WO2021218369A1 - 冷藏冷冻装置及其蒸发器化霜控制装置 - Google Patents

冷藏冷冻装置及其蒸发器化霜控制装置 Download PDF

Info

Publication number
WO2021218369A1
WO2021218369A1 PCT/CN2021/078916 CN2021078916W WO2021218369A1 WO 2021218369 A1 WO2021218369 A1 WO 2021218369A1 CN 2021078916 W CN2021078916 W CN 2021078916W WO 2021218369 A1 WO2021218369 A1 WO 2021218369A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
refrigerating
ceramic sensor
control device
freezing
Prior art date
Application number
PCT/CN2021/078916
Other languages
English (en)
French (fr)
Inventor
李涛
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2021218369A1 publication Critical patent/WO2021218369A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/02Detecting the presence of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to the technical field of refrigeration and freezing storage, in particular to a refrigeration and freezing device and an evaporator defrosting control device.
  • the defrosting method of refrigerators on the market generally judges the conditions for entering the defrosting by the cumulative running time of the refrigerator, the opening time and the temperature of the freezer compartment.
  • Adopting this method to judge the defrosting cannot determine the actual frosting amount of the evaporator.
  • the actual frosting amount of the evaporator does not reach the defrosting condition, but according to the traditional judgment defrosting condition, it reaches the defrosting condition.
  • the wrong defrosting will cause excess power loss (when the refrigerator is defrosting, the energy consumption can reach more than 180 watts).
  • the actual frosting amount of the evaporator reaches the defrosting condition, but according to the traditional judgment, the defrosting condition does not reach the defrosting condition, and the defrosting is not performed, which causes the refrigeration effect of the refrigerator to decrease and increase the energy consumption.
  • An object of the present invention is to provide a refrigerating and freezing device and its evaporator defrosting control device that at least solve the above-mentioned problems.
  • a further object of the present invention is to accurately determine the start and stop of defrosting and reduce energy consumption.
  • the present invention provides an evaporator defrosting control device of a refrigerating and freezing device, which includes:
  • a ceramic sensor arranged on the evaporator, for detecting the frosting amount of the evaporator
  • the heating device is arranged on the evaporator
  • the controller is electrically connected to the ceramic sensor and the heating device, and is configured to turn on the heating device when the ceramic sensor detects that the frosting amount of the evaporator is greater than a first preset frosting amount.
  • the controller is further configured to turn off the heating device when the frosting amount of the evaporator is less than a second preset frosting amount, and the second preset frosting amount is less than the first preset frosting amount. Preset the amount of frost.
  • the ceramic sensor includes a sensor body and two terminals connected to the sensor body, and the two terminals are respectively connected to the controller through wires.
  • the present invention also provides a refrigerating and freezing device, comprising: the evaporator defrosting control device and the evaporator described in any one of the foregoing.
  • the evaporator includes:
  • a plurality of fins arranged on the outer circumference of the coil, and distributed at intervals along the extension direction of the coil;
  • the ceramic sensor is arranged on the fin.
  • the ceramic sensor includes a sensor body and two terminals connected to the sensor body, and a through threaded hole is respectively formed on the two terminals;
  • the fins are formed with two through holes for the two terminals to pass through, and the two terminals respectively pass through the corresponding through holes and are fixed to the screw lock bars through the threaded holes.
  • the fins are formed with two through holes for the two terminals to pass through, and the two terminals respectively pass through the corresponding through holes and are fixed to the screw lock bars through the threaded holes.
  • the extension direction of the terminal is parallel to the extension direction of the section of the coil where the fin on which the terminal is installed is located.
  • the refrigerating and freezing device further includes:
  • the compressor is configured to be turned off when the heating device of the evaporator defrosting control device is turned on.
  • the refrigerating and freezing device further includes:
  • the damper is configured to be opened or closed in a controlled manner to connect or disconnect the storage compartment with the area where the evaporator is located through the air duct;
  • the damper When the heating device is turned on, the damper is closed in a controlled manner.
  • the refrigerating and freezing device and the evaporator defrosting control device of the present invention can directly measure the frosting amount of the evaporator by setting a ceramic sensor on the evaporator, and directly judge whether the evaporator reaches the defrosting condition according to the frosting amount of the evaporator , So as to accurately determine the start and stop of the evaporator defrosting, and reduce energy consumption.
  • Fig. 1 is a schematic structural diagram of a refrigerating and freezing device according to an embodiment of the present invention
