US20210010738A1 - Refrigerator and method for controlling same - Google Patents

Refrigerator and method for controlling same Download PDF

Info

Publication number
US20210010738A1
US20210010738A1 US17/030,888 US202017030888A US2021010738A1 US 20210010738 A1 US20210010738 A1 US 20210010738A1 US 202017030888 A US202017030888 A US 202017030888A US 2021010738 A1 US2021010738 A1 US 2021010738A1
Authority
US
United States
Prior art keywords
temperature
value
heat generating
generating element
temperature difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/030,888
Inventor
Sangbok Choi
Kyongbae PARK
Sungwook Kim
Sung Jhee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Assigned to LG ELECTRONICS INC. reassignment LG ELECTRONICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Choi, Sangbok, JHEE, SUNG, KIM, SUNGWOOK, PARK, KYONGBAE
Publication of US20210010738A1 publication Critical patent/US20210010738A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/006Defroster control with electronic control circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/02Detecting the presence of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/008Alarm devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/11Sensor to detect if defrost is necessary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating

Definitions

  • the present disclosure relates to a refrigerator and a method for controlling the same.
  • Refrigerators are household appliances that are capable of storing objects such as food at a low temperature in a storage space provided in a cabinet. Since the storage space is surrounded by heat insulation wall, the inside of the storage space may be maintained at a temperature less than an external temperature.
  • the storage space may be classified into a refrigerating storage space or a freezing storage space according to a temperature range of the storage space.
  • the refrigerator may further include an evaporator for supplying cool air to the storage space. Air in the storage space is cooled while flowing to a space, in which the evaporator is disposed, so as to be heat-exchanged with the evaporator, and the cooled air is supplied again to the storage space.
  • an evaporator for supplying cool air to the storage space. Air in the storage space is cooled while flowing to a space, in which the evaporator is disposed, so as to be heat-exchanged with the evaporator, and the cooled air is supplied again to the storage space.
  • the air heat-exchanged with the evaporator contains moisture
  • the moisture freezes on a surface of the evaporator to generate frost on the surface of the evaporator.
  • the refrigerator further includes a defroster for removing the frost on the evaporator.
  • a defrosting cycle variable method is disclosed in Korean Patent Publication No. 2000-0004806.
  • the defrosting cycle is adjusted using a cumulative operation time of the compressor and an external temperature.
  • frost generation amount an amount of frost (hereinafter, referred to as a frost generation amount) on the evaporator is not reflected. Thus, it is difficult to accurately determine the time point at which the defrosting is required.
  • the frost generation amount may increase or decrease according to various environments such as the user's refrigerator usage pattern and the degree to which air retains moisture.
  • various environments such as the user's refrigerator usage pattern and the degree to which air retains moisture.
  • the defrosting cycle is determined without reflecting the various environments.
  • An object of the present disclosure is to provide a refrigerator and a control method thereof, which determines a time point for a defrosting operation using parameters that vary depending on the amount of frost on an evaporator.
  • an object of the present disclosure is to provide a refrigerator and a control method thereof, which accurately determine a time point at which defrosting is necessary according to the amount of frost on an evaporator using a sensor having an output value that varies depending on the flow rate of air.
  • another object of the present disclosure is to provide a refrigerator and a control method thereof, which accurately determine an exact defrost time point even when the precision of a sensor used to determine the defrost time point is low.
  • Still another object of the present disclosure is to provide a refrigerator capable of detecting clogging of an air passage of the refrigerator using a sensor of which an output value varies according to a flow rate of air and a control method thereof.
  • Still another object of the present disclosure is to provide a refrigerator capable of accurately determining the cause of clogging of an air passage based on an output value of a sensor, and a control method thereof.
  • a method for controlling a refrigerator may include detecting clogging of an air passage in the heat-exchange space based on a temperature difference between a first detection temperature (Ht 1 ) that is a lowest value and a second detection temperature (Ht 2 ) that is a highest value among detection temperatures of a heat generating element.
  • the first detection temperature (Ht 1 ) may be a temperature detected by a sensing element of the sensor immediately after the heat generating element is turned on
  • the second detection temperature (Ht 2 ) may be a temperature detected by a sensing element of the sensor immediately after the heat generating element is turned off.
  • the first detection temperature (Ht 1 ) may be a lowest temperature value during a period of time when the heat generating element is turned on
  • the second detection temperature (Ht 2 ) may be a highest temperature value during a period of time when the heat generating element is turned on.
  • the method may further include performing a defrosting operation of the evaporator when a temperature difference value between the first detection temperature (Ht 1 ) and the second detection temperature (Ht 2 ) is less than a first reference value.
  • the method may further include updating a temperature difference value between the first detection temperature (Ht 1 ) and the second detection temperature (Ht 2 ) after the defrosting operation is completed, and failure of the sensor may be displayed when the updated temperature difference value exceeds a second reference value which is greater than the first reference value.
  • the method may further include determining whether the updated temperature difference value is less than a third reference value which is less than the second reference value when the updated temperature difference value is less than the second reference value, and displaying the clogging of the air passage in the heat-exchange space when the updated temperature difference value exceeds the third reference value.
  • the display of the clogging of the air passage is at least one display of clogging of a cool air inflow hole of a cool air duct defining the heat-exchange space, clogging of a cool air discharge hole of the cool air duct, clogging of a blowing fan provided in the cool air duct and/or clogging of the bypass passage.
  • the method may further include determining whether the updated temperature difference value is less than a fourth reference value which is less than the third reference value when the updated temperature difference value is less than the third reference value, and again performing the defrosting operation of the evaporator when the updated temperature difference value is less than the fourth reference value.
  • the method may further include determining whether the updated temperature difference value is increased by a predetermined value or more compared to the temperature difference value before the temperature difference value has been updated when the updated temperature difference value is less than the fourth reference value, and again performing the defrosting operation of the evaporator when the updated temperature difference value is increased by a predetermined value or more compared to the temperature difference value before the temperature difference value has been updated.
