が1~20質量%であり、残部が銅からなり、残部の銅は不可避不純物を含んでいてもよい。このように銀被覆層を有する銅合金粒子を用いることにより、シールド性、及び耐変色性に優れたシールドパッケージが得られ易い。 Silver-coated copper powder has copper powder and a silver layer or silver-containing layer that covers at least a portion of the copper powder particles, and silver-coated copper alloy powder has copper alloy powder and the copper alloy particles. a silver layer or a silver-containing layer covering at least a portion of the silver layer. For example, the copper alloy particles have a nickel content of 0.5 to 20% by mass, a zinc content of 1 to 20% by mass, and the remainder is copper, and the remaining copper does not contain inevitable impurities. It's okay to stay. By using copper alloy particles having a silver coating layer in this way, a shield package with excellent shielding properties and discoloration resistance can be easily obtained.

導電性フィラー(A)の形状の例としては、フレーク状(鱗片状)、樹枝状、球状、繊維状、不定形(多面体)等が挙げられるが、抵抗値がより低く、シールド性がより向上したシールド層が得られ、充填性を高める観点から、球状であることが好ましい。 Examples of the shape of the conductive filler (A) include flakes (scaly), dendritic, spherical, fibrous, amorphous (polyhedral), etc., but the resistance value is lower and the shielding property is improved. A spherical shape is preferable from the viewpoint of obtaining a shield layer with a spherical shape and improving filling properties.

また、導電性フィラー(A)が球状である場合は、導電性フィラー(A)のタップ密度は3.5~7.0g/cmであることが好ましい。タップ密度が上記範囲内である場合、シールド層の導電性がより良好となりやすい。Further, when the conductive filler (A) is spherical, the tap density of the conductive filler (A) is preferably 3.5 to 7.0 g/cm 3 . When the tap density is within the above range, the conductivity of the shield layer tends to be better.

導電性フィラー(B)の形状の例としては、フレーク状(鱗片状)、樹枝状、球状、繊維状、不定形(多面体)等が挙げられるが、抵抗値がより低く、シールド性がより向上したシールド層が得られ、充填性を高める観点から、球状であることが好ましい。 Examples of the shape of the conductive filler (B) include flakes (scaly), dendritic, spherical, fibrous, amorphous (polyhedral), etc., but the resistance value is lower and the shielding property is further improved. A spherical shape is preferable from the viewpoint of obtaining a shield layer with a spherical shape and improving filling properties.

また、導電性フィラー(B)が球状である場合は、導電性フィラー(B)のタップ密度は4.0~7.0g/cmであることが好ましい。タップ密度が上記範囲内である場合、シールド層の導電性がより良好となりやすい。Further, when the conductive filler (B) is spherical, the tap density of the conductive filler (B) is preferably 4.0 to 7.0 g/cm 3 . When the tap density is within the above range, the conductivity of the shield layer tends to be better.

本発明に係る導電性組成物には、エポキシ樹脂硬化剤を使用することができる。エポキシ樹脂硬化剤としては、フェノール系硬化剤、イミダゾール系硬化剤、アミン系硬化剤、カチオン系硬化剤などが挙げられる。これらは1種を単独で使用することもでき、2種以上を併用してもよい。 An epoxy resin curing agent can be used in the conductive composition according to the present invention. Examples of the epoxy resin curing agent include phenolic curing agents, imidazole curing agents, amine curing agents, and cationic curing agents. These may be used alone or in combination of two or more.

フェノール系硬化剤としては、例えばフェノールノボラック、ナフトール系化合物等が挙げられる。 Examples of the phenolic curing agent include phenol novolac and naphthol compounds.

イミダゾール系硬化剤としては、例えばイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2-エチル-4-メチル-イミダゾール、1-シアノエチル-2-ウンデシルイミダゾールが挙げられる。 Examples of imidazole curing agents include imidazole, 2-undecylimidazole, 2-heptadecyl imidazole, 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 1-benzyl-2-phenylimidazole, 2-ethyl- Examples include 4-methyl-imidazole and 1-cyanoethyl-2-undecylimidazole.

アミン系硬化剤としては、例えば、ジエチレントリアミン、トリエチレンテトラミンなどの脂肪族ポリアミン、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族ポリアミンなどが挙げられる。 Examples of the amine curing agent include aliphatic polyamines such as diethylenetriamine and triethylenetetramine, aromatic polyamines such as metaphenylenediamine, diaminodiphenylmethane, and diaminodiphenylsulfone.

カチオン系硬化剤の例としては、三フッ化ホウ素のアミン塩、P-メトキシベンゼンジアゾニウムヘキサフルオロホスフェート、ジフェニルイオドニウムヘキサフルオロホスフェート、トリフェニルスルホニウム、テトラ-n-ブチルホスホニウムテトラフェニルボレート、テトラ-n-ブチルホスホニウム-o,o-ジエチルホスホロジチオエート等に代表されるオニウム系化合物が挙げられる。 Examples of cationic curing agents include amine salts of boron trifluoride, P-methoxybenzenediazonium hexafluorophosphate, diphenyliodonium hexafluorophosphate, triphenylsulfonium, tetra-n-butylphosphonium tetraphenylborate, tetra- Examples include onium compounds represented by n-butylphosphonium-o,o-diethylphosphorodithioate.