  • FIG. 2 is a schematic block diagram of an evaporator defrosting control device of a refrigerating and freezing device according to an embodiment of the present invention
  • Fig. 3 is a schematic structural diagram of an evaporator and a heating device of a refrigerating and freezing device according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of an evaporator and a ceramic sensor of a refrigerating and freezing device according to an embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of ceramic sensors and fins of a refrigerating and freezing device according to an embodiment of the present invention.
  • FIG. 1 shows a schematic structural diagram of the refrigerating and freezing device 10 taking a refrigerator as an example.
  • the refrigerating and freezing device 10 of this embodiment includes an evaporator defrosting control device 100 and an evaporator 110.
  • the evaporator defrosting control device 100 includes a ceramic sensor 120 and a heating device 130 arranged on the evaporator 110, and a controller 140
  • the ceramic sensor 120 is used to detect the amount of frosting of the evaporator 110
  • the controller 140 is electrically connected to the ceramic sensor 120 and the heating device 130, and is configured to detect that the amount of frosting of the evaporator 110 is greater than the first preset When the amount of frost is applied, the heating device 130 is turned on.
  • the frosting amount of the evaporator 110 can be directly measured, and the frosting amount of the evaporator 110 can be directly judged whether the evaporator 110 reaches the defrosting condition, and the evaporator 110 can be accurately judged.
  • the start and stop of frost reduces energy consumption.
  • the resistance value measured by the ceramic sensor 120 reflects the frosting amount of the evaporator 110.
  • the electrical conductivity of the ceramic sensor 120 is related to its own degree of electrolysis. The greater the degree of electrolysis, the smaller the resistance value. The deeper the thickness of the frost deposited on the surface of the ceramic sensor 120, the greater the degree of electrolysis of the ceramic sensor 120. The smaller the value, the stronger the conductivity. Therefore, the thickness of the frost can be reflected according to the resistance value measured by the ceramic sensor 120, and the thickness of the frost directly reflects the amount of frost of the evaporator 110.
  • the controller 140 may also be configured to turn off the heating device 130 when the frosting amount of the evaporator 110 is less than the second preset frosting amount, and the second preset frosting amount is less than the first preset frosting amount to ensure evaporation.
  • the device 110 fully defrosts and saves energy consumption.
  • the compressor of the refrigerating and freezing device 10 needs to be turned off to stop the cooling of the evaporator 110.
  • the heating device 130 heats up, the frost attached to the evaporator 110 is quickly melted.
  • the refrigerating and freezing device 10 generally also includes a storage compartment 101, an air duct, and a damper arranged in the air duct.
  • the damper is configured to be opened or closed in a controlled manner to allow the storage compartment 101 to pass through the air duct and the evaporator 110.
  • the area is connected or disconnected.
  • the damper can be closed in a controlled manner to disconnect the storage compartment 101 from the area where the evaporator 110 is located, so as to prevent the hot air around the evaporator 110 from entering through the air duct.
  • the temperature of the storage compartment 101 is affected.
  • the evaporator 110 generally includes a coil 111 and a plurality of fins 112.
  • the plurality of fins 112 are arranged on the outer circumference of the coil 111 and distributed at intervals along the extending direction of the coil 111, and the ceramic sensor 120 is arranged on the fin 112 .
  • the frost of the evaporator 110 is mainly attached to the coil 111 and the fin 112. By arranging the ceramic sensor 120 on the fin 112, it is convenient to install the ceramic sensor 120 while accurately detecting the amount of frost.
  • the ceramic sensor 120 includes a sensor body 123 and two terminals 121 connected to the sensor body 123.
  • the two terminals 121 are respectively connected to the controller 140 through wires.
  • the two terminals 121 serve as the positive and negative electrodes of the ceramic sensor 120 and are connected to the controller.
  • the sensor 140 is convenient for the controller 140 to collect the detection data of the ceramic sensor 120.
  • the two terminals 121 may be respectively formed with through threaded holes, and the fin 112 may be formed with two through holes for the two terminals 121 to pass through.
  • the two terminals 121 respectively pass through the corresponding through holes and pass through
  • the threaded lock bar 122 passing through the threaded hole is fixed on the fin 112, so that the ceramic sensor 120 is fixed on the fin 112.
  • the extension direction of the terminal 121 is parallel to the extension direction of the section of the coil 111 where the fin 112 of the terminal 121 is installed, that is, the terminal 121 passes through the fin 112 to and
  • the section of the coil 111 where the fin 112 is located extends in a direction parallel to the extension direction, so as to use the interval between two adjacent fins 112 on the section to provide an extension space for the terminal 121, which facilitates the installation of the ceramic sensor 120 Install.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Defrosting Systems (AREA)

