JP2003141929A - Copper powder for copper paste - Google Patents

Copper powder for copper paste

Info

Publication number
JP2003141929A
JP2003141929A JP2001333120A JP2001333120A JP2003141929A JP 2003141929 A JP2003141929 A JP 2003141929A JP 2001333120 A JP2001333120 A JP 2001333120A JP 2001333120 A JP2001333120 A JP 2001333120A JP 2003141929 A JP2003141929 A JP 2003141929A
Authority
JP
Japan
Prior art keywords
copper
copper powder
paste
powder
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001333120A
Other languages
Japanese (ja)
Inventor
Takahiko Sakagami
貴彦 坂上
Kunihiko Yasunari
邦彦 安成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2001333120A priority Critical patent/JP2003141929A/en
Publication of JP2003141929A publication Critical patent/JP2003141929A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide copper powder for copper paste used for setting an inter- layer conductive part of a printed wiring board which, with small resistance value, can surely be filled in a via hole or the like at the time of setting the inter-layer conductive part. SOLUTION: The copper powder for copper paste is a mixture of small particle-size spherical copper powder and large particle-size polyhedral copper powder. From such copper powder, copper paste with lower viscosity and low enough resistance is obtained. If viscosity of the copper powder is low, copper paste can be easily and surely filled in a via hole without any gaps, which gives an effect of securing conductive cross section area of an inter-layer conductive part of a printed wiring board and lowering resistance of the inter-layer conductive area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、銅ペースト用の銅
粉、この銅粉を用いて得られる銅ペーストに関する。
TECHNICAL FIELD The present invention relates to a copper powder for a copper paste, and a copper paste obtained by using the copper powder.

【0002】[0002]

【従来の技術】従来、電子産業の分野、特にプリント配
線板製造の分野では、銅ペーストを、スクリーン印刷技
術を応用して回路を形成する際に用いるのが一般的であ
った。すなわち、銅ペーストを樹脂基板若しくは樹脂シ
ート上にスクリーン印刷技術を用いて塗布して回路を描
き、その後加熱して回路を形成するのである。
2. Description of the Related Art Conventionally, in the field of the electronic industry, particularly in the field of manufacturing printed wiring boards, it has been general to use a copper paste when forming a circuit by applying a screen printing technique. That is, a copper paste is applied onto a resin substrate or a resin sheet using a screen printing technique to draw a circuit, and then heated to form the circuit.

【0003】そして、近年、銅箔などの導電性材料から
なる電子回路層を基材を介して複数積層配置した多層プ
リント配線板が用いられている。例えば、ノートブック
パソコン、携帯電話、AV機器等のいわゆる高級家電で
は、4層以上の多層プリント配線板が用いられている。
このような多層プリント配線板における配線板相互間の
層間導電性を確保する手段として、スルーホールメッキ
法、バイアホール形成法等が注目されつつある。近年、
我国の電子電気業界は厳しい国際価格競争に晒されてお
り、今日のプリント配線板業界に対するコストダウンの
要求は一層厳しさを増しているところ、これらの方法は
配線板の製造を容易にし、またコストダウンに寄与する
と考えられるからである。
In recent years, a multilayer printed wiring board has been used in which a plurality of electronic circuit layers made of a conductive material such as copper foil are laminated and arranged with a base material interposed therebetween. For example, in so-called high-end home appliances such as notebook personal computers, mobile phones, and AV equipment, a multilayer printed wiring board having four or more layers is used.
Through-hole plating, via-hole formation, and the like have been attracting attention as means for ensuring the interlayer conductivity between wiring boards in such a multilayer printed wiring board. recent years,
As the electronic and electrical industry of our country is exposed to severe international price competition, and the demand for cost reduction for today's printed wiring board industry is becoming more and more severe, these methods facilitate the manufacture of wiring boards, and This is because it is considered to contribute to cost reduction.

【0004】[0004]

【発明が解決しようとする課題】従来から行われている
スルーホールメッキ法、バイアホール形成法等のプリン
ト配線板の層間導通手段は、配線板に形成されたスルー
ホールやバイアホール(ビアホール)などと称される穴
の内壁に、層間回路の電気的導通を確保するための銅層
を、メッキ法を用いて形成するという方法である。この
銅メッキでは、無電解銅メッキ、電解銅メッキの2段の
処理が必要であり、工程が複雑化し長くなるため、プリ
ント配線板の製造コストを上昇させる要因となってい
た。
Interlayer conduction means of a printed wiring board, such as a through-hole plating method and a via-hole forming method which have been conventionally used, include through-holes and via holes (via holes) formed in the wiring board. Is a method of forming a copper layer on the inner wall of the hole, which is used for ensuring electrical conduction of the interlayer circuit, by using a plating method. This copper plating requires a two-step process of electroless copper plating and electrolytic copper plating, which complicates and lengthens the process, which has been a factor of increasing the manufacturing cost of the printed wiring board.

【0005】このようなことから、多層プリント配線板
の層間導通を確保するための別の手段が求められていた
ところ、銅ペーストを用いて銅張積層板製造時に層間導
通を確保する方法が開発された。
Under these circumstances, there has been a demand for another means for ensuring the interlayer conduction of the multilayer printed wiring board, and a method for securing the interlayer conduction during the production of the copper clad laminate using copper paste has been developed. Was done.

【0006】ところで、銅ペーストは、銅粉に、エポキ
シ樹脂などの樹脂とその硬化剤等を加え、これらを混錬
したものであり、導電性を有するものである。このよう
な銅ペーストに用いられる銅粉の製造方法としては、水
酸化銅などを含む水溶液をヒドラジン等の還元剤で処理
して溶液中の銅成分を還元する方法、銅塩や銅酸化物を
還元性雰囲気中で加熱還元する方法、銅の塩化物蒸気を
還元性ガスで処理して銅の塩化物を還元する方法等が従
来から知られている。これらの方法のうち、ヒドラジン
による還元法は、大気圧下で処理できる等の点で非常に
生産性に優れた方法である。
By the way, the copper paste is obtained by adding a resin such as an epoxy resin and a curing agent thereof to copper powder and kneading these, and is electrically conductive. As a method for producing copper powder used in such a copper paste, a method of treating an aqueous solution containing copper hydroxide with a reducing agent such as hydrazine to reduce the copper component in the solution, a copper salt or a copper oxide is used. Conventionally known methods include a method of heating and reducing in a reducing atmosphere, a method of treating copper chloride vapor with a reducing gas to reduce copper chloride, and the like. Among these methods, the reduction method with hydrazine is a method with extremely excellent productivity in that it can be treated under atmospheric pressure.

【0007】このような銅ペーストを用いて層間導通部
を形成する方法は種々ある。例えば配線板の基材に予め
形成されたバイアホール等の穴に銅ペーストを充填し、
硬化させることによって、基材の両表層に貼り付けられ
ている銅箔を相互に導通させる層間導通部を設ける方法
がある。
There are various methods for forming an interlayer conductive portion using such a copper paste. For example, fill a hole such as a via hole previously formed in the base material of the wiring board with copper paste,
There is a method of providing an interlayer conduction part that electrically connects the copper foils attached to both surface layers of the base material by curing.

