WO2021218737A1 - 铜管及其制作方法、换热器、空调器和制冷设备 - Google Patents

铜管及其制作方法、换热器、空调器和制冷设备 Download PDF

Info

Publication number
WO2021218737A1
WO2021218737A1 PCT/CN2021/088673 CN2021088673W WO2021218737A1 WO 2021218737 A1 WO2021218737 A1 WO 2021218737A1 CN 2021088673 W CN2021088673 W CN 2021088673W WO 2021218737 A1 WO2021218737 A1 WO 2021218737A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
copper
heat exchanger
rare earth
Prior art date
Application number
PCT/CN2021/088673
Other languages
English (en)
French (fr)
Inventor
尚秀玲
黎海华
林勇强
Original Assignee
美的集团股份有限公司
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美的集团股份有限公司, 广东美的制冷设备有限公司 filed Critical 美的集团股份有限公司
Publication of WO2021218737A1 publication Critical patent/WO2021218737A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers

Definitions

  • This application relates to the technical field of refrigeration equipment, in particular to copper pipes and methods for making the same, heat exchangers, air conditioners, and refrigeration equipment.
  • the sulfur content in the air is relatively high, in environments with serious air pollution, such as tropical rain forests, humid environments, poor air, automobile exhaust, volcanic gas and other areas with serious air pollution, air conditioners or refrigeration equipment
  • the existing solution is spraying or electroplating a corrosion-resistant layer on the surface of the copper tube, for example, spraying a corrosion-resistant material on the surface of the copper tube, or electroplating other protective metal layers such as tin.
  • this operation will significantly increase the production cost, and spraying is difficult to control the formation position of the corrosion-resistant layer, and the corrosion-resistant layer is often sprayed on the peripheral components of the copper pipe during the preparation process.
  • the corrosion-resistant material when spraying a corrosion-resistant layer on the surface of the heat transfer tube of a heat exchanger, the corrosion-resistant material is usually sprayed on the fins, which reduces the heat exchange efficiency.
  • the uniformity of the sprayed and electroplated protective layer is poor, and leaks are often formed on the surface, resulting in poor manufacturing process reliability, low yield, and increasing the production cost of air conditioners or refrigeration equipment.
  • This application aims to solve one of the technical problems in the related technology at least to a certain extent. For this reason, one purpose of this application is to propose a low cost, high uniformity, high tensile strength, excellent elongation, excellent corrosion resistance, long service life, high reliability of the manufacturing process or high production yield. Copper tubes for heat exchangers.
  • this application provides a copper tube for a heat exchanger.
  • the copper tube includes: 99.8 parts by weight to 99.999 parts by weight of copper; and 0.001 parts by weight to 0.1 parts by weight of rare earth metal, and the total weight parts of the copper and the rare earth metal are less than or equal to 100 parts by weight.
  • the inventor found that the copper pipe has low cost, high uniformity, high tensile strength, excellent elongation, excellent corrosion resistance, long service life, high reliability of the manufacturing process, and high production yield.
  • the weight parts of the rare earth metal are 0.001 parts by weight to 0.009 parts by weight or 0.01 parts by weight to 0.1 parts by weight.
  • the parts by weight of the rare earth metal are 0.004 parts by weight to 0.006 parts by weight or 0.02 parts by weight to 0.06 parts by weight.
  • the weight parts of the rare earth metal is 0.005 parts by weight or 0.04 parts by weight.
  • the rare earth metal includes at least one of lanthanum or cerium.
  • the weight parts of the rare earth metal are 0.02 parts by weight to 0.04 parts by weight.
  • the copper tube includes at least one of the following: 99.98 parts by weight of copper, 0.005 parts by weight of cerium; 99.97 parts by weight of copper, 0.02 parts by weight of lanthanum; 99.95 parts by weight of copper, 0.04 parts by weight 99.93 parts by weight of copper, 0.06 parts by weight of lanthanum; 99.97 parts by weight of copper, 0.02 parts by weight of cerium; 99.95 parts by weight of copper, 0.04 parts by weight of cerium; 99.93 parts by weight of copper, 0.06 parts by weight of cerium 99.97 parts by weight of copper, 0.02 parts by weight of lanthanum and cerium; 99.95 parts by weight of copper, 0.04 parts by weight of lanthanum and cerium; 99.96 parts by weight of copper, 0.03 parts by weight of lanthanum and cerium.
  • the copper pipe meets at least one of the following conditions: tensile strength is not less than 230MPa; elongation is not less than 39.8%; in a formic acid solution with a volume fraction of 2%, the maximum ant cave corrosion depth is not Greater than 11.367 ⁇ m.
  • the present application provides a method of making the aforementioned copper tube.
  • the method includes: performing a first mixed smelting and cooling of the rare earth metal and a copper source under vacuum conditions to obtain a preform; performing a second mixed smelting and melting of the preform and the copper source Cool to obtain the copper tube.
  • this application provides a heat exchanger.
  • the heat exchanger includes: a plurality of fins, the plurality of fins are arranged side by side; At least part of it is the aforementioned copper pipe. The inventor found that the heat exchanger has low cost, excellent corrosion resistance, long service life, high heat exchange efficiency, and has all the characteristics and advantages of the copper tube described above, and will not be repeated here.
  • the present application provides an air conditioner.
  • the air conditioner includes: an indoor heat exchanger; a compressor, the compressor is connected to the indoor heat exchanger; an outdoor heat exchanger, the outdoor heat exchanger is connected to the compressor Throttle components, the throttle components are respectively connected to the outdoor heat exchanger and the indoor heat exchanger; refrigerant pipeline, the refrigerant pipeline communicates the indoor heat exchanger, the compressor , The outdoor heat exchanger and the throttling assembly to form a refrigerant cycle; first and second shut-off valves, the first and second shut-off valves are respectively arranged between the indoor heat exchanger and the compressor Between the indoor heat exchanger and the throttling assembly, wherein at least one of the indoor heat exchanger and the outdoor heat exchanger is the aforementioned heat exchanger.
  • the inventor found that the air conditioner has low cost, long service life, good cooling effect, and has all the characteristics and advantages of the heat exchanger described above, and will not be repeated here.
  • the refrigerant pipeline includes an indoor-outdoor unit connecting pipeline
  • the indoor-outdoor unit connecting pipeline includes: a connecting pipe body defining a refrigerant passage; a heat preservation layer, The thermal insulation layer is sheathed on the outer surface of the connecting pipe body; wherein at least a part of the connecting pipe body is the aforementioned copper pipe.
  • the refrigerant pipeline includes an indoor unit auxiliary pipeline
  • the indoor unit auxiliary pipeline includes: an indoor unit connecting pipe; an indoor unit branch pipe;
  • the unit connection pipe is connected to the indoor unit branch pipe so that the indoor unit connection pipe is in fluid communication with the indoor unit branch pipe, wherein at least one of the indoor unit connection pipe, the indoor unit branch pipe, and the distributor At least a part of one is the aforementioned copper tube.
  • the air conditioner further includes: a four-way valve for switching the functions of the outdoor heat exchanger and the indoor heat exchanger, wherein the four-way valve At least part of it is the aforementioned copper pipe.
  • the four-way valve includes: an electromagnetic pilot valve; a main valve body, the main valve body and the electromagnetic pilot valve are connected by a capillary tube; first to fourth valve ports, the first to The fourth valve port is arranged on the main valve body, and the first valve port is connected to the exhaust port of the compressor, and the second valve port is connected to the suction port of the compressor.
  • the third valve port is connected to the indoor heat exchanger, and the fourth valve port is connected to the outdoor heat exchanger, wherein at least a part of the capillary tube is the aforementioned copper tube.
  • the present application provides a refrigeration equipment.
  • the refrigeration equipment includes the aforementioned heat exchanger. The inventor found that the refrigeration equipment has low cost, long service life, good refrigeration effect, and has all the characteristics and advantages of the heat exchanger described above, and will not be repeated here.
  • Fig. 1 shows a schematic flow chart of a method for manufacturing a copper tube according to an embodiment of the present application.
  • Figure 2 shows a schematic structural diagram of a heat exchanger according to an embodiment of the present application.
  • Fig. 3 shows a schematic structural diagram of an air conditioner according to an embodiment of the present application.
  • Fig. 4 shows a schematic structural diagram of a connecting pipeline of an indoor and outdoor unit according to an embodiment of the present application.