Abstract

一种冷藏冷冻装置及其蒸发器化霜控制装置,其中的化霜控制装置包括陶瓷传感器、加热装置和控制器,陶瓷传感器设置于蒸发器上,用于检测蒸发器的结霜量,加热装置设置于蒸发器上,控制器与陶瓷传感器和加热装置电连接,配置为在陶瓷传感器检测到蒸发器的结霜量大于第一预设结霜量时,开启加热装置。本发明的冷藏冷冻装置及其蒸发器化霜控制装置,通过在蒸发器上设置陶瓷传感器,可直接测量蒸发器的结霜量,直接根据蒸发器的结霜量判断蒸发器是否达到化霜条件,从而准确判断蒸发器化霜的开始与停止,降低能耗。

Description

冷藏冷冻装置及其蒸发器化霜控制装置 技术领域
本发明涉及冷藏、冷冻存储技术领域,特别是涉及一种冷藏冷冻装置及其蒸发器化霜控制装置。
背景技术
目前市面上冰箱的化霜方式,一般是通过冰箱累计运行时间、开门时间以及冷冻室冷藏室温度来判断进入化霜的条件。
采取这种方法进行判断化霜,并不能确定蒸发器的实际结霜量情况,当蒸发器的实际结霜量并没有达到化霜条件,但根据传统的判断化霜条件却达到了化霜条件,进行误化霜,从而造成多余的功耗损失(冰箱化霜时,能耗可达到180多瓦)。蒸发器的实际结霜量达到化霜条件,但根据传统的判断化霜条件却未达到了化霜条件,没有进行化霜,造成冰箱制冷效果下降,增加能耗。
发明内容
本发明的一个目的是要提供一种至少解决上述问题的冷藏冷冻装置及其蒸发器化霜控制装置。
本发明一个进一步的目的是准确的判断化霜开始与停止,降低能耗。
根据本发明的一个方面,本发明提供了一种冷藏冷冻装置的蒸发器化霜控制装置,其包括:
陶瓷传感器,设置于所述蒸发器上,用于检测所述蒸发器的结霜量;
加热装置,设置于所述蒸发器上;
控制器,与所述陶瓷传感器和所述加热装置电连接,配置为在所述陶瓷传感器检测到所述蒸发器的结霜量大于第一预设结霜量时,开启所述加热装置。
可选地,所述控制器还配置为在所述蒸发器的结霜量小于第二预设结霜量时,关闭所述加热装置,所述第二预设结霜量小于所述第一预设结霜量。
可选地,所述陶瓷传感器包括传感器本体、连接于所述传感器本体上的两个端子,两个所述端子分别通过导线与所述控制器连接。
根据本发明的另一方面,本发明还提供了一种冷藏冷冻装置,包括:前述任一项所述的蒸发器化霜控制装置和蒸发器。
可选地,所述蒸发器包括:
盘管;
多个翅片,设置于所述盘管的外周,沿所述盘管的延伸方向间隔分布;
所述陶瓷传感器设置于所述翅片上。
可选地,所述陶瓷传感器包括传感器本体、连接于所述传感器本体上的两个端子,两个所述端子上分别形成有贯通的螺纹孔;
所述翅片上形成有用于供两个所述端子穿过的两个过孔,两个所述端子分别穿过对应的所述过孔,并通过穿过所述螺纹孔的螺纹锁条固定于所述翅片上。
可选地,所述端子的延伸方向与安装该端子的翅片所在的所述盘管的区段的延伸方向平行。
可选地,冷藏冷冻装置还包括:
压缩机,配置为在所述蒸发器化霜控制装置的加热装置开启时关闭。
可选地,冷藏冷冻装置还包括:
储物间室、风道和设置于所述风道内的风门;
所述风门配置为受控地打开或关闭,以将所述储物间室通过所述风道与所述蒸发器所在的区域连通或断开;
所述加热装置开启时,所述风门受控关闭。
本发明的冷藏冷冻装置及其蒸发器化霜控制装置,通过在蒸发器上设置陶瓷传感器,可直接测量蒸发器的结霜量,直接根据蒸发器的结霜量判断蒸发器是否达到化霜条件,从而准确判断蒸发器化霜的开始与停止,降低能耗。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冷藏冷冻装置的示意性结构图;
图2是根据本发明一个实施例的冷藏冷冻装置的蒸发器化霜控制装置的示意性框图;
图3是根据本发明一个实施例的冷藏冷冻装置的蒸发器和加热装置的示意性结构图;