【0008】ところが、銅ペーストを用いて層間導通部
を設けた多層プリント配線板について層間導通部の電気
抵抗を測定すると、抵抗値が大きなものがあるなど、ば
らつきが見られることが解った。層間導通部の抵抗値が
大きくなると、層間導通部において余分な発熱が生じた
り、層間における信号伝達速度の遅れを生じてコンピュ
ター機器が誤動作したりするおそれがあり、好ましくな
い。
However, when the electric resistance of the interlayer conductive portion was measured for the multilayer printed wiring board provided with the interlayer conductive portion using the copper paste, it was found that there were variations such as a large resistance value. If the resistance value of the interlayer conductive portion is increased, excessive heat generation may occur in the interlayer conductive portion, or the signal transmission speed between the layers may be delayed, and the computer device may malfunction, which is not preferable.

【0009】そこで、層間導通部の電気抵抗が大きくな
る原因について検討を行った。その結果、プリント配線
板の基材に設けられているバイアホールへの銅ペースト
の充填が不十分であるために電気抵抗が大きくなる場合
があり、銅ペーストの粘性に問題があることが解った。
Therefore, the cause of the increase in the electric resistance of the interlayer conduction portion was examined. As a result, it has been found that there is a problem in the viscosity of the copper paste because the electrical resistance may increase due to insufficient filling of the copper paste in the via holes provided in the base material of the printed wiring board. .

【0010】本発明は、以上のような背景の下になされ
たものであり、プリント配線板の層間導通部を設けるた
めに用いられる銅ペースト用の銅粉であって、電気抵抗
値が小さく、しかも層間導通部を設ける際、バイアホー
ルなどに確実に充填できる粘性を備える銅ペースト用の
銅粉を提供すること、さらには当該銅粉を用いた銅ペー
ストを提供することを課題とする。
The present invention has been made under the above background, and is a copper powder for a copper paste used for providing an interlayer conductive portion of a printed wiring board, which has a small electric resistance value, Moreover, it is an object to provide a copper powder for a copper paste having a viscosity capable of reliably filling a via hole or the like when providing an interlayer conduction portion, and further to provide a copper paste using the copper powder.

【0011】[0011]

【課題を解決するための手段】このような課題を解決す
るため、本願発明者等は、より充填に好適な粘度の銅ペ
ーストを製造するための条件について検討した。その結
果、銅ペーストをより低粘度にする必要があることが解
った。そして、銅粉の粒度分布に幅を持たせることで銅
ペーストを低粘度化でき、充填性を向上できることが解
ったが、このようにして銅ペーストを低粘度化すると、
同時に銅ペースト自体の電気抵抗が大きくなることも解
った。そこで、さらに検討した結果、粒子形状が異なる
銅粉を混合させた銅粉を用いて銅ペーストを製造する
と、より低粘度の銅ペーストが得られ、より電気抵抗が
低い層間導通部を形成できることが見出され、本発明に
想到した。
In order to solve such a problem, the inventors of the present application examined conditions for producing a copper paste having a viscosity more suitable for filling. As a result, it was found that the copper paste needs to have a lower viscosity. Then, it was found that the viscosity of the copper paste can be reduced by having a width in the particle size distribution of the copper powder, and the filling property can be improved, but when the viscosity of the copper paste is reduced in this way,
At the same time, it was also found that the electric resistance of the copper paste itself increased. Therefore, as a result of further study, when a copper paste is produced using copper powder in which copper powder having different particle shapes are mixed, a copper paste having a lower viscosity can be obtained, and an interlayer conductive portion having a lower electric resistance can be formed. Found and devised the present invention.

【0012】本発明は、球状銅粉と多面体状銅粉とが混
合されてなる銅ペースト用の銅粉である。
The present invention is a copper powder for copper paste, which is a mixture of spherical copper powder and polyhedral copper powder.

【0013】従来は、銅ペースト用の銅粉として、ここ
でいう「多面体状銅粉」を用いていたが、得られる銅ペ
ーストの粘度は高かった。これに対し、多面体状銅粉と
該多面体状銅粉とは粒子形状が異なる「球状銅粉」とが
混合された銅粉を用いると、より低粘度で、しかも十分
に低抵抗である銅ペーストが得られる。銅ペーストの粘
度が低ければ、銅ペーストを配線板のバイアホール内に
充填する際、容易かつ確実に銅ペーストを隙間なく充填
できる。隙間なく充填できれば、プリント配線板の層間
導通部の導通断面積が確保されるという効果が得られ、
層間導通部の電気抵抗の低下に寄与する。本発明に係る
銅粉を用いたペーストはそれ自体十分に低抵抗であるの
で、このように隙間なく充填することで電気抵抗が低い
層間導通部が形成されるのである。また、隙間なく充填
できれば、硬化時の収縮によって生ずるバイアホール開
口部における層間導通部の窪みが小さくなり、開口部に
おける導通状態がより確実に確保される。
Conventionally, the "polyhedral copper powder" referred to here has been used as the copper powder for the copper paste, but the obtained copper paste has a high viscosity. On the other hand, when a copper powder in which polyhedral copper powder and “polyhedral copper powder” having different particle shapes from each other are mixed is used, a copper paste having a lower viscosity and a sufficiently low resistance is used. Is obtained. If the viscosity of the copper paste is low, when the copper paste is filled in the via holes of the wiring board, the copper paste can be filled easily and reliably without any gap. If it can be filled without gaps, the effect that the conduction cross-sectional area of the interlayer conduction portion of the printed wiring board is secured can be obtained.
It contributes to the reduction of the electrical resistance of the interlayer conduction portion. Since the paste using the copper powder according to the present invention has a sufficiently low resistance in itself, such an inter-layer conductive portion having a low electric resistance is formed by filling without any gap. Also, if filling can be performed without gaps, the depression of the interlayer conduction portion in the via hole opening portion caused by shrinkage during curing becomes small, and the conduction state in the opening portion can be more reliably ensured.