  • Fig. 5 shows a schematic structural diagram of an auxiliary pipeline of an indoor unit according to an embodiment of the present application.
  • Fig. 6 shows a schematic structural diagram of a four-way valve according to an embodiment of the present application.
  • this application provides a copper tube for a heat exchanger.
  • the copper tube includes: 99.8 parts by weight to 99.999 parts by weight of copper; and 0.001 parts by weight to 0.1 parts by weight of rare earth metal, and the total weight parts of the copper and the rare earth metal are less than or equal to 100 parts by weight; or it can only be that the copper tube includes: 99.8 parts by weight to 99.999 parts by weight of copper; and 0.001 parts by weight to 0.1 parts by weight of rare earth metals.
  • the inventor found that the copper pipe has low cost, high uniformity, high tensile strength, excellent elongation, excellent corrosion resistance, long service life, high reliability of the manufacturing process, and high production yield.
  • the copper tube used in the heat exchanger described in the present application is only the entire copper tube on the heat exchanger, such as a heat conduction tube, etc., which does not include copper tubes and
  • the connection structure between the copper tubes, such as the connection structure between the copper tube and the copper tube in the heat exchanger, which is formed by melting and cooling the copper solder, does not include the original solder.
  • the stress and corrosion of the copper tube surface are completely different from the stress and corrosion of the connection structure formed by the copper brazing material between the copper tube, that is, the copper tube
  • the requirements for mechanical properties and corrosion resistance are different from those of copper solder materials.
  • the GB T 6418-2008 copper-based solder standard focuses on the composition, size, appearance, and whether it contains a core It does not include mechanical properties and corrosion resistance related tests. This is because the solder is the intermediate material of the final product, and the finished product itself does not include the original component solder, and only needs to meet the welding performance.
  • the copper tube of the air-conditioning heat exchanger has strict requirements on its mechanical properties.
  • the GB T17791-2007 standard for seamless copper tubes for air-conditioning and refrigeration equipment clearly stipulates the tensile strength, yield strength, elongation, etc. of copper tubes.
  • Mechanical performance indicators, and its corrosion resistance requirements are specific requirements caused by different application environments of heat exchangers. The material described in this application only refers to the material of the copper tube of the heat exchanger.
  • the parts by weight of the rare earth metal may be 0.001 parts by weight to 0.009 parts by weight or 0.01 parts by weight to 0.1 parts by weight, and further, the parts by weight of the rare earth metal may be 0.004 parts by weight to 0.006 parts by weight or 0.02 parts by weight to 0.06 parts by weight.
  • the weight parts of the rare earth metal may be 0.004 parts by weight, 0.005 parts by weight, 0.006 parts by weight, etc., or 0.02 parts by weight, 0.03 parts by weight, 0.04 parts by weight, 0.05 parts by weight, 0.06 parts by weight, etc. Therefore, the inventor found after extensive research that when the weight fraction of the rare earth metal is within the aforementioned range, the performance of the copper tube can be made better.
  • the copper pipe can be made to have uniformity, tensile strength, elongation, and elongation that meet the requirements of use. Corrosion resistance, at the same time, significantly reduce the production cost of the copper tube, which is beneficial to the realization of industrialization.
  • the copper tube can be made to have higher uniformity, higher tensile strength, and better elongation. , The corrosion resistance is more excellent, and the service life is significantly increased.
  • the inventors have further discovered after a lot of careful investigation and experimental verification that when the weight part of the rare earth metal is 0.04 parts by weight, the copper tube can be made more uniform and tensile resistant.
  • the strength is higher, the elongation is better, the corrosion resistance is better, the service life is significantly increased, and the cost is lower.
  • the specific type of the rare earth metal may include at least one of lanthanides and yttrium and scandium.
  • the lanthanide element may include lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, etc.
  • the rare earth metal may include one or two of lanthanum and cerium (it should be noted that when the rare earth metal contains two or more, the ratio of each metal is not particularly limited, and it can be used directly according to commercially available Mixed rare earth metals, will not be repeated in the following text).
  • the rare earth metal when the rare earth metal contains two or more kinds, the rare earth metal may also contain a very small amount of unavoidable other rare earth metals, such as yttrium. As a result, the cost can be lower, and the copper tube has better tensile strength, elongation and corrosion resistance.
  • the inventor was surprised to find that when the copper tube includes only one kind of the rare earth metal, and the weight of the rare earth metal is 0.02 parts by weight ⁇ At 0.04 parts by weight, the elongation of the copper tube is significantly higher than that of copper tubes with other rare earth metals or copper tubes with multiple rare earth metals.
  • the manner of providing copper in the copper tube is not particularly limited.
  • it may be red copper.
  • the purity of copper is relatively high, which is conducive to production.
  • the copper tube may include at least one of the following: 99.98 parts by weight of copper, 0.005 parts by weight of cerium; 99.97 parts by weight of copper, 0.02 parts by weight of lanthanum; 99.95 parts by weight of lanthanum; Copper, 0.04 parts by weight of lanthanum; 99.93 parts by weight of copper, 0.06 parts by weight of lanthanum; 99.97 parts by weight of copper, 0.02 parts by weight of cerium; 99.95 parts by weight of copper, 0.04 parts by weight of cerium; 99.93 parts by weight of copper, 0.06 parts by weight of cerium; 99.97 parts by weight of copper, 0.02 parts by weight of lanthanum and cerium; 99.95 parts by weight of copper, 0.04 parts by weight of lanthanum and cerium; 99.96 parts by weight of copper, 0.03 parts by weight of lanthanum and cerium.
  • the cost of the copper pipe is lower, the uniformity is further improved, the tensile strength is further improved, the elongation is more excellent, the corrosion resistance is more excellent, the service life is further increased, the reliability of the manufacturing process is further improved, and the production yield rate is further improved. improve.
  • the copper pipe described in the present application may also include impurity elements that are unavoidable in metal smelting, which will not be repeated here.
  • the copper pipe meets at least one of the following conditions: tensile strength is not less than 230MPa; elongation is not less than 39.8%; in a formic acid solution with a volume fraction of 2%, the maximum ant cave corrosion depth is not Greater than 11.367 ⁇ m.
  • the present application provides a method of making the aforementioned copper tube. According to an embodiment of the present application, referring to FIG. 1, the method includes the following steps:
  • the vacuum conditions, the temperature and time of the first mixing and smelting can be flexibly selected by those skilled in the art according to actual needs, which will not be repeated here.
  • S200 Perform a second mixing, smelting and cooling of the preform and the copper source to obtain the copper tube.
  • the temperature and time of the second mixing and smelting can be flexibly selected by those skilled in the art according to actual needs, which will not be repeated here.
  • the above method may be to first melt pure copper in a vacuum melting furnace, select the eutectic point content of the rare earth metal and the copper alloy to add the rare earth metal, and stir evenly after the rare earth metal is melted, It is cooled and solidified in a vacuum protective atmosphere, and finally the obtained preform is blended and smelted with red copper. Therefore, due to the low content of rare earth metals in the copper pipes described in this application, during smelting, the rare earth metals are added to the copper in the form of an intermediate alloy, that is, the rare earth metals are first mixed with the copper source.
  • this application provides a heat exchanger.
  • the heat exchanger includes: a plurality of fins 110, the plurality of fins 110 are arranged side by side; In the sheet 110, at least a part of the heat conducting tube 1210 is the aforementioned copper tube. The inventor found that the heat exchanger has low cost, excellent corrosion resistance, long service life, high heat exchange efficiency, and has all the characteristics and advantages of the copper tube described above, and will not be repeated here.
  • a plurality of fins 110 are arranged side by side, and the heat conduction tube 120 is inserted in the plurality of fins 110 arranged side by side, so that when the refrigerant passes through the heat conduction tube 120, it can effectively pass through the heat conduction tube 120.