硬化剤の含有量は、エポキシ樹脂100質量部に対して0.3~40質量部であることが好ましく、0.5~35質量部であることがより好ましい。硬化剤の含有量が0.3質量部以上である場合、導電性組成物が十分に硬化し、導電性が良好となって、シールド効果に優れたシールド層が得られやすく、40質量部以下である場合、保存安定性に優れた導電性組成物が得られやすい。 The content of the curing agent is preferably 0.3 to 40 parts by weight, more preferably 0.5 to 35 parts by weight, based on 100 parts by weight of the epoxy resin. When the content of the curing agent is 0.3 parts by mass or more, the conductive composition is sufficiently cured, the conductivity becomes good, and a shield layer with excellent shielding effect is easily obtained, and the content is 40 parts by mass or less. In this case, it is easy to obtain a conductive composition with excellent storage stability.

本発明に係る導電性組成物には、発明の目的を損なわない範囲内において、消泡剤、増粘剤、粘着剤、充填剤、難燃剤、着色剤等、公知の添加剤を加えることができる。 Known additives such as antifoaming agents, thickeners, adhesives, fillers, flame retardants, colorants, etc. may be added to the conductive composition of the present invention within a range that does not impair the purpose of the invention. can.

本発明に係る導電性組成物は、導電性組成物をディスペンス工法や、真空印刷工法によりパッケージのトレンチ部に塗布できるようにするためには、低粘度であり、チキソトロピックインデックス(TI値)が低いものであることが好ましい。 The conductive composition according to the present invention has a low viscosity and a thixotropic index (TI value) in order to be able to apply the conductive composition to the trench part of the package by a dispensing method or a vacuum printing method. Preferably it is low.

ここで、ディスペンス工法とは、シリンジ形状のノズル先端から導電性組成物を押し出して塗布する方法のことをいう。また、真空印刷工法とは、孔版印刷として版に化学繊維のスクリーンを張ったものを利用し、そのスクリーンに光学的に版膜を作って必要な画線以外の目を塞ぎ、版を作り、真空下でその版膜の孔を介してインクを擦りつけることにより版の下に設置した被印刷物の印刷面に印刷を行う方法のことをいう。 Here, the dispensing method refers to a method of applying a conductive composition by extruding it from the tip of a syringe-shaped nozzle. In addition, the vacuum printing method is a stencil printing method that uses a chemical fiber screen attached to a plate, optically creates a plate film on the screen to block the areas other than the necessary image lines, and then creates a plate. A method of printing on the printing surface of a substrate placed under a printing plate by rubbing ink through the holes in the printing plate under vacuum.

本発明に係る導電性組成物の粘度は用途や塗布に使用する機器に応じて適宜調整するのが好ましく、特に限定されないが、一般的な目安としては、導電性組成物の温度が25℃において、600dPa・s以下であることが好ましく、500dPa・s以下であることがより好ましい。600dPa・s以下である場合、ディスペンス工法におけるノズルの目詰まりや、真空印刷工法におけるスクリーンの詰まりが生じにくく、トレンチ部への優れた充填性が得られやすい。粘度の測定方法は、JIS K7117-1に準拠し、単一円筒形回転粘度計(いわゆるB型又はBH型粘度計)でローターNo.7を用いて10rpmで測定することができる。なお、単一円筒形回転粘度計で測定可能な粘度であれば、低くとも問題はない。 The viscosity of the conductive composition according to the present invention is preferably adjusted appropriately depending on the application and the equipment used for application, and is not particularly limited, but as a general guideline, when the temperature of the conductive composition is 25 ° C. , is preferably 600 dPa·s or less, more preferably 500 dPa·s or less. When it is 600 dPa·s or less, nozzle clogging in the dispensing method and screen clogging in the vacuum printing method are less likely to occur, and excellent filling performance in the trench portion can be easily obtained. The viscosity is measured in accordance with JIS K7117-1 using a single cylindrical rotational viscometer (so-called B-type or BH-type viscometer) with rotor No. 7 at 10 rpm. Note that there is no problem even if the viscosity is low as long as it can be measured with a single cylindrical rotational viscometer.

本発明に係る導電性組成物のチキソトロピックインデックス(TI値)は用途や塗布に使用する機器に応じて適宜調整するのが好ましく、特に限定されないが、一般的な目安としては4.5以下であることが好ましい。TI値が4.5以下である場合、トレンチ部への優れた充填性が得られやすく、真空印刷工法によって塗布した際の表面が平滑になりやすく、バンプを形成しにくい。これによりシステム・イン・パッケージの低背化が可能となり、システム・イン・パッケージを実装する装置においてスペースを有効活用できる。ここで、TI値は、下記式で求めることができる。
TI値=(2rpmで測定した粘度)/(20rpmで測定した粘度)
The thixotropic index (TI value) of the conductive composition according to the present invention is preferably adjusted appropriately depending on the application and the equipment used for coating, and is not particularly limited, but as a general guideline, it is 4.5 or less. It is preferable that there be. When the TI value is 4.5 or less, it is easy to obtain excellent filling properties in the trench portion, the surface when applied by vacuum printing method is easy to be smooth, and bumps are not easily formed. This makes it possible to reduce the height of the system-in-package, making it possible to effectively utilize space in the device in which the system-in-package is mounted. Here, the TI value can be determined by the following formula.
TI value = (viscosity measured at 2 rpm) / (viscosity measured at 20 rpm)

本発明に係る導電性組成物には、ボイドの発生を防止する観点から、溶剤を含まないことが好ましい。 The conductive composition according to the present invention preferably does not contain a solvent from the viewpoint of preventing the generation of voids.

