WO2021218550A1 - 一种应用电子温控阀的发动机热管理系统及其实现方法 - Google Patents

一种应用电子温控阀的发动机热管理系统及其实现方法 Download PDF

Info

Publication number
WO2021218550A1
WO2021218550A1 PCT/CN2021/084450 CN2021084450W WO2021218550A1 WO 2021218550 A1 WO2021218550 A1 WO 2021218550A1 CN 2021084450 W CN2021084450 W CN 2021084450W WO 2021218550 A1 WO2021218550 A1 WO 2021218550A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
valve
temperature control
control valve
water
Prior art date
Application number
PCT/CN2021/084450
Other languages
English (en)
French (fr)
Inventor
王立峰
吴龙龙
王秀强
王孟晓
Original Assignee
博鼎汽车科技(山东)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博鼎汽车科技(山东)有限公司 filed Critical 博鼎汽车科技(山东)有限公司
Publication of WO2021218550A1 publication Critical patent/WO2021218550A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/16Indicating devices; Other safety devices concerning coolant temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2031/00Fail safe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an engine thermal management system using an electronic temperature control valve and an implementation method thereof, and belongs to the technical field of electronic control.
  • Engine combustion work requires a proper temperature.
  • the engine temperature is low. If the water pump runs at high speed, it will take away too much heat from the engine, which is not conducive to engine combustion.
  • the vehicle is running at high speed, due to the high speed of the vehicle, it will flow through The airflow of the engine heat exchanger is very fast, and the heat dissipation efficiency of the radiator is very high. At this time, if the engine water pump runs too fast, it will take away too much heat from the engine, which is not conducive to engine combustion. Therefore, we have to do an engine thermal management system.
  • the technical problem to be solved by the present invention is to address the above shortcomings and provide an engine thermal management system using an electronic temperature control valve and an implementation method thereof.
  • the electronic control unit accurately controls the temperature control valve according to the engine outlet water temperature, and the temperature control valve operates Control the water circulation mode of the engine to achieve the effect of controlling the temperature of the engine circulating water. At the same time, it can also reduce the water flow of the engine circulating water and reduce the power consumption of the engine water pump, so as to achieve the purpose of energy saving of the engine.
  • the present invention adopts the following technical solutions:
  • An engine thermal management system using an electronic temperature control valve includes an engine electronic control unit ECU, the engine is connected to an engine water outlet pipe, a water temperature sensor is installed on the engine body water outlet pipe, and the engine water outlet pipe is connected with an electronic temperature control valve and an electronic temperature control valve Connect the engine electronic control unit ECU with the water temperature sensor.
  • the electronic temperature control valve is connected to the engine's large circulation pipeline and the engine's small circulation pipeline through pipelines.
  • the engine's large circulation pipeline includes the water tank and the engine water pump, and the water tank is connected to the engine through the pipeline.
  • the water pump, the engine water pump is connected to the engine through a pipe.
  • the electronic temperature control valve includes a motor, the output shaft of the motor is equipped with a motor gear, the motor gear is meshed with a transmission gear, the transmission gear is connected with a worm, the transmission gear and the worm are integrally connected, a worm wheel is installed on the worm, and a worm wheel is installed on the worm.
  • a magnet is installed and a three-way valve is connected to the worm gear.
  • a motor housing is provided on the outside of the motor, the motor is connected with a valve control unit, and the valve control unit is connected with an angle sensor, which is used to sense the position of the magnet.
  • the three-way valve includes a valve body, a fixed cover, and a valve core.
  • the valve core is arranged in the valve body.
  • the top end of the valve core is connected to the drive shaft, and the drive shaft is connected to the worm gear.
  • valve core is connected to the water outlet pipe of the engine, and both ends of the valve body are respectively connected to the large circulation pipeline of the engine and the small circulation pipeline of the engine.
  • the valve core is provided with two water outlet holes, which communicate with the valve body. .
  • the three-way valve includes a housing, a ball valve is arranged in the housing, the ball valve is connected with a drive shaft, the drive shaft is connected with a worm gear, a sealing plug is closely attached to the ball valve, and the contact part of the sealing plug with the ball valve is an inner cone.
  • the inner cone surface of the sealing plug and the outer surface of the ball valve form a sealing surface, and a wave spring is arranged between the sealing plugs.
  • the ball valve is provided with a cylindrical water inlet channel, a first water outlet channel and a second water outlet channel are opened on both sides of the water inlet channel, the water inlet channel is connected with a water inlet pipe, and the water inlet pipe is connected with a water outlet pipe of the engine;
  • the three-way valve also includes a water outlet pipe.
  • the sealing plug is located between the water outlet pipe and the ball valve.
  • the sealing plug is fixed on the inner surface of the housing.
  • the first water outlet channel and the second water outlet channel can communicate with the water outlet pipe.
  • the valve control unit includes a single-chip microcomputer.
  • the single-chip microcomputer is connected with a power supply module, a CAN communication module, a motor control module, a current detection module, and a position detection module.
  • the valve control unit is connected to the engine electronic control unit ECU through the CAN communication module, and the current detection module And the position detection module can realize the OBD fault diagnosis function. After a fault occurs, the fault code can be sent to the ECU through the CAN bus;
  • the valve control unit can be separately installed in the motor housing or integrated in the engine electronic control unit ECU.
  • An implementation method of an engine thermal management system using an electronic temperature control valve includes four execution modes of the electronic temperature control valve, which are respectively as follows:
  • the electronic temperature control valve executes a large cycle, and the valve control unit controls the electronic temperature control valve to rotate the large cycle pipeline that communicates with the engine;
  • the electronic temperature control valve executes a small cycle, and the valve control unit controls the electronic temperature control valve to rotate the small cycle pipeline that communicates with the engine;
  • the electronic temperature control valve executes a mixed cycle.
  • the valve control unit controls the rotation of the electronic temperature control valve and simultaneously connects the large circulation pipeline of the engine and the small circulation pipeline of the engine;
  • the electronic temperature control valve executes the pressurization cycle.
  • the valve control unit controls the rotation of the electronic temperature control valve to reduce the circulation area of the large circulation pipeline of the connected engine while not connecting the small circulation pipeline of the engine, or the electronic temperature control valve also It is possible to reduce the water flow of the small cycle of the engine while closing the large cycle of the engine, so as to achieve the purpose of energy saving in the small cycle.
  • implementation method includes the following steps:
  • Step S101 the ECU detects the water temperature T1 of the engine water outlet pipe at the time t1 of the system operation time, and then proceeds to step S102 after completion;
  • step S103 the ECU judges whether the water temperature T2 is greater than 60°, if it is greater, then it proceeds to step S104, and if it is not greater, then it proceeds to step S109;
  • step S104 the ECU judges whether the water temperature T2 is greater than 80°, if it is greater, then it proceeds to step S105, and if it is not greater, then it proceeds to step S107;
  • Step S105 the temperature control valve executes a large cycle, the cooling water in the water tank enters the engine to cool the engine, the motor control spool rotation angle A is 0 degrees, and the temperature control valve corresponding to the large cycle angle is set to the initial 0 degrees. Go to step S110 after completion;
  • Step S106 ECU judges whether T2 is greater than T1, if T2 is greater than T1, it means that the engine is increasing power, then go to step S107, and not greater than that means that the engine is reducing power, then go to step S108;
  • Step S109 the temperature control valve executes a small cycle, the motor executes a rotation angle A of 90, and then enters step S110 after completion;
  • Step S110 re-record the time t2 at this time as the new time t1, the new time t2 is the original time t2 plus 30S, and return to continue to detect the water temperature.
  • the present invention adopts the above technical solutions and has the following technical effects:
  • the electronic control unit accurately controls the electronic temperature control valve according to the temperature of the engine water outlet, and controls the water circulation mode of the engine through the action of the temperature control valve to achieve the effect of controlling the temperature of the engine circulating water, which can reduce the water flow of the engine circulating water and reduce the consumption of the engine water pump Power, so as to achieve the purpose of energy saving of the engine.
