JP2005032471A - Conductive paste and its manufacturing method - Google Patents

Conductive paste and its manufacturing method Download PDF

Info

Publication number
JP2005032471A
JP2005032471A JP2003193528A JP2003193528A JP2005032471A JP 2005032471 A JP2005032471 A JP 2005032471A JP 2003193528 A JP2003193528 A JP 2003193528A JP 2003193528 A JP2003193528 A JP 2003193528A JP 2005032471 A JP2005032471 A JP 2005032471A
Authority
JP
Japan
Prior art keywords
silver
powder
conductive paste
substantially spherical
copper powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003193528A
Other languages
Japanese (ja)
Other versions
JP4273399B2 (en
Inventor
秀次 ▲桑▼島
Hideji Kuwajima
Kuniaki Sato
国昭 佐東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2003193528A priority Critical patent/JP4273399B2/en
Publication of JP2005032471A publication Critical patent/JP2005032471A/en
Application granted granted Critical
Publication of JP4273399B2 publication Critical patent/JP4273399B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide conductive paste capable of increasing the mixing ratio, enhancing reliability and migration resistance, decreasing the amount of silver used to raise cost competitiveness, and to provide a manufacturing method of the conductive paste. <P>SOLUTION: The conductive paste contains conductive powder having a filling density of 68 vol.% or more in a relative value and a binder containing epoxy resin and alkoxy group-containing resol phenol resin, as a main component, substantially globular silver-covered copper powder is manufactured by covering almost the globular copper powder in which a part of the globular copper powder and an alloy part with covered silver are exposed, the surface of the silver-covering copper powder is covered with 0.02-1.0 wt% fatty acid to the globular silver-covered copper power, the silver-covering layer is smoothed, 60-85 wt% globular silver-covered copper powder covered with the fatty acid and 15-40 wt% silver powder are uniformly mixed to prepare high filling mixed powder, and the mixed powder is uniformly mixed with the binder. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、配線板の回路形成、シールド層形成、電子部品の電極形成、はんだ付電極形成、導電性接着剤、熱伝導性接着剤等に使用される導電ペースト及びその製造方法に関する。
【0002】
【従来の技術】
印刷配線板上に導電回路を形成する方法の1つに、金、銀、銅、カーボン等の導電性粉末を用い、それにバインダ、有樹溶剤及び必要に応じて添加剤などを加えてペースト状に混合して作製していた(例えば、非特許文献1参照)。特に高導電性が要求される分野では、金粉、銀粉、パラジウム粉又はこれらの合金粉が一般的に用いられていた。
【0003】
【非特許文献1】
電子材料、1994年10月号(第42〜46頁)
【0004】
上記のうち銀粉を含有する導電ペーストは、導電性が良好なことから印刷配線板、電子部品等の配線層(導電層)又は電子部品の電気回路や電極の形成に使用されているが、これらは高温多湿の雰囲気下で電界が印加されると、電気回路や電極にマイグレーションと称する銀の電析が生じ電極間又は配線間が短絡するという欠点が生じる。このマイグレーションを防止するための方策はいくつか行われており、導体の表面に防湿塗料を塗布するか、導電ペーストに含窒素化合物などの腐食抑制剤を添加する等の方策が検討されているが十分な効果の得られるものではなかった。銀粉に替えて銀−パラジウム合金粉を使用すれば耐マイグレーション性は改善できるが、銀及びパラジウムが高価なため銀−パラジウム合金粉も高価になる欠点を有していた。
【0005】
また、導通抵抗の良好な導体を得るには銀粉の配合量を増加しなければならず、銀粉が高価であることから導電ペーストも高価になるという欠点があった。銀被覆銅粉を使用すればマイグレーションを改善でき、これを用いれば安価な導電ペーストが得られることになる。しかし、銀で銅粉の表面を均一に被覆するとマイグレーションの改善効果が十分ではない。さらに銀粉を使用した導電ペーストにはんだ付けを行う場合、銀喰われが起こり、十分な接合が得られないという欠点もあった。
【0006】
一方、銀粉以外に銅粉を使用する場合がある。しかし、銅粉を使用した導電ペーストは、加熱硬化後の銅の被酸化性が大きいため、空気中及びバインダ中に含まれる酸素と銅粉が反応し、その表面に酸化膜を形成し、導電性を著しく低下させる。そのため、各種還元剤を加えて、銅粉表面の酸化を防止し、導電性が安定した銅ペーストが開示されているが、導電性の安定性は銀ペーストには及ばず、高温高湿試験などで導通抵抗値が増大し、導電回路が断線状態になる場合もあるなどの欠点があった。
【0007】
従来、公知の導電ペーストは、接着剤として使用する場合、はんだペーストに比較して導電粉が高価であることから導電ペーストも高価であるという欠点を有していた。従って銅ペーストより導電性の信頼性が高く、かつ銀ペーストより耐マイグレーション性に優れ、はんだペースト及び乾燥硬化の作業性に優れた導電接着剤が望まれていた。
【0008】
また、熱伝導性を要求される接着剤の場合、熱伝導性の良好な充填剤、例えば銀粉、銅粉、窒化硼素粉等の粉末を高い充填率で混合しなければならないが、粉末の配合割合を高くすると混合物の粘度が上昇し、流動性が悪くなるため、ペーストの製造及び使用が困難になる欠点を有していた。
【0009】
導電ペーストを用いて導電回路を形成する方法は、導電粉をバインダに分散させ、ペースト状にした導電ペーストを、図1に示すように基材(基板)3の表面に塗布又はスルーホール4に充填して導電層1を形成する方法がある。なお図1において2は銅箔及び5は絶縁層である。
また、印刷配線板に形成したスルーホールに導電層を形成する他の方法としては、スルーホール内壁に銅めっきを施して導電層を形成する方法がある。
【0010】
一般的に孔埋め導電ペーストをスルーホール内に充填して層間接続を行う場合、小さい孔でありながら高導電性を必要とするため、孔にできる限り導電ペーストを充填し、すき間なく導電ペーストを埋め込む必要がある。そのため従来の孔埋め導電ペーストは導電粉の比率を高くする必要があるが、導電粉の比率を高くすると導電ペーストの粘度が高くなり孔への充填性が悪化してしまう。これに対してバインダの比率を高くすると粘度が低くなり孔への充填性は向上するが、導電性が低下してしまうという欠点が生じる。
【0011】
導電粉の充填密度を高くすれば、導電粉を高い割合で配合した導電ペーストの粘度は、充填密度の低い導電粉を使用した場合より低くできるが、従来の技術ではその充填密度を高くすることは困難であった。特に導電性が良好な銀粉の場合、銀が柔らかいため、凝集している粉末を解粒操作すると、解粒と共に変形が生じ、充填密度の高い導電粉を得ることは困難であった。市販されている銀粉の充填密度は相対値が一般に55体積%前後であり、高いものでも65体積%位であり、68体積%以上の導電粉の入手は困難であった。
【0012】
【発明が解決しようとする課題】
請求項1及び2記載の発明は、高配合率化が可能で導電性の信頼性又は耐マイグレーション性に優れ、銀使用量を低減することで価格競争力も高くできる導電ペーストを提供するものである。
請求項3記載の発明は、請求項1及び2記載の発明に加えて、高充填性及び流動性に優れた導電ペーストを提供するものである。
請求項4記載の発明は、請求項3記載の発明に加えて、高充填化が可能な導電ペーストを提供するものである。
【0013】
請求項5記載の発明は、請求項4記載の発明に加えて、導電性及び熱伝導性に優れた導電ペーストを提供するものである。
請求項6及び7記載の発明は、請求項5記載の発明に加えて、流動性及び保存時の粘度安定性に優れた導電ペーストを提供するものである。
請求項8記載の発明は、導電粉の高含有化が可能で導電性の信頼性又は耐マイグレーション性に優れ、銀使用量を低減することで価格競争力も高くできる導電ペーストの製造方法を提供するものである。
【0014】
【課題を解決するための手段】
本発明は、充填密度が相対値で68体積%以上の導電粉とエポキシ樹脂及びアルコキシル基含有レゾール型フェノ−ル樹脂を主成分としたバインダとを含有してなる導電ペーストに関する。
また、本発明は、導電粉が、略球状銅粉に対して3〜30重量%の銀で略球状銅粉の一部及び銀との合金部分を露出させて表面を被覆した略球状銀被覆銅粉であって、かつ被覆された銀が平滑化処理されており、その表面が略球状銀被覆銅粉に対して0.02〜1.0重量%の脂肪酸で被覆され、この脂肪酸で被覆された略球状銀被覆銅粉60〜85重量%及び銀粉15〜40重量%を含む導電粉である導電ペーストに関する。
【0015】
また、本発明は、略球状銀被覆銅粉が、平均粒径が2〜10μmである導電ペーストに関する。
また、本発明は、銀粉の形状が、略球状又は塊状であり、かつその平均粒径が、略球状銀被覆銅粉の平均粒径の1/10〜2/5である導電ペーストに関する。
また、本発明は、導電粉とバインダの配合割合が、導電ペーストの固形分に対して重量比で、導電粉:バインダが96:4〜88:12である導電ペーストに関する。
【0016】
また、本発明は、エポキシ樹脂のエポキシ当量が、130〜330g/eq、アルコキシル基含有レゾール型フェノ−ル樹脂のアルコキシル基の炭素数が、1〜6で、かつアルコキシル基含有レゾール型フェノ−ル樹脂のアルコキシ化率が5〜95%である導電ペ−ストに関する。
また、本発明は、アルコキシル基含有レゾール型フェノ−ル樹脂が、重量平均分子量が500〜20,000である導電ペ−ストに関する。
【0017】
さらに、本発明は、略球状銅粉の一部及び被覆する銀との合金部分を露出させて略球状銅粉の表面を略球状銅粉に対して3〜30重量%の銀で被覆して略球状銀被覆銅粉を作製し、さらにその表面に略球状銀被覆銅粉に対して0.02〜1.0重量%の脂肪酸を被覆し、次いで前記銀の被覆層を平滑化処理した後、脂肪酸で被覆された略球状銀被覆銅粉60〜85重量%及び銀粉15〜40重量%を均一に混合して高充填化混合粉とした後、バインダと均一に混合することを特徴とする導電ペーストの製造方法に関する。
【0018】
【発明の実施の形態】
略球状銅粉の表面への銀の被覆量は、略球状銅粉に対して3〜30重量%、好ましくは5〜22重量%、さらに好ましくは7.5〜22重量%の範囲とされ、銀の被覆量が30重量%を超えると、導電性などは改善されず、コストアップとなり、銀の被覆量が3重量%未満であると、導電性が悪くなる。
【0019】
本発明で用いられる略球状銀被覆銅粉の平均粒径は、印刷、吐出、充填性等の取扱いと、価格の点で2〜10μmの範囲が好ましく、4〜7μmの範囲がより好ましい。
【0020】
また、銀粉の形状は、粘度の上昇を抑えられる観点から、略球状又は塊状であることが好ましい。銀粉の形状が鱗片状であると、略球状銀被覆銅粉と組み合わせて用いた場合、充填密度を低下させるため流動性が悪化する傾向がある。
銀粉の平均粒径は、略球状銀被覆銅粉の平均粒径の1/10〜2/5の範囲であることが好ましい。
【0021】
なお、上記でいう平均粒径は、レーザー散乱型粒度分布測定装置により測定することができる。本発明においては、測定装置としてマスターサイザー(マルバン社製)を用いて測定した。
【0022】
本発明において略球状とは、アスペクト比が1〜1.5の範囲にあることを意味し、1〜1.3であればより好ましく、1〜1.2であればさらに好ましい。なお、アスペクト比とは、略球状銀被覆銅粉の粒子の長径と短径の比率(長径/短径)をいう。本発明においては、粘度の低い硬化性樹脂中に略球状銀被覆銅粉の粒子をよく混合し、静置して粒子を沈降させると共にそのまま樹脂を硬化させ、得られた硬化物を垂直方向に切断し、その切断面に現れる粒子の形状を電子顕微鏡で拡大して観察し、少なくとも100の粒子について一つ一つの粒子の長径/短径を求め、それらの平均値をもってアスペクト比とする。
【0023】
上記における短径とは、前記切断面に現れる粒子について、その粒子の外側に接する二つの平行線の組み合わせ粒子を挟むように選択し、それらの組み合わせのうち最短間隔になる二つの平行線の距離である。一方、長径とは、前記短径を決する平行線に直角方向の二つの平行線であって、粒子の外側に接する二つの平行線の組み合わせのうち、最長間隔になる二つの平行線の距離である。これらの四つの線で形成される長方形は、粒子がちょうどその中に納まる大きさとなる。
なお、本発明において行った具体的方法については後述する。
【0024】
本発明において、略球状銅粉の表面に銀を被覆する方法としては特に制限はないが、例えば置換めっき、電気めっき、無電解めっき等の方法があり、略球状銅粉と銀の付着力が高いこと及びランニングコストが安価であることから、置換めっきで被覆することが好ましい。銀は、上記の被覆工程中に一部が略球状銀被覆銅粉と合金を形成する。本発明においては、この合金部分と略球状銅粉の一部を露出した状態で銀が被覆される。
【0025】
本発明は、略球状銅粉の表面に銀を被覆した略球状銀被覆銅粉の表面にさらに脂肪酸を被覆するものである。本発明で用いられる脂肪酸としては、ステアリン酸、ラウリン酸、カプリン酸、パルミチン酸等の飽和脂肪酸又はオレイン酸、リノール酸、リノレン酸、ソルビン酸等の不飽和脂肪酸が挙げられる。
【0026】
略球状銀被覆銅粉の表面への脂肪酸の被覆量は、略球状銀被覆銅粉に対して0.02〜1.0重量%の範囲、好ましくは0.02〜0.5重量%の範囲、さらに好ましくは0.02〜0.3重量%の範囲とされ、脂肪酸の被覆量が1.0重量%を超えると、銀被覆銅粉同士が脂肪酸によって凝集し易くなるため、解粒が容易ではなく、また脂肪酸が内部離型剤として働くため、接着力が低下する。一方、脂肪酸の被覆量が0.02重量%未満であると銀被覆銅粉同士の凝集を解粒することが困難になる。
【0027】
銀めっきしたままの略球状銀被覆銅粉の表面状態は、析出した銀の粒界が表面に多く存在し平坦ではない。このため、ペーストにした場合粘度が上昇し易かった。まためっき処理又はその乾燥工程で凝集し易く、その充填密度は高くなく、相対値で通常60体積%未満、一般には55体積%未満である。これをジルコニアビーズ、ガラスビーズ、アルミナビーズ等を使用して解粒すると共にその表面を平滑化すれば、充填密度は相対値で60〜65体積%に向上させることができ、流動性も向上した導電粉となる。しかし、充填密度を相対値で68体積%以上にすることは、極めて困難であった。なお、被覆した銀の表面を平滑化処理するには例えば、ボールミルなどを用いて行うことができる。
【0028】
略球状銀被覆銅粉の表面を脂肪酸で被覆すれば下記のような利点がある。即ち略球状銅粉に銀めっきを施した場合、その後の乾燥工程で銅粉に含まれる水分を乾燥させるが、このとき水分を直接乾燥させると水の蒸発潜熱が大きいため乾燥に多くの時間を要する、しかも導電粉同士が凝集してしまう。しかし、水分を予めアルコール、アセトン等の親水性の有機溶剤で置換し、この有機溶剤を乾燥すれば乾燥は容易であり、導電粉同士の凝集も低下する。
【0029】
本発明はこれを利用したもので、前記、有機溶剤に脂肪酸を配合して乾燥を容易にすると共に、脂肪酸の被覆量を上記に示す範囲にし、かつ均一に被覆することにより、略球状銀被覆銅粉同士の凝集を容易に解粒させることができ、接着力についても低下させることなく、充填密度の高い脂肪酸で被覆された略球状銀被覆銅粉を得ることができると共に樹脂溶液に濡れ易い脂肪酸で被覆された略球状銀被覆銅粉を得ることができる。
【0030】
本発明における導電粉は、上記の脂肪酸で被覆された略球状銀被覆銅粉と銀粉が用いられる。
脂肪酸で被覆された略球状銀被覆銅粉と銀粉の配合割合は、脂肪酸で被覆された略球状銀被覆銅粉が60〜85重量%で、銀粉が15〜40重量%、好ましくは脂肪酸で被覆された略球状銀被覆銅粉が65〜80重量%で銀粉が20〜35重量%の範囲とされ、脂肪酸で被覆された略球状銀被覆銅粉が60重量%未満で銀粉が40重量%を超えると導電性の信頼性は問題はないが、耐マイグレーション性が低下する場合があり、また充填密度が低下し易い。一方、略球状銀被覆銅粉が85重量%を超え、銀粉が15重量%未満であると耐マイグレーション性は良好であるが、充填密度が低下し易い。
【0031】
また、得られる導電粉の充填密度は、相対値で68体積%以上であることが好ましい。充填密度が68体積%未満であると充填密度が低いため導電粉の配合割合を高くすると導電ペーストの粘度が高くなり、反面導電粉の配合割合を低くすると、十分な導電性及び信頼性が得られなくなる傾向がある。
【0032】
なお、充填密度の相対値とは、25mmのストロークでタッピングを1000回行い、その体積と質量から算出したタップ密度を、その粒子の真密度又は理論密度で除した値である。
【0033】
本発明になる導電粉は、略球状銀被覆銅粉の表面が略球状銀被覆銅粉に対して0.02〜1.0重量%の脂肪酸で被覆され、かつ略球状銅粉表面に被覆した銀が平滑化処理されているため、銀粉と平均粒径の近い略球状銀被覆銅粉を分散媒体として使用して混合、分散することにより、凝集する微細な銀粉を解粒する際の銀粉の変形を抑制し、かつ解粒と均一混合を行うことができる。このため、分散媒体と混合粉体を分離する操作は不要である。また微細な銀粉は凝集し易く、解粒操作を行っても再凝集を起こしやすいが、解粒操作と2種類の粉体同士の混合操作を同時に行うので、微細な銀粉の変形を抑制して高い充填密度の混合導電粉を作製することができる。
【0034】
分散及び混合を行う方法は、ボールミル、ロッキングミル、Vブレンダー、振動ミル等の回転又は振動エネルギーを使用する方法が容易である。これらの方法又はこれらと類似の方法で、解粒済の略球状銀被覆銅粉を分散媒体として使用して凝集している微小銀粉を解粒と同時に分散させればその装置、方法については特に制限はない。
【0035】
導電ペーストを作製するために使用するバインダは、エポキシ樹脂及びアルコキシル基含有レゾール型フェノ−ル樹脂を主成分とし、これらに硬化剤、添加剤、溶剤等を含有したものが用いられる。
フェノール樹脂を使用した導電ペーストは、エポキシ樹脂を単独で使用した導電ペーストより高い導電性が得られる。これはエポキシ樹脂よりフェノール樹脂の方が硬化収縮量が大きいため、導電体の体積減少が大きく、導電粉同士の接触面積及び接触確率が高くなるためである。
【0036】
高導電性が要求される導電ペーストにはフェノール樹脂は不可欠であるが、フェノール樹脂を使用すると導電ペーストの粘度が高くなり易く、導電粉の配合割合を多くすることが困難である。しかし、アルコキシル基含有レゾール型フェノ−ル樹脂を使用することでこれらの問題を回避することができる。さらに、アルコキシル基含有レゾール型フェノ−ル樹脂は、銅が露出した略球状銀被覆銅粉と混合しても、フェノール樹脂のメチロール基がアルコキシル基によってマスキングされているため、銅表面とメチロール基との反応が抑制できる。
【0037】
一方、エポキシ樹脂は、その機械的性質、耐熱性、接着性等に優れるため、接着剤などの用途のバインダとして適する。硬化剤としてイミダゾール類を使用する場合、硬化性を高くすると室温での暗反応が避けられず、シェルフライフが短くなることを避けられない。また銅表面とイミダゾール類の反応で硬化剤としてのイミダゾール類が不足し、硬化不足を起こすこともおきることがあるが、アルコキシル基含有レゾール型フェノ−ル樹脂をイミダゾールと併用し、これらをエポキシ樹脂の硬化剤として使用すると、硬化不足は回避でき、シェルフライフが長く、かつ160℃前後での硬化性の優れた導電ペーストを得ることができる。
【0038】
本発明で用いられるエポキシ樹脂としては、エポキシ当量が、130〜330g/eqの範囲のものを用いることが好ましく、160〜250g/eqの範囲のものを用いることがさらに好ましい。
また、本発明で用いられるエポキシ樹脂は常温で液状のものが好ましい。常温で結晶化するものは液状物と混合して結晶化を回避することができれば結晶性のエポキシ樹脂であっても使用することができる。本発明における常温で液状のエポキシ樹脂とは、例えば常温で固形のものでも常温で液状のエポキシ樹脂と混合することで常温で安定して液状となるものも含む。なお本発明において常温とは温度が約25℃を示すものを意味する。
【0039】
エポキシ樹脂は公知のものが用いられ、分子量中にエポキシ基を2個以上含有する化合物、例えばビスフェノ−ルA、ビスフェノ−ルAD、ビスフェノ−ルF、ノボラック、クレゾ−ルノボラック類とエピクロルヒドリンとの反応により得られるポリグリシジルエ−テル、ジヒドロキシナフタレンジグリシジルエ−テル、ブタンジオ−ルジグリシジルエ−テル、ネオペンチルグリコ−ルジグリシジルエ−テル等の脂肪族エポキシ樹脂やジグリシジルヒダントイン等の複素環式エポキシ樹脂、ビニルシクロヘキセンジオキサイド、ジシクロペンタンジエンジオキサイド、アリサイクリックジエポキシアジペイトのような脂環式エポキシ樹脂が挙げられる。
【0040】