  • the fin 110 exchanges heat with the outside air (indoor or outdoor), thereby realizing the phase change of the refrigerant, thereby realizing the temperature regulation of the indoor air.
  • the type of the heat exchanger is not particularly limited, and it is particularly suitable for heaters, coolers, condensers, evaporators, and reboilers of air-conditioning or refrigeration equipment, etc., and has a wide range of applications .
  • the present application provides an air conditioner.
  • the air conditioner includes: an indoor heat exchanger 100, a compressor 200, an outdoor heat exchanger 300, a throttle assembly 400, a refrigerant pipeline 500, a first shut-off valve 600, and a first stop valve 600.
  • Two shut-off valve 700 According to the embodiment of the present application, the compressor 200 is connected to the indoor heat exchanger 100, the outdoor heat exchanger 300 is connected to the compressor 200, and the throttle assembly 400 is connected to the outdoor heat exchanger 300 and the indoor heat exchanger 100, respectively.
  • the refrigerant pipeline 500 connects the indoor heat exchanger 100, the compressor 200, the outdoor heat exchanger 300, and the throttle assembly 400 to form a refrigerant cycle.
  • the first shut-off valve 600 and the second shut-off valve 700 are respectively arranged in the indoor heat exchanger Between 100 and the compressor 200, between the indoor heat exchanger 100 and the throttling assembly 400, wherein at least one of the indoor heat exchanger 100 and the outdoor heat exchanger 300 is the aforementioned heat exchanger .
  • the inventor found that the air conditioner has low cost, long service life, good cooling effect, and has all the characteristics and advantages of the heat exchanger described above, and will not be repeated here.
  • the refrigerant can pass through the indoor heat exchanger 100, the first shut-off valve 600, the compressor 200, the outdoor heat exchanger 300, the throttle assembly 400, and the second shut-off in sequence.
  • the valve 700 finally returns to the indoor heat exchanger 100, thereby forming a refrigerant cycle, and through the conversion between the gas phase and the liquid phase of the refrigerant, and the heat exchange between the refrigerant and the indoor or outdoor air, thereby achieving
  • the adjustment of the indoor temperature is performed, for example, by refrigeration treatment.
  • the heat exchanger in which the refrigerant changes from the liquid phase to the gas phase is also called an evaporator
  • the heat exchanger in which the refrigerant changes from the gas phase to the liquid phase is also It is called a condenser.
  • the indoor heat exchanger 100 and the outdoor heat exchanger 300 may be the same type of heat exchanger, or they may be different types of heat exchangers.
  • the refrigerant pipeline includes an indoor-outdoor unit connecting pipeline.
  • the indoor-outdoor unit connecting pipeline includes: a connecting pipe body 510 and an insulation layer 520 defined in the connecting pipe body 510 Out of the refrigerant passage, the thermal insulation layer 520 is sleeved on the outer surface of the connecting tube body 510, wherein at least a part of the connecting tube body 510 is the aforementioned copper tube.
  • the refrigerant pipeline may also include an indoor unit auxiliary pipeline.
  • the indoor unit auxiliary pipeline includes: an indoor unit connecting pipe 5510; an indoor unit branch pipe 5520; a distributor 130 and a distributor 130, respectively Connected to the indoor unit connecting pipe 5510 and the indoor unit branch pipe 5520, so that the indoor unit connecting pipe 5510 and the indoor unit branch pipe 5520 are in fluid communication, wherein at least one of the indoor unit connecting pipe 5510, the indoor unit branch pipe 5520, and the distributor 130 At least part of it is the aforementioned copper pipe. Therefore, the corrosion rate of the components of the air conditioner can be further effectively reduced, and the service life can be prolonged.
  • the air conditioner may further include: a four-way valve, the four-way valve is used to switch the functions of the outdoor heat exchanger and the indoor heat exchanger, wherein at least a part of the four-way valve It is the aforementioned copper tube.
  • the corrosion rate of the components of the air conditioner can be further effectively reduced.
  • the air conditioner can effectively have both cooling and heating effects.
  • the four-way valve may include an electromagnetic pilot valve 810 and a main valve body 820.
  • the main valve body 810 and the electromagnetic pilot valve 820 are connected by a capillary tube.
  • the main valve body 810 is provided with a first valve port 8210, The second valve port 8220, the third valve port 8230 and the fourth valve port 8240, and the first valve port 8210 is connected to the exhaust port of the compressor 200, and the second valve port 8220 is connected to the suction port of the compressor 200.
  • the three-valve port 8230 is connected to the indoor heat exchanger 100, and the fourth valve port 8240 is connected to the outdoor heat exchanger 300, wherein at least a part of the capillary tube is the aforementioned copper tube. Therefore, the corrosion rate of the components of the air conditioner can be further effectively reduced, and the service life can be prolonged.
  • the air conditioner may be a split wall-mounted air conditioner, a split floor-standing air conditioner, or a mobile air conditioner.
  • the application range is wide.
  • other components and structures in the air conditioner may be the components and structures of a conventional air conditioner, which will not be repeated here.
  • the present application provides a refrigeration equipment.
  • the refrigeration equipment includes the aforementioned heat exchanger. The inventor found that the refrigeration equipment has low cost, long service life, good refrigeration effect, and has all the characteristics and advantages of the heat exchanger described above, and will not be repeated here.
  • the refrigeration equipment may be a refrigerator, a freezer, a refrigerator, and the like.
  • the application range is wide.
  • other components and structures in the refrigeration equipment can be the components and structures of a conventional refrigeration equipment, which will not be repeated here.
  • the copper tube used in the heat exchanger includes 99.98 parts by weight of copper and 0.005 parts by weight of cerium.
  • the copper tube used in the heat exchanger includes 99.97 parts by weight of copper and 0.02 parts by weight of lanthanum.
  • the copper tube used in the heat exchanger includes 99.95 parts by weight of copper and 0.04 parts by weight of lanthanum.
  • the copper tube used in the heat exchanger includes 99.93 parts by weight of copper and 0.06 parts by weight of lanthanum.
  • the copper tube used in the heat exchanger includes 99.97 parts by weight of copper and 0.02 parts by weight of cerium.
  • the copper tube used in the heat exchanger includes 99.95 parts by weight of copper and 0.04 parts by weight of cerium.
  • the copper tube used in the heat exchanger includes 99.93 parts by weight of copper and 0.06 parts by weight of cerium.
  • the copper tube used for the heat exchanger includes 99.97 parts by weight of copper, 0.02 parts by weight of lanthanum and cerium (commercially available mixed rare earths are used, in which the cerium content is greater than 61%, and the lanthanum content is greater than 32%).
  • the copper tube used in the heat exchanger includes 99.95 parts by weight of copper, 0.04 parts by weight of lanthanum and cerium (commercially available mixed rare earths are used, in which the cerium content is greater than 61%, and the lanthanum content is greater than 32%).
  • the copper tube used in the heat exchanger includes 99.96 parts by weight of copper, 0.03 parts by weight of lanthanum and cerium (commercially available mixed rare earths are used, in which the cerium content is greater than 61%, and the lanthanum content is greater than 32%).
  • the copper tube used in the heat exchanger includes 99.98 parts by weight of copper.
  • the copper tube used in the heat exchanger is phosphorus deoxidized copper (TP2) and pure tin with a thickness of 15 ⁇ m immersed on the surface.
  • Example 1 230 39.8 11.367
  • Example 2 240 41.3 2.365
  • Example 3 245 45.6 0.539
  • Example 4 252 39.6 7.563
  • Example 5 258 42.4 9.361
  • Example 6 235 45.6 0.372
  • Example 7 250 39.8 6.031
  • Example 8 231 40.2 10.925
  • Example 9 251 38.6 0.678
  • the copper pipe has low cost, high uniformity, high tensile strength, excellent elongation, excellent corrosion resistance, long service life, high reliability of the manufacturing process, and high production yield.
  • the copper tube can have higher uniformity, higher tensile strength, better elongation, better corrosion resistance, and significant increase in service life.
  • the elongation of the copper tube is compared with other The elongation rate of copper pipes with rare earth metals or copper pipes with multiple rare earth metals in parts by weight is significantly improved.
  • first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present application, “multiple” means two or more than two, unless otherwise specifically defined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本申请提供了铜管及其制作方法、换热器、空调器和制冷设备。该铜管包括:99.8重量份~99.999重量份的铜;和0.001重量份~0.1重量份的稀土金属,所述铜和所述稀土金属的总重量份数小于或等于100重量份。