以下、本発明の内容を実施例に基づいて詳細に説明するが、本発明は以下に限定されるものではない。また、以下において「部」又は「%」とあるのは、特にことわらない限り質量基準とする。 Hereinafter, the content of the present invention will be explained in detail based on Examples, but the present invention is not limited to the following. Further, in the following, "parts" or "%" are based on mass unless otherwise specified.

[実施例、比較例]
次に示すエポキシ樹脂100質量部に対して、導電性フィラー、及び硬化剤を表1~4に記載された割合で配合して混合し、導電性組成物を得た。使用した各成分の詳細は以下の通りである。
[Examples, comparative examples]
A conductive filler and a curing agent were blended and mixed in the proportions shown in Tables 1 to 4 to 100 parts by mass of the epoxy resin shown below to obtain a conductive composition. Details of each component used are as follows.

・エポキシ樹脂(a):グリシジルアミン型エポキシ樹脂、(株)ADEKA製「EP-3905S」、エポキシ当量=95g/eq
・エポキシ樹脂(b):グリシジルエーテル型エポキシ樹脂、(株)ADEKA製「ED502」、エポキシ当量=320g/eq
・ダイマー酸型エポキシ樹脂:上記式(2)において、n1=7、n2=7、n4=4、n5=5のものを使用した。
・Epoxy resin (a): Glycidylamine type epoxy resin, “EP-3905S” manufactured by ADEKA Co., Ltd., epoxy equivalent = 95 g/eq
・Epoxy resin (b): Glycidyl ether type epoxy resin, “ED502” manufactured by ADEKA Co., Ltd., epoxy equivalent = 320 g/eq
- Dimer acid type epoxy resin: In the above formula (2), one with n1=7, n2=7, n4=4, and n5=5 was used.

・導電性フィラー(a):銀コート銅粒子、D50=10μm、球状
・導電性フィラー(b):銀コート銅粒子、D50=8μm、球状
・導電性フィラー(c):銀コート銅粒子、D50=6μm、球状
・導電性フィラー(d):銀コート銅粒子、D50=5μm、球状
・導電性フィラー(e):銀粒子、D50=4μm、球状
・導電性フィラー(f):銀コート銅粒子、D50=3μm、球状
・導電性フィラー(g):銀粒子、D50=2μm、球状
・導電性フィラー(h):銀粒子、D50=1μm、球状
- Conductive filler (a): silver-coated copper particles, D50 = 10 μm, spherical - Conductive filler (b): silver-coated copper particles, D50 = 8 μm, spherical - conductive filler (c): silver-coated copper particles, D50 = 6 μm, spherical/conductive filler (d): silver coated copper particles, D50 = 5 μm, spherical/conductive filler (e): silver particles, D50 = 4 μm, spherical/conductive filler (f): silver coated copper particles , D50=3 μm, spherical/conductive filler (g): silver particles, D50=2 μm, spherical/conductive filler (h): silver particles, D50=1 μm, spherical

・硬化剤(a):イミダゾール系硬化剤、四国化成工業(株)製「2E4MZ」
・硬化剤(b):フェノールノボラック系硬化剤、荒川化学工業(株)製「タマノル758」
・Curing agent (a): Imidazole-based curing agent, “2E4MZ” manufactured by Shikoku Kasei Kogyo Co., Ltd.
・Curing agent (b): Phenol novolac type curing agent, "Tamanol 758" manufactured by Arakawa Chemical Industry Co., Ltd.

上記実施例及び比較例の導電性組成物の評価を以下の通り行った。結果を表1~4に示す。 The conductive compositions of the above Examples and Comparative Examples were evaluated as follows. The results are shown in Tables 1 to 4.

(1)導電性組成物の粘度
上記で得られた導電性組成物の25℃における粘度を、JIS K7117-1に準拠し、単一円筒形回転粘度計(いわゆるB型粘度計)でローターNo.7を用いて10rpmで測定した。
(1) Viscosity of conductive composition The viscosity at 25°C of the conductive composition obtained above was measured using a single cylindrical rotational viscometer (so-called B-type viscometer) according to rotor No. .. 7 at 10 rpm.

(2)チキソトロピックインデックス(TI値)
上記で得られた導電性組成物の25℃における粘度を、JIS K7117-1に準拠し、単一円筒形回転粘度計(いわゆるB型粘度計)でローターNo.7を用いて、2rpm及び20rpmで測定した。得られた粘度値を下記式に代入し、TI値を求めた。
TI値=(2rpmで測定した粘度)/(20rpmで測定した粘度)
(2) Thixotropic index (TI value)
The viscosity at 25° C. of the conductive composition obtained above was measured using a single cylindrical rotational viscometer (so-called B-type viscometer) with rotor No. 1 in accordance with JIS K7117-1. 7 at 2 rpm and 20 rpm. The obtained viscosity value was substituted into the following formula to determine the TI value.
TI value = (viscosity measured at 2 rpm) / (viscosity measured at 20 rpm)

(3)電界シールド特性(100MHz、1GHz)
IEC62333-1,IEC62333-2に準拠して、KEC法により、100MHz、及び1GHzの電磁波に対するシールド特性を評価した。測定条件は、温度25℃、相対湿度30~50%の雰囲気とした。
(3) Electric field shielding characteristics (100MHz, 1GHz)
Shielding characteristics against electromagnetic waves of 100 MHz and 1 GHz were evaluated by the KEC method in accordance with IEC62333-1 and IEC62333-2. The measurement conditions were an atmosphere with a temperature of 25° C. and a relative humidity of 30 to 50%.