图4是根据本发明一个实施例的冷藏冷冻装置的蒸发器和陶瓷传感器的示意性结构图;以及
图5是根据本发明一个实施例的冷藏冷冻装置的陶瓷传感器和翅片的示意性结构图。
具体实施方式
本实施例提供了一种冷藏冷冻装置10,以下参照图1至图5对本实施例的冷藏冷冻装置10进行详细描述。本实施例的冷藏冷冻装置10可以为冰箱、冷柜等具有冷藏和/或冷冻存储功能的设备,图1示出了以冰箱为例的冷藏冷冻装置10的示意性结构图。
本实施例的冷藏冷冻装置10包括蒸发器化霜控制装置100和蒸发器110,其中,蒸发器化霜控制装置100包括设置于蒸发器110上的陶瓷传感器120和加热装置130,以及控制器140,陶瓷传感器120用于检测蒸发器110的结霜量,控制器140与陶瓷传感器120和加热装置130电连接,配置为在陶瓷传感器120检测到蒸发器110的结霜量大于第一预设结霜量时,开启加热装置130。
本实施例通过在蒸发器110上设置陶瓷传感器120,可直接测量蒸发器110的结霜量,直接根据蒸发器110的结霜量判断蒸发器110是否达到化霜条件,准确判断蒸发器110化霜的开始与停止,降低能耗。
陶瓷传感器120可由其测量的电阻值的大小反映蒸发器110的结霜量。具体地,陶瓷传感器120的导电性能由其自身的电解度有关,电解度越大阻值越小,在陶瓷传感器120的表面堆积的霜厚度越深,陶瓷传感器120的电解度就越大,阻值就越小,导电性能就越强。由此可以根据陶瓷传感器120测量的阻值大小反映结霜的厚度,而结霜的厚度直接地反映了蒸发器110的结霜量。
控制器140还可配置为在蒸发器110的结霜量小于第二预设结霜量时,关闭加热装置130,第二预设结霜量小于所述第一预设结霜量,保证蒸发器 110充分化霜,并节省能耗。
在加热装置130开启时,冷藏冷冻装置10的压缩机需关闭,停止蒸发器110的制冷,在加热装置130的升温下,使得附着于蒸发器110上的霜快速融化。
冷藏冷冻装置10一般性地还包括储物间室101、风道和设置于风道内的风门,风门配置为可受控地打开或关闭,以将储物间室101通过风道与蒸发器110所在的区域连通或断开,当加热装置130开启时,风门可受控关闭,将储物间室101与蒸发器110所在的区域断开,避免蒸发器110周围的热空气通过风道进入到储物间室101内,影响储物间室101的温度。
蒸发器110一般性地包括盘管111和多个翅片112,多个翅片112设置于盘管111的外周,沿盘管111的延伸方向间隔分布,而陶瓷传感器120设置于翅片112上。蒸发器110的结霜主要附着于盘管111和翅片112上,通过将陶瓷传感器120设置于翅片112上,在准确检测结霜量的同时,方便陶瓷传感器120的安装。
陶瓷传感器120包括传感器本体123、连接于传感器本体123上的两个端子121,两个端子121分别通过导线与控制器140连接,两个端子121分别作为陶瓷传感器120的正极、负极,连接于控制器140,便于控制器140采集陶瓷传感器120的检测数据。
两个端子121上可分别形成有贯通的螺纹孔,而翅片112上可形成有用于供两个端子121穿过的两个过孔,两个端子121分别穿过对应的过孔,并通过穿过螺纹孔的螺纹锁条122固定于翅片112上,如此将陶瓷传感器120固定于翅片112上。
如图4和图5所示,端子121的延伸方向与安装该端子121的翅片112所在的盘管111的区段的延伸方向平行,也即是说端子121由穿过翅片112向与该翅片112所在的盘管111的区段的延伸方向平行的方向延伸,以利用该区段上相邻两个翅片112之间的间隔为端子121提供延伸空间,方便了陶瓷传感器120的安装。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修 改。