  • the method may further include again performing the defrosting operation of the evaporator according to whether the updated temperature difference value is less than the first reference value when the updated temperature difference value is not increased by a predetermined value or more compared to the temperature difference value before the temperature difference value has been updated.
  • a refrigerator may include a bypass passage configured to allow a portion of the air flow to bypass the evaporator, a heat generating element disposed in the bypass passage, a sensor including a sensing element for detecting a temperature of the heat generating element and a controller configured to detect clogging of an air passage in the heat-exchange space based on a temperature difference between a first detection temperature (Ht 1 ) that is a lowest value and a second detection temperature (Ht 2 ) that is a highest value among detection temperatures of the heat generating element.
  • Ht 1 first detection temperature
  • Ht 2 second detection temperature
  • the time point at which the defrosting is required is determined using the sensor having the output value varying according to the amount of frost generated on the evaporator in the bypass passage, the time point at which the defrosting is required may be accurately determined.
  • FIG. 1 is a schematic longitudinal cross-sectional view of a refrigerator according to an embodiment of the present disclosure.
  • FIG. 2 is a perspective view of a cool air duct according to an embodiment of the present disclosure.
  • FIG. 3 is an exploded perspective view illustrating a state in which a passage cover and a sensor are separated from each other in the cool air duct.
  • FIGS. 4( a ) and 4( b ) are views illustrating a flow of air in a heat exchange space and a bypass passage before and after frost is generated.
  • FIG. 5 is a schematic view illustrating a state in which a sensor is disposed in the bypass passage.
  • FIG. 6 is a view of the sensor according to an embodiment of the present disclosure.
  • FIG. 7 is a view illustrating a thermal flow around the sensor depending on a flow of air flowing through the bypass passage.
  • FIG. 8 is a control block diagram of a refrigerator according to an embodiment of the present disclosure.
  • FIG. 9 is a flowchart showing a method of performing a defrost operation by determining a time point when a refrigerator needs to be defrosted according to an embodiment of the present disclosure.
  • FIGS. 10( a ) and 10( b ) are views showing changes in a temperature of a heat generating element according to the on/off of the heat generating element before and after frost on the evaporator according to an embodiment of the present disclosure.
  • FIG. 11 is a flowchart schematically showing a method of detecting clogging of an air passage of a refrigerator according to an embodiment of the present disclosure.
  • FIG. 12 is a flowchart showing a detailed method for detecting clogging of an air passage of a refrigerator according to an embodiment of the present disclosure.
  • first, second, A, B, (a) and (b) may be used.
  • Each of the terms is merely used to distinguish the corresponding component from other components, and does not delimit an essence, an order or a sequence of the corresponding component. It should be understood that when one component is “connected”, “coupled” or “joined” to another component, the former may be directly connected or jointed to the latter or may be “connected”, coupled” or “joined” to the latter with a third component interposed therebetween.
  • FIG. 1 is a schematic longitudinal cross-sectional view of a refrigerator according to an embodiment of the present disclosure
  • FIG. 2 is a perspective view of a cool air duct according to an embodiment of the present disclosure
  • FIG. 3 is an exploded perspective view illustrating a state in which a passage cover and a sensor are separated from each other in the cool air duct.
  • a refrigerator 1 may include an inner case 12 defining a storage space 11 .
  • the storage space may include one or more of a refrigerating storage space and a freezing storage space.
  • air of the storage space 11 may flow to the heat exchange space 222 between the cool air duct 20 and the rear wall 13 of the inner case 12 and then be heat-exchanged with the evaporator 30 . Thereafter, the air may flow through the inside of the cool air duct 20 and then be supplied to the storage space 11 .
  • the cool air duct 20 may include, but is not limited thereto, a first duct 210 and a second duct 220 coupled to a rear surface of the first duct 210 .
  • a front surface of the first duct 210 is a surface facing the storage space 11
  • a rear surface of the first duct 220 is a surface facing the rear wall 13 of the inner case 12 .
  • a cool air passage 212 may be provided between the first duct 210 and the second duct 220 in a state in which the first duct 210 and the second duct 220 are coupled to each other.
  • a cool air inflow hole 221 may be defined in the second duct 220
  • a cool air discharge hole 211 may be defined in the first duct 210 .
  • a blower fan (not shown) may be provided in the cool air passage 212 .
  • air passing through the evaporator 30 is introduced into the cool air passage 212 through the cool air inflow hole 221 and is discharged to the storage space 11 through the cool air discharge hole 211 .
  • the evaporator 30 is disposed between the cool air duct 20 and the rear wall 13 .
  • the evaporator 30 may be disposed below the cool air inflow hole 221 .
  • the air in the storage space 11 ascends to be heat-exchanged with the evaporator 30 and then is introduced into the cool air inflow hole 221 .
  • a time point at which defrosting for the evaporator 30 is required may be determined using a parameter that is changed according to the amount of frost generated on the evaporator 30 .
  • the cool air duct 20 may further include a frost generation sensing portion configured so that at least a portion of the air flowing through the heat exchange space 222 is bypassed and used to determine a time point, at which the defrosting is required, by using a sensor having a different output according to a flow rate of the air.
  • a frost generation sensing portion configured so that at least a portion of the air flowing through the heat exchange space 222 is bypassed and used to determine a time point, at which the defrosting is required, by using a sensor having a different output according to a flow rate of the air.
  • the frost generation sensing portion may include a bypass passage 230 bypassing at least a portion of the air flowing through the heat exchange space 222 and a sensor 270 disposed in the bypass passage 230 .
  • bypass passage 230 may be provided in a recessed shape in the first duct 210 .
  • the bypass passage 230 may be provided in the second duct 220 .
  • the bypass passage 230 may be provided by recessing a portion of the first duct 210 or the second duct 220 in a direction away from the evaporator 30 .
  • the bypass passage 230 may extend from the cool air duct 20 in a vertical direction.