厚さ約100μmのポリイミドフィルムにバーフィルムアプリケータ(ビック-ガードナー社製)を用いて、上記で得られた導電性組成物を印刷後、80℃で60分間加熱し、さらに160℃で60分間加熱することにより硬化させて厚さ約150μmの塗膜を形成した。得られた塗膜を15cm四方に裁断したものをサンプル1とした。 After printing the conductive composition obtained above on a polyimide film with a thickness of about 100 μm using a bar film applicator (manufactured by Bick-Gardner), it was heated at 80°C for 60 minutes, and then heated at 160°C for 60 minutes. It was cured by heating to form a coating film with a thickness of about 150 μm. Sample 1 was obtained by cutting the obtained coating film into 15 cm square pieces.

図1は、KEC法で用いられるシステムの構成を示す模式図である。KEC法で用いられるシステムは、電磁波シールド効果測定装置211aと、スペクトラム・アナライザ221と、10dBの減衰を行うアッテネータ222と、3dBの減衰を行うアッテネータ223と、プリアンプ224とで構成される。 FIG. 1 is a schematic diagram showing the configuration of a system used in the KEC method. The system used in the KEC method includes an electromagnetic shielding effect measuring device 211a, a spectrum analyzer 221, an attenuator 222 that performs 10 dB attenuation, an attenuator 223 that performs 3 dB attenuation, and a preamplifier 224.

なお、スペクトラム・アナライザ221には、株式会社アドバンテスト社製のU3741を用いた。また、プリアンプにはアジレントテクノロジーズ社製のHP8447Fを用いた。 Note that U3741 manufactured by Advantest Corporation was used as the spectrum analyzer 221. Further, HP8447F manufactured by Agilent Technologies was used as a preamplifier.

電界波シールド効果評価装置211aには、2つの測定治具213が相対向して設けられている。この測定治具213・213間に、測定対象のサンプル1が挟持されるように設置される。測定治具213には、TEMセル(Transverse Electro Magnetic Cell)の寸法配分が取り入れられ、その伝送軸方向に垂直な面内で左右対称に分割した構造になっている。但し、サンプル1の挿入によって短絡回路が形成されることを防止するために、平板状の中心導体214は各測定治具213との間に隙間を設けて配置されている。 The electric field shield effect evaluation device 211a is provided with two measurement jigs 213 facing each other. The sample 1 to be measured is placed between the measurement jigs 213 and 213 so as to be sandwiched therebetween. The measurement jig 213 incorporates the dimensional distribution of a TEM cell (Transverse Electro Magnetic Cell), and has a structure in which it is divided symmetrically in a plane perpendicular to the transmission axis direction. However, in order to prevent the formation of a short circuit due to the insertion of the sample 1, the flat central conductor 214 is arranged with a gap provided between it and each measurement jig 213.

KEC法は、先ず、スペクトラム・アナライザ221から出力した信号を、アッテネータ222を介して送信側の測定治具213に入力する。そして、受信側の測定治具213で受けた信号を、アッテネータ223を介してプリアンプ224で増幅してから、スペクトラム・アナライザ221により信号レベルを測定する。尚、スペクトラム・アナライザ221は、サンプル1を電磁波シールド効果測定装置211aに設置していない状態を基準として、サンプル1を電磁波シールド効果測定装置211aに設置した場合の減衰量を出力する。 In the KEC method, first, a signal output from a spectrum analyzer 221 is input to a measurement jig 213 on the transmitting side via an attenuator 222. Then, the signal received by the measurement jig 213 on the reception side is amplified by the preamplifier 224 via the attenuator 223, and then the signal level is measured by the spectrum analyzer 221. Note that the spectrum analyzer 221 outputs the amount of attenuation when sample 1 is installed in the electromagnetic shielding effect measuring device 211a, with reference to the state in which sample 1 is not installed in the electromagnetic shielding effect measuring device 211a.

100MHzの電磁波に対するシールド効果の評価は、減衰量が70dB以上であるものはシールド効果に優れていると評価した。1GHzの電磁波に対するシールド効果の評価は、減衰量が63dB以上であるものはシールド効果に優れていると評価した。 In evaluating the shielding effect against electromagnetic waves of 100 MHz, it was evaluated that the shielding effect was excellent if the amount of attenuation was 70 dB or more. In evaluating the shielding effect against electromagnetic waves of 1 GHz, it was evaluated that the shielding effect was excellent if the amount of attenuation was 63 dB or more.