必要に応じて可撓性付与剤が用いられる。可撓性付与剤は公知の物でよく、分子量中にエポキシ基を1個だけ有する化合物、例えばn−ブチルグリシジルエ−テル、バ−サティック酸グリシジルエステル、スチレンオキサイド、エチルヘキシルグリシジルエ−テル、フェニルグリシジルエ−テル、クレジルグリシジルエ−テル、ブチルフェニルグリシジルエ−テル等のような通常のエポキシ樹脂が挙げられる。
これらのエポキシ樹脂及び可撓性付与剤は、単独又は2種以上を混合して用いることができる。
【0041】
一方、アルコキシル基含有レゾール型フェノール樹脂としては、導電ペーストのバインダとして使用した場合の粘度、導電性等の点からアルコキシル基の炭素数は、1〜6であることが好ましく、2〜5であることがさらに好ましい。
また、レゾール型フェノール樹脂のアルコキシ化率、即ち全メチロール基のアルコキシ化されている割合は、導電ペーストの粘度、導電性及び信頼性の点から5〜95%の範囲が好ましく、10〜85%の範囲がさらに好ましい。
【0042】
また、アルコキシル基含有レゾール型フェノール樹脂中のアルコキシル基は、ベンゼン環1個当たりアルコキシル基が0.1〜2個の範囲が好ましく、0.3〜1.5個の範囲がより好ましく、0.5〜1.2個の範囲がさらに好ましい。なお、アルコキシ化率又はアルコキシル基の数は、核磁気共鳴スペクトル分析法(以下NMR法とする)で測定できる。
【0043】
さらに、本発明におけるアルコキシル基含有レゾール型フェノール樹脂の重量平均分子量は、導電ペーストの粘度、シェルフライフ、導電ペーストの硬化性、導電性、接着性、靱性等の点から500〜20,000の範囲が好ましく、500〜12,000の範囲がさらに好ましい。
なお、重量平均分子量はゲルパーミエーションクロマトグラフィー法で測定し、標準ポリスチレン換算する事により求めることができる。
【0044】
アルコキシル基含有レゾール型フェノール樹脂とエポキシ樹脂の配合割合は、アルコキシル基含有レゾール型フェノール樹脂:エポキシ樹脂が重量比で5:95〜60:40であることが好ましく、10:90〜40:60であることがさらに好ましい。アルコキシル基含有レゾール型フェノール樹脂の割合が5重量%未満であると硬化剤としての働きが小さく、導電性も悪くなる傾向があり、60重量%を超えると導電ペーストの導電性は高いものの接着性、靱性、粘度等のバランスが悪くなる傾向がある。
【0045】
導電粉とバインダの配合割合は、導電ペーストの固形分に対して、重量比で、導電粉:バインダが96:4〜88:12であることが好ましく、95.5:4.5〜90:10であることがさらに好ましい。導電粉の割合が96重量%を超えると導電性又は熱伝導性はよいが、接着力が低下する傾向があり、導電粉の割合が88重量%未満であると接着力は好ましいが導電性又は熱伝導性が低下し、導電粉を高充填化した意味が無くなる傾向がある。
【0046】
溶剤の含有量は、5重量%以下であることが好ましく、用途に応じて高充填化の導電粉を使用するので、無溶剤の場合、即ち溶剤が零の場合も可能である。また溶剤の含有量が5重量%以下であれば、導電粉とバインダの配合割合が上記の範囲内で導電粉リッチにすることができる。
【0047】
溶剤は、粘性を調節して印刷、吐出等の作業性を制御するために使用できるが、沸点が低いと作業中の粘度変化が大きく好ましくない。一方、沸点が高すぎると乾燥性が悪くなり硬化、乾燥作業に支障をきたす。従って、大気圧での沸点が150〜250℃の溶剤を使用することが好ましく、170〜240℃の溶剤が使用することがさらに好ましい。
【0048】
好ましいものとして使用される溶剤としては、例えば、エチルカルビトール、ジプロピレングリコールメチルエーテル、ジプロピレングリコールエチルエーテル、ジプロピレングリコールイソプロピルメチルエーテル、ジプロピレングリコールイソプロピルエチルエーテル、トリプロピレングリコールメチルエーテル、プロピレングリコールエチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、エチレングリコールブチルエーテル、ジエチレングリコールメチルエーテル、ジエチレングリコールエチルエーテル、3−メチル−3−メトキシブタノール、3−メチル−3−メトキシブチルエーテル、乳酸ブチル等が挙げられる。
【0049】
溶剤は、単独又は必要に応じて2種以上の溶剤を併用して使用される。溶剤の含有量は、導電性、作業性、導電ペーストの粘度、塗膜の膜厚、孔への充填性等の点から導電ペーストに対して、20重量%以下が好ましく、10重量%以下がより好ましく、6重量%以下がさらに好ましく、4重量%以下が最も好ましい。
【0050】
本発明に用いられるバインダは、上記成分の他にシラン系、チタネート系、アルミニウム系等のカップリング剤やシリコーン系などの消泡剤が添加剤として用いられる。添加剤の含有量は、導電ペーストに対して、0.01〜1重量%の範囲が好ましく、0.02〜0.2重量%の範囲がさらに好ましい。
【0051】
本発明の導電ペーストは、上記のバインダ、導電粉、硬化剤、添加剤、溶剤等と共に、らいかい機、ニーダー、三本ロール等で均一に混合、分散して得ることができる。
【0052】
【実施例】
以下、本発明を実施例により説明する。
実施例1
銀の被覆量が20重量%の略球状銀被覆銅粉を作製し、次いで該略球状銀被覆銅粉に対して0.2重量%の脂肪酸であるステアリン酸を被覆し、その後ボールルで銀の被覆層を平滑化処理した略球状銀被覆銅粉(日立化成工業(株)製、商品名GB05K、平均粒径5.5μm、アスペクト比1.0、充填密度の相対値63体積%)680g及び平均粒径が1.4μmの略球状銀粉(メタロー テクノロジーズ ユーエスエイ(Metalor Technologies USA)社製、商品名K−0082P、充填密度の相対値58体積%)320gを秤量し、内容積3リットルのボールミルに入れ、回転数65min−1の条件で100時間回転し、混合、分散を行って導電粉を得た。得られた導電粉の充填密度の相対値は71体積%であった。また略球状銀粉の平均粒径と略球状銀被覆銅粉との比は、1.4/5.5であった。
【0053】
一方、アルコキシル基含有レゾール型フェノール樹脂(当社試作品、アルコキシル基の炭素数が4、アルコキシ化率65%、重量平均分子量1,200)38重量部、エポキシ当量が170g/eqのビスフェノールAD型エポキシ樹脂 (三井石油化学工業(株)製、商品名エポミックR710)57重量部、2−フェニル−4−メチル−イミダゾール(四国化成(株)製、商品名キュアゾール2P4MZ)5重量部を均一に混合してバインダとした。
【0054】
上記で得たバインダ50gに、上記で得た導電粉450g及び溶剤としてエチルカルビトール10gを加えて撹拌らいかい機及び三本ロールで均一に混合、分散して導電ペーストを得た。該導電ペーストの粘度は25℃で670dPa・sであり、チキソ性はチキソトロピックインデックスが4.7であった。
【0055】
次に、上記で得た導電ペーストを用いて、図2に示すポリイミドフィルム6上にテストパターン7を印刷し、乾燥機に入れた後180℃まで13分間で昇温し、その温度で1時間加熱処理し、テスト基板を得た。
得られたテスト基板について導体のシート抵抗を測定した結果、86mΩ/□であった。またこのテスト基板を恒温恒湿試験で4,000時間及び気相冷熱試験で3,000サイクルの信頼性試験を行った結果、回路抵抗の変化率はそれぞれ9.4%及び8.3%であった。上記の恒温恒湿試験は、85℃85%相対湿度中に保管し、気相冷熱試験は−65℃30分間〜125℃30分間を1サイクルとして行った(以下同じ)。
【0056】
また、厚さが1.0mmのガラス基板上に、電極間距離が2.0mmのくし形電極の耐マイグレーション性テストパターンを印刷し、上記と同様の条件で加熱処理を行い硬化させて耐マイグレーション性テスト基板を得た。このテスト基板の耐マイグレーション性を、ウオーター・ドロップ法で試験した。すなわち、テスト基板の電極上にろ紙を置き、ろ紙に蒸留水を滴下して濡らした後、電極間に20Vのバイアス電圧を印加して短絡電流を測定した。短絡電流が500mAになるまでの時間(以下短絡時間とする)を測定した結果、9分10秒で、銀粉を導電粉として使用した銀ペーストの26秒に比べて20倍以上であり、良好な結果を得た。
【0057】
なお、本実施例におけるアスペクト比の具体的測定法を以下に示す。低粘度のエポキシ樹脂(ビューラー社製)の主剤(No.10−8130)8gと硬化剤(No.10−8132)2gを混合し、ここへ導電粉2gを混合してよく分散させ、そのまま25℃で真空脱泡した後、10時間25℃の条件で静置して粒子を沈降させ硬化させた。その後、得られた硬化物を垂直方向に切断し、切断面を電子顕微鏡で1000倍に拡大して切断面に現れた150個の粒子について長径/短径を求め、それらの平均値をもって、アスペクト比とした。
【0058】
実施例2
実施例1で用いたステアリン酸処理した略球状銀被覆銅粉630g及び平均粒径が0.95μmの略球状銀粉(徳力化学研究所製、商品名AgS―052L、充填密度の相対値51体積%)370gを秤量し、実施例1と同様のボールミルを用いて実施例1と同様の条件で180時間回転し、混合、分散を行って導電粉を得た。得られた導電粉の充填密度は相対値で70体積%であった。また略球状銀粉の平均粒径と略球状銀被覆銅粉との比は、0.95/5.5であった。
【0059】
上記で得た導電粉を使用し、以下実施例1と同様の工程を経て導電ペーストを作製し、さらにテスト基板を作製して、導体のシート抵抗及び耐マイグレーション性を試験した。その結果、テスト基板のシート抵抗は82mΩ/□であり、実施例1と同様の条件で行った恒温恒湿試験及び気相冷熱試験の回路抵抗の変化率はそれぞれ9.2%及び7.9%であった。
【0060】
また、実施例1と同様の条件でウオーター・ドロップ法で試験したときの短絡時間は、9分50秒であり、銀ペーストに比べて20倍以上であった。
なお、混合、分散して得た導電ペーストの粘度は25℃で570dPa・sであり、チキソ性はチキソトロピックインデックスが4.9であった。
【0061】
実施例3
実施例1で用いたステアリン酸処理した略球状銀被覆銅粉810g及び平均粒径が1.0μmの略球状銀粉(福田金属箔粉工業(株)製、商品名AgC−1561、充填密度の相対値56体積%)190gを秤量し、実施例1と同様のボールミルを用いて実施例1と同様の条件で200時間回転し、混合、分散を行って導電粉を得た。得られた導電粉の充填密度は相対値で71体積%であった。また略球状銀粉の平均粒径と略球状銀被覆銅粉との比は、1.0/5.5であった。
【0062】
上記で得た導電粉を使用し、以下実施例1と同様の工程を経て導電ペーストを作製し、さらにテスト基板を作製して、導体のシート抵抗及び耐マイグレーション性を試験した。その結果、テスト基板のシート抵抗は81mΩ/□であり、実施例1と同様の条件で行った恒温恒湿試験及び気相冷熱試験の回路抵抗の変化率はそれぞれ7.5%及び7.9%であった。
【0063】
また、実施例1と同様の条件でウオーター・ドロップ法で試験したときの短絡時間は、8分50秒であり、銀ペーストに比べて20倍以上であった。
なお、混合、分散して得た導電ペーストの粘度は25℃で390dPa・sであり、チキソ性はチキソトロピックインデックスが4.6であった。
【0064】
比較例1
実施例1で用いたステアリン酸処理した略球状銀被覆銅粉450g及び実施例1で用いた略球状銀粉50gを秤量し、実施例1と同様のボールミルを用いて実施例1と同様の条件で100時間回転し、混合、分散を行って導電粉を得た。得られた導電粉の充填密度は相対値で60体積%であった。
【0065】
上記で得た導電粉を使用し、以下実施例1と同様の工程を経て導電ペーストを作製し、さらにテスト基板を作製して、導体のシート抵抗及び耐マイグレーション性を試験した。その結果、テスト基板のシート抵抗は340mΩ/□と非常に高く、実施例1と同様の条件で行った恒温恒湿試験及び気相冷熱試験の回路抵抗の変化率はそれぞれ88.2%及び105.3%と実施例1〜3のものに比較してかなり高い値であった。
【0066】
また、実施例1と同様の条件でウオーター・ドロップ法で試験したときの短絡時間は、13分50秒であり、銀ペーストに比べて30倍以上であった。
なお、混合、分散して得た導電ペーストの粘度は25℃で420dPa・sであり、チキソ性はチキソトロピックインデックスが3.5であった。
【0067】
比較例2
実施例1で用いたステアリン酸処理した略球状銀被覆銅粉900g及び実施例3で用いた略球状銀粉100gを秤量し、実施例1と同様のボールミルを用いて実施例1と同様の条件で200時間回転し、混合、分散を行って導電粉を得た。得られた導電粉の充填密度は相対値で67体積%であった。
【0068】
上記で得た導電粉を使用し、以下実施例1と同様の工程を経て導電ペーストを作製し、さらにテスト基板を作製して、導体のシート抵抗及び耐マイグレーション性を試験した。その結果、テスト基板のシート抵抗は70mΩ/□であり、実施例1と同様の条件で行った恒温恒湿試験及び気相冷熱試験の回路抵抗の変化率はそれぞれ5.1%及び4.5%であった。
【0069】
また、実施例1と同様の条件でウオーター・ドロップ法で試験したときの短絡時間は、4分40秒と短く、銀ペーストに比べて約10倍であった。
なお、混合、分散して得た導電ペーストの粘度は25℃で520dPa・sと高く、チキソ性はチキソトロピックインデックスが3.9であった。
【0070】
比較例3
実施例1で用いたステアリン酸処理した略球状銀被覆銅粉550g及び実施例2で用いた略球状銀粉450gを秤量し、実施例1と同様のボールミルを用いて実施例1と同様の条件で200時間回転し、混合、分散を行って導電粉を得た。得られた導電粉の充填密度は相対値で63体積%であった。
【0071】
上記で得た導電粉を使用し、以下実施例1と同様の工程を経て導電ペーストを作製し、さらにテスト基板を作製して、導体のシート抵抗及び耐マイグレーション性を試験した。その結果、テスト基板のシート抵抗は70mΩ/□であり、実施例1と同様の条件で行った恒温恒湿試験及び気相冷熱試験の回路抵抗の変化率はそれぞれ5.1%及び4.5%であった。
【0072】
また、実施例1と同様の条件でウオーター・ドロップ法で試験したときの短絡時間は、4分40秒と短く、銀ペーストに比べて約10倍であった。
なお、混合、分散して得た導電ペーストの粘度は25℃で870dPa・sと非常に高く、チキソ性はチキソトロピックインデックスが5.3であった。
【0073】
比較例4
実施例1で用いたバインダ50gに、実施例1で用いたステアリン酸処理した略球状銀被覆銅粉306g及び実施例1で用いた略球状銀粉144gを秤量し、溶剤としてエチルカルビトール10gを加えて撹拌らいかい機及び三本ロールで均一に混合、分散して導電ペーストを作製しようと試みたが、粘度が高く、らいかい機で均一に混合することができなかった。
【0074】
【発明の効果】
請求項1及び2記載の導電ペーストは、高配合率化が可能で導電性の信頼性又は耐マイグレーション性に優れ、銀使用量を低減することで価格競争力も高くできる。
請求項3記載の導電ペーストは、請求項1及び2記載の導電ペーストに加えて、高充填性及び流動性に優れたものである。
請求項4記載の導電ペーストは、請求項3記載の導電ペーストに加えて、高充填化が可能なものである。
請求項5記載の導電ペーストは、請求項4記載の導電ペーストに加えて、導電性及び熱伝導性に優れたものである。
請求項6及び7記載の発明は、請求項5記載の導電ペーストに加えて、流動性及び保存時の粘度安定性に優れたものである。
請求項8記載の導電ペーストの製造方法は、導電粉の高含有化が可能で導電性の信頼性又は耐マイグレーション性に優れ、銀使用量を低減することで価格競争力も高くできる導電ペーストを製造できる。
【図面の簡単な説明】
【図1】スルーホール及び配線板の表面を導電ペーストで接続した状態を示す断面図である。
【図2】ポリイミドフィルム上にテストパターンを形成した状態を示す平面図である。
【符号の説明】
1 導電層
2 銅箔
3 基材
4 スルーホール
5 絶縁層
6 ポリイミドフィルム
7 テストパターン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive paste used for circuit formation of a wiring board, shield layer formation, electrode formation of an electronic component, soldered electrode formation, a conductive adhesive, a heat conductive adhesive, and the like, and a manufacturing method thereof.
[0002]
[Prior art]
One method of forming a conductive circuit on a printed wiring board is to use a conductive powder such as gold, silver, copper, carbon, etc., and add a binder, a resinous solvent, and additives as necessary to a paste. (See, for example, Non-Patent Document 1). In particular, gold powder, silver powder, palladium powder, or an alloy powder thereof has been generally used in a field where high conductivity is required.
[0003]
[Non-Patent Document 1]
Electronic Materials, October 1994 Issue (pp. 42-46)
[0004]
Among the above, the conductive paste containing silver powder is used for forming printed circuit boards, wiring layers (conductive layers) of electronic components, etc. or electric circuits and electrodes of electronic components because of its good conductivity. When an electric field is applied in an atmosphere of high temperature and humidity, there is a disadvantage that silver electrodeposition called migration occurs in an electric circuit or an electrode, causing a short circuit between electrodes or wirings. Several measures have been taken to prevent this migration, and measures such as applying a moisture-proof paint to the surface of the conductor or adding a corrosion inhibitor such as a nitrogen-containing compound to the conductive paste have been studied. A sufficient effect was not obtained. If silver-palladium alloy powder is used instead of silver powder, the migration resistance can be improved. However, silver and palladium are expensive, so that silver-palladium alloy powder is also expensive.
[0005]
Moreover, in order to obtain a conductor with good conduction resistance, the blending amount of silver powder must be increased, and since silver powder is expensive, the conductive paste is also expensive. If silver-coated copper powder is used, migration can be improved, and if this is used, an inexpensive conductive paste can be obtained. However, if the surface of the copper powder is uniformly coated with silver, the effect of improving migration is not sufficient. Furthermore, when soldering is performed on a conductive paste using silver powder, silver erosion occurs and there is a disadvantage that sufficient bonding cannot be obtained.
[0006]
On the other hand, copper powder may be used in addition to silver powder. However, since the conductive paste using copper powder has high oxidizability of copper after heat curing, the oxygen contained in the air and the binder reacts with the copper powder to form an oxide film on the surface, and the conductive paste Remarkably decreases the performance. Therefore, various reducing agents are added to prevent oxidation of the copper powder surface, and a copper paste with stable conductivity has been disclosed, but the conductivity stability does not reach that of silver paste, such as a high temperature and high humidity test. As a result, the conduction resistance value increases and the conductive circuit may be disconnected.
[0007]