【0014】ところで、ここでいう「球状銅粉」とは、
例えば球形、卵形などに代表される銅粉のことであり、
球形比(銅粉の最小径/銅粉の最大径)が0.7〜1で
あるものが望ましいと考えられる。また「球状銅粉」
は、凝集度(=平均粒径(D )/平均粒径
(DIA))が1.2以下であるものが好ましいと考え
られる。なお、「平均粒径(D50)」とはレーザー回
折散乱式粒度分布測定法により得られる平均粒径のこと
であり、また「平均粒径(DIA)」とは、走査型電子
顕微鏡(SEM)を用いて得られた銅粉の画像を、円度
しきい値10、重なり度20として円形粒子解析して得
られる平均粒径のことである。例えば図1に示されるよ
うに、実際に用いられている球状銅粉は滑らかな外表面
を有する。換言すれば、凹凸が少ないといえる。また、
後述する「多面体状銅粉」との対比で説明すると、球状
銅粉の外表面は角張った部分をほとんど有していない形
状であるということになる。そして、具体的なものを挙
げて説明すると、走査型電子顕微鏡などによって拡大さ
れた球状銅粉は、例えばジャガイモに似た外表面形状を
有する。なお、球状銅粉は、従来の方法で製造された多
面体状銅粉に、ターボクラシファイア、ジェットミル、
ディスインテグレータあるいはハイブリタイザーなどの
衝突摩擦式の粉砕装置を用いた表面平滑化処理を行うこ
とにより得られる。
By the way, the term "spherical copper powder" as used herein means
For example, it is a copper powder represented by a spherical shape, an egg shape, etc.,
A spherical ratio (minimum diameter of copper powder / maximum diameter of copper powder) of 0.7 to 1 is considered desirable. Also "spherical copper powder"
The degree of aggregation (= average particle diameter (D 5 0) / average particle size (D IA)) is considered to preferably not more than 1.2. The “average particle size (D 50 )” is the average particle size obtained by the laser diffraction scattering particle size distribution measuring method, and the “average particle size (D IA )” is the scanning electron microscope ( It is an average particle diameter obtained by analyzing circular particles of an image of copper powder obtained by using SEM) with a circularity threshold value of 10 and an overlapping degree of 20. For example, as shown in FIG. 1, the spherical copper powder actually used has a smooth outer surface. In other words, it can be said that there are few irregularities. Also,
Explaining it in comparison with the “polyhedral copper powder” described later, it means that the outer surface of the spherical copper powder has a shape having almost no angular portions. Then, a specific example will be described. The spherical copper powder enlarged by a scanning electron microscope or the like has an outer surface shape similar to potato, for example. The spherical copper powder is a polyhedral copper powder produced by a conventional method, a turbo classifier, a jet mill,
It can be obtained by performing a surface smoothing treatment using a collision friction type crushing device such as a disintegrator or a hybridizer.

【0015】他方、「多面体状銅粉」とは、例えば図2
に示されるようなものである。「球状銅粉」との対比で
説明すると、この多面体状銅粉の外表面は、凹凸が多
く、角張った部分が多いということができる。このよう
な特徴は、図2からも見て取れる(ハイライト部とロー
ライト部との明瞭な境界を観察できる)。なお、多面体
状銅粉の凝集度は測定の結果1.3以上であった。具体
的なものを挙げて説明すると、走査型電子顕微鏡などに
よって拡大された多面体銅粉の外表面形状は、例えば折
り紙によって折られた紙風船、乾燥させたグリンピース
などの乾燥豆類の外表面形状に似ている。
On the other hand, "polyhedral copper powder" means, for example, FIG.
As shown in. Explaining in comparison with “spherical copper powder”, it can be said that the outer surface of this polyhedral copper powder has many irregularities and many angular portions. Such a characteristic can be seen from FIG. 2 (a clear boundary between the highlight portion and the low light portion can be observed). The aggregation degree of the polyhedral copper powder was 1.3 or more as a result of the measurement. Explaining concretely, the outer surface shape of the polyhedral copper powder enlarged by a scanning electron microscope is similar to the outer surface shape of dried beans such as paper balloons folded by origami and dried green peas. ing.

【0016】なお、本発明でいう球状銅粉(図1参照)
としては単分散粉が好ましく、多面体状銅粉(図2参
照)としては2〜20個程度の粒子が凝集した銅粉が好
ましい。ただし、製造上、球状銅粉の凝集体や結合体
や、単分散粉に近い多面体状粉が含まれることがある。
これらの銅粉も、あい異なる形状の銅粉の欠点を補完し
て、銅ペーストの低粘度化や低抵抗化に寄与するもので
あり、本発明の銅粉およびその銅粉を使用した銅ペース
トの原料として使用できる。
The spherical copper powder referred to in the present invention (see FIG. 1)
Is preferably a monodisperse powder, and the polyhedral copper powder (see FIG. 2) is preferably a copper powder in which about 2 to 20 particles are aggregated. However, in production, agglomerates or bonded bodies of spherical copper powder, or polyhedral powder close to monodisperse powder may be contained.
These copper powders also complement the drawbacks of copper powders of different shapes, and contribute to lowering the viscosity and the resistance of the copper paste, and the copper powder of the present invention and the copper paste using the copper powder. It can be used as a raw material.

【0017】上述したように多面体状銅粉と球状銅粉と
を混合させた銅粉を用いた場合に銅ペーストが低粘度化
し、低電気抵抗の層間導通部が得られるのは、球状銅粉
を混合させることで銅粉全体が相互に転がりやすくな
り、流動性が向上するからであると考えられる。
As described above, when the copper powder obtained by mixing the polyhedral copper powder and the spherical copper powder is used, the viscosity of the copper paste is lowered and the interlayer conductive portion having a low electric resistance is obtained. It is considered that by mixing the above, it becomes easier for the entire copper powder to roll with each other and the fluidity is improved.

【0018】また、より低粘度でしかも低抵抗の層間導
通部を形成できる銅ペースト用の銅粉の条件を、混合さ
せる銅粉の粒径の大小の面から検討した。その結果、ペ
ースト用の銅粉を構成する球状銅粉と多面体状銅粉のう
ち、平均粒径が小さい小粒径銅粉として球状銅粉を用い
ると、より低粘度の銅ペーストが得られることが解っ
た。小粒径の球状銅粉が大粒径の多面体状銅粉の間に入
り込む状態になり、この状態が銅粉相互の流動性をより
確実に向上させる状態だからであると考えられる。そし
て、低抵抗の層間導通部を形成できることも解った。小
粒径の球状銅粉を混合させることで、銅粉相互の接触部
の抵抗が増加して銅ペースト自体の抵抗が大きくなると
も考えられたが、検討の結果、低抵抗の層間導通部を形
成できた。球形銅粉は多面体状銅粉と異なり角張ってな
いため、球形銅粉のみの場合は接触部の抵抗が比較的高
くなりやすいが、凝集しており球形銅粉よりも接触面積
が大きい多面体状銅粉を含んでいることにより、総合的
には低抵抗になっていると考えられる。
Further, the conditions of the copper powder for the copper paste capable of forming the interlayer conductive portion having a lower viscosity and a lower resistance were examined from the viewpoint of the particle size of the copper powder to be mixed. As a result, of the spherical copper powder and the polyhedral copper powder forming the copper powder for paste, when the spherical copper powder is used as the small particle diameter copper powder having a small average particle diameter, a copper paste having a lower viscosity can be obtained. I understand. It is considered that this is because the spherical copper powder having a small particle size enters a state between the polyhedral copper powder having a large particle size, and this state is a state in which the mutual fluidity of the copper powder is more reliably improved. It was also found that a low resistance interlayer conductive portion can be formed. By mixing spherical copper powder with a small particle size, it was also considered that the resistance of the copper powder mutual contact part increased and the resistance of the copper paste itself increased, but as a result of the study, it was found that a low resistance interlayer conductive part was formed. I was able to form. Unlike spherical copper powder, spherical copper powder is not square, so the resistance of the contact area tends to be relatively high when only spherical copper powder is used, but polyhedral copper that is agglomerated and has a larger contact area than spherical copper powder. It is considered that the resistance is low due to the inclusion of powder.