(4)ディスペンス工法における充填性
図2に示すサンプル基板を用いて、ディスペンス工法により、測定用のサンプル2を作製した。サンプル基板としては、基板10上にグランド回路11が形成され、基板10及びグランド回路11がモールド樹脂12により封止され、モールド樹脂12にトレンチ部13が形成されたものを用いた。ノードソンアシムテック社製のディスペンサー「S2-920N-P」、及びバルブ「DV-8000」を用いて、図2に示すサンプル基板のトレンチ部13に、以下のディスペンス条件にて導電性組成物を塗布し、サンプル2を得た。そして、得られたサンプル2を、80℃で60分間加熱し、さらに160℃で60分間加熱することにより硬化させた。得られたサンプル2について、硬化前、及び硬化後に、エクスロン・インターナショナル社製のX線透過装置「Y.Cheetah μHD」を用いて、以下の測定条件にてトレンチ部13を観察し、ボイドの有無を確認した。ボイドが生じていないものは、充填性が優れているとして「○」と評価し、ボイドが生じていたものは、充填性が劣っているとして「×」と評価した。
(4) Fillability in Dispensing Method Using the sample substrate shown in FIG. 2, Sample 2 for measurement was produced by the dispensing method. The sample substrate used was one in which a ground circuit 11 was formed on a substrate 10, the substrate 10 and the ground circuit 11 were sealed with a mold resin 12, and a trench portion 13 was formed in the mold resin 12. Using a dispenser “S2-920N-P” and a valve “DV-8000” manufactured by Nordson Asymtech, a conductive composition was applied to the trench portion 13 of the sample substrate shown in FIG. 2 under the following dispensing conditions. Sample 2 was obtained. The obtained sample 2 was then heated at 80° C. for 60 minutes, and further heated at 160° C. for 60 minutes to cure it. Regarding the obtained sample 2, the trench portion 13 was observed before and after curing using an X-ray transmission device "Y. Cheetah μHD" manufactured by YXLON International under the following measurement conditions to determine the presence or absence of voids. It was confirmed. Those with no voids were evaluated as "○" as having excellent filling properties, and those with voids were evaluated as "x" as having poor filling properties.

<ディスペンス条件>
バルブ温度:60℃
基板温度:60℃
ノズル内径:100μm
ディスペンスギャップ:100μm
ディスペンススピード:1.2mm/秒
<測定条件>
電圧:50kV
電流:80μA
電力:4W
<Dispensing conditions>
Valve temperature: 60℃
Substrate temperature: 60℃
Nozzle inner diameter: 100μm
Dispense gap: 100μm
Dispense speed: 1.2mm/sec <Measurement conditions>
Voltage: 50kV
Current: 80μA
Power: 4W

(5)ディスペンス工法における量産性
上記サンプル2の作製時に、ノズルに詰まりが発生しなかったものは、量産性に優れているとして「○」と評価し、ノズルに詰まりが発生したものは、量産性に劣っているとして「×」と評価した。
(5) Mass production efficiency in the dispensing method When producing sample 2 above, if the nozzle did not become clogged, it was evaluated as "○" as having excellent mass productivity. It was rated "x" as being inferior in gender.

(6)真空印刷工法における充填性
図3に示すサンプル基板を用いて、真空印刷工法により、測定用のサンプル3を作製した。サンプル基板としては、基板10上にグランド回路11が形成され、基板10及びグランド回路11がモールド樹脂12により封止され、モールド樹脂12にトレンチ部13が形成されたものを用いた。東レエンジニアリング(株)製の真空印刷機「VE-700」を用いて、図3に示すサンプル基板のトレンチ部13に、以下の印刷条件にて導電性組成物を塗布し、サンプル3を得た。そして、得られたサンプル3を、80℃で60分間加熱し、さらに160℃で60分間加熱することにより硬化させた。得られたサンプル3について、硬化前、及び硬化後に、エクスロン・インターナショナル社製のX線透過装置「Y.Cheetah μHD」を用いて、以下の測定条件にてトレンチ部13を観察し、ボイドの有無を確認した。ボイドが生じていないものは、充填性が優れているとして「○」と評価し、ボイドが生じていたものは、充填性が劣っているとして「×」と評価した。
(6) Fillability in vacuum printing method Using the sample substrate shown in FIG. 3, sample 3 for measurement was produced by the vacuum printing method. The sample substrate used was one in which a ground circuit 11 was formed on a substrate 10, the substrate 10 and the ground circuit 11 were sealed with a mold resin 12, and a trench portion 13 was formed in the mold resin 12. Using a vacuum printer "VE-700" manufactured by Toray Engineering Co., Ltd., a conductive composition was applied to the trench portion 13 of the sample substrate shown in FIG. 3 under the following printing conditions to obtain sample 3. . The obtained sample 3 was then heated at 80° C. for 60 minutes, and further heated at 160° C. for 60 minutes to cure it. Regarding the obtained sample 3, the trench portion 13 was observed before and after curing using an X-ray transmission device "Y. Cheetah μHD" manufactured by YXLON International under the following measurement conditions to determine the presence or absence of voids. It was confirmed. Those with no voids were evaluated as "○" as having excellent filling properties, and those with voids were evaluated as "x" as having poor filling properties.

<印刷条件>
印圧:0.5MPa
スキージ角度:10°
スキージ速度:15mm/秒
クリアランス:2.0mm
真空度:0.13kPa
ウレタンスキージ硬度:80度
<測定条件>
電圧:50kV
電流:80μA
電力:4W
<Printing conditions>
Printing pressure: 0.5MPa
Squeegee angle: 10°
Squeegee speed: 15mm/sec Clearance: 2.0mm
Vacuum degree: 0.13kPa
Urethane squeegee hardness: 80 degrees <Measurement conditions>
Voltage: 50kV
Current: 80μA
Power: 4W

(7)真空印刷工法における量産性
上記サンプル3の作成時に、真空印刷機の印刷版のメッシュに詰まりが発生しなかったものは、量産性に優れているとして「○」と評価し、メッシュに詰まりが発生したものは、量産性に劣っているとして「×」と評価した。
(7) Mass productivity in vacuum printing method If the mesh of the printing plate of the vacuum printing machine did not become clogged during the creation of sample 3 above, it was evaluated as "○" as having excellent mass productivity, and the mesh was Those in which clogging occurred were evaluated as "x" because they were inferior in mass productivity.