Description

铜管及其制作方法、换热器、空调器和制冷设备 技术领域
本申请涉及制冷设备技术领域,具体地,涉及铜管及其制作方法、换热器、空调器和制冷设备。
背景技术
由于空气中的硫含量比较高,在大气污染比较严重的环境中,例如在诸如热带雨林、潮湿环境、空气较差、汽车尾气、火山气体等大气污染比较严重的地区,空调器或者制冷设备的换热器中由于具有铜管,所以比较容易受到腐蚀,使局部破损或发生泄漏。现有的解决方法是在铜管的表面喷涂或者电镀耐腐蚀层,例如在铜管的表面喷涂耐腐蚀材料,或者电镀诸如锡等其他保护性金属层。然而,这样操作会显著提高生产成本,并且喷涂都很难控制耐腐蚀层的形成位置,在制备的过程中经常会将耐腐蚀层喷涂到铜管的周边元件上。例如,在换热器的导热管表面喷涂耐腐蚀层时,通常会将耐腐蚀材料喷涂到翅片上,导致降低换热效率。此外,喷涂和电镀的保护层的均匀性较差,经常在表面形成漏喷漏镀,从而造成了制造工艺可靠性差,良品率低,又提高了空调器或者制冷设备的生产成本。
因而,现有的铜管的相关技术仍有待改进。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本申请的一个目的在于提出一种成本较低、均匀性高、抗拉强度高、延伸率优异、耐腐蚀性能优异、使用寿命长、制作工艺的可靠性高或者生产良品率高的用于换热器的铜管。
在本申请的一个方面,本申请提供了一种用于换热器的铜管。根据本申请的实施例,该铜管包括:99.8重量份~99.999重量份的铜;和0.001重量份~0.1重量份的稀土金属,所述铜和所述稀土金属的总重量份数小于或等于100重量份。发明人发现,该铜管成本较低、均匀性高、抗拉强度高、延伸率优异、耐腐蚀性能优异,使用寿命长,制作工艺的可靠性高、生产良品率高。
根据本申请的实施例,所述稀土金属的重量份数为0.001重量份~0.009重量份或者0.01重量份~0.1重量份。
根据本申请的实施例,所述稀土金属的重量份数为0.004重量份~0.006重量份或者0.02重量份~0.06重量份。
根据本申请的实施例,所述稀土金属的重量份数为0.005重量份或者0.04重量份。
根据本申请的实施例,所述稀土金属包括镧或者铈中的至少一种。
根据本申请的实施例,仅包括一种所述稀土金属,且所述稀土金属的重量份数为0.02重量份~0.04重量份。
根据本申请的实施例,所述铜管包括以下至少之一:99.98重量份的铜、0.005重量份的铈;99.97重量份的铜、0.02重量份的镧;99.95重量份的铜、0.04重量份的镧;99.93重 量份的铜、0.06重量分的镧;99.97重量份的铜、0.02重量份的铈;99.95重量份的铜、0.04重量份的铈;99.93重量份的铜、0.06重量分的铈;99.97重量份的铜、0.02重量份的镧和铈;99.95重量份的铜、0.04重量份的镧和铈;99.96重量份的铜、0.03重量份的镧和铈。
根据本申请的实施例,所述铜管满足以下条件的至少之一:抗拉强度不小于230MPa;延伸率不小于39.8%;在体积分数为2%的甲酸溶液中,最大蚁穴腐蚀深度不大于11.367μm。
在本申请的另一个方面,本申请提供了一种制作前面所述的铜管的方法。根据本申请的实施例,该方法包括:在真空条件下,将稀土金属与铜源进行第一混合熔炼并冷却,得到预制料;将所述预制料与所述铜源进行第二混合熔炼并冷却,得到所述铜管。发明人发现,该方法操作简单、方便,容易实现,易于工业化生产,且该方法制作所得到的铜管的均匀性高,可以有效制作得到具有前面所述的稀土金属重量份数的铜管。
在本申请的又一个方面,本申请提供了一种换热器。根据本申请的实施例,该换热器包括:多个翅片,所述多个翅片并排设置;导热管,所述导热管穿设在所述多个翅片中,所述导热管的至少一部分为前面所述的铜管。发明人发现,该换热器的成本较低、耐腐蚀性能优异,使用寿命长,换热效率高,且具有前面所述的铜管的所有特征和优点,在此不再过多赘述。
在本申请的再一个方面,本申请提供了一种空调器。根据本申请的实施例,该空调器包括:室内换热器;压缩机,所述压缩机与所述室内换热器相连;室外换热器,所述室外换热器与所述压缩机相连;节流组件,所述节流组件分别与所述室外换热器和所述室内换热器相连;制冷剂管路,所述制冷剂管路连通所述室内换热器、所述压缩机、所述室外换热器和所述节流组件以便构成制冷剂循环;第一和第二截止阀,所述第一和第二截止阀分别设置在所述室内换热器与压缩机之间、所述室内换热器与所述节流组件之间,其中,所述室内换热器与所述室外换热器的至少之一为前面所述的换热器。发明人发现,该空调器的成本较低,使用寿命长,制冷效果好,且具有前面所述的换热器的所有特征和优点,在此不再过多赘述。
根据本申请的实施例,所述制冷剂管路包括室内外机连接管路,所述室内外机连接管路包括:连接管管体,所连接管管体内限定出制冷剂通路;保温层,所述保温层套设在所述连接管管体的外表面;其中,所述连接管管体的至少一部分为前面所述的铜管。
根据本申请的实施例,所述制冷剂管路包括室内机辅助管路,所述室内机辅助管路包括:室内机连接管;室内机支管;分配器,所述分配器分别与所述室内机连接管和所述室内机支管相连,以便使得所述室内机连接管与所述室内机支管构成流体连通,其中,所述室内机连接管、所述室内机支管和所述分配器的至少之一的至少一部分为前面所述的铜管。
根据本申请的实施例,所述空调器进一步包括:四通阀,所述四通阀用于切换所述室外换热器和所述室内换热器的功能,其中,所述四通阀的至少一部分为前面所述的铜管。
根据本申请的实施例,所述四通阀包括:电磁导向阀;主阀体,所述主阀体与所述电磁导向阀通过毛细管相连;第一至第四阀口,所述第一至第四阀口设置在所述主阀体上,并且所述第一阀口与所述压缩机的排气口相连,所述第二阀口与所述压缩机的吸气口相连, 所述第三阀口与所述室内换热器相连,所述第四阀口与所述室外换热器相连,其中,所述毛细管的至少一部分为前面所述的铜管。
在本申请的再一个方面,本申请提供了一种制冷设备。根据本申请的实施例,该制冷设备包括前面所述的换热器。发明人发现,该制冷设备的成本较低,使用寿命长,制冷效果好,且具有前面所述的换热器的所有特征和优点,在此不再过多赘述。
附图说明
图1显示了本申请一个实施例的制作铜管的方法的流程示意图。
图2显示了本申请一个实施例的换热器的结构示意图。
图3显示了本申请一个实施例的空调器的结构示意图。
图4显示了本申请一个实施例的室内外机连接管路的结构示意图。
图5显示了本申请一个实施例的室内机辅助管路的结构示意图。
图6显示了本申请一个实施例的四通阀的结构示意图。
附图标记:
100:室内换热器 110:翅片 1210:导热管 130:分配器 200:压缩机 300:室外换热器 400:节流组件 500:制冷剂管路 600:第一截止阀 700:第二截止阀 510:连接管管体 520:保温层 5510:室内机连接管 5520:室内机支管 810:电磁导向阀 820:主阀体 8210~8240:第一至第四阀口
具体实施方式
在本申请的一个方面,本申请提供了一种用于换热器的铜管。根据本申请的实施例,该铜管包括:99.8重量份~99.999重量份的铜;和0.001重量份~0.1重量份的稀土金属,所述铜和所述稀土金属的总重量份数小于或等于100重量份;或者也仅可以是,该铜管包括:99.8重量份~99.999重量份的铜;和0.001重量份~0.1重量份的稀土金属。发明人发现,该铜管成本较低、均匀性高、抗拉强度高、延伸率优异、耐腐蚀性能优异,使用寿命长,制作工艺的可靠性高、生产良品率高。