  • the bypass passage 230 may be disposed to face the evaporator 30 within a left and right width range of the evaporator 30 so that the air in the heat exchange space 222 is bypassed to the bypass passage 230 .
  • the frost generation sensing portion may further include a passage cover 260 that allows the bypass passage 230 to be partitioned from the heat exchange space 222 .
  • the passage cover 260 may be coupled to the cool air duct 20 to cover at least a portion of the bypass passage 230 extending vertically.
  • the passage cover 260 may include a cover plate 261 , an upper extension portion 262 extending upward from the cover plate 261 , and a barrier 263 provided below the cover plate 261 .
  • FIGS. 4( a ) and 4( b ) are views illustrating a flow of air in the heat exchange space and the bypass passage before and after frost is generated.
  • FIG. 4( a ) illustrates a flow of air before frost is generated
  • FIG. 4( b ) illustrates a flow of air after frost is generated.
  • a state after a defrosting operation is completed is a state before frost is generated.
  • the amount (or flow rate) of air flowing through the bypass passage 230 varies according to an amount of frost generated on the evaporator 30 .
  • the senor 270 may have an output value that varies according to a change in flow rate of the air flowing through the bypass passage 230 . Thus, whether the defrosting is required may be determined based on the change in output value.
  • FIG. 5 is a schematic view illustrating a state in which the sensor is disposed in the bypass passage
  • FIG. 6 is a view of the sensor according to an embodiment of the present disclosure
  • FIG. 7 is a view illustrating a thermal flow around the sensor depending on a flow of air flowing through the bypass passage.
  • the senor 270 may be disposed at one point in the bypass passage 230 .
  • the sensor 270 may contact the air flowing along the bypass passage 230 , and an output value of the sensor 270 may be changed in response to a change in a flow rate of air.
  • the sensor 270 may be disposed at a position spaced from each of an inlet 231 and an outlet 232 of the bypass passage 230 .
  • the sensor 270 may be positioned a central portion of the bypass passage 230 .
  • the sensor 270 may face the evaporator 30 within the left and right width range of the evaporator 30 .
  • the sensor 270 may be, for example, a generated heat temperature sensor.
  • the sensor 270 may include a sensor printed circuit board (PCB) 271 , a heat generating element 273 installed on the sensor PCB 271 , and a sensing element 274 installed on the sensor PCB 271 to sense a temperature of the heat generating element 273 .
  • PCB sensor printed circuit board
  • the heat generating element 273 may be a resistor that generates heat when current is applied.
  • the sensing element 274 may sense a temperature of the heat generating element 273 .
  • the sensor PCB 271 may determine a difference between a temperature sensed by the sensing element 274 in a state in which the heat generating element 273 is turned off and a temperature by the sensing element 274 in a state in which the heat generating element 273 is turned on.
  • the sensor PCB 271 may determine whether the difference value between the states in which the heat generating element 273 is turned on/off is less than a reference difference value.
  • the temperature sensed by the sensing element 274 when the amount of frost generated on the evaporator 30 is large is less than that sensed by the sensing element 274 when the amount of frost generated on the evaporator 30 is small.
  • the difference between the temperature sensed by the sensing element 274 in the state in which the heat generating element 273 is turned on and the temperature sensed by the sensing element 274 in the state in which the heat generating element 273 is turned off is less than the reference temperature difference, it may be determined that the defrosting is required.
  • the sensor 270 may sense a variation in temperature of the heat generating element 273 , which varies by the air of which a flow rate varies according to the amount of generated frost, to accurately determine a time point, at which the defrosting is required, according to the amount of frost generated on the evaporator 30 .
  • the sensor 270 may be further provided with a sensor housing 272 such that air flowing through the bypass passage 230 is prevented from directly contacting the sensor PCB 271 , the heat generating element 273 , and the temperature sensor 274 .
  • a sensor housing 272 In a state in which the sensor housing 272 is opened at one side, an electric wire connected to the sensor PCB 271 may be drawn out and then the opened portion may be covered by a cover portion.
  • the sensor housing 271 may surround the sensor PCB 271 , the heat generating element 273 , and the temperature sensor 274 .
  • FIG. 8 is a control block diagram of a refrigerator according to an embodiment of the present disclosure.
  • the refrigerator 1 may include the sensor 270 described above, a defrosting device 50 operating for defrosting the evaporator 30 , a compressor 60 for compressing refrigerant, a blowing fan 70 for generating air flow, and a controller 40 for controlling the sensor 270 , the defrosting device 50 , the compressor 60 and the blowing fan 70 .
  • the controller 40 may be an electronic processor.
  • the defrosting device 50 may include, for example, a heater. When the heater is turned on, heat generated by the heater is transferred to the evaporator 30 to melt frost generated on the surface of the evaporator 30 .
  • the heater may be connected to one side of the evaporator 30 , or may be disposed spaced apart from a position adjacent to the evaporator 30 .
  • the defrosting device 50 may further include a defrost temperature sensor.
  • the defrost temperature sensor may detect an ambient temperature of the defrosting device 50 .
  • a temperature value detected by the defrost temperature sensor may be used as a factor that determines when the heater is turned on or off.
  • the compressor 60 is a device for compressing a low-temperature low-pressure refrigerant into a high-temperature high-pressure supersaturated gaseous refrigerant. Specifically, the high-temperature high-pressure supersaturated gaseous refrigerant compressed in the compressor 60 flows into a condenser (not shown). The refrigerant is condensed into a high-temperature high-pressure saturated liquid refrigerant, and the condensed high-temperature high-pressure saturated liquid refrigerant is introduced to an expander (not shown) and is expanded to a low-temperature low-pressure two-phase refrigerant.
  • the low-temperature low-pressure two-phase refrigerant is evaporated as the low-temperature low-pressure gaseous refrigerant while passing through the evaporator 30 .
  • the refrigerant flowing through the evaporator 30 may exchange heat with outside air, that is, air flowing through the heat exchange space 222 , thereby achieving air cooling.