(8)真空印刷工法における上面外観
上記サンプル3に形成されたトレンチ部13の開口部において、モールド樹脂12とトレンチ部13に充填された導電性組成物とが平滑な面を形成しているかを評価した。具体的には、モールド樹脂12が形成する表面と導電性組成物が形成する表面との差が30μm未満であれば、上面外観が優れているとして「○」と評価し、30~60μmであれば、上面外観がやや劣るとして「△」と評価し、61μm以上であれば、上面外観が劣っているとして「×」と評価した。
(8) Top surface appearance in vacuum printing method At the opening of the trench portion 13 formed in the sample 3, check whether the mold resin 12 and the conductive composition filled in the trench portion 13 form a smooth surface. evaluated. Specifically, if the difference between the surface formed by the mold resin 12 and the surface formed by the conductive composition is less than 30 μm, the upper surface appearance is considered to be excellent and evaluated as “○”; For example, if the top surface appearance was slightly inferior, it was evaluated as "Δ", and if it was 61 μm or more, the top surface appearance was considered to be poor and evaluated as "x".

表1に示す結果から、ダイマー酸型エポキシ樹脂の含有量が所定範囲内である実施例1-1~実施例1-4は、いずれの評価結果も優れていた。一方、比較例1-1は、ダイマー酸型エポキシ樹脂を含有しない例であり、導電性組成物の粘度及びTI値が高く、ディスペンス工法、真空印刷工法のいずれにおいても、充填性が劣っていた。また、真空印刷工法において、上面外観もやや劣っていた。また、比較例1-2は、ダイマー酸型エポキシ樹脂の含有量が上限値を超える例であり、100MHz及び1GHzに対する電界シールド特性が劣っていた。 From the results shown in Table 1, all evaluation results of Examples 1-1 to 1-4, in which the content of dimer acid type epoxy resin was within a predetermined range, were excellent. On the other hand, Comparative Example 1-1 is an example that does not contain a dimer acid type epoxy resin, and the viscosity and TI value of the conductive composition were high, and the filling property was poor in both the dispensing method and the vacuum printing method. . Furthermore, in the vacuum printing method, the top surface appearance was also slightly inferior. Furthermore, Comparative Example 1-2 is an example in which the content of the dimer acid type epoxy resin exceeds the upper limit, and the electric field shielding characteristics at 100 MHz and 1 GHz were poor.

表2に示す結果から、導電性フィラー(A)と導電性フィラー(B)との含有割合が所定範囲内である実施例2-1~実施例2-4は、いずれの評価結果も優れていた。一方、比較例2-1は、導電性フィラーとして導電性フィラー(A)を単独で含有する例であり、100MHzに対する電界シールド特性が劣っていた。比較例2-2,2-3は、導電性フィラー(A)と導電性フィラー(B)との含有割合が所定範囲外の例であり、粘度及びTI値が高く、ディスペンス工法、真空印刷工法のいずれにおいても、充填性が劣っていた。また、真空印刷工法において、上面外観もやや劣っていた。 From the results shown in Table 2, all of Examples 2-1 to 2-4, in which the content ratio of conductive filler (A) and conductive filler (B) was within the specified range, had excellent evaluation results. Ta. On the other hand, Comparative Example 2-1 is an example containing conductive filler (A) alone as a conductive filler, and had poor electric field shielding properties at 100 MHz. Comparative Examples 2-2 and 2-3 are examples in which the content ratio of conductive filler (A) and conductive filler (B) is outside the predetermined range, the viscosity and TI value are high, and the dispensing method and vacuum printing method In all cases, the filling properties were poor. Furthermore, in the vacuum printing method, the top surface appearance was also slightly inferior.

比較例2-4は、導電性フィラーとして導電性フィラー(B)を単独で含有する例であり、100MHzに対するシールド特性が劣っていた。また、導電性組成物のTI値が高く、真空印刷工法における上面外観が劣っていた。 Comparative Example 2-4 is an example containing conductive filler (B) alone as a conductive filler, and had poor shielding characteristics at 100 MHz. Further, the TI value of the conductive composition was high, and the top surface appearance in the vacuum printing method was poor.

表3に示す結果から、導電性フィラーの合計量が所定範囲内である実施例3-1,3-2は、いずれの評価結果も優れていた。一方、比較例3-1は、導電性フィラーの合計量が下限値未満の例であり、100MHz及び1GHzに対するシールド特性が劣っていた。比較例3-2は、導電性フィラーの合計量が上限値を超える例であり、導電性組成物の粘度が高く、ディスペンス工法、真空印刷工法のいずれにおいても、充填性が劣っていた。また、導電性組成物のTI値が高く、真空印刷工法における上面外観がやや劣っていた。 From the results shown in Table 3, Examples 3-1 and 3-2, in which the total amount of conductive filler was within a predetermined range, had excellent evaluation results in both cases. On the other hand, Comparative Example 3-1 was an example in which the total amount of conductive filler was less than the lower limit, and the shielding characteristics at 100 MHz and 1 GHz were poor. Comparative Example 3-2 is an example in which the total amount of conductive filler exceeds the upper limit, the viscosity of the conductive composition was high, and the filling properties were poor in both the dispensing method and the vacuum printing method. Further, the TI value of the conductive composition was high, and the top surface appearance in the vacuum printing method was slightly inferior.