根据本申请的实施例,需要说明的是,本申请所述的用于换热器的铜管,仅只在换热器上的整根铜管,例如导热管等,其并不包括铜管与铜管之间的连接结构,例如换热器中位于铜管与铜管之间由铜钎料熔化后冷却形成的连接结构等,而并不包括原始钎料。同时,在换热器中,铜管表面的受力情况和腐蚀情况,与铜管之间由铜钎料形成的连接结构的受力情况和腐蚀情况是完全不同的,也就是说,铜管的材料与铜钎料的材料对于力学性能和抗腐蚀性能的要求不同,具体而言,GB T 6418-2008铜基钎料标准中重点规定了钎料的成分、尺寸、外观、是否含有药芯等重要参数,而未包括力学性能及耐蚀性相关测试,这是因为钎料是最终成品的中间材料,成品本身并不包括原始成分钎料,仅需要满足焊接性能即可。而空调换热器铜管作为结构件,对其力学性能有严格要求GB T 17791-2007空调 与制冷设备用无缝铜管标准中明确规定了铜管的抗拉强度、屈服强度、延伸率等力学性能指标,而其耐蚀性需求则为换热器应用环境不同导致的特异性需求。本申请中所阐述的材料仅指换热器的铜管的材料。
根据本申请的实施例,进一步地,所述稀土金属的重量份数可以为0.001重量份~0.009重量份或者0.01重量份~0.1重量份,更进一步地,所述稀土金属的重量份数可以为0.004重量份~0.006重量份或者0.02重量份~0.06重量份。具体而言,所述稀土金属的重量份数可以为0.004重量份、0.005重量份、0.006重量份等,或者0.02重量份、0.03重量份、0.04重量份、0.05重量份、0.06重量份等。由此,发明人经过大量研究后发现,当稀土金属的重量份数在前面所述的范围内时,可以使得该铜管的性能更优。
根据本申请的实施例,具体而言,当所述稀土金属的重量份数为0.004重量份~0.006重量份时,可以使得该铜管具有满足使用要求的均匀性、抗拉强度、延伸率、耐腐蚀性能,同时,显著降低该铜管的生产成本,利于实现产业化。
根据本申请的实施例,具体而言,当所述稀土金属的重量份数为0.02重量份~0.06重量份时,可以使得该铜管均匀性更高、抗拉强度更高、延伸率更加优异、耐腐蚀性能更加优异,使用寿命显著增长。
根据本申请的实施例,进一步地,发明人经过大量周密的考察与实验验证后发现,当所述稀土金属的重量份数为0.04重量份时,可以使得该铜管均匀性更高、抗拉强度更高、延伸率更加优异、耐腐蚀性能更加优异,使用寿命显著增长,同时具有更低的成本。
根据本申请的实施例,更进一步地,所述稀土金属的具体种类可以包括镧系元素和钇、钪中的至少一种。在本申请的一些实施例中,所述镧系元素可以包括镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥等,进一步地,所述稀土金属可以包括镧、铈中的一种或两种(需要说明的是,当所述稀土金属含有两种以上时,各种金属的比例不受特别限制,可以根据直接使用市售的混和稀土金属,在后文中不再重复赘述)。同时,本领域技术人员可以理解,当所述稀土金属包含两种以上时,该稀土金属中还可能包含极少量的不可避免的其他稀土金属,例如钇等。由此,可以使得成本较低,同时所述铜管具有较佳的抗拉强度、延伸率和耐腐蚀性能。
根据本申请的实施例,又进一步地,发明人经过大量研究后惊喜地发现,当所述铜管中仅包括一种所述稀土金属,且所述稀土金属的重量份数为0.02重量份~0.04重量份时,所述铜管的延伸率相较于具有其他重量份的稀土金属的铜管或者具有多种稀土金属的铜管,其延伸率显著提高。
根据本申请的实施例,所述铜管中铜的提供方式不受特别限制,例如,在本申请的一些实施例中,可以为紫铜。由此,铜的纯度较高,利于生产。
根据本申请的实施例,具体而言,所述铜管可以包括以下至少之一:99.98重量份的铜、0.005重量份的铈;99.97重量份的铜、0.02重量份的镧;99.95重量份的铜、0.04重量份的镧;99.93重量份的铜、0.06重量分的镧;99.97重量份的铜、0.02重量份的铈;99.95重量份的铜、0.04重量份的铈;99.93重量份的铜、0.06重量分的铈;99.97重量份的铜、0.02 重量份的镧和铈;99.95重量份的铜、0.04重量份的镧和铈;99.96重量份的铜、0.03重量份的镧和铈。由此,该铜管的成本较低、均匀性进一步提高、抗拉强度进一步提高、延伸率更加优异、耐腐蚀性能更加优异,使用寿命进一步增长,制作工艺的可靠性进一步提高、生产良品率进一步提高。
根据本申请的实施例,可以理解的是,本申请所述的铜管除含有上述组分以外,还可以包括在金属冶炼中不可避免的杂质元素,在此不再过多赘述。
根据本申请的实施例,所述铜管满足以下条件的至少之一:抗拉强度不小于230MPa;延伸率不小于39.8%;在体积分数为2%的甲酸溶液中,最大蚁穴腐蚀深度不大于11.367μm。
在本申请的另一个方面,本申请提供了一种制作前面所述的铜管的方法。根据本申请的实施例,参照图1,该方法包括以下步骤:
S100:在真空条件下,将稀土金属与铜源进行第一混合熔炼并冷却,得到预制料。
根据本申请的实施例,在该步骤中,所述真空条件、所述第一混合熔炼的温度和时间,本领域技术人员可以根据实际需要进行灵活选择,在此不再过多赘述。
S200:将所述预制料与所述铜源进行第二混合熔炼并冷却,得到所述铜管。
根据本申请的实施例,在该步骤中,所述第二混合熔炼的温度和时间,本领域技术人员可以根据实际需要进行灵活选择,在此不再过多赘述。
根据本申请的实施例,具体而言,上述方法可以是先在真空熔炼炉中将纯铜融化,选取稀土金属与铜合金的共晶点含量添加稀土金属,待稀土金属熔化后,搅拌均匀,在真空保护气氛中冷却凝固,最后将得到的预制料与紫铜共混冶炼。由此,由于本申请所述的铜管中,稀土金属的含量较低,因此在冶炼时,以中间合金的方式在紫铜中加入稀土金属,也即先将稀土金属与铜源进行第一混合熔炼,再将得到的预制料与铜源进行第二混合熔炼,可以使得制作得到的铜管中,具有较为准确含量的稀土金属,进而提高稀土金属的收得率和铜管中稀土金属分布的均匀性。
在本申请的又一个方面,本申请提供了一种换热器。根据本申请的实施例,参照图2,该换热器包括:多个翅片110,所述多个翅片110并排设置;导热管1210,所述导热管1210穿设在所述多个翅片110中,所述导热管1210的至少一部分为前面所述的铜管。发明人发现,该换热器的成本较低、耐腐蚀性能优异,使用寿命长,换热效率高,且具有前面所述的铜管的所有特征和优点,在此不再过多赘述。
根据本申请的实施例,多个翅片110并排设置,导热管120穿设在并排设置的多个翅片110中,从而当制冷剂从导热管120中通过时,能够有效地通过导热管120以及翅片110与外界空气(室内或者室外)发生热交换,从而实现制冷剂的相变,进而实现对室内空气的温度调节。
根据本申请的实施例,所述换热器的种类不受特别限制,其特别适合用于空调或者制冷设备等的加热器、冷却器、冷凝器、蒸发器和再沸器等,应用范围广泛。