  • the water pumps are all running at the rated speed, the maximum water flow and 1/3 of the water flow, the water pump consumes the shaft power of the engine reduced by half, from the original 3.5KW to 1.8KW.
  • Figure 1 is a structural block diagram of the engine thermal management system in embodiments 1 and 2 of the present invention.
  • FIG. 2 is a schematic diagram of the motor gear and worm gear driving system in the electronic temperature control valve in Embodiment 1 of the present invention
  • Figure 3 is a partial anatomical diagram of the electronic temperature control valve in embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of the opening direction of the internal flow passage of the electronic temperature control valve in Embodiment 1 of the present invention.
  • Fig. 5 is a diagram of the spool rotation state of the electronic temperature control valve in embodiment 1 of the present invention.
  • Figure 6 is a control flow chart of the engine thermal management system in embodiments 1 and 2 of the present invention.
  • FIGS 7-12 are electrical schematic diagrams of the valve control unit in Embodiments 1 and 2 of the present invention.
  • Figure 13 is a partial anatomical diagram of the electronic temperature control valve in embodiment 2 of the present invention.
  • an engine thermal management system using electronic temperature control valves includes an engine electronic control unit ECU, the engine is connected to an engine water outlet pipe, a water temperature sensor is installed on the engine water outlet pipe, and the engine water outlet pipe is connected with The electronic temperature control valve, the electronic temperature control valve and the water temperature sensor are connected to the engine electronic control unit ECU.
  • the electronic temperature control valve is connected to the engine's large circulation pipeline and the engine's small circulation pipeline through pipelines.
  • the engine's large circulation pipeline includes the water tank And the engine water pump, the water tank is connected to the engine water pump through a pipe, and the engine water pump is then connected to the engine through a pipe.
  • the electronic temperature control valve includes a motor 1, a motor gear 2 is installed on the output shaft of the motor 1, the motor gear 2 is meshed with a transmission gear 3, the transmission gear 3 is connected with a worm 4, and the transmission gear 3 is connected to the worm.
  • worm gear 5 is installed on worm 4
  • magnet 6 is installed on worm gear 5
  • worm gear 5 is connected with a three-way valve, so that there are a total of two stages of reduction in the whole mechanism, and the first stage of reduction is the reduction between the small gear and the large gear.
  • the second stage is worm gear deceleration, the total reduction ratio can reach more than 100, so that a 50N.mm motor can overcome the resistance of water and drive the two-position three-way valve to rotate.
  • the motor 1 is provided with a motor housing 7 on the outside, a valve control unit 8 is installed in the motor housing 7, the motor 1 is connected to the valve control unit 8, and the valve control unit 8 is connected with an angle sensor.
  • the sensor is used to sense the position of the magnet. After the turbine 5 rotates, it drives the magnet 6 to rotate, which can finally be sensed from the angle sensor, so as to achieve the purpose of detecting the real-time angular position of the turbine, so that the rotation angle of the two-position three-way valve can be monitored , Forming a closed-loop control.
  • the three-way valve includes a valve body 10, a fixed cover 11 and a valve core 12.
  • the valve core 12 is arranged in the valve body 10, the valve core 12 is rotatable, the top of the valve core 12 is connected with a drive shaft 14, and the drive shaft 14 is connected with a worm wheel. 5.
  • a fixed cover 11 is sleeved on the valve core 12, and the fixed cover 11 is fixed on the valve body 10. The fixed cover 11 restricts the axial movement of the valve core 12, so that the valve core 12 can only rotate in the valve body 10.
  • the structure of the valve core 12 is a cylindrical structure.
  • the valve core 12 is connected to the water outlet pipe of the engine.
  • the two ends of the valve body 10 are respectively connected to the large circulation pipeline of the engine and the small circulation pipeline of the engine.
  • the valve body 10 is connected, and the positions of the two water outlet holes can be arranged according to actual engine requirements, and different engines can adopt different water outlet hole directions.
  • valve failure mode control When the valve fails, such as two-position three-way valve stuck or motor failure, gear failure, worm gear failure, it can be judged in real time by the detected angle signal. Once any valve failure is judged, the valve control The unit 8 must immediately send a fault alarm message to the electronic control unit ECU of the entire engine, and the ECU controls the engine to enter a lame control mode, for example, it can only work in idle mode or work with the minimum allowable output torque.
  • the invention uses a sliding valve to replace the electronic thermostat, adjusts the engine thermal management by means of the engine size cycle adjustment, and can reduce the water flow into the radiator by reducing the engine water area to carry out the engine cycle. Waterway thermal management.
  • the temperature control slide valve can realize the automatic position detection function, the fault diagnosis OBD function and the motor drive function, and the communication function with the engine ECU.
  • the valve control unit includes a single-chip microcomputer.
  • the single-chip microcomputer is connected with a power supply module, a CAN communication module, a motor control module, a current detection module, and a position detection module.
  • the valve control unit is connected to the engine electronic control unit ECU through the CAN communication module, and the position detection module is used for detection.
  • the motor control module is used to control the motor. Both the current detection module and the position detection module can realize the OBD fault diagnosis function. After a fault occurs, the fault code can be sent to the ECU via the CAN bus;
  • the valve control unit 8 can be separately installed in the motor housing 7 or integrated in the engine electronic control unit ECU.
  • the single-chip microcomputer includes a chip U4, the model of the chip U4 is FS32K116LIT0VFMT, the 5th pin of the chip U4 is connected to one end of the crystal oscillator Y1, one end of the resistor R13, and one end of the capacitor C17.
  • the 6 pin of the chip U4 is connected to the other end of the crystal oscillator Y1.
  • the other end of resistor R13, one end of capacitor C19, the other end of capacitor C17 and the other end of capacitor C19 are grounded
  • pin 31 of chip U4 is connected to one end of resistor R12 and one end of capacitor C20, the other end of resistor R12 is connected to +5V, and the other end of capacitor C20 is grounded.
  • Pin 32 of chip U4 is connected to pin 3 of connector J1
  • pin 30 of chip U4 is connected to pin 2 of connector J1
  • pin 31 of chip U4 is connected to pin 4 of connector J1.
  • the power module includes chip U2, the model of chip U2 is MAX17501BTEVKIT, pin 2 of chip U2 is connected to a 24V power supply, pin 3 of chip U2 is connected to one end of resistor R3 and one end of resistor R4, and the other end of resistor R3 is connected to 24V power supply, the other end of resistor R4 is grounded, pin 4 of chip U2 is connected to one end of capacitor C12, the other end of capacitor C12 is grounded, pin 5 of chip U2 is connected to one end of capacitor C13, the other end of capacitor C13 is grounded, and pin 10 of chip U2 is connected to One end of the inductor L2 and the other end of the inductor L2 are connected to pin 5 of the chip U2, one end of the capacitor C5, one end of the capacitor C6, one end of the capacitor C7 and one end of the capacitor C8, and output +5V, the other end of the capacitor C5, the other end of the capacitor C6, and the other end of the capacitor C7.
  • One end and the other end is
  • the power module also includes an inductor L1, one end of the inductor L1 is connected to one end of the diode D1 and one end of the capacitor C2, the other end of the diode D1 is connected to the VCC_IN wire hole, the other end of the capacitor C2 is connected to the GND_IN wire hole, and the other end of the inductor L1 is connected to the capacitor One end of C3 and one end of capacitor C4 are connected to 24V in parallel, the other end of capacitor C3 and the other end of capacitor C4 are grounded; the power module also includes resistor R1, one end of resistor R1 is connected to +5V, the other end of resistor R is connected to one end of diode D2, and the other end of diode D2 is grounded ; The power module also includes a resistor R7, one end of the resistor R7 is connected to the GND_IN wire hole, and the other end of the resistor R7 is grounded.
  • the CAN communication module includes chip U1, the model of chip U1 is CAN/TJA1042TK/3, pin 1 of chip U1 is connected to pin 1 of chip U4, and pin 4 of chip U1 is connected to pin 2 of chip U4.
  • Pin 7 of the chip U1 is connected to one end of the bidirectional TVS tube D3 and one end of the resistor R2
  • pin 6 of the chip U1 is connected to one end of the bidirectional TVS tube D2 and the other end of the resistor R2
  • one end of the bidirectional TVS tube D3 and the other end of the bidirectional TVS tube D2 are grounded.