表4に示す結果から、導電性フィラー(A)と導電性フィラー(B)とを含有する実施例4-1~実施例4-3は、いずれの評価結果も優れていた。一方、比較例4-1は、導電性フィラー(A)の代わりに、平均粒子径が導電性フィラー(A)の平均粒子径の下限値未満である導電性フィラーを含有する例であり、導電性組成物の粘度が高く、ディスペンス工法、真空印刷工法のいずれにおいても、充填性が劣っていた。また、真空印刷工法において、上面外観もやや劣っていた。 From the results shown in Table 4, all evaluation results of Examples 4-1 to 4-3 containing conductive filler (A) and conductive filler (B) were excellent. On the other hand, Comparative Example 4-1 is an example containing a conductive filler whose average particle diameter is less than the lower limit of the average particle diameter of the conductive filler (A) instead of the conductive filler (A). The viscosity of the adhesive composition was high, and the filling properties were poor in both the dispensing method and the vacuum printing method. Furthermore, in the vacuum printing method, the top surface appearance was also slightly inferior.

比較例4-2は、導電性フィラー(A)の代わりに、平均粒子径が導電性フィラー(A)の平均粒子径の上限値を超える導電性フィラーを含有する例であり、100MHz及び1GHzに対するシールド特性が劣っていた。また、導電性フィラーの平均粒子径が大きいため、ディスペンス工法においてはノズルに詰まりが発生し、真空印刷工法においては、真空印刷機の印刷版のメッシュに詰まりが発生し、いずれにおいても量産性が劣っていた。 Comparative Example 4-2 is an example containing a conductive filler whose average particle diameter exceeds the upper limit of the average particle diameter of the conductive filler (A) instead of the conductive filler (A). Shield properties were poor. In addition, because the average particle diameter of the conductive filler is large, the nozzle becomes clogged in the dispensing method, and the mesh of the printing plate of the vacuum printing machine becomes clogged in the vacuum printing method, making mass production difficult in both cases. It was inferior.

比較例4-3は、導電性フィラー(B)の代わりに、平均粒子径が導電性フィラー(B)の平均粒子径の下限値未満である導電性フィラーを含有する例であり、導電性組成物の粘度が高く、ディスペンス工法、真空印刷工法のいずれにおいても、充填性が劣っていた。また、真空印刷工法において、上面外観もやや劣っていた。 Comparative Example 4-3 is an example containing a conductive filler whose average particle diameter is less than the lower limit of the average particle diameter of the conductive filler (B) instead of the conductive filler (B), and the conductive composition The viscosity of the product was high, and the filling properties were poor in both the dispensing method and the vacuum printing method. Furthermore, in the vacuum printing method, the top surface appearance was also slightly inferior.

比較例4-4は、導電性フィラー(B)の代わりに、平均粒子径が導電性フィラー(B)の平均粒子径の上限値を超える導電性フィラーを含有する例であり、100MHzに対するシールド特性が劣っていた。 Comparative Example 4-4 is an example containing a conductive filler whose average particle diameter exceeds the upper limit of the average particle diameter of the conductive filler (B) instead of the conductive filler (B), and the shielding property at 100 MHz was was inferior.

211a……電界波シールド効果評価装置
213……測定治具
214……中心導体
221……スペクトラム・アナライザ
222……アッテネータ
223……アッテネータ
224……プリアンプ
10……基板
11……グランド回路
12……モールド樹脂
13……トレンチ部

211a...Electric field shielding effect evaluation device 213...Measurement jig 214...Center conductor 221...Spectrum analyzer 222...Attenuator 223...Attenuator 224...Preamplifier 10...Board 11...Ground circuit 12... Mold resin 13...Trench part

Claims (1)

ダイマー酸型エポキシ樹脂5~20質量部を含む、エポキシ樹脂100質量部に対して、導電性フィラー400~600質量部を含有し、更にフェノール系硬化剤及びイミダゾール系硬化剤を含有し、
前記エポキシ樹脂が、グリシジルアミン型エポキシ樹脂、及びグリシジルエーテル型エポキシ樹脂を含有し、
前記ダイマー酸型エポキシ樹脂が、下記一般式(1)で表される樹脂及び/又は下記一般式(2)で表される樹脂であり、
式(1)及び(2)中のn1~n5はそれぞれ独立に3~9の整数を表し、
前記導電性フィラーが、レーザー回折散乱式粒度分布測定法により測定した平均粒子径(D50)5~8μmの球状の導電性フィラー(A)と、平均粒子径(D50)2~3μmの球状の導電性フィラー(B)とを含有し、
前記導電性フィラー(A)と前記導電性フィラー(B)との含有割合((A):(B))が、質量比で97:3~50:50である、導電性組成物。
Contains 400 to 600 parts by mass of a conductive filler per 100 parts by mass of epoxy resin, including 5 to 20 parts by mass of dimer acid type epoxy resin, and further contains a phenolic curing agent and an imidazole curing agent,
The epoxy resin contains a glycidyl amine type epoxy resin and a glycidyl ether type epoxy resin,
The dimer acid type epoxy resin is a resin represented by the following general formula (1) and/or a resin represented by the following general formula (2),
n1 to n5 in formulas (1) and (2) each independently represent an integer from 3 to 9,
The conductive filler is a spherical conductive filler (A) with an average particle diameter (D50) of 5 to 8 μm measured by laser diffraction scattering particle size distribution measurement method, and a spherical conductive filler (A) with an average particle diameter (D50) of 2 to 3 μm. Contains a sexual filler (B),
A conductive composition, wherein the content ratio ((A):(B)) of the conductive filler (A) and the conductive filler (B) is from 97:3 to 50:50 in mass ratio.
JP2022517572A 2020-04-30 2021-03-31 conductive composition Active JP7419505B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020080744 2020-04-30
JP2020080744 2020-04-30
PCT/JP2021/014032 WO2021220711A1 (en) 2020-04-30 2021-03-31 Electroconductive composition