Conventionally, when a known conductive paste is used as an adhesive, the conductive powder is more expensive than the solder paste, and thus the conductive paste is also expensive. Accordingly, there has been a demand for a conductive adhesive having higher conductivity reliability than a copper paste, better migration resistance than silver paste, and excellent solder paste and dry curing workability.
[0008]
For adhesives that require thermal conductivity, fillers with good thermal conductivity, such as silver powder, copper powder, boron nitride powder, etc. must be mixed at a high filling rate. When the ratio is increased, the viscosity of the mixture is increased and the fluidity is deteriorated, so that the paste is difficult to manufacture and use.
[0009]
In the method of forming a conductive circuit using a conductive paste, conductive powder is dispersed in a binder, and the paste-like conductive paste is applied to the surface of a substrate (substrate) 3 as shown in FIG. There is a method of forming the conductive layer 1 by filling. In FIG. 1, 2 is a copper foil and 5 is an insulating layer.
Further, as another method for forming a conductive layer in a through hole formed in a printed wiring board, there is a method of forming a conductive layer by performing copper plating on the inner wall of the through hole.
[0010]
In general, when inter-layer connection is performed by filling a hole-filled conductive paste into a through-hole, high conductivity is required even though it is a small hole. Need to embed. Therefore, the conventional hole-filling conductive paste needs to increase the ratio of the conductive powder. However, if the ratio of the conductive powder is increased, the viscosity of the conductive paste increases and the filling property into the holes deteriorates. On the other hand, when the binder ratio is increased, the viscosity is decreased and the filling property into the holes is improved, but there is a disadvantage that the conductivity is lowered.
[0011]
If the packing density of the conductive powder is increased, the viscosity of the conductive paste blended with a high proportion of the conductive powder can be made lower than when using a conductive powder with a low packing density, but the conventional technology should increase the packing density. Was difficult. In particular, in the case of silver powder having good conductivity, since silver is soft, when the agglomerated powder is pulverized, deformation occurs along with the pulverization, and it is difficult to obtain a conductive powder having a high packing density. The packing density of the commercially available silver powder generally has a relative value of about 55% by volume, and even a high one is about 65% by volume, and it was difficult to obtain conductive powder of 68% by volume or more.
[0012]
[Problems to be solved by the invention]
The inventions according to claims 1 and 2 provide a conductive paste capable of increasing the blending ratio, having excellent conductivity reliability or migration resistance, and having high price competitiveness by reducing the amount of silver used. .
The invention described in claim 3 provides a conductive paste excellent in high filling property and fluidity in addition to the inventions described in claims 1 and 2.
In addition to the invention described in claim 3, the invention described in claim 4 provides a conductive paste capable of high filling.
[0013]
The invention described in claim 5 provides a conductive paste having excellent conductivity and thermal conductivity in addition to the invention described in claim 4.
In addition to the invention of claim 5, the inventions of claims 6 and 7 provide a conductive paste excellent in fluidity and viscosity stability during storage.
The invention according to claim 8 provides a method for producing a conductive paste capable of increasing the content of conductive powder, having excellent conductive reliability or migration resistance, and increasing price competitiveness by reducing the amount of silver used. Is.
[0014]
[Means for Solving the Problems]
The present invention relates to a conductive paste containing a conductive powder having a relative density of 68 vol% or more and a binder mainly composed of an epoxy resin and an alkoxyl group-containing resol-type phenol resin.
In addition, the present invention provides a substantially spherical silver coating in which the conductive powder covers a surface by exposing a part of the substantially spherical copper powder and an alloy part with silver with 3 to 30% by weight of silver with respect to the substantially spherical copper powder. Copper powder and coated silver is smoothed, and the surface thereof is coated with 0.02 to 1.0% by weight of fatty acid with respect to the substantially spherical silver-coated copper powder. The present invention relates to a conductive paste which is a conductive powder containing 60 to 85% by weight of substantially spherical silver-coated copper powder and 15 to 40% by weight of silver powder.
[0015]
Moreover, this invention relates to the electrically conductive paste whose substantially spherical silver covering copper powder has an average particle diameter of 2-10 micrometers.
Moreover, this invention relates to the electrically conductive paste whose shape of silver powder is a substantially spherical shape or a lump shape, and whose average particle diameter is 1/10-2/5 of the average particle diameter of a substantially spherical silver covering copper powder.
The present invention also relates to a conductive paste in which the blending ratio of the conductive powder and the binder is a weight ratio with respect to the solid content of the conductive paste and the conductive powder: binder is 96: 4 to 88:12.
[0016]
In the present invention, the epoxy equivalent of the epoxy resin is 130 to 330 g / eq, the carbon number of the alkoxyl group of the alkoxyl group-containing resol-type phenol resin is 1 to 6, and the alkoxyl group-containing resol-type phenol is used. The present invention relates to a conductive paste having a resin alkoxylation ratio of 5 to 95%.
The present invention also relates to a conductive paste in which the alkoxyl group-containing resol type phenol resin has a weight average molecular weight of 500 to 20,000.
[0017]
Further, in the present invention, a part of the substantially spherical copper powder and an alloy part with the silver to be coated are exposed, and the surface of the substantially spherical copper powder is coated with 3 to 30% by weight of silver with respect to the substantially spherical copper powder. After producing a substantially spherical silver-coated copper powder, and further coating 0.02-1.0% by weight of fatty acid on the surface of the substantially spherical silver-coated copper powder, and then smoothing the silver coating layer The substantially spherical silver-coated copper powder 60 to 85% by weight and the fatty acid-coated copper powder 60 to 85% by weight and the silver powder 15 to 40% by weight are uniformly mixed to obtain a highly filled mixed powder, and then uniformly mixed with the binder. The present invention relates to a method for producing a conductive paste.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The coating amount of silver on the surface of the substantially spherical copper powder is 3 to 30% by weight, preferably 5 to 22% by weight, more preferably 7.5 to 22% by weight with respect to the substantially spherical copper powder. When the silver coating amount exceeds 30% by weight, the conductivity and the like are not improved, resulting in an increase in cost. When the silver coating amount is less than 3% by weight, the conductivity is deteriorated.
[0019]
The average particle diameter of the substantially spherical silver-coated copper powder used in the present invention is preferably in the range of 2 to 10 μm and more preferably in the range of 4 to 7 μm in terms of handling such as printing, discharge, filling properties, and price.
[0020]
Moreover, it is preferable that the shape of silver powder is a substantially spherical shape or a lump shape from a viewpoint which can suppress a raise of a viscosity. When the shape of the silver powder is scaly, when it is used in combination with the substantially spherical silver-coated copper powder, the fluidity tends to deteriorate because the packing density is lowered.
The average particle diameter of the silver powder is preferably in the range of 1/10 to 2/5 of the average particle diameter of the substantially spherical silver-coated copper powder.
[0021]
In addition, the average particle diameter mentioned above can be measured with a laser scattering type particle size distribution measuring apparatus. In this invention, it measured using the master sizer (made by Malvern company) as a measuring apparatus.
[0022]
In the present invention, “substantially spherical” means that the aspect ratio is in the range of 1 to 1.5, preferably 1 to 1.3, and more preferably 1 to 1.2. In addition, an aspect ratio means the ratio (major axis / minor axis) of the major axis and minor axis of the substantially spherical silver-coated copper powder particles. In the present invention, the particles of the substantially spherical silver-coated copper powder are well mixed in a curable resin having a low viscosity, and the particles are allowed to settle, and the resin is cured as it is. After cutting, the shape of the particles appearing on the cut surface is magnified and observed with an electron microscope, and for each of at least 100 particles, the major axis / minor axis of each particle is obtained, and the average value thereof is taken as the aspect ratio.
[0023]
The minor axis in the above is selected so as to sandwich a combination particle of two parallel lines in contact with the outside of the particle appearing on the cut surface, and the distance between the two parallel lines that is the shortest interval among the combinations It is. On the other hand, the major axis is a distance between two parallel lines that are perpendicular to the parallel line that determines the minor axis and that is the longest interval among the two parallel lines that are in contact with the outside of the particle. is there. The rectangle formed by these four lines is the size that the particles just fit within.