  • the motor control module includes a chip U3, the model of the chip U3 is MC33886VW, the 4 pins, 5 pins and 16 pins of the chip U3 are connected to one end of the capacitor C9 and one end of the capacitor C11, and the other end of the capacitor C9 and the capacitor C11 The other end is connected to the GND_IN wire hole.
  • the 19 pin of chip U3 is connected to the 7 pin of chip U4, the 3 pin of chip U3 is connected to the 8 pin of chip U4, the 18 pin of chip U3 is connected to the 9 pin of chip U4, and the pin of chip U3 is connected.
  • Pin 13 is connected to pin 10 of chip U4, pin 2 of chip U3 is connected to pin 11 of chip U4 and one end of resistor R5, the other end of resistor R5 is connected to +5V, pin 14 and pin 15 of chip U3 are connected to motor wire hole H4 ,
  • the 6 pins and 7 pins of the chip U3 are connected with the motor wire bonding hole H3, the 17 pin of the chip U3 is connected to one end of the capacitor C10, and the other end of the capacitor C10 is connected to the GND_IN wire bonding hole.
  • the current detection module includes an operational amplifier U5A.
  • Pin 1 of the operational amplifier U5A is connected to pin 26 of the chip U4 and one end of a resistor R6.
  • the other end of the resistor R6 is connected to pin 2 of the operational amplifier U5A.
  • Pin 2 is connected to one end of resistor R9, and the other end of resistor R9 is grounded.
  • Pin 3 of operational amplifier U5A is connected to one end of resistor R11 and connected to GND_M. The other end of resistor R11 is grounded.
  • Pin 8 of operational amplifier U5A is connected to +5V. Pin 4 is grounded.
  • the position detection module includes a chip U6, the model of the chip U6 is KMA210, the VDD pin of the chip U6 is connected to +5V, the GND pin of the chip U6 is grounded, and the OUT/DATA pin of the chip U6 is connected to the chip U4. 22 feet.
  • the implementation method of the engine thermal management system using the electronic temperature control valve includes four execution modes of the electronic temperature control valve, which are respectively as follows:
  • the electronic temperature control valve executes a large cycle, and the valve control unit controls the electronic temperature control valve to rotate the large cycle pipeline that communicates with the engine;
  • the electronic temperature control valve executes a small cycle, and the valve control unit controls the electronic temperature control valve to rotate the small cycle pipeline that communicates with the engine;
  • the electronic temperature control valve executes a mixed cycle, and the valve control unit controls the rotation of the electronic temperature control valve and simultaneously communicates the large circulation pipeline of the engine and the small circulation pipeline of the engine;
  • the electronic temperature control valve executes the pressurization cycle.
  • the valve control unit controls the rotation of the electronic temperature control valve. While not connecting the small circulation pipeline of the engine, it reduces the circulation area of the large circulation pipeline of the connected engine. Similarly, electronic temperature control The valve can also reduce the water flow of the small cycle of the engine while closing the large cycle of the engine, so as to achieve the purpose of energy saving in the small cycle.
  • the implementation method includes the following steps:
  • Step S101 the ECU detects the water temperature T1 of the engine water outlet pipe at the time t1 of the system operation time, and then proceeds to step S102 after completion;
  • step S103 the ECU judges whether the water temperature T2 is greater than 60°, if it is greater, then it proceeds to step S104, and if it is not greater, then it proceeds to step S109;
  • step S104 the ECU judges whether the water temperature T2 is greater than 80°, if it is greater, then it proceeds to step S105, and if it is not greater, then it proceeds to step S107;
  • Step S105 the temperature control valve executes a large cycle, the cooling water in the water tank enters the engine to cool the engine, the motor control spool rotation angle A is 0 degrees, and the temperature control valve corresponding to the large cycle angle is set to the initial 0 degrees. Go to step S110 after completion;
  • Step S106 ECU judges whether T2 is greater than T1, if T2 is greater than T1, it means that the engine is increasing power, then go to step S107, and not greater than that means that the engine is reducing power, then go to step S108;
  • Step S109 the temperature control valve executes a small cycle, the motor executes a rotation angle A of 90, and then enters step S110 after completion;
  • Step S110 re-record the time t2 at this time as the new time t1, the new time t2 is the original time t2 plus 30S, and return to continue to detect the water temperature.
  • the implementation method can realize the switching of the engine size cycle and the mixed cycle of the engine cooling water.
  • the mixed cycle refers to the state where the large cycle and the small cycle coexist in the engine, and can be reduced at the same time by opening the large cooling water large cycle interface
  • the engine small circulation interface reduces the temperature of the engine circulating water. This situation is generally used when the engine power is high. At this time, the temperature sensor detects that the temperature of the engine circulating water is high, and the valve control unit will give two bits after receiving the high water temperature signal. The three-way valve issues a command to allow the valve to perform this operation; at the same time, it can also reduce the opening of the large cycle and increase the opening of the small cycle in the mixed cycle to increase the engine cooling water temperature. This is generally the case in the engine At the beginning, or when the engine is under light load, the cooling water temperature is low, the valve control unit sends a command to the two-position three-way valve, and the valve action achieves the effect of raising the cooling water temperature.
  • the implementation method can also realize the adjustment method of engine thermal management is that when the valve is in the large cycle, the valve core continues to rotate, while the small cycle is not opened, the circulation area of the large cycle is reduced, which can increase the water outlet pipeline of the engine. Circulate the cooling water pressure and reduce the flow of cooling water, which reduces the flow of cooling water into the water tank, thereby achieving the purpose of increasing the temperature of the engine cooling water. In addition, this method also reduces the pumping water volume of the water pump, which indirectly reduces The output power of the water pump, so as to achieve the purpose of energy saving of the engine.
  • Embodiment 1 The same part of the content as in Embodiment 1 has been discussed in detail in Embodiment 1, and will not be repeated here. Compared with Embodiment 1, this embodiment is modified as follows:
  • the three-way valve includes a housing 21, a ball valve 25 is arranged in the housing 21, the ball valve 25 is connected to the drive shaft 14, the drive shaft 14 controls the rotation of the ball valve 25, the drive shaft 14 is connected to the worm wheel 5, the ball valve 25
  • a sealing plug 23 is closely attached to the upper part.
  • the contact part of the sealing plug 23 and the ball valve 25 is an inner cone.
  • the inner cone surface of the sealing plug 23 and the outer surface of the ball valve 25 form a sealing surface, and a wave spring is arranged between the sealing plugs 23 24.
  • the wave spring 24 is used to give the sealing plug 23 a force against the surface of the ball valve 25 to form a seal.
  • the ball valve 25 is provided with a cylindrical water inlet channel 22. On both sides of the water inlet channel 22 are opened a first water outlet channel 26 and a second water outlet channel 27.
  • the water inlet channel 22 is connected with a water inlet pipe 28, and the water inlet pipe 28 is connected with The outlet pipe of the engine.
  • the three-way valve also includes a water outlet pipe 29.
  • the sealing plug 23 is located between the water outlet pipe 29 and the ball valve 25.
  • the sealing plug 23 is fixed on the inner surface of the housing 21.
  • the water pipe 29 is in communication, and the water outlet pipe 29 connects the large circulation pipeline of the engine and the small circulation pipeline of the engine.
  • the material of the sealing plug 23 is tetrafluoroethylene.
  • the ball valve has three channels for the two-position three-way valve cast inside. Water enters the ball valve from the water inlet channel and flows out from the two channels on the ball valve body. When the ball valve is rotated by the turbine If the upper channel of the ball valve is staggered with the inner channel of the sealing plug, the water flow of this channel will be reduced. When the upper channel of the ball valve is completely staggered from the upper channel of the sealing plug, this channel is sealed and the water flow is reduced to a minimum. During control, the water flow of the two outlet channels in the two-position three-way valve can be controlled by controlling the rotation angle of the ball valve.
  • the invention relates to an engine thermal management system using electronic temperature control valve and its implementation method.
  • the electronic control unit accurately controls the temperature control valve according to the temperature of the engine water outlet, and controls the water circulation mode of the engine through the action of the temperature control valve to achieve control of the engine cycle.
  • the effect of water temperature can also reduce the water flow of the engine's circulating water and reduce the power consumption of the engine's water pump, so as to achieve the purpose of energy saving of the engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