【0019】そして、さらに実験および検討した結果、
小粒径銅粉として球状銅粉を用いる場合、球状銅粉の割
合は10重量%〜90重量%が好ましいことが見出され
た。割合が10重量%より少ない場合でも銅ペーストが
低粘度になる効果は得られるが、10重量%以上の方が
低粘度で、しかも充填等の際により取扱いやすい粘度の
銅ペーストが得られるからである。そして、球状銅粉の
割合を多くすると抵抗が徐々に高くなるが、割合が90
重量%を超えると抵抗の高くなる率が大きくなるからで
ある。なお、球状銅粉の割合を30重量%以上にする
と、より取り扱いやすくなり、60重量%以下にする
と、層間導通部の抵抗がより安定することから、球状銅
粉の割合は30重量%〜60重量%がより好ましい。
As a result of further experiments and examinations,
It has been found that when spherical copper powder is used as the small particle diameter copper powder, the proportion of the spherical copper powder is preferably 10% by weight to 90% by weight. Even if the proportion is less than 10% by weight, the effect of lowering the viscosity of the copper paste can be obtained. is there. When the proportion of spherical copper powder is increased, the resistance gradually increases, but the proportion is 90%.
This is because, if the content exceeds wt%, the rate of increase in resistance increases. When the proportion of the spherical copper powder is 30% by weight or more, the handling becomes easier, and when it is 60% by weight or less, the resistance of the interlayer conductive portion becomes more stable. Therefore, the proportion of the spherical copper powder is 30% by weight to 60%. Weight percent is more preferred.

【0020】また、球状銅粉および多面体状銅粉の粒径
に着目して、銅ペーストの粘性および電気抵抗について
検討した。その結果、混合させる各銅粉の平均粒径は1
μm〜10μmが好ましいことが解った。小粒径の銅粉
の割合の増加は、銅ペーストの抵抗を高くする要因にな
ると考えられるが、特に1μmより小さい銅粉の含有率
が増えると、銅ペーストが比較的高い抵抗を示すことが
解ったからである。他方、10μmより大きい銅粉が混
合された銅粉を用いて得た銅ペーストでは、銅ペースト
の機能を十分に発揮できない場合があるからである。銅
ペーストが充填されるバイアホールには、例えば直径が
0.1mm程度の小さいものがあるが、10μmより大
きい銅粉を含有する銅ペーストでは、このような小径の
穴に銅ペーストを充填する場合に充填が不十分になるお
それがあるからである。
Further, focusing on the particle diameters of the spherical copper powder and the polyhedral copper powder, the viscosity and electric resistance of the copper paste were examined. As a result, the average particle size of each copper powder to be mixed is 1
It was found that the range of μm to 10 μm is preferable. It is considered that the increase in the proportion of the copper powder having a small particle diameter causes the resistance of the copper paste to be increased, but especially when the content of the copper powder smaller than 1 μm is increased, the copper paste exhibits a relatively high resistance. Because I understand. On the other hand, the copper paste obtained by using the copper powder mixed with the copper powder having a size larger than 10 μm may not be able to fully exhibit the function of the copper paste. Some via holes filled with copper paste have a small diameter of, for example, about 0.1 mm. However, in the case of copper paste containing copper powder larger than 10 μm, when filling such small-diameter holes with copper paste, This is because there is a risk of insufficient filling.

【0021】そして、特に、小粒径銅粉つまり球状銅粉
の平均粒径を1μm〜5μmに設定すると、より低粘度
の銅ペーストが得られ、低抵抗の層間導通部が得られる
ため好ましいことが見出された。他方、大粒径銅粉つま
り多面体状銅粉の平均粒径は3μm〜10μmが好まし
い。この範囲より小さくなると、全体の平均粒径が小さ
くなり過ぎるからである。ここでいう大粒径銅粉とは、
混合される銅粉のうち平均粒径が大きい方の銅粉のこと
である。なお、ここまで、各銅粉の平均粒径について、
好ましい範囲を挙げて説明したが、その範囲が好ましい
理由から解るように、各銅粉を構成する個々の粉粒体自
体が対応する好ましい数値範囲内の大きさであるのがよ
り好ましいのはもちろんである。
Particularly, it is preferable to set the average particle size of the small particle size copper powder, that is, the spherical copper powder to 1 μm to 5 μm because a copper paste having a lower viscosity can be obtained and an interlayer conductive portion having a low resistance can be obtained. Was found. On the other hand, the average particle size of the large particle size copper powder, that is, the polyhedral copper powder is preferably 3 μm to 10 μm. If it is smaller than this range, the average particle size of the whole becomes too small. The large particle size copper powder here means
The copper powder having the larger average particle size among the mixed copper powders. Up to this point, for the average particle size of each copper powder,
Although the preferred range has been described, it is more preferable that the individual powder or granules constituting each copper powder themselves have a size within the corresponding preferred numerical range so that the range is preferred. Is.

【0022】また、本発明に係る銅粉が用いられた銅ペ
ーストは、多層プリント配線板のバイアホール、スルー
ホール等の穴埋めにより層間導通部を形成する用途に最
適である他、スクリーン印刷アディティブ法による導体
回路の形成にも適している。バイアホール等の穴埋めに
用いた場合は、上述したように、銅ペーストをホール内
に容易に隙間なく充填できるため、低電気抵抗の層間導
通部(導体)を含んだプリント配線板の製造が可能であ
る。また、スクリーン印刷アディティブ法による導体回
路の形成に用いた場合は、低電気抵抗の導体回路を含ん
だプリント配線板の製造が可能である。
Further, the copper paste using the copper powder according to the present invention is most suitable for the purpose of forming the interlayer conductive portion by filling the via hole, the through hole, etc. of the multilayer printed wiring board, and the screen printing additive method. It is also suitable for forming a conductor circuit by. When used to fill a via hole, etc., as mentioned above, the copper paste can be easily filled into the hole without leaving any gaps, making it possible to manufacture printed wiring boards that include interlayer conductive parts (conductors) with low electrical resistance. Is. When used for forming a conductor circuit by the screen printing additive method, it is possible to manufacture a printed wiring board including a conductor circuit having a low electric resistance.

【0023】[0023]

【発明の実施の形態】以下、本発明の好適な実施形態を
図面を参照しつつ説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described below with reference to the drawings.