A specific method performed in the present invention will be described later.
[0024]
In the present invention, the method of coating the surface of the substantially spherical copper powder with silver is not particularly limited. For example, there are methods such as displacement plating, electroplating, and electroless plating. Since it is high and the running cost is low, it is preferable to coat with displacement plating. Part of the silver forms an alloy with the substantially spherical silver-coated copper powder during the coating process. In the present invention, silver is coated with the alloy portion and a part of the substantially spherical copper powder exposed.
[0025]
In the present invention, the surface of a substantially spherical silver-coated copper powder obtained by coating silver on the surface of a substantially spherical copper powder is further coated with a fatty acid. Examples of the fatty acid used in the present invention include saturated fatty acids such as stearic acid, lauric acid, capric acid, and palmitic acid, and unsaturated fatty acids such as oleic acid, linoleic acid, linolenic acid, and sorbic acid.
[0026]
The coating amount of the fatty acid on the surface of the substantially spherical silver-coated copper powder is in the range of 0.02 to 1.0% by weight, preferably in the range of 0.02 to 0.5% by weight, with respect to the substantially spherical silver-coated copper powder. More preferably, it is in the range of 0.02 to 0.3% by weight. When the coating amount of fatty acid exceeds 1.0% by weight, the silver-coated copper powder is easily aggregated by the fatty acid, so that pulverization is easy. However, since the fatty acid acts as an internal mold release agent, the adhesive strength is reduced. On the other hand, when the coating amount of the fatty acid is less than 0.02% by weight, it becomes difficult to break up the aggregation of the silver-coated copper powder.
[0027]
The surface state of the substantially spherical silver-coated copper powder as silver-plated is not flat because many grain boundaries of precipitated silver exist on the surface. For this reason, when it was made into a paste, the viscosity was likely to rise. Moreover, it is easy to agglomerate by a plating process or its drying process, the filling density is not high, and it is usually less than 60 volume% and generally less than 55 volume% by relative value. If this is pulverized using zirconia beads, glass beads, alumina beads, etc. and the surface is smoothed, the packing density can be improved to 60 to 65% by volume in relative value, and the fluidity is also improved. It becomes conductive powder. However, it has been extremely difficult to make the packing density relative to 68 volume% or more. The surface of the coated silver can be smoothed using, for example, a ball mill.
[0028]
If the surface of the substantially spherical silver-coated copper powder is coated with a fatty acid, the following advantages are obtained. In other words, when silver plating is applied to a substantially spherical copper powder, the moisture contained in the copper powder is dried in the subsequent drying process. In addition, the conductive powder aggregates. However, if moisture is previously substituted with a hydrophilic organic solvent such as alcohol or acetone and the organic solvent is dried, drying is easy and aggregation of the conductive powders is also reduced.
[0029]
The present invention utilizes this, and by adding a fatty acid to the organic solvent to facilitate drying, the coating amount of the fatty acid is within the range shown above and is uniformly coated, so that a substantially spherical silver coating is obtained. Aggregation of copper powders can be easily pulverized, and substantially spherical silver-coated copper powder coated with fatty acids having a high filling density can be obtained without reducing the adhesive force, and it is easy to get wet with the resin solution. A substantially spherical silver-coated copper powder coated with a fatty acid can be obtained.
[0030]
As the conductive powder in the present invention, substantially spherical silver-coated copper powder and silver powder coated with the above fatty acid are used.
The mixing ratio of the substantially spherical silver-coated copper powder coated with fatty acid and the silver powder is 60 to 85% by weight of the substantially spherical silver-coated copper powder coated with fatty acid, and 15 to 40% by weight, preferably coated with fatty acid. The substantially spherical silver-coated copper powder is 65 to 80% by weight and the silver powder is 20 to 35% by weight. The substantially spherical silver-coated copper powder coated with a fatty acid is less than 60% by weight and the silver powder is 40% by weight. If it exceeds, there is no problem in the reliability of conductivity, but the migration resistance may be lowered, and the packing density tends to be lowered. On the other hand, when the substantially spherical silver-coated copper powder exceeds 85% by weight and the silver powder is less than 15% by weight, the migration resistance is good, but the packing density tends to decrease.
[0031]
Moreover, it is preferable that the packing density of the obtained electroconductive powder is 68 volume% or more by a relative value. When the packing density is less than 68% by volume, the packing density is low, so increasing the blending ratio of the conductive powder increases the viscosity of the conductive paste. On the other hand, decreasing the blending ratio of the conductive powder results in sufficient conductivity and reliability. There is a tendency to become unusable.
[0032]
Note that the relative value of the packing density is a value obtained by dividing the tap density calculated from the volume and mass by the true density or theoretical density of the particles after performing tapping 1000 times with a stroke of 25 mm.
[0033]
In the conductive powder according to the present invention, the surface of the substantially spherical silver-coated copper powder is coated with 0.02 to 1.0% by weight of fatty acid with respect to the substantially spherical silver-coated copper powder, and the surface of the substantially spherical copper powder is coated. Since the silver is smoothed, the silver powder used when the fine silver powder to be agglomerated is disaggregated by mixing and dispersing the silver powder and the substantially spherical silver-coated copper powder having an average particle diameter close to that of the dispersion medium. Deformation can be suppressed, and pulverization and uniform mixing can be performed. For this reason, operation which isolate | separates a dispersion medium and mixed powder is unnecessary. In addition, fine silver powder is easy to agglomerate, and reaggregation is likely to occur even if the pulverization operation is performed, but since the pulverization operation and the mixing operation of two kinds of powders are performed simultaneously, the deformation of the fine silver powder is suppressed. A mixed conductive powder having a high packing density can be produced.
[0034]
As a method for performing dispersion and mixing, a method using rotation or vibration energy such as a ball mill, a rocking mill, a V blender, and a vibration mill is easy. If these methods or similar methods are used to disperse agglomerated fine silver powder simultaneously with pulverization using pulverized substantially spherical silver-coated copper powder as a dispersion medium, the apparatus and method are particularly There is no limit.
[0035]
The binder used for producing the conductive paste includes an epoxy resin and an alkoxyl group-containing resol-type phenol resin as main components, and those containing a curing agent, an additive, a solvent, and the like.
A conductive paste using a phenolic resin has higher conductivity than a conductive paste using an epoxy resin alone. This is because the phenol resin has a larger amount of curing shrinkage than the epoxy resin, so that the volume of the conductor is greatly reduced, and the contact area and contact probability between the conductive powders are increased.
[0036]
A phenol resin is indispensable for a conductive paste that requires high conductivity. However, when a phenol resin is used, the viscosity of the conductive paste tends to increase, and it is difficult to increase the blending ratio of the conductive powder. However, these problems can be avoided by using an alkoxyl group-containing resol-type phenol resin. Furthermore, even if the alkoxyl group-containing resol-type phenol resin is mixed with the substantially spherical silver-coated copper powder with exposed copper, the methylol group of the phenol resin is masked by the alkoxyl group, so the copper surface and the methylol group Reaction can be suppressed.
[0037]
On the other hand, epoxy resins are suitable as binders for applications such as adhesives because of their excellent mechanical properties, heat resistance, adhesiveness, and the like. When imidazoles are used as the curing agent, if the curability is increased, a dark reaction at room temperature cannot be avoided, and the shelf life cannot be avoided. In addition, the reaction between the copper surface and imidazoles may cause a shortage of imidazole as a curing agent, which may cause insufficient curing, but an alkoxyl group-containing resol-type phenol resin is used in combination with imidazole, and these are epoxy resins. When used as a curing agent, a shortage of curing can be avoided, and a conductive paste having a long shelf life and excellent curability at around 160 ° C. can be obtained.
[0038]
As the epoxy resin used in the present invention, one having an epoxy equivalent in the range of 130 to 330 g / eq is preferably used, and one having a range of 160 to 250 g / eq is more preferable.
Moreover, the epoxy resin used in the present invention is preferably liquid at room temperature. Any crystalline epoxy resin that can be crystallized at room temperature can be used as long as it can be mixed with a liquid material to avoid crystallization. The epoxy resin that is liquid at normal temperature in the present invention includes, for example, those that are solid at normal temperature and that are stably liquid at normal temperature by mixing with an epoxy resin that is liquid at normal temperature. In the present invention, the normal temperature means a temperature of about 25 ° C.