一种应用电子温控阀的发动机热管理系统,包括发动机电控单元ECU,发动机连接发动机出水管,发动机出水管上安装有水温传感器,发动机出水管连接有电子温控阀,电子温控阀和水温传感器连接发动机电控单元ECU,电子温控阀通过管路连接有发动机的大循环管路和发动机的小循环管路。电控单元根据发动机出水温度对温控阀进行精确控制,通过温控阀动作控制发动机中水循环方式,达到控制发动机循环水温度的效果,同时也可以减少发动机循环水的水流量,降低发动机水泵的消耗功率,从而达到发动机节能的目的。还公开一种应用电子温控阀的发动机热管理系统实现方法。

Description

一种应用电子温控阀的发动机热管理系统及其实现方法
郑重声明:
本发明要求了以下专利申请的优先权:
申请日为2020年04月28日、申请号为202010350309.9、名称为“一种应用电子温控阀的发动机热管理系统及其实现方法”的中国发明专利申请。
技术领域
本发明是一种应用电子温控阀的发动机热管理系统及其实现方法,属于电子控制技术领域。
背景技术
随着国家对发动机节能减排技术的推广,发动机热管理系统的潜能不断被人们挖掘。
发动机燃烧做功需要合适的温度,在发动机启动时,发动机温度低,如果水泵高速运行,会带走发动机太多的热量,不利于发动机燃烧;另外在车辆高速运行时,由于车速很快,流过发动机换热器的气流很快,散热器散热效率很高,此时如果发动机水泵运行速度过快,会带走发动机太多的热量,不利于发动机燃烧。因此我们要做发动机热管理系统。
现在对发动机循环水热管理的方法一般有硅油离合器水泵的方式和电磁离合器水泵的方式,即在发动机不需要散失太多热量时,让水泵转速降低。这种方式虽然可行,但离合器的故障率太高,而且造价太高,不利于实际应用在发动机上。
发明内容
本发明要解决的技术问题是针对以上不足,提供一种应用电子温控阀的发动机热管理系统及其实现方法,电控单元根据发动机出水温度对温控阀进行精确控制,通过温控阀动作控制发动机中水循环方式,达到控制发动机循环水温度的效果,同时也可以减少发动机循环水的水流量,降低发动机水泵的消耗功率,从而达到发动机节能的目的。
为解决以上技术问题,本发明采用以下技术方案:
一种应用电子温控阀的发动机热管理系统,包括发动机电控单元ECU,发动机连接发动机出水管,发动机机体出水管上安装有水温传感器,发动机出水管连接有电子温控阀,电子温控阀和水温传感器连接发动机电控单元ECU,电子温控阀通过管路连接有发动机的大循环管路和发动机的小循环管路,发动机的 大循环管路包括水箱和发动机水泵,水箱通过管道连接发动机水泵,发动机水泵再通过管道连接到发动机。
进一步的,所述电子温控阀包括电机,电机的输出轴上安装有电机齿轮,电机齿轮啮合有变速齿轮,变速齿轮连接有蜗杆,变速齿轮与蜗杆一体连接,蜗杆上安装有蜗轮,蜗轮上安装有磁铁,蜗轮连接有三通阀。
进一步的,所述电机的外部设有电机壳,电机连接有阀控制单元,阀控制单元连接有角度传感器,角度传感器用于感应磁铁位置。
进一步的,所述三通阀包括阀体、固定盖和阀芯,阀芯设置在阀体内,阀芯的顶端连接驱动轴,驱动轴连接蜗轮,阀芯上套设有固定盖,固定盖固定在阀体上。
进一步的,所述阀芯连接发动机的出水管,阀体的两端分别连接发动机的大循环管路和发动机的小循环管路,阀芯上设有两个出水孔,出水孔与阀体联通。
进一步的,所述三通阀包括壳体,壳体内设有球阀,球阀连接有驱动轴,驱动轴连接蜗轮,球阀上紧贴设有密封塞,密封塞与球阀接触的部位是内锥形的,密封塞的内锥面与球阀的外表面形成密封面,密封塞之间设有波形弹簧。
进一步的,所述球阀内部开设有圆柱状的进水通道,进水通道的两侧开设第一出水通道和第二出水通道,进水通道连接有进水管,进水管连接有发动机的出水管;
所述三通阀还包括出水管,密封塞位于出水管和球阀之间,密封塞固定在壳体的内表面,第一出水通道、第二出水通道可与出水管联通,出水管连接发动机的大循环管路和发动机的小循环管路。
进一步的,所述阀控制单元包括单片机,单片机连接有电源模块、CAN通讯模块、电机控制模块、电流检测模块和位置检测模块,阀控制单元通过CAN通讯模块连接发动机电控单元ECU,电流检测模块和位置检测模块可实现OBD故障诊断功能,发生故障后,可通过CAN总线发送故障代码给ECU;
所述阀控制单元可单独安装在电机壳内,也可集成在发动机电控单元ECU内部。
一种应用电子温控阀的发动机热管理系统的实现方法,所述实现方法包括四种电子温控阀的执行方式,分别如下:
一、电子温控阀执行大循环,阀控制单元控制电子温控阀转动联通发动机的大循环管路;
二、电子温控阀执行小循环,阀控制单元控制电子温控阀转动联通发动机的小循环管路;
三、电子温控阀执行混合循环,阀控制单元控制电子温控阀转动同时联通发动机的大循环管路和发 动机的小循环管路;
四、电子温控阀执行加压循环,阀控制单元控制电子温控阀转动在不联通发动机的小循环管路的同时,减小联通发动机大循环管路的流通面积,或电子温控阀也可以在关闭发动机大循环的同时,减小发动机小循环的水流量,从而达到小循环节能的目的。
进一步的,所述实现方法包括以下步骤:
步骤S101,ECU检测系统运行时间t1时刻发动机出水管的水温T1,完成后进入步骤S102;
步骤S102,系统继续运行30S,ECU检测t2=t1+30S时刻发动机出水管的水温T2,完成后进入步骤S103;
步骤S103,ECU判断水温T2是否大于60°,若是大于则进入步骤S104,不大于则进入步骤S109;
步骤S104,ECU判断水温T2是否大于80°,若是大于则进入步骤S105,不大于则进入步骤S107;
步骤S105,温控阀执行大循环,水箱内冷却水进入发动机,对发动机进行冷却降温,电机控制阀芯旋转角度A为0度,并将温控阀对应大循环时角度定为初始0度,完成后进入步骤S110;
步骤S106,ECU判断T2是否大于T1,若T2大于T1表示发动机在增加功率,则进入步骤S107,不大于表示发动机在降低功率,则进入步骤S108;
步骤S107,温控阀执行混合循环,电机控制阀芯旋转角度A为90-a度,其中a=(80-T2)/20,完成后进入步骤S110;
步骤S108,温控阀执行加压循环,电机执行旋转角度A为90+b,其中b=(80-T2)/20,完成后进入步骤S110;
步骤S109,温控阀执行小循环,电机执行转动角度A为90,完成后进入步骤S110;
步骤S110,将此时t2时刻重新记做新的t1时刻,新的t2时刻是在原t2时刻加30S,返回继续检测水温。
本发明采用以上技术方案,与现有技术相比,具有如下技术效果:
电控单元根据发动机出水温度对电子温控阀进行精确控制,通过温控阀动作控制发动机中水循环方式,达到控制发动机循环水温度的效果,可以减少发动机循环水的水流量,降低发动机水泵的消耗功率,从而达到发动机节能的目的。