【0024】最初に、本実施形態で用いられる各銅粉
(多面体状銅粉および球状銅粉)を、いわゆるヒドラジ
ンによる還元法によって製造した。まず、硫酸銅(五水
塩)100kgを温水に溶解させて200L(リット
ル)の水溶液とし、これを60℃に維持する。この水溶
液に25質量%水酸化ナトリウム水溶液125Lを添加
し、60℃に維持しながら1時間撹拌して反応させ、酸
化第二銅を生成した。そして、反応により得られたもの
を60℃に維持した状態で、これに450g/Lのグル
コース水溶液80Lを20分間かけて定量的に添加して
酸化第一銅スラリーを生成した。このスラリーを一旦濾
過し、洗浄した後、温水を加えて再度スラリー化し、3
20Lのスラリーを得た。このスラリーにアミノ酢酸
1.5kgおよびアラビアゴム0.7kgを添加し、撹
拌して50℃に保持した。この状態で、さらに20重量
%水加ヒドラジン50Lを1時間かけて定量的に添加し
て酸化第一銅を還元し、銅粉スラリーを生成した。得ら
れた銅粉スラリーを濾過し、純水で十分に洗浄し、再度
濾過した後、乾燥して銅粉を得た。
First, each copper powder (polyhedral copper powder and spherical copper powder) used in this embodiment was manufactured by a so-called hydrazine reduction method. First, 100 kg of copper sulfate (pentahydrate) is dissolved in warm water to prepare a 200 L (liter) aqueous solution, which is maintained at 60 ° C. To this aqueous solution, 125 L of a 25 mass% sodium hydroxide aqueous solution was added, and the mixture was stirred for 1 hour while maintaining the temperature at 60 ° C to cause a reaction to produce cupric oxide. Then, while maintaining the product obtained by the reaction at 60 ° C., 80 L of a 450 g / L glucose aqueous solution was quantitatively added thereto over 20 minutes to produce a cuprous oxide slurry. This slurry is once filtered and washed, and then warm water is added to make it into a slurry again.
20 L of slurry was obtained. Aminoacetic acid (1.5 kg) and gum arabic (0.7 kg) were added to the slurry, and the mixture was stirred and maintained at 50 ° C. In this state, 50 L of 20% by weight hydrated hydrazine was quantitatively added over 1 hour to reduce cuprous oxide to form a copper powder slurry. The obtained copper powder slurry was filtered, sufficiently washed with pure water, filtered again, and dried to obtain copper powder.

【0025】得られた銅粉のうちの25kgを、オレイ
ン酸0.025kgを溶解させた25Lのメタノール中
に投入して十分に撹拌し、その後、吸引濾過により過剰
の溶液を除去し、70℃で5時間乾燥させて、粒子表面
がオレイン酸で被覆された平均粒径(DIA)が4μm
の多面体状の有機化合物被覆銅粉を得た。得られた多面
体状銅粉を図2に示した(図1〜図3では、いずれも
(A)は7500倍であり、(B)は2000倍であ
る)。
25 kg of the obtained copper powder was put into 25 L of methanol in which 0.025 kg of oleic acid was dissolved and sufficiently stirred, and then excess solution was removed by suction filtration to 70 ° C. After being dried for 5 hours, the average particle size (D IA ) of the surface of the particles coated with oleic acid is 4 μm.
A polyhedral copper powder coated with an organic compound was obtained. The obtained polyhedral copper powder is shown in FIG. 2 (in FIGS. 1 to 3, (A) is 7500 times and (B) is 2000 times).

【0026】また、再度濾過した後、乾燥することによ
り得られた銅粉の所定量を解粒処理装置(ハイブリタイ
ザ、奈良機械製)で解粒して、表面が平滑化された銅粉
を得た。そして、表面が平滑化された銅粉のうちの25
kgを、オレイン酸0.025kgを溶解させた25L
のメタノール中に投入して十分に撹拌し、吸引濾過によ
り過剰の溶液を除去し、70℃で5時間乾燥させて、粒
子表面がオレイン酸で被覆された平均粒径(DIA)が
3μmの球状の有機化合物被覆銅粉を得た。得られた球
状銅粉を図1に示した。
Further, a predetermined amount of copper powder obtained by filtering again and then drying is disintegrated by a disintegration treatment device (hybridizer, manufactured by Nara Kikai) to obtain copper powder having a smooth surface. Obtained. And 25 of the copper powder whose surface is smoothed
25 L in which 0.025 kg of oleic acid was dissolved
In methanol, and the mixture is sufficiently stirred, the excess solution is removed by suction filtration, and the mixture is dried at 70 ° C. for 5 hours, and the average particle size (D IA ) of which the particle surface is coated with oleic acid is 3 μm. A spherical organic compound-coated copper powder was obtained. The obtained spherical copper powder is shown in FIG.

【0027】なお、オレイン酸などの有機化合物で被覆
をしていない銅粉を銅ペースト用に用いることも可能で
あるが、粒子表面がオレイン酸で被覆された有機化合物
被覆銅粉を用いると、例えば銅ペースト製造時の銅粉と
樹脂とのなじみがよいなどの効果があるため、より好ま
しい。
Although copper powder not coated with an organic compound such as oleic acid can be used for the copper paste, when an organic compound-coated copper powder whose particle surface is coated with oleic acid is used, For example, it is more preferable because it has an effect such that the copper powder and the resin are well compatible with each other when the copper paste is manufactured.

【0028】第1実施形態:上記した製法で得られた平
均粒径(DIA)が3μmの球状銅粉(小粒径銅粉)
と、平均粒径(DIA)が4μmの多面体状銅粉とが混
合された銅粉を用いてエポキシ系銅ペースト(導電性ペ
ースト)を製造した。本実施形態では、銅粉中の球状銅
粉の含有率が10重量%の銅粉を用いた。銅ペーストは
銅粉が85重量部、第1のエポキシ樹脂(エピコート8
28、油化シェル社製)が3重量部、第2のエポキシ樹
脂(YD−171、東都化成株式会社製)が9重量部、
エポキシ樹脂硬化剤(アミキュアMY−24、味の素株
式会社製)が3重量部である。これらを混合して30分
間の混錬を行い、エポキシ系銅ペーストを得た。
First Embodiment : Spherical copper powder (small particle size copper powder) having an average particle size (D IA ) of 3 μm obtained by the above-mentioned manufacturing method.
Then, an epoxy-based copper paste (conductive paste) was manufactured using copper powder in which polyhedral copper powder having an average particle diameter (D IA ) of 4 μm was mixed. In the present embodiment, copper powder having a spherical copper powder content of 10% by weight in the copper powder was used. The copper paste contains 85 parts by weight of copper powder, and the first epoxy resin (Epicoat 8
28, manufactured by Yuka Shell Co., Ltd.), 3 parts by weight, and a second epoxy resin (YD-171, manufactured by Toto Kasei Co., Ltd.) 9 parts by weight,
The epoxy resin curing agent (Amicure MY-24, manufactured by Ajinomoto Co., Inc.) is 3 parts by weight. These were mixed and kneaded for 30 minutes to obtain an epoxy copper paste.