[0039]
Known epoxy resins are used, and compounds containing two or more epoxy groups in the molecular weight, such as bisphenol A, bisphenol AD, bisphenol F, novolac, cresol novolacs, and epichlorohydrin are reacted. Aliphatic epoxy resins such as polyglycidyl ether, dihydroxynaphthalenediglycidyl ether, butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, and heterocyclic epoxies such as diglycidyl hydantoin Examples thereof include alicyclic epoxy resins such as resins, vinylcyclohexene dioxide, dicyclopentanediene dioxide, and alicyclic diepoxy adipate.
[0040]
A flexibility imparting agent is used as necessary. The flexibility imparting agent may be a known one, and is a compound having only one epoxy group in the molecular weight, such as n-butyl glycidyl ether, versatic acid glycidyl ester, styrene oxide, ethylhexyl glycidyl ether, phenyl. Examples include ordinary epoxy resins such as glycidyl ether, cresyl glycidyl ether, butylphenyl glycidyl ether and the like.
These epoxy resins and flexibility-imparting agents can be used alone or in admixture of two or more.
[0041]
On the other hand, as an alkoxyl group-containing resol type phenol resin, the number of carbon atoms of the alkoxyl group is preferably 1 to 6 and preferably 2 to 5 in terms of viscosity, conductivity, etc. when used as a binder of a conductive paste. More preferably.
Further, the alkoxylation rate of the resol type phenolic resin, that is, the ratio of alkoxylation of all methylol groups is preferably in the range of 5 to 95% from the viewpoint of the viscosity, conductivity and reliability of the conductive paste, and is preferably 10 to 85%. The range of is more preferable.
[0042]
In addition, the alkoxyl group in the alkoxyl group-containing resol type phenol resin preferably has a range of 0.1 to 2 alkoxyl groups per benzene ring, more preferably 0.3 to 1.5. The range of 5 to 1.2 is more preferable. The alkoxylation rate or the number of alkoxyl groups can be measured by nuclear magnetic resonance spectrum analysis (hereinafter referred to as NMR method).
[0043]
Furthermore, the weight average molecular weight of the alkoxyl group-containing resol type phenol resin in the present invention is in the range of 500 to 20,000 in terms of the viscosity of the conductive paste, shelf life, curability of the conductive paste, conductivity, adhesiveness, toughness and the like. Is preferable, and the range of 500 to 12,000 is more preferable.
In addition, a weight average molecular weight can be calculated | required by measuring by gel permeation chromatography method and converting into standard polystyrene.
[0044]
The blending ratio of the alkoxyl group-containing resol type phenol resin and the epoxy resin is preferably 5:95 to 60:40 by weight ratio of the alkoxyl group containing resol type phenol resin: epoxy resin, and 10:90 to 40:60. More preferably it is. If the proportion of the alkoxyl group-containing resol-type phenol resin is less than 5% by weight, the function as a curing agent is small and the conductivity tends to deteriorate, and if it exceeds 60% by weight, the conductivity of the conductive paste is high, but the adhesion There is a tendency that the balance of toughness, viscosity and the like is deteriorated.
[0045]
The blending ratio of the conductive powder and the binder is preferably 96: 4 to 88:12 in terms of weight ratio with respect to the solid content of the conductive paste, and 95.5: 4.5 to 90: More preferably, it is 10. If the proportion of the conductive powder exceeds 96% by weight, the conductivity or thermal conductivity is good, but the adhesive force tends to decrease, and if the proportion of the conductive powder is less than 88% by weight, the adhesive force is preferable, but the conductive or There is a tendency that the thermal conductivity is lowered and the meaning of high filling of the conductive powder is lost.
[0046]
The content of the solvent is preferably 5% by weight or less, and a highly filled conductive powder is used depending on the application. Therefore, it is possible to use no solvent, that is, when the solvent is zero. Moreover, if content of a solvent is 5 weight% or less, it can be made conductive powder rich in the mixture ratio of electroconductive powder and a binder within said range.
[0047]
The solvent can be used to control workability such as printing and discharging by adjusting the viscosity. However, if the boiling point is low, the viscosity change during work is large, which is not preferable. On the other hand, if the boiling point is too high, the drying property becomes worse and the curing and drying operations are hindered. Therefore, it is preferable to use a solvent having a boiling point of 150 to 250 ° C at atmospheric pressure, and more preferably a solvent having a boiling point of 170 to 240 ° C.
[0048]
Examples of preferable solvents include ethyl carbitol, dipropylene glycol methyl ether, dipropylene glycol ethyl ether, dipropylene glycol isopropyl methyl ether, dipropylene glycol isopropyl ethyl ether, tripropylene glycol methyl ether, and propylene glycol. Examples include ethyl ether acetate, ethylene glycol ethyl ether acetate, ethylene glycol butyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether, 3-methyl-3-methoxybutanol, 3-methyl-3-methoxybutyl ether, and butyl lactate.
[0049]
A solvent is used individually or in combination of 2 or more types as needed. The content of the solvent is preferably 20% by weight or less, preferably 10% by weight or less based on the conductive paste from the viewpoints of conductivity, workability, conductive paste viscosity, coating film thickness, hole filling property, and the like. More preferably, it is more preferably 6% by weight or less, and most preferably 4% by weight or less.
[0050]
In addition to the above components, the binder used in the present invention includes a coupling agent such as silane, titanate, and aluminum, and an antifoaming agent such as silicone as additives. The content of the additive is preferably in the range of 0.01 to 1% by weight and more preferably in the range of 0.02 to 0.2% by weight with respect to the conductive paste.
[0051]
The conductive paste of the present invention can be obtained by uniformly mixing and dispersing with a binder, a conductive powder, a curing agent, an additive, a solvent, and the like, using a raking machine, a kneader, a three roll or the like.
[0052]
【Example】
Hereinafter, the present invention will be described with reference to examples.
Example 1
A substantially spherical silver-coated copper powder having a silver coating amount of 20% by weight is prepared, and then 0.2% by weight of stearic acid, which is a fatty acid, is coated on the substantially spherical silver-coated copper powder. 680 g of substantially spherical silver-coated copper powder (trade name GB05K, trade name GB05K, average particle size of 5.5 μm, aspect ratio of 1.0, relative value of packing density of 63 vol%) manufactured by smoothing the coating layer and 320 g of an approximately spherical silver powder having an average particle size of 1.4 μm (made by Metalor Technologies USA, trade name K-0082P, 58% by volume relative value of packing density) was weighed into a 3 liter ball mill. Put, rotation speed 65min -1 Then, the mixture was rotated for 100 hours, mixed and dispersed to obtain conductive powder. The relative value of the packing density of the obtained conductive powder was 71% by volume. The ratio between the average particle diameter of the substantially spherical silver powder and the substantially spherical silver-coated copper powder was 1.4 / 5.5.
[0053]
On the other hand, a bisphenol AD type epoxy resin having 38 parts by weight of an alkoxyl group-containing resol type phenol resin (our prototype, alkoxyl group having 4 carbon atoms, alkoxylation rate of 65%, weight average molecular weight 1,200) and an epoxy equivalent of 170 g / eq. Resin (Mitsui Petrochemical Co., Ltd., trade name Epomic R710) 57 parts by weight, 2-phenyl-4-methyl-imidazole (Shikoku Kasei Co., Ltd., trade name Curesol 2P4MZ) 5 parts by weight were mixed uniformly. And made a binder.
[0054]
To 50 g of the binder obtained above, 450 g of the conductive powder obtained above and 10 g of ethyl carbitol as a solvent were added and uniformly mixed and dispersed with a stirrer and three rolls to obtain a conductive paste. The viscosity of the conductive paste was 670 dPa · s at 25 ° C., and the thixotropic index was 4.7.
[0055]
Next, using the conductive paste obtained above, the test pattern 7 is printed on the polyimide film 6 shown in FIG. 2, and after putting in a dryer, the temperature is raised to 180 ° C. over 13 minutes, and the temperature is kept for 1 hour. Heat treatment was performed to obtain a test substrate.
As a result of measuring the sheet resistance of the conductor for the obtained test substrate, it was 86 mΩ / □. In addition, this test substrate was subjected to a reliability test of 4,000 hours in a constant temperature and humidity test and 3,000 cycles in a gas phase cooling / heating test. As a result, the rate of change in circuit resistance was 9.4% and 8.3%, respectively. there were. The above constant temperature and humidity test was stored in 85 ° C. and 85% relative humidity, and the gas phase cooling and heating test was performed in a cycle of −65 ° C. for 30 minutes to 125 ° C. for 30 minutes (the same applies hereinafter).
[0056]
In addition, a migration resistance test pattern of a comb-shaped electrode having a distance between electrodes of 2.0 mm is printed on a glass substrate having a thickness of 1.0 mm, and cured by heat treatment under the same conditions as described above. A test board was obtained. The migration resistance of this test substrate was tested by the water drop method. That is, a filter paper was placed on the electrode of the test substrate, distilled water was dropped onto the filter paper and wetted, and then a bias voltage of 20 V was applied between the electrodes to measure the short circuit current. As a result of measuring the time until the short-circuit current becomes 500 mA (hereinafter referred to as short-circuit time), it is 9 minutes and 10 seconds, which is 20 times or more compared with 26 seconds of silver paste using silver powder as a conductive powder. The result was obtained.