  • the blowing fan 70 is provided in the cool air passage 212 to generate air flow. Specifically, when the blowing fan 70 is rotated, air passing through the evaporator 30 flows into the cool air passage 212 through the cool air inflow hole 221 and is then discharged to the storage compartment 11 through the cool air discharge hole 211 .
  • the controller 40 may control the heat generating element 273 of the sensor 270 to be turned on at regular cycles.
  • the heat generating element 273 may maintain a turned-on state for a predetermined period of time, and the temperature of the heat generating element 273 may be detected by the sensing element 274 .
  • the heat generating element 273 After the heat generating element 273 is turned on for the predetermined period of time, the heat generating element 273 is turned off, and the sensing element 274 may detect the temperature of the heat generating element 273 which is turned off. In addition, the sensor PCB 271 may determine whether the maximum value of the temperature difference between the turned-on/off state of the heat generating element 273 is equal to or less than a reference difference value.
  • the defrosting device 50 may be turned on by the controller 40 .
  • the controller 40 may determine whether the temperature difference between the turned-on/off states of the heat generating element 273 is equal to or less than the reference difference value, and control the defrosting device 50 according to a result of the determination. That is, the sensor PCB 271 and the controller 40 may be electrically connected to each other.
  • the controller 40 may detect a temperature of the heat generating element 273 in a state in which the heat generating element 273 is turned on or off, and detect clogging of an air passage based on a temperature difference value between a first detection temperature and a second detection temperature among the detection temperatures of the heat generating element 273 .
  • the first detection temperature may be a temperature detected by the sensing element 274 immediately after the heat generating element 273 is turned on
  • the second detection temperature may be a temperature detected by the sensing element 274 immediately after the heat generating element 273 is turned off.
  • the first detection temperature may be a lowest temperature value during a period of time when the heat generating element 273 is turned on
  • the second detection temperature may be a highest temperature value during a period of time when the heat generating element 273 is turned on.
  • FIG. 9 is a flowchart showing a method of performing a defrost operation by determining a time point when a refrigerator needs to be defrosted according to an embodiment of the present disclosure
  • FIGS. 10( a ) and 10( b ) are views showing changes in a temperature of a heat generating element according to the on/off of the heat generating element before and after frost on the evaporator according to an embodiment of the present disclosure.
  • the flowchart may be performed by the controller 40 based on instructions stored in a memory.
  • FIG. 10( a ) shows a change in temperature of the freezing compartment and a change in temperature of the heat generating element before occurrence of frost on the evaporator 30
  • FIG. 10( b ) shows a change in temperature of the freezing compartment and a change in temperature of the heat generating element after occurrence of frost on the evaporator 30 .
  • a state before occurrence of frost is a state after a defrosting operation is completed.
  • step S 21 the heat generating element 273 is turned on.
  • the heat generating element 273 may be turned on in a state in which a cooling operation is being performed on the storage compartment 11 (e.g., freezing compartment).
  • the state in which the cooling operation of the freezing compartment is performed may mean a state in which the compressor 60 and the blowing fan 70 are being driven.
  • the detection accuracy of the sensor 260 may be improved. That is, when the change in the flow rate of the air is large as the amount of frost on the evaporator 30 is large or small, the amount of change in the temperature detected by the sensor 270 becomes large, so that the time point at which the defrosting is necessary may be accurately determined.
  • the heat generating element 273 may be turned on at a certain time point S 1 while the blowing fan 70 is being driven.
  • the blower fan 70 may be driven for a predetermined period of time to cool the freezing compartment.
  • the compressor 60 may be driven at the same time. Therefore, when the blowing fan 70 is driven, the temperature Ft of the freezing compartment may decrease.
  • the temperature detected by the sensing element 274 that is, the temperature Ht of the heat generating element 273 may increase rapidly.
  • step S 22 it may be determined whether the blowing fan 70 is turned on.
  • the sensor 270 may detect a change in temperature of the heat generating element 273 , which is changed due to air of which the flow rate is changed according to the amount of frost on the evaporator 30 . Therefore, when no air flow occurs, it is difficult for the sensor 270 to accurately detect the amount of frost on the evaporator 30 .
  • step S 23 the temperature Ht 1 of the heat generating element 273 may be detected.
  • the heat generating element 273 may be turned on for a predetermined period of time, and the temperature (Ht 1 ) of the heat generating element 273 may be detected by the sensing element 274 at a certain time point in the state in which the heat generating element 273 is turned on.
  • the temperature Ht 1 of the heat generating element 273 may be detected at a time point at which the heat generating element 273 is turned on. That is, in the present disclosure, the temperature immediately after the heat generating element 273 is turned on may be detected. Therefore, the detection temperature Ht 1 of the heat generating element may be defined as the lowest temperature in the state in which the heat generating element 273 is turned on.
  • the temperature of the heat generating element 273 detected for the first time may be referred to as a “first detection temperature (Ht 1 )”.
  • step S 24 it is determined whether a first reference time T 1 has elapsed while the heat generating element 273 is turned on.
  • the temperature detected by the sensing element 274 that is, the temperature Ht 1 of the heat generating element 273 may continuously increase.
  • the temperature of the heat generating element 273 may start to increase gradually and converge to the highest temperature point.
  • the flow rate of the air flowing into the bypass passage 230 decreases, and thus the amount of cooling for the heat generating element 273 by air flowing through the bypass passage 230 decreases. Then, the highest temperature point of the heat generating element 273 may be high due to the small amount of air flowing through the bypass passage 230 (see FIG. 10( a ) ).
  • the temperature of the heat generating element 273 may be detected at a time point at which the heat generating element 273 is turned on. That is, in the present disclosure, the lowest temperature value of the heat generating element 273 is detected after the heat generating element 273 is turned on.
  • the first reference time T 1 for which the heat generating element 273 is maintained in the turned-on state may be 3 minutes but is not limited thereto.
  • step S 25 the heat generating element 273 is turned off.