利用本发明通过对WP10发动机用机械水泵进行试验,水泵都运行在额定转速下,最大水流量和1/3的水流量,水泵消耗发动机的轴功率减小一半,由原来的3.5KW,降低为1.8KW。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍。在所有附图中,类似的元件或部分一般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际的比例绘制。
图1为本发明实施例1和2中发动机热管理系统的结构框图;
图2为本发明实施例1中电子温控阀中电机齿轮和蜗轮蜗杆驱动系统的示意图;
图3为本发明实施例1中电子温控阀的部分解剖示意图;
图4为本发明实施例1中电子温控阀内部流道开口方向的示意图;
图5为本发明实施例1中电子温控阀的阀芯转动状态图;
图6为本发明实施例1和2中发动机热管理系统的控制流程图;
图7-图12为本发明实施例1和2中阀控制单元的电气原理图;
图13为本发明实施例2中电子温控阀的部分解剖示意图;
图14-图18为本发明实施例2中电子温控阀的球阀转动状态图;
图中:1-电机,2-电机齿轮,3-变速齿轮,4-蜗杆,5-蜗轮,6-磁铁,7-电机壳,8-阀控制单元,10-阀体,11-固定盖,12-阀芯,13-出水孔,14-驱动轴,21-壳体,22-进水通道,23-密封塞,24-波形弹簧,25-球阀,26-第一出水通道,27-第二出水通道,28-进水管,29-出水管。
具体实施方式
实施例1,如图1所示,一种应用电子温控阀的发动机热管理系统,包括发动机电控单元ECU,发动机连接发动机出水管,发动机出水管上安装有水温传感器,发动机出水管连接有电子温控阀,电子温控阀和水温传感器连接发动机电控单元ECU,电子温控阀通过管路连接有发动机的大循环管路和发动机的小循环管路,发动机的大循环管路包括水箱和发动机水泵,水箱通过管道连接发动机水泵,发动机水泵再通过管道连接到发动机。
如图2所示,所述电子温控阀包括电机1,电机1的输出轴上安装有电机齿轮2,电机齿轮2啮合有变速齿轮3,变速齿轮3连接有蜗杆4,变速齿轮3与蜗杆4一体连接,蜗杆4上安装有蜗轮5,蜗轮5上安装有磁铁6,蜗轮5连接有三通阀,这样整套机构中总共有两级减速,第一级减速是小齿轮和大齿轮之间减速,第二级是蜗杆蜗轮减速,总的减速比能达到100以上,这样使用一个50N.mm的电机就能克服水的阻力,带动两位三通阀旋转。
如图3所示,所述电机1的外部设有电机壳7,电机壳7内安装有阀控制单元8,电机1与阀控制单元8连接,阀控制单元8连接有角度传感器,角度传感器用于感应磁铁位置,涡轮5旋转后,带动磁铁6旋转,最终可以从角度传感器上感应到,从而达到检测涡轮实时角度位置的目的,这样两位三通阀的旋转角度就能被监控到,形成闭环控制。
所述三通阀包括阀体10、固定盖11和阀芯12,阀芯12设置在阀体10内,阀芯12可旋转,阀芯12的顶端连接有驱动轴14,驱动轴14连接蜗轮5,阀芯12上套设有固定盖11,固定盖11固定在阀体10上,固定盖11限制了阀芯12的轴向窜动,使阀芯12只能在阀体10内转,阀芯12的结构为圆柱状的结构。
所述阀芯12连接发动机的出水管,阀体10的两端分别连接发动机的大循环管路和发动机的小循环管路,阀芯12上设有两个出水孔13,出水孔13可与阀体10联通,两个出水孔的位置可以根据实际发动机需要进行布置,不同的发动机可以采用不同的出水孔方向。
失效模式控制,当阀出现故障时,例如两位三通阀卡滞或者电机故障,齿轮故障,蜗轮蜗杆故障时,可以通过检测到的角度信号实时判断,一旦判断到阀出现任何故障,阀控制单元8都要马上给整个发动机的电控单元ECU发出故障报警信息,ECU控制发动机进入跛脚控制方式,例如只能在怠速模式下工作,或者以最小允许输出扭矩进行工作。
本发明是利用一种滑阀替代电子节温器,利用发动机大小循环调节的方式来调节发动机热管理,又可以通过减小发动机出水面积的方法,减少进入散热器的水流量,来进行发动机循环水路热管理。
并且温度控制滑阀可以实现自动位置检测功能和故障诊断OBD功能以及电机驱动功能,与发动机ECU通讯功能。
所述阀控制单元包括单片机,单片机连接有电源模块、CAN通讯模块、电机控制模块、电流检测模块和位置检测模块,阀控制单元通过CAN通讯模块连接发动机电控单元ECU,位置检测模块用于检测磁铁的位置,电机控制模块用于控制电机,电流检测模块和位置检测模块都可实现OBD故障诊断功能,发生故障后,可通过CAN总线发送故障代码给ECU;
所述阀控制单元8可单独安装在电机壳7内,也可集成在发动机电控单元ECU内部。
如图8所示,所述单片机包括芯片U4,芯片U4的型号为FS32K116LIT0VFMT,芯片U4的5脚连接有晶振Y1一端、电阻R13一端、电容C17一端,芯片U4的6脚连接有晶振Y1另一端、电阻R13另一端、电容C19一端,电容C17另一端和电容C19另一端接地,芯片U4的31脚连接有电阻R12一端和电容C20 一端,电阻R12另一端接+5V,电容C20另一端接地,芯片U4的32脚连接有接插件J1的3脚,芯片U4的30脚连接有接插件J1的2脚,芯片U4的31脚连接有接插件J1的4脚。
如图7所示,所述电源模块包括芯片U2,芯片U2的型号为MAX17501BTEVKIT,芯片U2的2脚接24V电源,芯片U2的3脚连接有电阻R3一端和电阻R4一端,电阻R3另一端接24V电源,电阻R4另一端接地,芯片U2的4脚连接有电容C12一端,电容C12另一端接地,芯片U2的5脚连接有电容C13一端,电容C13另一端接地,芯片U2的10脚连接有电感L2一端,电感L2另一端连接有芯片U2的5脚、电容C5一端、电容C6一端、电容C7一端和电容C8一端,并输出+5V,电容C5另一端、电容C6另一端、电容C7另一端和电容C8另一端接地。
所述电源模块还包括电感L1,电感L1的一端连接有二极管D1一端和电容C2一端,二极管D1另一端接VCC_IN焊线孔,电容C2另一端接GND_IN焊线孔,电感L1另一端连接有电容C3一端和电容C4一端,并接24V,电容C3另一端和电容C4另一端接地;电源模块还包括电阻R1,电阻R1一端接+5V,电阻R另一端接二极管D2一端,二极管D2另一端接地;电源模块还包括电阻R7,电阻R7一端接GND_IN焊线孔,电阻R7另一端接地。
如图12所示,所述CAN通讯模块包括芯片U1,芯片U1的型号为CAN/TJA1042TK/3,芯片U1的1脚连接有芯片U4的1脚,芯片U1的4脚连接有芯片U4的2脚,芯片U1的7脚连接有双向TVS管D3一端和电阻R2一端,芯片U1的6脚连接有双向TVS管D2一端和电阻R2另一端,双向TVS管D3一端和双向TVS管D2另一端接地。