[0057]
In addition, the specific measuring method of the aspect ratio in a present Example is shown below. 8 g of a main agent (No. 10-8130) of a low-viscosity epoxy resin (manufactured by Buehler) and 2 g of a curing agent (No. 10-8132) are mixed, and then 2 g of conductive powder is mixed and dispersed well. After vacuum degassing at 0 ° C., the particles were allowed to stand at 25 ° C. for 10 hours to settle and harden the particles. Thereafter, the obtained cured product was cut in the vertical direction, the cut surface was magnified 1000 times with an electron microscope, and the major axis / minor axis were obtained for 150 particles appearing on the cut surface. Ratio.
[0058]
Example 2
630 g of substantially spherical silver-coated copper powder treated with stearic acid used in Example 1 and substantially spherical silver powder having an average particle size of 0.95 μm (trade name AgS-052L, manufactured by Tokuru Chemical Laboratory, 51% by volume relative value of packing density) ) 370 g was weighed and rotated for 180 hours under the same conditions as in Example 1 using the same ball mill as in Example 1, mixed and dispersed to obtain conductive powder. The packing density of the obtained conductive powder was 70% by volume in relative value. The ratio of the average particle diameter of the substantially spherical silver powder to the substantially spherical silver-coated copper powder was 0.95 / 5.5.
[0059]
Using the conductive powder obtained above, a conductive paste was prepared through the same steps as in Example 1 below, a test substrate was further prepared, and the sheet resistance and migration resistance of the conductor were tested. As a result, the sheet resistance of the test substrate was 82 mΩ / □, and the rate of change in circuit resistance in the constant temperature and humidity test and the vapor phase cooling test conducted under the same conditions as in Example 1 was 9.2% and 7.9, respectively. %Met.
[0060]
Moreover, the short circuit time when tested by the water drop method under the same conditions as in Example 1 was 9 minutes and 50 seconds, which was 20 times or more that of the silver paste.
The viscosity of the conductive paste obtained by mixing and dispersing was 570 dPa · s at 25 ° C., and the thixotropic index was 4.9.
[0061]
Example 3
810 g of stearic acid-treated substantially spherical silver-coated copper powder used in Example 1 and substantially spherical silver powder having an average particle size of 1.0 μm (made by Fukuda Metal Foil Powder Co., Ltd., trade name AgC-1561, relative packing density) (Value 56 volume%) 190 g was weighed and rotated for 200 hours under the same conditions as in Example 1 using the same ball mill as in Example 1, mixed and dispersed to obtain conductive powder. The packing density of the obtained conductive powder was 71% by volume in relative value. Moreover, the ratio of the average particle diameter of the substantially spherical silver powder to the substantially spherical silver-coated copper powder was 1.0 / 5.5.
[0062]
Using the conductive powder obtained above, a conductive paste was prepared through the same steps as in Example 1 below, a test substrate was further prepared, and the sheet resistance and migration resistance of the conductor were tested. As a result, the sheet resistance of the test substrate was 81 mΩ / □, and the rate of change in circuit resistance in the constant temperature and humidity test and the vapor phase cooling test performed under the same conditions as in Example 1 was 7.5% and 7.9, respectively. %Met.
[0063]
Moreover, the short circuit time when tested by the water drop method under the same conditions as in Example 1 was 8 minutes and 50 seconds, which was 20 times or more that of the silver paste.
The viscosity of the conductive paste obtained by mixing and dispersing was 390 dPa · s at 25 ° C., and the thixotropic index was 4.6.
[0064]
Comparative Example 1
450 g of the substantially spherical silver-coated copper powder treated with stearic acid used in Example 1 and 50 g of the substantially spherical silver powder used in Example 1 were weighed and using the same ball mill as in Example 1 under the same conditions as in Example 1. The mixture was rotated for 100 hours and mixed and dispersed to obtain conductive powder. The packing density of the obtained conductive powder was 60% by volume in relative value.
[0065]
Using the conductive powder obtained above, a conductive paste was prepared through the same steps as in Example 1 below, a test substrate was further prepared, and the sheet resistance and migration resistance of the conductor were tested. As a result, the sheet resistance of the test substrate was as high as 340 mΩ / □, and the rate of change in the circuit resistance in the constant temperature and humidity test and the vapor phase cooling test performed under the same conditions as in Example 1 was 88.2% and 105 respectively. It was considerably higher than that of Examples 1 to 3 and 3%.
[0066]
Moreover, the short circuit time when tested by the water drop method under the same conditions as in Example 1 was 13 minutes and 50 seconds, which was 30 times or more that of the silver paste.
The viscosity of the conductive paste obtained by mixing and dispersing was 420 dPa · s at 25 ° C., and the thixotropic index was 3.5.
[0067]
Comparative Example 2
900 g of the substantially spherical silver-coated copper powder treated with stearic acid used in Example 1 and 100 g of the substantially spherical silver powder used in Example 3 were weighed and using the same ball mill as in Example 1 under the same conditions as in Example 1. The mixture was rotated for 200 hours and mixed and dispersed to obtain conductive powder. The packing density of the obtained conductive powder was 67% by volume in relative value.
[0068]
Using the conductive powder obtained above, a conductive paste was prepared through the same steps as in Example 1 below, a test substrate was further prepared, and the sheet resistance and migration resistance of the conductor were tested. As a result, the sheet resistance of the test substrate was 70 mΩ / □, and the rate of change in circuit resistance in the constant temperature and humidity test and the gas phase cooling test conducted under the same conditions as in Example 1 was 5.1% and 4.5%, respectively. %Met.
[0069]
Further, the short-circuit time when tested by the water drop method under the same conditions as in Example 1 was as short as 4 minutes and 40 seconds, which was about 10 times that of the silver paste.
The viscosity of the conductive paste obtained by mixing and dispersing was as high as 520 dPa · s at 25 ° C., and the thixotropic index was 3.9.
[0070]
Comparative Example 3
550 g of stearic acid-treated substantially spherical silver-coated copper powder used in Example 1 and 450 g of substantially spherical silver powder used in Example 2 were weighed and using the same ball mill as in Example 1 under the same conditions as in Example 1. The mixture was rotated for 200 hours and mixed and dispersed to obtain conductive powder. The packing density of the obtained conductive powder was 63% by volume in relative value.
[0071]
Using the conductive powder obtained above, a conductive paste was prepared through the same steps as in Example 1 below, a test substrate was further prepared, and the sheet resistance and migration resistance of the conductor were tested. As a result, the sheet resistance of the test substrate was 70 mΩ / □, and the rate of change in circuit resistance in the constant temperature and humidity test and the gas phase cooling test conducted under the same conditions as in Example 1 was 5.1% and 4.5%, respectively. %Met.
[0072]
Further, the short-circuit time when tested by the water drop method under the same conditions as in Example 1 was as short as 4 minutes and 40 seconds, which was about 10 times that of the silver paste.
The viscosity of the conductive paste obtained by mixing and dispersing was as high as 870 dPa · s at 25 ° C., and the thixotropic index was 5.3.
[0073]
Comparative Example 4
To the binder 50 g used in Example 1, 306 g of stearic acid-treated substantially spherical silver-coated copper powder used in Example 1 and 144 g of substantially spherical silver powder used in Example 1 were weighed, and 10 g of ethyl carbitol was added as a solvent. Attempts were made to produce a conductive paste by uniformly mixing and dispersing with a stirrer and a three-roller, but the viscosity was high and could not be evenly mixed with a stirrer.
[0074]
【The invention's effect】
The conductive paste according to claims 1 and 2 can have a high blending ratio, is excellent in electrical reliability or migration resistance, and can be highly price competitive by reducing the amount of silver used.
The conductive paste according to claim 3 is excellent in high filling property and fluidity in addition to the conductive paste according to claims 1 and 2.
The conductive paste according to claim 4 can be highly filled in addition to the conductive paste according to claim 3.
The conductive paste according to claim 5 is excellent in conductivity and thermal conductivity in addition to the conductive paste according to claim 4.
In addition to the conductive paste of claim 5, the inventions of claims 6 and 7 are excellent in fluidity and viscosity stability during storage.
The method for producing a conductive paste according to claim 8 produces a conductive paste that can increase the content of conductive powder, has excellent conductivity reliability or migration resistance, and can increase price competitiveness by reducing the amount of silver used. it can.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a state where through holes and the surface of a wiring board are connected with a conductive paste.
FIG. 2 is a plan view showing a state in which a test pattern is formed on a polyimide film.
[Explanation of symbols]
1 Conductive layer
2 Copper foil
3 Base material
4 Through hole
5 Insulation layer
6 Polyimide film
7 Test pattern