在本申请的再一个方面,本申请提供了一种空调器。根据本申请的实施例,参照图3,该空调器包括:室内换热器100、压缩机200、室外换热器300、节流组件400、制冷剂管 路500、第一截止阀600和第二截止阀700。其中,根据本申请的实施例,压缩机200与室内换热器100相连,室外换热器300与压缩机200相连,节流组件400分别与室外换热器300和室内换热器100相连,制冷剂管路500连通室内换热器100、压缩机200、室外换热器300和节流组件400以便构成制冷剂循环,第一截止阀600和第二截止阀700分别设置在室内换热器100与压缩机200之间、室内换热器100与节流组件400之间,其中,所述室内换热器100与所述室外换热器300的至少之一是前面所述的换热器。发明人发现,该空调器的成本较低,使用寿命长,制冷效果好,且具有前面所述的换热器的所有特征和优点,在此不再过多赘述。
根据本申请的实施例,在空调器的运行过程中,制冷剂可以依次通过室内换热器100、第一截止阀600、压缩机200、室外换热器300、节流组件400、第二截止阀700,最后再回到室内换热器100,从而形成了制冷剂循环,并通过制冷剂的气相与液相之间的变换、制冷剂与室内或者室外空气之间的换热,从而实现了对室内温度的调节例如进行制冷处理。
根据本申请的实施例,本领域技术人员能够理解的是,制冷剂由液相转变为气相的换热器,也被称为蒸发器,制冷剂由气相转变为液相的换热器,也被称为冷凝器。在本申请中,室内换热器100与室外换热器300可以是同类型的换热器,也可以是不同类型的换热器。
根据本申请的实施例,参考图4,制冷剂管路包括室内外机连接管路,该室内外机连接管路包括:连接管管体510和保温层520,在连接管管体510内限定出制冷剂通路,保温层520套设在连接管管体510的外表面,其中,连接管管体510的至少一部分为前面所述的铜管。由此,可以进一步有效地降低空调器的元件腐蚀速率,延长使用寿命。
根据本申请的实施例,参考图5,制冷剂管路还可以包括室内机辅助管路,室内机辅助管路包括:室内机连接管5510;室内机支管5520;分配器130,分配器130分别与室内机连接管5510和室内机支管5520相连,以便使得室内机连接管5510与室内机支管5520构成流体连通,其中,室内机连接管5510、室内机支管5520和分配器130的至少之一的至少一部分为前面所述的铜管。由此,可以进一步有效地降低空调器的元件的腐蚀速率,延长使用寿命。
根据本申请的实施例,另外,参考图6,空调器还可以进一步包括:四通阀,四通阀用于切换室外换热器和室内换热器的功能,其中,四通阀的至少一部分为前面所述的铜管。由此,可以进一步有效地降低空调器的元件腐蚀速率。通过采用四通阀,可以有效地使得空调能够同时具有制冷和制暖效果。
根据本申请的具体实施例,四通阀可以包括电磁导向阀810和主阀体820,主阀体810与电磁导向阀820通过毛细管相连,在主阀体810上设置有第一阀口8210、第二阀口8220、第三阀口8230和第四阀口8240,并且第一阀口8210与压缩机200的排气口相连,第二阀口8220与压缩机200的吸气口相连,第三阀口8230与室内换热器100相连,第四阀口8240与室外换热器相连300,其中,毛细管的至少一部分为前面所述的铜管。由此,可以进一步有效地降低空调器的元件的腐蚀速率,延长使用寿命。
根据本申请的实施例,该空调器可以为分体挂壁式空调器,也可以为分体落地式空调器,还可以为移动空调器等。由此,应用范围广泛。
根据本申请的实施例,该空调器中的其他部件、结构均可以为常规空调器的部件、结构,在此不再过多赘述。
在本申请的再一个方面,本申请提供了一种制冷设备。根据本申请的实施例,该制冷设备包括前面所述的换热器。发明人发现,该制冷设备的成本较低,使用寿命长,制冷效果好,且具有前面所述的换热器的所有特征和优点,在此不再过多赘述。
根据本申请的实施例,该制冷设备可以为冰箱、冰柜、制冷机等。由此,应用范围广泛。
根据本申请的实施例,该制冷设备中的其他部件、结构均可以为常规制冷设备的部件、结构,在此不再过多赘述。
下面详细描述本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1
用于换热器的铜管,包括99.98重量份的铜、0.005重量份的铈。
实施例2
用于换热器的铜管,包括99.97重量份的铜、0.02重量份的镧。
实施例3
用于换热器的铜管,包括99.95重量份的铜、0.04重量份的镧。
实施例4
用于换热器的铜管,包括99.93重量份的铜、0.06重量分的镧。
实施例5
用于换热器的铜管,包括99.97重量份的铜、0.02重量份的铈。
实施例6
用于换热器的铜管,包括99.95重量份的铜、0.04重量份的铈。
实施例7
用于换热器的铜管,包括99.93重量份的铜、0.06重量分的铈。
实施例8
用于换热器的铜管,包括99.97重量份的铜、0.02重量份的镧和铈(采用市售混合稀土,其中铈含量大于61%,镧含量大于32%)。
实施例9
用于换热器的铜管,包括99.95重量份的铜、0.04重量份的镧和铈(采用市售混合稀土,其中铈含量大于61%,镧含量大于32%)。
实施例10
用于换热器的铜管,包括99.96重量份的铜、0.03重量份的镧和铈(采用市售混合稀土,其中铈含量大于61%,镧含量大于32%)。
对比例1
用于换热器的铜管,包括99.98重量份的铜。
对比例2
用于换热器的铜管,为磷脱氧铜(TP2)以及其表面浸镀的15μm厚度的纯锡。
对以上各实施例及对比例的铜管的性能进行测试,测试结果如表1。
表1实施例和对比例的铜管的性能测试结果
  抗拉强度(MPa) 延伸率(%) 最大蚁穴腐蚀深度(μm)
实施例1 230 39.8 11.367
实施例2 240 41.3 2.365
实施例3 245 45.6 0.539
实施例4 252 39.6 7.563
实施例5 258 42.4 9.361
实施例6 235 45.6 0.372
实施例7 250 39.8 6.031
实施例8 231 40.2 10.925
实施例9 251 38.6 0.678
实施例10 259 39.4 3.452
对比例1 228 38.5 20.548
对比例2 231 36.2 10.58
性能测试方法:
1、抗拉强度:GB/T 228.1-2010金属材料拉伸试验第1部分:室温试验方法。
2、延伸率:GB/T 228.1-2010金属材料拉伸试验第1部分:室温试验方法。
3、最大蚁穴腐蚀深度:取规格相同铜管,保证断面平齐整洁,分别放入玻璃管内,铜管高出玻璃管2cm,配置1.5L的体积分数为2%的甲酸溶液,分别在广口瓶(250mL)中加入30mL溶液,将玻璃管放入广口瓶(5个放一瓶),加盖密封,将广口瓶置于环境试验箱,进行50℃×12h+常温12h循环试验,测试周期1000小时,测试最终腐蚀深度。
由以上实验数据可知,该铜管成本较低、均匀性高、抗拉强度高、延伸率优异、耐腐蚀性能优异,使用寿命长,制作工艺的可靠性高、生产良品率高。
进一步地,当所述稀土金属的重量份数为0.04重量份时,可以使得该铜管均匀性更高、抗拉强度更高、延伸率更加优异、耐腐蚀性能更加优异,使用寿命显著增长。
又进一步地,当所述铜管中仅包括一种所述稀土金属,且所述稀土金属的重量份数为0.02重量份~0.04重量份时,所述铜管的延伸率相较于具有其他重量份的稀土金属的铜管或者具有多种稀土金属的铜管,其延伸率显著提高。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (16)