Claims (10)

  1. 一种冷藏冷冻装置的蒸发器化霜控制装置,包括:
    陶瓷传感器,设置于所述蒸发器上,用于检测所述蒸发器的结霜量;
    加热装置,设置于所述蒸发器上;
    控制器,与所述陶瓷传感器和所述加热装置电连接,配置为在所述陶瓷传感器检测到所述蒸发器的结霜量大于第一预设结霜量时,开启所述加热装置。
  2. 根据权利要求1所述的控制装置,其中
    所述控制器还配置为在所述蒸发器的结霜量小于第二预设结霜量时,关闭所述加热装置,所述第二预设结霜量小于所述第一预设结霜量。
  3. 根据权利要求1所述的控制装置,其中
    所述陶瓷传感器包括传感器本体、连接于所述传感器本体上的两个端子,两个所述端子分别通过导线与所述控制器连接。
  4. 一种冷藏冷冻装置,包括:
    权利要求1至3任一项所述的蒸发器化霜控制装置和蒸发器。
  5. 根据权利要求4所述的冷藏冷冻装置,其中
    所述蒸发器包括:
    盘管;
    多个翅片,设置于所述盘管的外周,沿所述盘管的延伸方向间隔分布;
    所述陶瓷传感器设置于所述翅片上。
  6. 根据权利要求5所述的冷藏冷冻装置,其中
    所述陶瓷传感器包括传感器本体、连接于所述传感器本体上的两个端子,两个所述端子上分别形成有贯通的螺纹孔。
  7. 根据权利要求6所述的冷藏冷冻装置,其中
    所述翅片上形成有用于供两个所述端子穿过的两个过孔,两个所述端子分别穿过对应的所述过孔,并通过穿过所述螺纹孔的螺纹锁条固定于所述翅片上。
  8. 根据权利要求6所述的冷藏冷冻装置,其中
    所述端子的延伸方向与安装该端子的翅片所在的所述盘管的区段的延伸方向平行。
  9. 根据权利要求4所述的冷藏冷冻装置,还包括:
    压缩机,配置为在所述蒸发器化霜控制装置的加热装置开启时关闭。
  10. 根据权利要求8所述的冷藏冷冻装置,还包括:
    储物间室、风道和设置于所述风道内的风门;
    所述风门配置为受控地打开或关闭,以将所述储物间室通过所述风道与所述蒸发器所在的区域连通或断开;
    所述加热装置开启时,所述风门受控关闭。
PCT/CN2021/078916 2020-05-13 2021-03-03 冷藏冷冻装置及其蒸发器化霜控制装置 WO2021218369A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020788717.8U CN212619639U (zh) 2020-05-13 2020-05-13 冷藏冷冻装置及其蒸发器化霜控制装置
CN202020788717.8 2020-05-13

Publications (1)

Publication Number Publication Date
WO2021218369A1 true WO2021218369A1 (zh) 2021-11-04