Claims (8)

充填密度が相対値で68体積%以上の導電粉とエポキシ樹脂及びアルコキシル基含有レゾール型フェノ−ル樹脂を主成分としたバインダとを含有してなる導電ペースト。A conductive paste comprising a conductive powder having a packing density of 68% by volume or more in relative value and a binder mainly composed of an epoxy resin and an alkoxyl group-containing resol-type phenol resin. 導電粉が、略球状銅粉に対して3〜30重量%の銀で略球状銅粉の一部及び銀との合金部分を露出させて表面を被覆した略球状銀被覆銅粉であって、かつ被覆された銀が平滑化処理されており、その表面が略球状銀被覆銅粉に対して0.02〜1.0重量%の脂肪酸で被覆され、この脂肪酸で被覆された略球状銀被覆銅粉60〜85重量%及び銀粉15〜40重量%を含む導電粉ある請求項1記載の導電ペースト。The conductive powder is a substantially spherical silver-coated copper powder whose surface is exposed by exposing a part of the substantially spherical copper powder and an alloy part thereof with 3 to 30% by weight of silver with respect to the substantially spherical copper powder, The coated silver is smoothed, and the surface thereof is coated with 0.02 to 1.0% by weight of fatty acid with respect to the substantially spherical silver-coated copper powder, and the substantially spherical silver coating coated with this fatty acid. The conductive paste according to claim 1, wherein the conductive paste contains 60 to 85% by weight of copper powder and 15 to 40% by weight of silver powder. 略球状銀被覆銅粉が、平均粒径が2〜10μmである請求項1記載の導電ペースト。The conductive paste according to claim 1, wherein the substantially spherical silver-coated copper powder has an average particle size of 2 to 10 μm. 銀粉の形状が、略球状又は塊状であり、かつその平均粒径が、略球状銀被覆銅粉の平均粒径の1/10〜2/5である請求項1〜3のいずれかに記載の導電ペースト。The shape of silver powder is a substantially spherical shape or a lump shape, and the average particle diameter is 1/10-2/5 of the average particle diameter of a substantially spherical silver-coated copper powder. Conductive paste. 導電粉とバインダの配合割合が、導電ペーストの固形分に対して重量比で、導電粉:バインダが96:4〜88:12である請求項1〜4のいずれかに記載の導電ペースト。The conductive paste according to any one of claims 1 to 4, wherein a blending ratio of the conductive powder and the binder is a weight ratio with respect to a solid content of the conductive paste, and the conductive powder: binder is 96: 4 to 88:12. エポキシ樹脂のエポキシ当量が、130〜330g/eq、アルコキシル基含有レゾール型フェノ−ル樹脂が、アルコキシル基の炭素数が1〜6で、かつアルコキシル基含有レゾール型フェノ−ル樹脂のアルコキシ化率が、5〜95%である請求項1〜5のいずれかに記載の導電ペ−スト。The epoxy equivalent of the epoxy resin is 130 to 330 g / eq, the alkoxyl group-containing resol-type phenol resin has 1 to 6 carbon atoms in the alkoxyl group, and the alkoxylation rate of the alkoxyl group-containing resol-type phenol resin is The conductive paste according to any one of claims 1 to 5, wherein the conductive paste is 5 to 95%. アルコキシル基含有レゾール型フェノ−ル樹脂が、重量平均分子量が500〜20,000である請求項1〜6のいずれかに記載の導電ペ−スト。The conductive paste according to any one of claims 1 to 6, wherein the alkoxyl group-containing resol-type phenol resin has a weight average molecular weight of 500 to 20,000. 略球状銅粉の一部及び被覆する銀との合金部分を露出させて略球状銅粉の表面を略球状銅粉に対して3〜30重量%の銀で被覆して略球状銀被覆銅粉を作製し、さらにその表面に略球状銀被覆銅粉に対して0.02〜1.0重量%の脂肪酸を被覆し、次いで前記銀の被覆層を平滑化処理した後、脂肪酸で被覆された略球状銀被覆銅粉60〜85重量%及び銀粉15〜40重量%を均一に混合して高充填化混合粉とした後、バインダと均一に混合することを特徴とする導電ペーストの製造方法。A part of the substantially spherical copper powder and an alloy part with the silver to be coated are exposed, and the surface of the substantially spherical copper powder is coated with 3 to 30% by weight of silver with respect to the substantially spherical copper powder. Further, the surface was coated with 0.02 to 1.0% by weight of fatty acid with respect to the substantially spherical silver-coated copper powder, and then the silver coating layer was smoothed and then coated with fatty acid. A method for producing a conductive paste, comprising uniformly mixing 60 to 85% by weight of substantially spherical silver-coated copper powder and 15 to 40% by weight of silver powder to obtain a highly filled mixed powder, and then uniformly mixing with a binder.
JP2003193528A 2003-07-08 2003-07-08 Conductive paste and method for producing the same Expired - Lifetime JP4273399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003193528A JP4273399B2 (en) 2003-07-08 2003-07-08 Conductive paste and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003193528A JP4273399B2 (en) 2003-07-08 2003-07-08 Conductive paste and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005032471A true JP2005032471A (en) 2005-02-03
JP4273399B2 JP4273399B2 (en) 2009-06-03