  1. 一种用于换热器的铜管,包括:
    99.8重量份~99.999重量份的铜;和
    0.001重量份~0.1重量份的稀土金属,
    所述铜和所述稀土金属的总重量份数小于或等于100重量份。
  2. 根据权利要求1所述的铜管,所述稀土金属的重量份数为0.001重量份~0.009重量份或者0.01重量份~0.1重量份。
  3. 根据权利要求1或2所述的铜管,所述稀土金属的重量份数为0.004重量份~0.006重量份或者0.02重量份~0.06重量份。
  4. 根据权利要求1~3中任一项所述的铜管,所述稀土金属的重量份数为0.005重量份或者0.04重量份。
  5. 根据权利要求1~4中任一项所述的铜管,所述稀土金属包括镧或者铈中的至少一种。
  6. 根据权利要求1~5中任一项所述的铜管,仅包括一种所述稀土金属,且所述稀土金属的重量份数为0.02重量份~0.04重量份。
  7. 根据权利要求1~6中任一项所述的铜管,包括以下至少之一:
    99.98重量份的铜、0.005重量份的铈;
    99.97重量份的铜、0.02重量份的镧;
    99.95重量份的铜、0.04重量份的镧;
    99.93重量份的铜、0.06重量分的镧;
    99.97重量份的铜、0.02重量份的铈;
    99.95重量份的铜、0.04重量份的铈;
    99.93重量份的铜、0.06重量分的铈;
    99.97重量份的铜、0.02重量份的镧和铈;
    99.95重量份的铜、0.04重量份的镧和铈;
    99.96重量份的铜、0.03重量份的镧和铈。
  8. 根据权利要求1~7中任一项所述的铜管,满足以下条件的至少之一:
    抗拉强度不小于230MPa;
    延伸率不小于39.8%;
    在体积分数为2%的甲酸溶液中,最大蚁穴腐蚀深度不大于11.367μm。
  9. 一种制作权利要求1~8中任一项所述的铜管的方法,包括:
    在真空条件下,将稀土金属与铜源进行第一混合熔炼并冷却,得到预制料;
    将所述预制料与所述铜源进行第二混合熔炼并冷却,得到所述铜管。
  10. 一种换热器,包括:
    多个翅片,所述多个翅片并排设置;
    导热管,所述导热管穿设在所述多个翅片中,所述导热管的至少一部分为权利要求1~8中任一项所述的铜管。
  11. 一种空调器,包括:
    室内换热器;
    压缩机,所述压缩机与所述室内换热器相连;
    室外换热器,所述室外换热器与所述压缩机相连;
    节流组件,所述节流组件分别与所述室外换热器和所述室内换热器相连;
    制冷剂管路,所述制冷剂管路连通所述室内换热器、所述压缩机、所述室外换热器和所述节流组件以便构成制冷剂循环;
    第一和第二截止阀,所述第一和第二截止阀分别设置在所述室内换热器与压缩机之间、所述室内换热器与所述节流组件之间,
    其中,所述室内换热器与所述室外换热器的至少之一为权利要求10所述的换热器。
  12. 根据权利要求11所述的空调器,所述制冷剂管路包括室内外机连接管路,所述室内外机连接管路包括:
    连接管管体,所连接管管体内限定出制冷剂通路;
    保温层,所述保温层套设在所述连接管管体的外表面;
    其中,所述连接管管体的至少一部分为权利要求1~8中任一项所述的铜管。
  13. 根据权利要求11或12所述的空调器,所述制冷剂管路包括室内机辅助管路,所述室内机辅助管路包括:
    室内机连接管;
    室内机支管;
    分配器,所述分配器分别与所述室内机连接管和所述室内机支管相连,以便使得所述室内机连接管与所述室内机支管构成流体连通,
    其中,所述室内机连接管、所述室内机支管和所述分配器的至少之一的至少一部分为权利要求1~8中任一项所述的铜管。
  14. 根据权利要求11~13中任一项所述的空调器,进一步包括:
    四通阀,所述四通阀用于切换所述室外换热器和所述室内换热器的功能,
    其中,所述四通阀的至少一部分为权利要求1~8中任一项所述的铜管。
  15. 根据权利要求14所述的空调器,所述四通阀包括:
    电磁导向阀;
    主阀体,所述主阀体与所述电磁导向阀通过毛细管相连;
    第一至第四阀口,所述第一至第四阀口设置在所述主阀体上,并且所述第一阀口与所述压缩机的排气口相连,所述第二阀口与所述压缩机的吸气口相连,所述第三阀口与所述室内换热器相连,所述第四阀口与所述室外换热器相连,
    其中,所述毛细管的至少一部分为权利要求1~8中任一项所述的铜管。
  16. 一种制冷设备,包括权利要求10所述的换热器。
PCT/CN2021/088673 2020-04-27 2021-04-21 铜管及其制作方法、换热器、空调器和制冷设备 WO2021218737A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010342862.8 2020-04-27
CN202010342862.8A CN111500890A (zh) 2020-04-27 2020-04-27 铜管及其制作方法、换热器、空调器和制冷设备