【0029】そして、得られた銅ペーストの粘度と、こ
の銅ペーストを硬化させた状態での電気抵抗を測定し
た。銅ペーストは実際には配線板のバイアホールに充填
され、硬化された状態で導通部材として用いられるから
である。電気抵抗測定用の試験片の寸法は、φ10mm
×10mmとした。なお、銅ペーストの粘度は、粘度計
(RE−105U型、東機産業社製)を用い、0.5r
pmで測定した値である。粘度および電気抵抗の測定条
件は、全ての実施形態および比較例において共通であ
る。
Then, the viscosity of the obtained copper paste and the electric resistance of the cured copper paste were measured. This is because the copper paste is actually filled in the via holes of the wiring board and used as a conductive member in a cured state. The size of the test piece for electrical resistance measurement is φ10mm
It was set to × 10 mm. The viscosity of the copper paste was 0.5r using a viscometer (RE-105U type, manufactured by Toki Sangyo Co., Ltd.).
It is the value measured in pm. The measurement conditions of viscosity and electric resistance are common to all the embodiments and comparative examples.

【0030】第2〜6実施形態と、比較例1および2
各銅粉の混合比率が異なる銅ペースト用の銅粉を用いて
銅ペーストを製造した。各実施形態および各比較例にお
ける小粒径の銅粉と大粒径の銅粉の混合比率は、表1に
示すとおりである。混合比率以外の条件は、第1実施形
態と同様であり、その説明は省略する。なお、球状銅粉
と多面体状銅粉との混合状態を図3に示した。図3の写
真は球状銅粉の割合が30重量%のものである。
Second to Sixth Embodiments and Comparative Examples 1 and 2 :
A copper paste was manufactured using copper powder for copper paste in which the mixing ratio of each copper powder was different. Table 1 shows the mixing ratio of the copper powder having a small particle diameter and the copper powder having a large particle diameter in each embodiment and each comparative example. The conditions other than the mixing ratio are the same as those in the first embodiment, and description thereof will be omitted. The mixed state of the spherical copper powder and the polyhedral copper powder is shown in FIG. The photograph of FIG. 3 shows that the proportion of spherical copper powder is 30% by weight.

【0031】[0031]

【表1】 [Table 1]

【0032】いずれの実施形態の銅ペーストとも、粘度
は550Pa・S以下で、しかも電気抵抗は30×10
−6Ω・cm以下という良好な結果が得られた。これに
対し、比較例1の銅ペーストは、電気抵抗は低いもの
の、粘度が著しく高かった。また、比較例2の銅ペース
トは、粘度は低かったものの、電気抵抗が40×10
Ω・cmと高かった。この結果、小粒径の球状銅粉
と、大粒径の多面体状銅粉とを混合させた銅粉を用いて
銅ペースト用の銅粉を製造する場合、小粒径の球状銅粉
の割合を10重量%〜90重量%にすると、適切に低粘
度化された銅ペーストが得られ、かつ低抵抗の層間導通
部を形成できることが解った。また、小粒径の球状銅粉
の割合を30重量%〜60重量%にすれば、確実に取り
扱いやすい粘度(200Pa・S以下)を確保でき、し
かも十分に低抵抗(30×10−6Ω・cmより10%
低い27×10−6Ω・cm以下)の層間導通部を安定
して得られることが解った。
The copper pastes of any of the embodiments have a viscosity of 550 Pa · S or less and an electric resistance of 30 × 10 5.
Good results of −6 Ω · cm or less were obtained. On the other hand, the copper paste of Comparative Example 1 had a low electric resistance, but a significantly high viscosity. The copper paste of Comparative Example 2 had a low viscosity but an electric resistance of 40 × 10 −.
It was as high as 6 Ω · cm. As a result, when producing copper powder for a copper paste using a copper powder in which spherical copper powder having a small particle size and polyhedral copper powder having a large particle size are mixed, the proportion of the spherical copper powder having a small particle size It was found that when 10% by weight to 90% by weight, a copper paste having an appropriately reduced viscosity can be obtained and an interlayer conductive portion having low resistance can be formed. Further, if the proportion of the spherical copper powder having a small particle diameter is set to 30% by weight to 60% by weight, a viscosity (200 Pa · S or less) that can be easily handled can be reliably ensured and a sufficiently low resistance (30 × 10 −6 Ω) can be ensured.・ 10% from cm
It was found that a low interlayer conduction portion of 27 × 10 −6 Ω · cm or less) can be stably obtained.

【0033】比較例3:平均粒径(DIA)が異なる2
種類の多面体状銅粉を混合して得た銅ペースト用銅粉で
ある。本比較例3は、粒径が異なる多面体状銅粉を2種
類混合させることで得られた種々の銅粉のうち、銅ペー
ストにして粘度および電気抵抗を測定した結果、粘度と
電気抵抗のバランスが取れていた例である。測定結果を
表2に示す。なお、混合した2種類の多面体状銅粉の平
均粒径(DIA)は、それぞれ2.5μm(30重量
%)と4.5μm(70重量%)であった。
Comparative Example 3 : Different average particle diameter (D IA ) 2
It is a copper powder for copper paste obtained by mixing various types of polyhedral copper powder. In Comparative Example 3, among various copper powders obtained by mixing two kinds of polyhedral copper powders having different particle diameters, a copper paste was used to measure viscosity and electric resistance, and as a result, a balance between viscosity and electric resistance was obtained. It is an example that was taken. The measurement results are shown in Table 2. The average particle size (D IA ) of the mixed two kinds of polyhedral copper powder was 2.5 μm (30 wt%) and 4.5 μm (70 wt%), respectively.

【0034】また、比較例3で用いられた銅粉は、いず
れも上述した還元法により製造されたものであり、還元
時間の条件を変えて製造されたものである。そして、得
られた混合後の銅粉を用いて銅ペーストを製造し、その
粘度を測定すると共に、これをバイアホールに充填して
形成された層間導通部の電気抵抗を測定した。銅粉が異
なること以外の条件は第1実施形態と同じであった。
The copper powders used in Comparative Example 3 were all produced by the above-mentioned reduction method, and were produced by changing the conditions of the reduction time. Then, a copper paste was produced using the obtained mixed copper powder, the viscosity thereof was measured, and the electrical resistance of the interlayer conductive portion formed by filling the via hole with this was measured. The conditions were the same as in the first embodiment except that the copper powder was different.