Publications (2)

Publication Number Publication Date
JPWO2021220711A1 JPWO2021220711A1 (en) 2021-11-04
JP7419505B2 true JP7419505B2 (en) 2024-01-22

Family

ID=78332377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022517572A Active JP7419505B2 (en) 2020-04-30 2021-03-31 conductive composition

Country Status (4)

Country Link
JP (1) JP7419505B2 (en)
CN (1) CN115380076A (en)
TW (1) TWI841833B (en)
WO (1) WO2021220711A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261778A (en) 2000-03-15 2001-09-26 Harima Chem Inc Electroconductive silver paste for making flexible circuit board
JP2003141929A (en) 2001-10-30 2003-05-16 Mitsui Mining & Smelting Co Ltd Copper powder for copper paste
JP2011029204A (en) 2006-04-13 2011-02-10 Hitachi Chem Co Ltd Conductive paste and prepreg using the same, metal foiled laminated plate, and printed wiring board
WO2016051700A1 (en) 2014-09-30 2016-04-07 タツタ電線株式会社 Conductive coating material and method for producing shield package using same
WO2016136204A1 (en) 2015-02-27 2016-09-01 タツタ電線株式会社 Conductive paste and multilayer substrate using same
US20160268216A1 (en) 2015-03-10 2016-09-15 Samsung Electronics Co., Ltd. Semiconductor packages and methods of fabricating the same
WO2018012017A1 (en) 2016-07-14 2018-01-18 タツタ電線株式会社 Electroconductive coating material and process for producing shielded packages using same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261778A (en) 2000-03-15 2001-09-26 Harima Chem Inc Electroconductive silver paste for making flexible circuit board
JP2003141929A (en) 2001-10-30 2003-05-16 Mitsui Mining & Smelting Co Ltd Copper powder for copper paste
JP2011029204A (en) 2006-04-13 2011-02-10 Hitachi Chem Co Ltd Conductive paste and prepreg using the same, metal foiled laminated plate, and printed wiring board
WO2016051700A1 (en) 2014-09-30 2016-04-07 タツタ電線株式会社 Conductive coating material and method for producing shield package using same
WO2016136204A1 (en) 2015-02-27 2016-09-01 タツタ電線株式会社 Conductive paste and multilayer substrate using same
US20160268216A1 (en) 2015-03-10 2016-09-15 Samsung Electronics Co., Ltd. Semiconductor packages and methods of fabricating the same
WO2018012017A1 (en) 2016-07-14 2018-01-18 タツタ電線株式会社 Electroconductive coating material and process for producing shielded packages using same

Also Published As

Publication number Publication date
JPWO2021220711A1 (en) 2021-11-04
TW202146507A (en) 2021-12-16
CN115380076A (en) 2022-11-22
WO2021220711A1 (en) 2021-11-04
TWI841833B (en) 2024-05-11

Similar Documents

Publication Publication Date Title
US7214419B2 (en) Conductive paste multilayered board including the conductive paste and process for producing the same
EP3202866B1 (en) Conductive coating material and method for producing shield package using same
JP4949802B2 (en) Conductive paste and multilayer substrate using the same
JP6992083B2 (en) Shield package
KR20020040631A (en) Through-hole wiring board
TWI722136B (en) Conductive paint and manufacturing method of shielding package body using the same
KR100966260B1 (en) Electrically Conductive Adhesive Compositions for Die Adhesion Having Enhanced Moisture Resistance and Reliability
JP7125907B2 (en) conductive composition
US20190292381A1 (en) Conductive coating material and production method for shielded package using conductive coating material
JP4468750B2 (en) Conductive paste and multilayer substrate using the same
TW201807090A (en) Conductive coating and manufacturing method of shield package using the same
JP7419505B2 (en) conductive composition
TW201943804A (en) Electroconductive coating material and method for producing shielded package using said electroconductive coating material
WO2021250963A1 (en) Method for manufacturing electromagnetic-wave blocking package by using conductive composition
JP2005032471A (en) Conductive paste and its manufacturing method
US20230151228A1 (en) Conductive composition and method for producing shielded package using same
JP2004047418A (en) Conductive paste
JP7482093B2 (en) Antenna integrated module
WO2023027158A1 (en) Thermally conductive composition
JP4888295B2 (en) Conductive paste
JP2013021019A (en) Conductive paste and multilayer wiring board
TW202322153A (en) Conductive paste and multilayer substrate using same
JP2000336251A (en) Conductive paste composition for semiconductor
JP2012119549A (en) Conductive resin composition for bump formation
JP2005317490A (en) Conductive paste and electronic component mounting substrate using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240110

R150 Certificate of patent or registration of utility model

Ref document number: 7419505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150