如图11所示,所述电机控制模块包括芯片U3,芯片U3的型号为MC33886VW,芯片U3的4脚、5脚和16脚连接有电容C9一端和电容C11一端,电容C9另一端和电容C11另一端接GND_IN焊线孔,芯片U3的19脚连接有芯片U4的7脚,芯片U3的3脚连接有芯片U4的8脚,芯片U3的18脚连接有芯片U4的9脚,芯片U3的13脚连接有芯片U4的10脚,芯片U3的2脚连接有芯片U4的11脚和电阻R5一端,电阻R5另一端接+5V,芯片U3的14脚和15脚连接有电机焊线孔H4,芯片U3的6脚和7脚连接有电机焊线孔H3,芯片U3的17脚连接有电容C10一端,电容C10另一端接GND_IN焊线孔。
如图9所示,所述电流检测模块包括运算放大器U5A,运算放大器U5A的1脚连接有芯片U4的26脚和电阻R6一端,电阻R6另一端连接运算放大器U5A的2脚,运算放大器U5A的2脚连接有电阻R9一端,电阻R9另一端接地,运算放大器U5A的3脚连接有电阻R11一端,并接GND_M,电阻R11另一端接地,运算放大器U5A的8脚接+5V,运算放大器U5A的4脚接地。
如图10所示,所述位置检测模块包括芯片U6,芯片U6的型号为KMA210,芯片U6的VDD脚接+5V,芯片U6的GND脚接地,芯片U6的OUT/DATA脚连接有芯片U4的22脚。
所述一种应用电子温控阀的发动机热管理系统的实现方法包括四种电子温控阀的执行方式,分别如下:
一、电子温控阀执行大循环,阀控制单元控制电子温控阀转动联通发动机的大循环管路;
二、电子温控阀执行小循环,阀控制单元控制电子温控阀转动联通发动机的小循环管路;
三、电子温控阀执行混合循环,阀控制单元控制电子温控阀转动同时联通发动机的大循环管路和发动机的小循环管路;
四、电子温控阀执行加压循环,阀控制单元控制电子温控阀转动在不联通发动机的小循环管路的同时,减小联通发动机大循环管路的流通面积,同理,电子温控阀也可以在关闭发动机大循环的同时,减小发动机小循环的水流量,从而达到小循环节能的目的。
所述实现方法包括以下步骤:
步骤S101,ECU检测系统运行时间t1时刻发动机出水管的水温T1,完成后进入步骤S102;
步骤S102,系统继续运行30S,ECU检测t2=t1+30S时刻发动机出水管的水温T2,完成后进入步骤S103;
步骤S103,ECU判断水温T2是否大于60°,若是大于则进入步骤S104,不大于则进入步骤S109;
步骤S104,ECU判断水温T2是否大于80°,若是大于则进入步骤S105,不大于则进入步骤S107;
步骤S105,温控阀执行大循环,水箱内冷却水进入发动机,对发动机进行冷却降温,电机控制阀芯旋转角度A为0度,并将温控阀对应大循环时角度定为初始0度,完成后进入步骤S110;
步骤S106,ECU判断T2是否大于T1,若T2大于T1表示发动机在增加功率,则进入步骤S107,不大于表示发动机在降低功率,则进入步骤S108;
步骤S107,温控阀执行混合循环,电机控制阀芯旋转角度A为90-a度,其中a=(80-T2)/20,完成后进入步骤S110;
步骤S108,温控阀执行加压循环,电机执行旋转角度A为90+b,其中b=(80-T2)/20,完成后进入步骤S110;
步骤S109,温控阀执行小循环,电机执行转动角度A为90,完成后进入步骤S110;
步骤S110,将此时t2时刻重新记做新的t1时刻,新的t2时刻是在原t2时刻加30S,返回继续检 测水温。
所述实现方法可实现发动机大小循环切换,也可以实现发动机冷却水的混合循环,混合循环是指发动机内大循环和小循环同时存在的状态,并且可以通过开大冷却水大循环接口同时减小发动机小循环接口的方式降低发动机循环水温度,这种情况一般是用在发动机功率较高时,此时温度传感器检测到发动机循环水温度高,阀控制单元收到水温高信号后会给两位三通阀发出命令,让阀执行这种操作;同时也可以在混合循环中减小大循环的开度,增加小循环的开度,以此来提高发动机冷却水温度,这种情况一般在发动机刚启动时,或者发动机处在小负荷时,冷却水温度较低,阀控制单元发命令给两位三通阀,阀动作达到升高冷却水温度的效果。
所述实现方法还能实现发动机热管理的调节方式是在阀处于大循环时,阀芯继续旋转,在不开启小循环的同时,减小大循环的流通面积,这样可以增加发动机出水管路的流通冷却水压力,减少冷却水的流量,这样就减少了冷却水进入到水箱内的流量,从而达到提高发动机冷却水温度的目的,另外这种方法也减少了水泵的泵水量,也间接降低了水泵的输出功率,从而达到发动机节能的目的。
实施例2
与实施例1相同部分内容已在实施例1中进行详细的论述,此处不再赘述,相对实施例1,本实施例修改如下:
如图13所示,所述三通阀包括壳体21,壳体21内设有球阀25,球阀25连接有驱动轴14,驱动轴14控制球阀25转动,驱动轴14连接蜗轮5,球阀25上紧贴设有密封塞23,密封塞23与球阀25接触的部位是内锥形的,密封塞23的内锥面与球阀25的外表面形成密封面,密封塞23之间设有波形弹簧24,波形弹簧24用于给密封塞23一个贴紧球阀25表面的力,形成密封。
所述球阀25内部开设有圆柱状的进水通道22,进水通道22的两侧开设第一出水通道26和第二出水通道27,进水通道22连接有进水管28,进水管28连接有发动机的出水管。
所述三通阀还包括出水管29,密封塞23位于出水管29和球阀25之间,密封塞23固定在壳体21的内表面,第一出水通道26、第二出水通道27可与出水管29联通,出水管29连接发动机的大循环管路和发动机的小循环管路。
所述密封塞23的材料选用四氟乙烯。
如图14-图18所示,所述球阀内部铸造出两位三通阀的三条通道,水从进水通道内进入球阀,从球阀体上的两条通道流出,当球阀被涡轮带动旋转时,球阀上通道与密封塞内部通道错开,这一路通道的 水流量就会减少,当球阀上通道完全与密封塞上通道错开时,这一路通道就被封住,水流量减到最小,这样在控制时,就可以通过控制球阀的旋转角度来控制两位三通阀中两个出水通道的水流量了。
本发明的描述是为了示例和描述起见而给出的,而并不是无遗漏的或者将本发明限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显然的。选择和描述实施例是为了更好的说明本发明的原理和实际应用,并且使本领域的普通技术人员能够理解本发明从而设计适于特定用途的带有各种修改的各种实施例。
工业实用性
本发明的一种应用电子温控阀的发动机热管理系统及其实现方法,电控单元根据发动机出水温度对温控阀进行精确控制,通过温控阀动作控制发动机中水循环方式,达到控制发动机循环水温度的效果,同时也可以减少发动机循环水的水流量,降低发动机水泵的消耗功率,从而达到发动机节能的目的。