  • the heat generating element 273 may be turned on for the first reference time T 1 and then turned off.
  • the heat generating element 273 may be rapidly cooled by air flowing through the bypass passage 230 . Therefore, the temperature Ht of the heat generating element 273 may rapidly decrease.
  • the temperature Ht of the heat generating element may start to gradually decrease, and the decrease rate thereof is significantly reduced.
  • step S 26 the temperature Ht 2 of the heat generating element may be detected.
  • the temperature Ht 2 of the heat generating element is detected by the sensing element 273 at a certain time point S 2 in a state in which the heat generating element 273 is turned off.
  • the temperature Ht 2 of the heat generating element may be detected at a time point at which the heat generating element 273 is turned off. That is, in the present disclosure, the temperature immediately after the heat generating element 273 is turned off may be detected. Therefore, the detection temperature Ht 2 of the heat generating element may be defined as the highest temperature in the state in which the heat generating element 273 is turned off.
  • the temperature of the heat generating element 273 detected for the second time may be referred to as a “second detection temperature (Ht 2 )”.
  • the temperature Ht of the heat generating element may be first detected at a time point S 1 when the heat generating element 273 is turned on, and may be additionally detected at a time point S 2 at which the heat generating element 273 is turned off.
  • the first detection temperature Ht 1 that is detected for the first time may be the lowest temperature in the state in which the heat generating element 273 is turned on
  • the second detection temperature Ht 2 that is additionally detected may be the highest temperature in the state in which the heat generating element 273 is turned off.
  • step S 27 it is determined whether a temperature stabilization state has been achieved.
  • the temperature stabilization state may mean a state in which internal refrigerator load does not occur, that is, a state in which the cooling of the storage compartment is normally performed.
  • the fact that the temperature stabilization state is made may mean that the opening/closing of a refrigerator door is not performed or there are no defects in components (e.g., a compressor and an evaporator) for cooling the storage compartment or the sensor 270 .
  • the sensor 270 may accurately detect the amount of frost on the evaporator 30 by determining whether or not temperature stabilization has been achieved.
  • the amount of change in the temperature of the freezing compartment for a predetermined period of time.
  • a state in which the amount of change in temperature of the freezing compartment or in temperature of the evaporator 30 during the predetermined period of time does not exceed 1.5 degrees may be defined as the temperature stabilization state.
  • the temperature Ht of the heat generating element may rapidly decrease immediately after the heat generating element 273 is turned off, and then the temperature Ht of the heat generating element may gradually decrease.
  • step S 28 the temperature difference ⁇ Ht between the temperature Ht 1 detected when the heat generating element 273 is turned on and the temperature Ht 2 detected when the heat generating element 273 is turned off may be calculated.
  • step S 29 it is determined whether the temperature difference ⁇ Ht is less than a first reference temperature value.
  • the amount of frost on the evaporator 30 when the amount of frost on the evaporator 30 is large, the flow rate of the air flowing into the bypass passage 230 increases, and thus the amount of cooling for the heat generating element 273 by air flowing through the bypass passage 230 may increase.
  • the amount of cooling increases, the temperature Ht 2 of the heat generating element detected immediately after the heat generating element 273 is turned off may be relatively low compared to a case where the amount of frost on the evaporator 30 is small.
  • the temperature difference ⁇ Ht may be small. Accordingly, it is possible to determine the amount of frost on the evaporator 30 through the temperature difference ⁇ Ht.
  • the first reference temperature value may be 32 degrees, for example.
  • step S 30 when the temperature difference ⁇ Ht is less than the first reference temperature value, in step S 30 , a defrosting operation is performed.
  • the defrosting device 50 When the defrosting operation is performed, the defrosting device 50 is driven and heat generated by the heater is transferred to the evaporator 30 so that the frost generated on the surface of the evaporator 30 is melted.
  • step S 27 when the temperature stabilization state is not achieved or, in step S 29 , when the temperature difference ⁇ Ht is greater than or equal to the first reference temperature value, the algorithm ends without performing the defrosting operation.
  • the temperature difference value ⁇ Ht may be defined as a “logic temperature” for detection of frosting.
  • the logic temperature may be used as a temperature for determining a time point for a defrosting operation of the refrigerator, and may be used as a temperature for detecting clogging of an air passage, which will now be described.
  • the clogging of the air passage may include at least one or more of clogging of a passage through which cool air circulating inside the refrigerator flows, that is, clogging of the cool air inflow hole 221 or the cool air discharge hole 211 of the cool air duct 20 defining the heat-exchange space 222 , clogging of the blowing fan 70 provided in the cool air duct 20 , or clogging of the bypass passage 230 .
  • the cool air inflow hole 221 , the cool air discharge hole 211 , the blowing fan 70 , and/or the bypass passage 230 may be clogged by frost due to condensation of moisture contained in the air on the surface thereof.
  • frost due to condensation of moisture contained in the air on the surface thereof.
  • the present disclosure is characterized in that the cause of the clogging of the air passage of the refrigerator is diagnosed and appropriate measures are taken accordingly.
  • FIG. 11 is a flowchart schematically showing a method of detecting clogging of an air passage of a refrigerator according to an embodiment of the present disclosure. The flowchart may be performed by the controller 40 based on instructions stored in the memory.
  • step S 41 the heat generating element 273 is operated for a predetermined time.
  • the heat generating element 273 may be turned on for a predetermined time and then turned off. For example, the heat generating element 273 may be turned on for 3 minutes.
  • step S 43 the controller 40 may detect a temperature of the heat generating element 273 in a state in which the heat generating element 273 is turned on or off.
  • the controller 40 may detect the temperature of the heat generating element 273 immediately after the heat generating element 273 is turned on and the heat generating element 273 is turned off.
  • the controller 40 may detect the temperature of the heat generating element 273 during a period of time when the heat generating element 273 is turned on.
  • step S 45 the controller 40 may detect clogging of the air passage based on a temperature difference value between the first detection temperature that is the lowest value and the second detection temperature that is the highest value, among detection temperatures of the heat generating element 273 .