Publications (1)

Publication Number Publication Date
WO2021218737A1 true WO2021218737A1 (zh) 2021-11-04

Family

ID=71866414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088673 WO2021218737A1 (zh) 2020-04-27 2021-04-21 铜管及其制作方法、换热器、空调器和制冷设备

Country Status (2)

Country Link
CN (1) CN111500890A (zh)
WO (1) WO2021218737A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111500890A (zh) * 2020-04-27 2020-08-07 美的集团股份有限公司 铜管及其制作方法、换热器、空调器和制冷设备
CN115198140A (zh) * 2021-04-13 2022-10-18 美的集团股份有限公司 一种铜合金及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1660690A1 (en) * 2003-08-28 2006-05-31 Sandvik Intellectual Property AB Metal dusting resistant product
CN207146985U (zh) * 2017-07-25 2018-03-27 广东美的制冷设备有限公司 换热器、空调器和制冷设备
CN109402447A (zh) * 2018-12-17 2019-03-01 芜湖精艺铜业有限公司 一种铜合金、铜管及其制备方法
CN111500890A (zh) * 2020-04-27 2020-08-07 美的集团股份有限公司 铜管及其制作方法、换热器、空调器和制冷设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103484712B (zh) * 2012-12-17 2016-05-04 阮伟光 含微量稀土的铋黄铜合金拉制管及其制造方法
CN103866157B (zh) * 2014-03-11 2016-06-22 宁波金田铜管有限公司 一种高强耐蚀微合金化铜管的制造方法
CN104103338B (zh) * 2014-06-30 2016-08-24 中色奥博特铜铝业有限公司 一种电缆铜带的生产工艺
CN106319277A (zh) * 2015-06-19 2017-01-11 中国科学院金属研究所 一种稀土耐蚀铜合金及制备工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1660690A1 (en) * 2003-08-28 2006-05-31 Sandvik Intellectual Property AB Metal dusting resistant product
CN207146985U (zh) * 2017-07-25 2018-03-27 广东美的制冷设备有限公司 换热器、空调器和制冷设备
CN109402447A (zh) * 2018-12-17 2019-03-01 芜湖精艺铜业有限公司 一种铜合金、铜管及其制备方法
CN111500890A (zh) * 2020-04-27 2020-08-07 美的集团股份有限公司 铜管及其制作方法、换热器、空调器和制冷设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, SHIHONG ET AL.: "2.3.3 Rare Earth Microalloying of Copper Tube Billets", CAST AND ROLL TECHNOLOGY OF PRECISION COPPER TUBES, 29 February 2016 (2016-02-29), pages 26 - 31, XP009531724, ISBN: 978-7-118-10229-1 *

Also Published As

Publication number Publication date
CN111500890A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
WO2021218737A1 (zh) 铜管及其制作方法、换热器、空调器和制冷设备
CN201262500Y (zh) 热泵空调机组电热增焓防结霜装置
CN203869386U (zh) 一种集气管部件
CN102798252A (zh) 一种管翅式平行流换热器
CN207146985U (zh) 换热器、空调器和制冷设备
CN107339827B (zh) 换热器、空调器和制冷设备
CN200940977Y (zh) 一种热交换装置
US20230366638A1 (en) Heat exchanger and air conditioner having same
CN102848138A (zh) 一种集气管组件的制造方法及空调系统
CN100338245C (zh) 空调管用铜合金
CN101590553A (zh) 空调热交换器覆铜铝排管与u形铜管弯头焊接装置及方法
JP6857747B2 (ja) 熱交換器組立品とエアコン室内機
CN109489130A (zh) 一种换热器、室外机及空调
CN215570924U (zh) 一种医用微型冷水机
CN213066641U (zh) 蒸发器和制冷设备
CN208579535U (zh) 换热器、空调器和制冷设备
CN204063693U (zh) 空调器
CN208887150U (zh) 一种能防止室外换热器结霜的热泵系统
CN102994813A (zh) 空调管用铝合金材料
CN216159200U (zh) 一种海上专用工业空调
CN207146958U (zh) 空调器及连接管
JP2013204913A (ja) 熱交換器
CN207146968U (zh) 空调器
CN218495411U (zh) 换热器、空调
CN220582843U (zh) 一种双系统冰箱的制冷机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796700

Country of ref document: EP

Kind code of ref document: A1