Claims (10)

  1. 一种应用电子温控阀的发动机热管理系统,其特征在于:包括发动机电控单元ECU,发动机机体连接发动机出水管,发动机出水管上安装有水温传感器,发动机出水管连接有电子温控阀,电子温控阀和水温传感器连接发动机电控单元ECU,电子温控阀通过管路连接有发动机的大循环管路和发动机的小循环管路。
  2. 如权利要求1所述的一种应用电子温控阀的发动机热管理系统,其特征在于:所述电子温控阀包括电机(1),电机(1)的输出轴上安装有电机齿轮(2),电机齿轮(2)啮合有变速齿轮(3),变速齿轮(3)连接有蜗杆(4),变速齿轮(3)与蜗杆(4)一体连接,蜗杆(4)上安装有蜗轮(5),蜗轮(5)上安装有磁铁(6),蜗轮(5)连接有三通阀。
  3. 如权利要求2所述的一种应用电子温控阀的发动机热管理系统,其特征在于:所述电机(1)的外部设有电机壳(7),电机壳(7)内安装有阀控制单元(8),电机(1)与阀控制单元(8)连接,阀控制单元(8)连接有角度传感器,角度传感器用于感应磁铁位置。
  4. 如权利要求2所述的一种应用电子温控阀的发动机热管理系统,其特征在于:所述三通阀包括阀体(10)、固定盖(11)和阀芯(12),阀芯(12)设置在阀体(10)内,阀芯(12)的顶端连接驱动轴(14),驱动轴(14)连接蜗轮(5),阀芯(12)上套设有固定盖(11),固定盖(11)固定在阀体(10)上。
  5. 如权利要求4所述的一种应用电子温控阀的发动机热管理系统,其特征在于:所述阀芯(12)连接发动机的出水管,阀体(10)的两端分别连接发动机的大循环管路和发动机的小循环管路,阀芯(12)上设有两个出水孔(13),出水孔(13)与阀体(10)联通。
  6. 如权利要求2所述的一种应用电子温控阀的发动机热管理系统,其特征在于:所述三通阀包括壳体(21),壳体(21)内设有球阀(25),球阀(25)连接有驱动轴(14),驱动轴(14)连接蜗轮(5),球阀(25)上紧贴设有密封塞(23),密封塞(23)与球阀(25)接触的部位是内锥形的,密封塞 (23)的内锥面与球阀(25)的外表面形成密封面,密封塞(23)之间设有波形弹簧(24)。
  7. 如权利要求6所述的一种应用电子温控阀的发动机热管理系统,其特征在于:所述球阀(25)内部开设有圆柱状的进水通道(22),进水通道(22)的两侧开设第一出水通道(26)和第二出水通道(27),进水通道(22)连接有进水管(28),进水管(28)连接有发动机的出水管;
    所述述三通阀还包括出水管(29),密封塞(23)位于出水管(29)和球阀(25)之间,密封塞(23)固定在壳体(21)的内表面,第一出水通道(26)、第二出水通道(27)可与出水管(29)联通,出水管(29)连接发动机的大循环管路和发动机的小循环管路。
  8. 如权利要求3所述的一种应用电子温控阀的发动机热管理系统,其特征在于:所述阀控制单元(8)包括单片机,单片机连接有电源模块、CAN通讯模块、电机控制模块、电流检测模块和位置检测模块,阀控制单元通过CAN通讯模块连接发动机电控单元ECU。
  9. 如权利要求1-8任一项所述的一种应用电子温控阀的发动机热管理系统的实现方法,其特征在于:所述实现方法包括四种电子温控阀的执行方式,分别如下:
    一、电子温控阀执行大循环,阀控制单元控制电子温控阀转动联通发动机的大循环管路;
    二、电子温控阀执行小循环,阀控制单元控制电子温控阀转动联通发动机的小循环管路;
    三、电子温控阀执行混合循环,阀控制单元控制电子温控阀转动同时联通发动机的大循环管路和发动机的小循环管路;
    四、电子温控阀执行加压循环,阀控制单元控制电子温控阀转动在不联通发动机的小循环管路的同时,减小联通发动机大循环管路的流通面积,或电子温控阀也可以在关闭发动机大循环的同时,减小发动机小循环的水流量,从而达到小循环节能的目的。
  10. 如权利要求9所述的一种应用电子温控阀的发动机热管理系统的实现方法,其特征在于:所述实现方法包括以下步骤:
    步骤S101,ECU检测系统运行时间t1时刻发动机出水管的水温T1,完成后进入步骤S102;
    步骤S102,系统继续运行30S,ECU检测t2=t1+30S时刻发动机出水管的水温T2,完成后进入步骤S103;
    步骤S103,ECU判断水温T2是否大于60°,若是大于则进入步骤S104,不大于则进入步骤S109;
    步骤S104,ECU判断水温T2是否大于80°,若是大于则进入步骤S105,不大于则进入步骤S107;
    步骤S105,温控阀执行大循环,水箱内冷却水进入发动机,对发动机进行冷却降温,电机控制阀芯旋转角度A为0度,并将温控阀对应大循环时角度定为初始0度,完成后进入步骤S110;
    步骤S106,ECU判断T2是否大于T1,若T2大于T1表示发动机在增加功率,则进入步骤S107,不大于表示发动机在降低功率,则进入步骤S108;
    步骤S107,温控阀执行混合循环,电机控制阀芯旋转角度A为90-a度,其中a=(80-T2)/20,完成后进入步骤S110;
    步骤S108,温控阀执行加压循环,电机执行旋转角度A为90+b,其中b=(80-T2)/20,完成后进入步骤S110;
    步骤S109,温控阀执行小循环,电机执行转动角度A为90,完成后进入步骤S110;
    步骤S110,将此时t2时刻重新记做新的t1时刻,新的t2时刻是在原t2时刻加30S,返回继续检测水温。
PCT/CN2021/084450 2020-04-28 2021-03-31 一种应用电子温控阀的发动机热管理系统及其实现方法 WO2021218550A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010350309.9 2020-04-28
CN202010350309.9A CN111441860B (zh) 2020-04-28 2020-04-28 一种应用电子温控阀的发动机热管理系统及其实现方法