  • the defrosting operation is performed when the logic temperature ⁇ Ht is less than a reference value, it may be determined that the air passage of the refrigerator has been clogged when the logic temperature ⁇ Ht is still kept low.
  • the clogging of the air passage may mean that at least one of the cool air inflow hole 221 , the cool air discharge hole 211 , the blowing fan 70 , and the bypass passage 230 is clogged.
  • it is difficult to solve the clogging of the air passage That is, when the clogging of the air passage occurs, it is difficult to remove frost formed in the cool air inflow hole 221 , the cool air discharge hole 211 , the blowing fan 70 , or the bypass passage 230 even though the defrosting operation is performed. Accordingly, when it is determined that the air passage is clogged, it may be immediately notified to the user so that the clogging of the air passage may be resolved.
  • FIG. 12 is a flowchart showing a detailed method for detecting clogging of an air passage of a refrigerator according to an embodiment of the present disclosure. The flowchart may be performed by the controller 40 based on instructions stored in the memory.
  • a logic temperature ⁇ Ht may be updated.
  • updating the logic temperature ⁇ Ht means may that steps S 21 to S 28 of FIG. 9 described above are performed again.
  • update of the logic temperature may mean that steps S 21 to S 28 of FIG. 9 described above are performed initially.
  • the controller 40 may determine whether the updated logic temperature ⁇ Ht is less than the second reference temperature value.
  • the second reference temperature value may be greater than the first reference temperature value.
  • the second reference temperature value may be 50 degrees, but is not limited thereto.
  • the reason to determine whether the updated logic temperature ⁇ Ht is less than the second reference temperature value is to determine whether the updated logic temperature ⁇ Ht is within a normal range. That is, when the updated logic temperature ⁇ Ht is not within the normal range, that is, when the updated logic temperature ⁇ Ht has an abnormally large value, it may be determined that a failure has occurred in the sensor 270 .
  • the cause of the failure of the sensor 270 may include a case where a wire of the heat generating element 273 is short-circuited, a case where a wire of the sensing element 274 is short-circuited, or a case where the heat generating element 273 is frozen. In this case, the sensor 270 may need to be repaired or replaced.
  • the controller 40 may display, in a display, a failure of the sensor 270 .
  • step S 54 the controller 40 may perform defrosting operation. That is, when a failure occurs in the sensor 270 , the defrosting operation may be normally performed.
  • the controller 40 may determine whether the updated logic temperature ⁇ Ht is less than a third reference temperature value.
  • the third reference temperature value may be a value less than the second reference temperature value.
  • the third reference temperature value may be 45 degrees, but is not limited thereto.
  • the reason to determine whether the logic temperature ⁇ Ht is less than the third reference temperature value may be to detect clogging of an air passage of the evaporator 1 .
  • the flow rate or flow speed of air may be rapidly reduced, and as a result, the flow rate of air flowing into the bypass passage 230 may be rapidly decreased. Accordingly, since the flow rate of the air flowing into the bypass passage 230 is reduced, the temperature of the heat generating element 273 detected while the heat generating element 273 is turned on may increase rapidly.
  • the fact that the updated logic temperature ⁇ Ht is measured as being very high may mean that at least one or more of the cool air inflow hole 221 , the cool air discharge hole 211 , the blower fan 70 , and/or the bypass passage 230 are clogged.
  • step S 54 the controller 40 may perform defrosting operation.
  • step S 58 when the updated logic temperature ⁇ Ht exceeds the third reference temperature value more than the first time, that is, when it is determined that the ⁇ Ht has exceeded the third reference temperature value for the second time or more, in step S 58 , the controller 40 may display, in the display, the clogging of the air passage and then perform defrosting operation.
  • the controller 40 may determine whether the updated logic temperature ⁇ Ht is less than a fourth reference temperature value.
  • the fourth reference temperature value may be a value less than the third reference temperature value.
  • the fourth reference temperature value may be 35 degrees, but is not limited thereto.
  • the controller 40 may return to step S 51 without performing the defrosting operation.
  • the updated logic temperature ⁇ Ht when the updated logic temperature ⁇ Ht is less than the third reference temperature value and is greater than or equal to the fourth reference temperature value, it means a state in which clogging of the air passage is occurring.
  • the controller 40 may determine whether the updated logic temperature ⁇ Ht does not exceed is the fourth reference temperature value for the first time.
  • the controller 40 may determine whether the updated logic temperature ⁇ Ht is less than the first reference temperature value.
  • step S 54 the controller 40 may determines that the amount of frost on the evaporator 30 is large, and perform defrosting operation.
  • the controller 40 may determine that the air passage has not been clogged, and may return to step S 51 without performing the defrosting operation.
  • step S 63 the controller 40 may determine whether the updated logic temperature ⁇ Ht has increased by “A” degrees or more from the previously updated logic temperature.
  • the reason to determine whether the updated logic temperature ⁇ Ht has increased by “A” degrees or more from the previously updated logic temperature is for determining whether the air passage is being progressively clogged. That is, even when the air passage is not clogged completely, frost growth in the air passage may not be prevented fundamentally.
  • the case where the updated logic temperature ⁇ Ht is significantly higher than the previously updated logic temperature may mean that the air passage is being progressively clogged, and the amount of cooling of air flowing through the bypass passage 230 is significantly reduced. That is, when clogging of the air passage is continuously made, the air passage is completely clogged, causing a problem in that air is not circulated.
  • step S 54 the controller 40 may perform a defrosting operation to prevent the air passage from being clogged.
  • the controller 40 may proceed to step S 62 .
  • the first detection temperature Ht 1 may be a temperature detected by a sensing element of the sensor immediately after the heat generating element is turned on
  • the second detection temperature Ht 2 may be a temperature detected by a sensing element of the sensor immediately after the heat generating element is turned off
  • the present embodiment is not limited thereto.
  • the first detection temperature Ht 1 and the second detection temperature Ht 2 may be temperature values detected while the heat generating element is turned on.