【0035】[0035]

【表2】 [Table 2]

【0036】表2から解るように、比較例3の銅ペース
トの粘度は500Pa・Sであり、現状において上限値
と考えられている350Pa・Sと比較してかなり高か
った。そして、電気抵抗は32×10−6Ω・cmであ
り、現状において上限値と考えられている30×10
−6Ω・cmよりも高い値であった。比較例3と比べて
小粒径の銅粉の割合が高い場合や割合は同じでも平均粒
径がより小さい場合は、比較例3よりも銅ペーストの粘
度が低いものがあったが、その場合は電気抵抗が比較例
3より高く、好ましくなかった。また、比較例3よりも
小粒径の銅粉の割合が低い場合や割合は同じでも平均粒
径がより大きい場合には、比較例3と比べて電気抵抗が
低いものがあったが、その場合は銅ペーストの粘度が比
較例3より高く、好ましくなかった。この結果から、小
粒径の球状銅粉と多面体状銅粉とを混合させた銅粉を用
いることで、適切に低粘度の銅ペーストを得ることがで
き、しかも低抵抗の層間導通部を形成できることが解っ
た。
As can be seen from Table 2, the viscosity of the copper paste of Comparative Example 3 was 500 Pa · S, which was considerably higher than the upper limit value of 350 Pa · S at present. The electric resistance is 32 × 10 −6 Ω · cm, which is 30 × 10 which is considered to be the upper limit value at present.
The value was higher than −6 Ω · cm. When the ratio of the copper powder having a small particle size is higher than that of Comparative Example 3 or when the ratio is the same but the average particle size is smaller, the viscosity of the copper paste was lower than that of Comparative Example 3, but in that case Had an electric resistance higher than that of Comparative Example 3 and was not preferable. Further, when the proportion of the copper powder having a smaller particle size was lower than that in Comparative Example 3 or when the average particle diameter was larger even though the proportion was the same, there were some whose electric resistance was lower than that in Comparative Example 3. In this case, the viscosity of the copper paste was higher than that of Comparative Example 3, which was not preferable. From these results, it is possible to obtain an appropriately low-viscosity copper paste by using a copper powder in which spherical copper powder having a small particle diameter and polyhedral copper powder are mixed, and to form an interlayer conductive portion having low resistance. I knew that I could do it.

【0037】[0037]

【発明の効果】以上の説明から解るように、本発明によ
れば、プリント配線板の層間導通部を設けるために用い
られる銅ペースト用の銅粉、すなわち、低粘度化された
銅ペースト製造に好適であり、かつ、そのような銅ペー
ストを用いて形成された層間導通部の低抵抗化が実現で
きる銅粉を提供することができる。
As can be seen from the above description, according to the present invention, it is possible to manufacture copper powder for a copper paste used for providing an interlayer conductive portion of a printed wiring board, that is, a copper paste having a reduced viscosity. It is possible to provide a copper powder that is suitable and can realize a low resistance of the interlayer conductive portion formed by using such a copper paste.

【図面の簡単な説明】[Brief description of drawings]

【図1】 (A)、(B)は、いずれも球状銅粉を示す
SEMによる拡大写真。
FIG. 1 (A) and (B) are enlarged photographs by SEM showing spherical copper powder.

【図2】 (A)、(B)は、いずれも多面体状銅粉を
示すSEMによる拡大写真。
2 (A) and 2 (B) are enlarged photographs by SEM showing polyhedral copper powder.

【図3】 (A)、(B)は、いずれも小粒径の球状銅
粉と大粒径の多面体状銅粉とを混合させた状態を示すS
EMによる拡大写真。
3A and 3B each show a state in which spherical copper powder having a small particle diameter and polyhedral copper powder having a large particle diameter are mixed S
Enlarged photograph by EM.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4E351 BB01 BB31 BB49 CC11 DD04 EE02 EE03 GG16 5G301 AA08 AB20 AD06 DA06 DD01   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4E351 BB01 BB31 BB49 CC11 DD04                       EE02 EE03 GG16                 5G301 AA08 AB20 AD06 DA06 DD01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 球状銅粉と多面体状銅粉とが混合されて
なる銅ペースト用の銅粉。
1. A copper powder for a copper paste, which is a mixture of spherical copper powder and polyhedral copper powder.
【請求項2】 球状銅粉の平均粒径は、多面体状銅粉の
平均粒径より小さい請求項1に記載の銅ペースト用の銅
粉。
2. The copper powder for copper paste according to claim 1, wherein the average particle size of the spherical copper powder is smaller than the average particle size of the polyhedral copper powder.
【請求項3】 球状銅粉の平均粒径は、1μm〜5μm
である請求項1または請求項2に記載の銅ペースト用の
銅粉。
3. The average particle size of the spherical copper powder is 1 μm to 5 μm.
The copper powder for copper paste according to claim 1 or 2.
【請求項4】 多面体状銅粉の平均粒径は、3μm〜1
0μmである請求項1から請求項3のいずれか一項に記
載の銅ペースト用の銅粉。
4. The average particle diameter of the polyhedral copper powder is 3 μm to 1
It is 0 micrometer, The copper powder for copper pastes as described in any one of Claims 1-3.
【請求項5】 球状銅粉の割合は、10重量%〜90重
量%である請求項1から請求項4のいずれか一項に記載
の銅ペースト用の銅粉。
5. The copper powder for copper paste according to any one of claims 1 to 4, wherein the proportion of the spherical copper powder is 10% by weight to 90% by weight.
【請求項6】 請求項1から請求項5のいずれか一項に
記載の銅ペースト用の銅粉が用いられた銅ペースト。
6. A copper paste using the copper powder for copper paste according to any one of claims 1 to 5.
【請求項7】 請求項6に記載の銅ペーストを用いて形
成した導体を含んだプリント配線板。
7. A printed wiring board including a conductor formed by using the copper paste according to claim 6.
JP2001333120A 2001-10-30 2001-10-30 Copper powder for copper paste Pending JP2003141929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001333120A JP2003141929A (en) 2001-10-30 2001-10-30 Copper powder for copper paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001333120A JP2003141929A (en) 2001-10-30 2001-10-30 Copper powder for copper paste

Publications (1)

Publication Number Publication Date
JP2003141929A true JP2003141929A (en) 2003-05-16

Family

ID=19148439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001333120A Pending JP2003141929A (en) 2001-10-30 2001-10-30 Copper powder for copper paste

Country Status (1)