Family

ID=74726490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078916 WO2021218369A1 (zh) 2020-05-13 2021-03-03 冷藏冷冻装置及其蒸发器化霜控制装置

Country Status (2)

Country Link
CN (1) CN212619639U (zh)
WO (1) WO2021218369A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212619639U (zh) * 2020-05-13 2021-02-26 青岛海尔电冰箱有限公司 冷藏冷冻装置及其蒸发器化霜控制装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102306031A (zh) * 2011-05-28 2012-01-04 华南农业大学 果蔬保鲜运输用智能温度控制系统及其应用和方法
CN202221212U (zh) * 2011-08-31 2012-05-16 杭州华日电冰箱股份有限公司 一种智能化霜的电脑冰箱控制系统
CN202613875U (zh) * 2012-05-21 2012-12-19 海尔集团技术研发中心 一种冰箱化霜装置及冰箱
JP2015117850A (ja) * 2013-12-17 2015-06-25 株式会社東芝 冷蔵庫
CN111121383A (zh) * 2019-12-30 2020-05-08 青岛海尔电冰箱有限公司 单系统冰箱的化霜控制方法、电子装置及冰箱
CN212619639U (zh) * 2020-05-13 2021-02-26 青岛海尔电冰箱有限公司 冷藏冷冻装置及其蒸发器化霜控制装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102306031A (zh) * 2011-05-28 2012-01-04 华南农业大学 果蔬保鲜运输用智能温度控制系统及其应用和方法
CN202221212U (zh) * 2011-08-31 2012-05-16 杭州华日电冰箱股份有限公司 一种智能化霜的电脑冰箱控制系统
CN202613875U (zh) * 2012-05-21 2012-12-19 海尔集团技术研发中心 一种冰箱化霜装置及冰箱
JP2015117850A (ja) * 2013-12-17 2015-06-25 株式会社東芝 冷蔵庫
CN111121383A (zh) * 2019-12-30 2020-05-08 青岛海尔电冰箱有限公司 单系统冰箱的化霜控制方法、电子装置及冰箱
CN212619639U (zh) * 2020-05-13 2021-02-26 青岛海尔电冰箱有限公司 冷藏冷冻装置及其蒸发器化霜控制装置

Also Published As

Publication number Publication date
CN212619639U (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2019192169A1 (zh) 风冷冰箱及其化霜的控制方法、控制系统、控制器
US20210010738A1 (en) Refrigerator and method for controlling same
WO2019095909A1 (zh) 化霜方法、化霜系统、计算机可读存储介质和制冷设备
WO2009113308A1 (ja) 冷蔵庫
CN107421200A (zh) 一种风冷冰箱化霜控制方法
WO2019128945A1 (zh) 冰箱及其化霜控制方法
CN106595215A (zh) 风冷冰箱的除霜控制方法和装置
JP5078829B2 (ja) 冷蔵庫
CN111503994B (zh) 风冷冰箱的控制方法及风冷冰箱
CN111089452A (zh) 冰箱控制方法及运用该控制方法的冰箱
JP2011038715A (ja) 冷蔵庫
CN110887315A (zh) 冰箱化霜检测装置、冰箱化霜控制方法及冰箱
JP4367569B1 (ja) 冷蔵庫
WO2021218369A1 (zh) 冷藏冷冻装置及其蒸发器化霜控制装置
JPH10300319A (ja) 冷蔵庫
CN110940135A (zh) 冰箱及其化霜检测装置和化霜控制方法
US20060242973A1 (en) Refrigeration device and operating method for the same
WO2022142351A1 (zh) 回风道加热控制装置及加热控制方法
JP2008057919A (ja) 冷蔵庫
US11549740B2 (en) Refrigerator and controlling method for the same
CN108139137A (zh) 冰箱
KR101481489B1 (ko) 냉장고의 제상 제어장치 및 방법
CN110926093B (zh) 一种用于冷风机的按需融霜方法
JP2001263912A (ja) 冷蔵庫
CN110793257B (zh) 制冷器具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796578

Country of ref document: EP

Kind code of ref document: A1