  • the first detection temperature (Ht 1 ) may be a lowest temperature value during a period of time when the heat generating element is turned on and the second detection temperature (Ht 2 ) is a highest temperature value during the period of time when the heat generating element is turned on.

Abstract

A method for controlling a refrigerator includes operating, for a predetermined period of time, a heating element of a sensor disposed on a bypass passage which allows a portion of air to bypass an evaporator disposed in a heat-exchange space; sensing the temperature of the heating element in on or off state; and sensing the blockage of an air passage in the heat-exchange space on the basis of the difference in value of the temperature between a first sensed temperature, which is the lowest value, and a second sensed temperature, which is the highest value, from among the sensed temperatures of the heating element.

Description

    TECHNICAL FIELD
  • The present disclosure relates to a refrigerator and a method for controlling the same.
  • BACKGROUND ART
  • Refrigerators are household appliances that are capable of storing objects such as food at a low temperature in a storage space provided in a cabinet. Since the storage space is surrounded by heat insulation wall, the inside of the storage space may be maintained at a temperature less than an external temperature.
  • The storage space may be classified into a refrigerating storage space or a freezing storage space according to a temperature range of the storage space.
  • The refrigerator may further include an evaporator for supplying cool air to the storage space. Air in the storage space is cooled while flowing to a space, in which the evaporator is disposed, so as to be heat-exchanged with the evaporator, and the cooled air is supplied again to the storage space.
  • Here, if the air heat-exchanged with the evaporator contains moisture, when the air is heat-exchanged with the evaporator, the moisture freezes on a surface of the evaporator to generate frost on the surface of the evaporator.
  • Since flow resistance of the air acts on the frost, the more an amount of frost frozen on the surface of the evaporator increases, the more the flow resistance increases. As a result, heat-exchange efficiency of the evaporator may be deteriorated, and thus, power consumption may increase.
  • Thus, the refrigerator further includes a defroster for removing the frost on the evaporator.
  • A defrosting cycle variable method is disclosed in Korean Patent Publication No. 2000-0004806.
  • In the publication, the defrosting cycle is adjusted using a cumulative operation time of the compressor and an external temperature.
  • However, when the defrosting cycle is determined using only the cumulative operation time of the compressor and the external temperature, an amount of frost (hereinafter, referred to as a frost generation amount) on the evaporator is not reflected. Thus, it is difficult to accurately determine the time point at which the defrosting is required.
  • That is, the frost generation amount may increase or decrease according to various environments such as the user's refrigerator usage pattern and the degree to which air retains moisture. In the case of the publication, there is a disadvantage in that the defrosting cycle is determined without reflecting the various environments.
  • In the publication, it may be possible to detect the amount of frost on the evaporator, but it is impossible to detect a phenomenon in which the cool air passage through which the cool air circulating inside the refrigerator flows is clogged by the frost. That is, when the frost grows in the cool air inlet, resistance to the flow of cool air occurs in the cool air outlet, or the blowing fan constituting the cool air passage, and in some cases, the cool air passage is completely clogged, preventing the cool air from circulating. When the circulation of the cool air is not properly performed, there is a problem in that the cooling performance is greatly deteriorated, and power consumption is increased.
  • SUMMARY
  • An object of the present disclosure is to provide a refrigerator and a control method thereof, which determines a time point for a defrosting operation using parameters that vary depending on the amount of frost on an evaporator.
  • In addition, an object of the present disclosure is to provide a refrigerator and a control method thereof, which accurately determine a time point at which defrosting is necessary according to the amount of frost on an evaporator using a sensor having an output value that varies depending on the flow rate of air.
  • In addition, another object of the present disclosure is to provide a refrigerator and a control method thereof, which accurately determine an exact defrost time point even when the precision of a sensor used to determine the defrost time point is low.
  • Still another object of the present disclosure is to provide a refrigerator capable of detecting clogging of an air passage of the refrigerator using a sensor of which an output value varies according to a flow rate of air and a control method thereof.
  • Still another object of the present disclosure is to provide a refrigerator capable of accurately determining the cause of clogging of an air passage based on an output value of a sensor, and a control method thereof.
  • Technical Solution
  • A method for controlling a refrigerator may include detecting clogging of an air passage in the heat-exchange space based on a temperature difference between a first detection temperature (Ht1) that is a lowest value and a second detection temperature (Ht2) that is a highest value among detection temperatures of a heat generating element.
  • The first detection temperature (Ht1) may be a temperature detected by a sensing element of the sensor immediately after the heat generating element is turned on, and the second detection temperature (Ht2) may be a temperature detected by a sensing element of the sensor immediately after the heat generating element is turned off.
  • The first detection temperature (Ht1) may be a lowest temperature value during a period of time when the heat generating element is turned on, and the second detection temperature (Ht2) may be a highest temperature value during a period of time when the heat generating element is turned on.
  • The method may further include performing a defrosting operation of the evaporator when a temperature difference value between the first detection temperature (Ht1) and the second detection temperature (Ht2) is less than a first reference value.
  • The method may further include updating a temperature difference value between the first detection temperature (Ht1) and the second detection temperature (Ht2) after the defrosting operation is completed, and failure of the sensor may be displayed when the updated temperature difference value exceeds a second reference value which is greater than the first reference value.
  • The method may further include determining whether the updated temperature difference value is less than a third reference value which is less than the second reference value when the updated temperature difference value is less than the second reference value, and displaying the clogging of the air passage in the heat-exchange space when the updated temperature difference value exceeds the third reference value.
  • The display of the clogging of the air passage is at least one display of clogging of a cool air inflow hole of a cool air duct defining the heat-exchange space, clogging of a cool air discharge hole of the cool air duct, clogging of a blowing fan provided in the cool air duct and/or clogging of the bypass passage.