Country Link
JP (1) JP2003141929A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066316A1 (en) * 2003-01-23 2004-08-05 Matsushita Electric Industrial Co., Ltd. Conductive paste, method for producing same, circuit board using such conductive paste and method for producing same
JP2005322834A (en) * 2004-05-11 2005-11-17 Ricoh Co Ltd Pattern-shaped body and manufacturing method thereof
WO2006129487A1 (en) * 2005-05-30 2006-12-07 Sumitomo Electric Industries, Ltd. Conductive paste and multilayer printed wiring board using same
WO2007037440A1 (en) * 2005-09-29 2007-04-05 Alpha Scientific, Corporation Conductive powder and process for producing the same, conductive powder paste, and process for producing the conductive powder paste
CN106981324A (en) * 2017-04-26 2017-07-25 上海安缔诺科技有限公司 A kind of copper electrocondution slurry and its production and use
WO2018163543A1 (en) * 2017-03-08 2018-09-13 株式会社Adeka Method for producing copper powder, resin composition, method for forming cured product, and cured product
WO2021220711A1 (en) * 2020-04-30 2021-11-04 タツタ電線株式会社 Electroconductive composition
WO2023027158A1 (en) * 2021-08-25 2023-03-02 タツタ電線株式会社 Thermally conductive composition
WO2023190450A1 (en) * 2022-03-30 2023-10-05 三井金属鉱業株式会社 Bonded body manufacturing method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066316A1 (en) * 2003-01-23 2004-08-05 Matsushita Electric Industrial Co., Ltd. Conductive paste, method for producing same, circuit board using such conductive paste and method for producing same
JP2005322834A (en) * 2004-05-11 2005-11-17 Ricoh Co Ltd Pattern-shaped body and manufacturing method thereof
JP4484578B2 (en) * 2004-05-11 2010-06-16 株式会社リコー Pattern shape body and method for manufacturing the same
WO2006129487A1 (en) * 2005-05-30 2006-12-07 Sumitomo Electric Industries, Ltd. Conductive paste and multilayer printed wiring board using same
JP5141249B2 (en) * 2005-05-30 2013-02-13 住友電気工業株式会社 Conductive paste and multilayer printed wiring board using the same
TWI413474B (en) * 2005-05-30 2013-10-21 Sumitomo Electric Industries Multilayer printing wiring plate
US8617688B2 (en) 2005-05-30 2013-12-31 Sumitomo Electric Industries, Ltd. Conductive paste and multilayer printed wiring board using the same
WO2007037440A1 (en) * 2005-09-29 2007-04-05 Alpha Scientific, Corporation Conductive powder and process for producing the same, conductive powder paste, and process for producing the conductive powder paste
KR100988298B1 (en) 2005-09-29 2010-10-18 아루파 사이엔티픽 가부시키가이샤 Conductive powder and process for producing the same, conductive powder paste, and process for producing the conductive powder paste
JP4954885B2 (en) * 2005-09-29 2012-06-20 アルファーサイエンティフィック株式会社 Conductive powder and method for producing the same, conductive powder paste, and method for producing conductive powder paste
US9011726B2 (en) 2005-09-29 2015-04-21 Alpha Scientific, Corporation Electrically conductive powder and production thereof, paste of electrically conductive powder and production of paste of electrically conductive powder
WO2018163543A1 (en) * 2017-03-08 2018-09-13 株式会社Adeka Method for producing copper powder, resin composition, method for forming cured product, and cured product
CN110248750A (en) * 2017-03-08 2019-09-17 株式会社Adeka The manufacturing method of copper powder, resin combination, the method and solidfied material for forming solidfied material
KR20190122675A (en) * 2017-03-08 2019-10-30 가부시키가이샤 아데카 Method for producing copper powder, resin composition, method for forming cured product and cured product
CN110248750B (en) * 2017-03-08 2021-07-23 株式会社Adeka Method for producing copper powder, resin composition, method for forming cured product, and cured product
KR102337047B1 (en) 2017-03-08 2021-12-07 가부시키가이샤 아데카 Manufacturing method of copper powder, resin composition, method of forming a cured product, and cured product
US11440092B2 (en) 2017-03-08 2022-09-13 Adeka Corporation Method for manufacturing copper powder, resin composition, method for forming cured product, and cured product
CN106981324A (en) * 2017-04-26 2017-07-25 上海安缔诺科技有限公司 A kind of copper electrocondution slurry and its production and use
CN106981324B (en) * 2017-04-26 2019-01-29 上海安缔诺科技有限公司 A kind of copper electrocondution slurry and its preparation method and application
WO2021220711A1 (en) * 2020-04-30 2021-11-04 タツタ電線株式会社 Electroconductive composition
JPWO2021220711A1 (en) * 2020-04-30 2021-11-04
JP7419505B2 (en) 2020-04-30 2024-01-22 タツタ電線株式会社 conductive composition
WO2023027158A1 (en) * 2021-08-25 2023-03-02 タツタ電線株式会社 Thermally conductive composition
WO2023190450A1 (en) * 2022-03-30 2023-10-05 三井金属鉱業株式会社 Bonded body manufacturing method

Similar Documents

Publication Publication Date Title
JP5402350B2 (en) Method for producing conductive paste and conductive paste
JP4954885B2 (en) Conductive powder and method for producing the same, conductive powder paste, and method for producing conductive powder paste
KR100480863B1 (en) Copper fine powder and method for preparing the same
KR20060134188A (en) Silver powder coated with silver compound and manufacturing method thereof
JP2009117340A (en) Conductive paste and printed circuit board using the same
JP2005294254A (en) Conductive silver paste and electromagnetic wave shielding member using it
WO1996024938A1 (en) Composite conductive powder, conductive paste, method of producing conductive paste, electric circuit and method of fabricating electric circuit
TW201424887A (en) Silver hybrid copper powder, method for producing same, conductive paste containing silver hybrid copper powder, conductive adhesive, conductive film and electrical circuit
JP2003105404A (en) Producing method for silver coated copper powder, silver coated copper powder obtained by the producing method, conductive paste using the silver coated copper powder and printed circuit board using the conductive paste
JP5472279B2 (en) Conductive paste, and prepreg, metal foil-clad laminate, and printed wiring board using the same
JP2003141929A (en) Copper powder for copper paste
JP4922793B2 (en) Mixed conductive powder and method for producing the same, conductive paste and method for producing the same
JP2004156062A (en) Double layer-coated copper powder, method for production thereof, and conductive paste obtained by using the same
JP2008106368A (en) Silver compound-coated copper powder, method for producing the silver compound-coated copper powder, method for storing the silver compound-coated copper powder and conductive paste using the silver compound-coated copper powder
JP4881013B2 (en) Conductive powder, conductive paste and electrical circuit
JP2005044798A (en) Conductive powder and its production method
JP2003342621A (en) Method for manufacturing copper powder and copper powder obtained thereby
JP2007191752A (en) Tin-coated silver powder and method for producing the tin-coated silver powder
JP4924167B2 (en) Conductive paste, and prepreg, metal foil-clad laminate, and printed wiring board using the same
JP2002332501A (en) Method for manufacturing silver-coated copper powder, silver-coated copper powder obtained by the manufacturing method, conductive paste using the silver- coated copper powder, and printed wiring board using the conductive paste
JP2002298654A (en) Conductive powder and conductive composite
JP4354047B2 (en) Conductive paste composition for via filling
JP2003027102A (en) Silver-coated metal powder, method for manufacturing the same, conductive paste using the same, and printed wiring board containing conductor formed by using the conductive paste
WO2022004541A1 (en) Metal coated resin particles, method for producing same, conductive paste containing metal coated resin particles, and conductive film
JP6389628B2 (en) Copper powder, method for producing the same, and conductive composition containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061208

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070207

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070327

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070427