Family

ID=34204969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003193528A Expired - Lifetime JP4273399B2 (en) 2003-07-08 2003-07-08 Conductive paste and method for producing the same

Country Status (1)

Country Link
JP (1) JP4273399B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099851A (en) * 2005-10-03 2007-04-19 Denso Corp Electroconductive adhesive
JP2007227156A (en) * 2006-02-23 2007-09-06 Sumitomo Electric Ind Ltd Conductive paste, and printed wiring board using it
JP2013149527A (en) * 2012-01-20 2013-08-01 Toyo Aluminium Kk Flake-like conductive filler
JP2013209575A (en) * 2012-03-30 2013-10-10 Tanaka Kikinzoku Kogyo Kk Electroconductive adhesive
JPWO2012102076A1 (en) * 2011-01-27 2014-06-30 日立化成株式会社 Conductive adhesive composition, metal conductor with conductive adhesive, connector, and solar cell module
KR20160147354A (en) * 2015-06-15 2016-12-23 삼성전기주식회사 Electroconductive adhesive and crystal oscillator package using the same
WO2019189512A1 (en) * 2018-03-30 2019-10-03 田中貴金属工業株式会社 Electroconductive adhesive composition
CN114464343A (en) * 2022-01-20 2022-05-10 无锡晶睿光电新材料有限公司 High-wear-resistance high-conductivity low-temperature curing silver paste and preparation method thereof
CN114829042A (en) * 2019-12-19 2022-07-29 三菱综合材料株式会社 Silver paste, method for producing same, and method for producing bonded body
CN114464343B (en) * 2022-01-20 2024-06-11 无锡晶睿光电新材料有限公司 High-wear-resistance high-conductivity low-temperature cured silver paste and preparation method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099851A (en) * 2005-10-03 2007-04-19 Denso Corp Electroconductive adhesive
JP2007227156A (en) * 2006-02-23 2007-09-06 Sumitomo Electric Ind Ltd Conductive paste, and printed wiring board using it
JPWO2012102076A1 (en) * 2011-01-27 2014-06-30 日立化成株式会社 Conductive adhesive composition, metal conductor with conductive adhesive, connector, and solar cell module
JP2013149527A (en) * 2012-01-20 2013-08-01 Toyo Aluminium Kk Flake-like conductive filler
JP2013209575A (en) * 2012-03-30 2013-10-10 Tanaka Kikinzoku Kogyo Kk Electroconductive adhesive
KR102178530B1 (en) 2015-06-15 2020-11-13 삼성전기주식회사 Electroconductive adhesive and crystal oscillator package using the same
KR20160147354A (en) * 2015-06-15 2016-12-23 삼성전기주식회사 Electroconductive adhesive and crystal oscillator package using the same
WO2019189512A1 (en) * 2018-03-30 2019-10-03 田中貴金属工業株式会社 Electroconductive adhesive composition
JPWO2019189512A1 (en) * 2018-03-30 2021-03-18 田中貴金属工業株式会社 Conductive adhesive composition
JP7025529B2 (en) 2018-03-30 2022-02-24 田中貴金属工業株式会社 Conductive adhesive composition
CN114829042A (en) * 2019-12-19 2022-07-29 三菱综合材料株式会社 Silver paste, method for producing same, and method for producing bonded body
CN114829042B (en) * 2019-12-19 2023-08-04 三菱综合材料株式会社 Silver paste, method for producing same, and method for producing joined body
CN114464343A (en) * 2022-01-20 2022-05-10 无锡晶睿光电新材料有限公司 High-wear-resistance high-conductivity low-temperature curing silver paste and preparation method thereof
CN114464343B (en) * 2022-01-20 2024-06-11 无锡晶睿光电新材料有限公司 High-wear-resistance high-conductivity low-temperature cured silver paste and preparation method thereof

Also Published As

Publication number Publication date
JP4273399B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
JP4389148B2 (en) Conductive paste
US6515237B2 (en) Through-hole wiring board
JP4235887B2 (en) Conductive paste
JP4677900B2 (en) Mixed conductive powder and its use
KR100678533B1 (en) Conductive powder and method for preparing the same
JP4935592B2 (en) Thermosetting conductive paste
JP4235888B2 (en) Conductive paste
JP2003045228A (en) Conductive paste
JP2011187194A (en) Conductive paste
JP3879749B2 (en) Conductive powder and method for producing the same
JP4273399B2 (en) Conductive paste and method for producing the same
JPH07126489A (en) Electrically conductive resin paste
JP4224771B2 (en) Conductive paste
JPH1064331A (en) Conductive paste, electric circuit using conductive paste, and manufacture of electric circuit
JP2011129335A (en) Heating curing type silver paste and conductive film formed using the same
JP4235885B2 (en) Conductive paste
JP4224772B2 (en) Conductive paste
JP2018106906A (en) Paste for electrode, and multilayer ceramic electronic component
JP4224774B2 (en) Conductive paste
JP2005317491A (en) Conductive paste and electronic component mounting substrate using it
JP7417779B1 (en) conductive paste composition
JP2002164632A (en) Through hole wiring board
TW202210599A (en) Conductive adhesive, electronic circuit using same, and method for producing same
JP4888295B2 (en) Conductive paste
JP2002245852A (en) Conductive paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060531

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080912

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080925

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090205

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120313

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20130313