Publications (1)

Publication Number Publication Date
WO2021218550A1 true WO2021218550A1 (zh) 2021-11-04

Family

ID=71656344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084450 WO2021218550A1 (zh) 2020-04-28 2021-03-31 一种应用电子温控阀的发动机热管理系统及其实现方法

Country Status (2)

Country Link
CN (1) CN111441860B (zh)
WO (1) WO2021218550A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116437390A (zh) * 2023-06-13 2023-07-14 瑞纳智能设备股份有限公司 温控面板、温控阀、二者之间的通信方法以及温控系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113064371B (zh) * 2021-03-23 2022-04-05 博鼎汽车科技(山东)有限公司 一种监控仪控制的船舶发动机热管理系统及其实现方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1454039B1 (de) * 2001-09-08 2008-01-23 Robert Bosch Gmbh Verfahren zur temperaturregelung eines motors
CN101191434A (zh) * 2007-06-06 2008-06-04 梁国胜 内燃发动机温度调控器
CN101737144A (zh) * 2009-12-15 2010-06-16 梁国胜 发动机控温器
CN102182540A (zh) * 2011-05-27 2011-09-14 重庆长安汽车股份有限公司 发动机冷却系统及冷却液温度控制方法
CN102322330A (zh) * 2009-12-15 2012-01-18 梁国胜 发动机控温器
JP2013060923A (ja) * 2011-09-15 2013-04-04 Hitachi Automotive Systems Ltd エンジンの制御装置
JP2015094264A (ja) * 2013-11-11 2015-05-18 トヨタ自動車株式会社 エンジン冷却制御装置
CN110608084A (zh) * 2019-09-12 2019-12-24 一汽轿车股份有限公司 适用于增压直喷发动机的整车热管理系统
CN213063739U (zh) * 2020-04-28 2021-04-27 博鼎汽车科技(山东)有限公司 一种应用电子温控阀的发动机热管理系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371848A (ja) * 2001-06-13 2002-12-26 Aisan Ind Co Ltd エンジン冷却装置
JP2003269171A (ja) * 2002-03-15 2003-09-25 Denso Corp 水温制御バルブの故障検出装置
CN100545430C (zh) * 2007-10-16 2009-09-30 重庆长安汽车股份有限公司 一种发动机水温调节装置
JP2014020349A (ja) * 2012-07-23 2014-02-03 Mitsubishi Motors Corp エンジンの冷却装置
CN205135777U (zh) * 2015-11-23 2016-04-06 济南吉美乐电源技术有限公司 带智能控制的发动机冷却液循环系统
CN109404105B (zh) * 2018-11-08 2023-12-29 潍柴西港新能源动力有限公司 发动机智能温控热电联供系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1454039B1 (de) * 2001-09-08 2008-01-23 Robert Bosch Gmbh Verfahren zur temperaturregelung eines motors
CN101191434A (zh) * 2007-06-06 2008-06-04 梁国胜 内燃发动机温度调控器
CN101737144A (zh) * 2009-12-15 2010-06-16 梁国胜 发动机控温器
CN102322330A (zh) * 2009-12-15 2012-01-18 梁国胜 发动机控温器
CN102182540A (zh) * 2011-05-27 2011-09-14 重庆长安汽车股份有限公司 发动机冷却系统及冷却液温度控制方法
JP2013060923A (ja) * 2011-09-15 2013-04-04 Hitachi Automotive Systems Ltd エンジンの制御装置
JP2015094264A (ja) * 2013-11-11 2015-05-18 トヨタ自動車株式会社 エンジン冷却制御装置
CN110608084A (zh) * 2019-09-12 2019-12-24 一汽轿车股份有限公司 适用于增压直喷发动机的整车热管理系统
CN213063739U (zh) * 2020-04-28 2021-04-27 博鼎汽车科技(山东)有限公司 一种应用电子温控阀的发动机热管理系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116437390A (zh) * 2023-06-13 2023-07-14 瑞纳智能设备股份有限公司 温控面板、温控阀、二者之间的通信方法以及温控系统
CN116437390B (zh) * 2023-06-13 2023-08-18 瑞纳智能设备股份有限公司 温控面板、温控阀、二者之间的通信方法以及温控系统

Also Published As

Publication number Publication date
CN111441860B (zh) 2024-04-12
CN111441860A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
WO2021218550A1 (zh) 一种应用电子温控阀的发动机热管理系统及其实现方法
CN103148998B (zh) 车用旋转密封环试验装置及其试验方法
WO2013131419A1 (zh) 液压行走机械的冷却系统及其冷却方法、液压挖掘机
CN102155551B (zh) 电动浮动球阀
CN108561220A (zh) 工程车辆的冷却装置、冷却装置的控制方法及工程车辆
CN213063739U (zh) 一种应用电子温控阀的发动机热管理系统
CN205779198U (zh) 一种汽车发动机冷却智能控制系统
CN201973276U (zh) 电动浮动球阀
CN203373802U (zh) 基于硅油离合器的挖掘机散热控制系统
CN109579102A (zh) 一种空压机余热回收系统
CN209430416U (zh) 一种螺杆真空泵的工作温度调控装置
CN111255541A (zh) 一种混合动力汽车发动机预热系统及其控制方法
CN207763325U (zh) 一种发动机测试冷却循环水装置
CN208347902U (zh) 工程车辆的冷却装置及工程车辆
CN201225448Y (zh) 自动控制外套加热保温液体管道蝶阀
CN114526148A (zh) 一种发动机热管理阀控制系统、方法、发动机和汽车
CN210372140U (zh) 一种转角式电磁温控阀
CN108150273B (zh) 农机智能热管理系统及采用该系统进行热管理的方法
CN201496137U (zh) 应用于内燃机冷却风扇驱动的调速型液力偶合器传动箱
CN2727638Y (zh) 一种集成水路装置
CN215634150U (zh) 一种液压油预热结构及液压系统
CN2926530Y (zh) 改进的发动机热交换器
CN220155618U (zh) 一种电池热管理温控系统
CN205298498U (zh) 新型节能变速箱冷却油管
CN210977659U (zh) 发动机冷却系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21795767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21795767

Country of ref document: EP

Kind code of ref document: A1