  • Therefore, even after the defrosting operation is completed, it is possible to identify whether the air passage of the refrigerator is clogged by using the output value of the sensor and immediately notify a user of clogging of the air passage, thus making it possible to take measures immediately when the clogging of the air passage occurs. Therefore, it is possible to determine not only the cause of the clogging of the air passage, but also whether the sensor is malfunctioning, thus achieving accurate diagnosis and making maintenance and management easy.
  • The method may further include determining whether the updated temperature difference value is less than a fourth reference value which is less than the third reference value when the updated temperature difference value is less than the third reference value, and again performing the defrosting operation of the evaporator when the updated temperature difference value is less than the fourth reference value.
  • The method may further include determining whether the updated temperature difference value is increased by a predetermined value or more compared to the temperature difference value before the temperature difference value has been updated when the updated temperature difference value is less than the fourth reference value, and again performing the defrosting operation of the evaporator when the updated temperature difference value is increased by a predetermined value or more compared to the temperature difference value before the temperature difference value has been updated.
  • The method may further include again performing the defrosting operation of the evaporator according to whether the updated temperature difference value is less than the first reference value when the updated temperature difference value is not increased by a predetermined value or more compared to the temperature difference value before the temperature difference value has been updated.
  • A refrigerator may include a bypass passage configured to allow a portion of the air flow to bypass the evaporator, a heat generating element disposed in the bypass passage, a sensor including a sensing element for detecting a temperature of the heat generating element and a controller configured to detect clogging of an air passage in the heat-exchange space based on a temperature difference between a first detection temperature (Ht1) that is a lowest value and a second detection temperature (Ht2) that is a highest value among detection temperatures of the heat generating element.
  • Advantageous Effects
  • Since the time point at which the defrosting is required is determined using the sensor having the output value varying according to the amount of frost generated on the evaporator in the bypass passage, the time point at which the defrosting is required may be accurately determined.
  • In addition, even when the precision of a sensor used to determine a defrost time point is low, it is possible to accurately determine the defrost time point, thus significantly reducing the cost of the sensor.
  • Even after the defrosting operation is completed, it is possible to identify whether the air passage of the refrigerator is clogged or clogging by using the output value of the sensor and immediately notify a user of clogged or clogging of the air passage, thus making it possible to take measures immediately.
  • It is possible to determine not only the cause of the clogging of the air passage, but also whether the sensor is malfunctioning, thus achieving accurate diagnosis and making maintenance and management easy.
  • It is possible to prevent a phenomenon that the air passage is completely clogged by frost, thus improving cooling performance by active air circulation by fundamentally preventing the growth of frost in the air passage.
  • DESCRIPTION OF DRAWINGS
  • FIG. 1 is a schematic longitudinal cross-sectional view of a refrigerator according to an embodiment of the present disclosure.
  • FIG. 2 is a perspective view of a cool air duct according to an embodiment of the present disclosure.
  • FIG. 3 is an exploded perspective view illustrating a state in which a passage cover and a sensor are separated from each other in the cool air duct.
  • FIGS. 4(a) and 4(b) are views illustrating a flow of air in a heat exchange space and a bypass passage before and after frost is generated.
  • FIG. 5 is a schematic view illustrating a state in which a sensor is disposed in the bypass passage.
  • FIG. 6 is a view of the sensor according to an embodiment of the present disclosure.
  • FIG. 7 is a view illustrating a thermal flow around the sensor depending on a flow of air flowing through the bypass passage.
  • FIG. 8 is a control block diagram of a refrigerator according to an embodiment of the present disclosure.
  • FIG. 9 is a flowchart showing a method of performing a defrost operation by determining a time point when a refrigerator needs to be defrosted according to an embodiment of the present disclosure.
  • FIGS. 10(a) and 10(b) are views showing changes in a temperature of a heat generating element according to the on/off of the heat generating element before and after frost on the evaporator according to an embodiment of the present disclosure.
  • FIG. 11 is a flowchart schematically showing a method of detecting clogging of an air passage of a refrigerator according to an embodiment of the present disclosure.
  • FIG. 12 is a flowchart showing a detailed method for detecting clogging of an air passage of a refrigerator according to an embodiment of the present disclosure.
  • DETAILED DESCRIPTION
  • Hereinafter, some embodiments of the present invention will be described in detail with reference to the accompanying drawings. Exemplary embodiments of the present invention will be described below in more detail with reference to the accompanying drawings. It is noted that the same or similar components in the drawings may be designated by the same reference numerals as far as possible even if they are shown in different drawings. Further, in description of embodiments of the present disclosure, when it is determined that detailed descriptions of well-known configurations or functions obscure the understanding of the embodiments of the present disclosure, the detailed descriptions will be omitted.
  • Also, in the description of the embodiments of the present disclosure, the terms such as first, second, A, B, (a) and (b) may be used. Each of the terms is merely used to distinguish the corresponding component from other components, and does not delimit an essence, an order or a sequence of the corresponding component. It should be understood that when one component is “connected”, “coupled” or “joined” to another component, the former may be directly connected or jointed to the latter or may be “connected”, coupled” or “joined” to the latter with a third component interposed therebetween.
  • FIG. 1 is a schematic longitudinal cross-sectional view of a refrigerator according to an embodiment of the present disclosure, FIG. 2 is a perspective view of a cool air duct according to an embodiment of the present disclosure, and FIG. 3 is an exploded perspective view illustrating a state in which a passage cover and a sensor are separated from each other in the cool air duct.
  • Referring to FIGS. 1 to 3, a refrigerator 1 according to an embodiment of the present disclosure may include an inner case 12 defining a storage space 11.
  • The storage space may include one or more of a refrigerating storage space and a freezing storage space.
  • A cool air duct 20 providing a passage, through which cool air supplied to the storage space 11 flows, is provided in a rear space of the storage space 11. Also, an evaporator 30 is disposed between the cool air duct 20 and a rear wall 13 of the inner case 12. That is, a heat exchange space 222 in which the evaporator 30 is disposed is defined between the cool air duct 20 and the rear wall 13.
  • Thus, air of the storage space 11 may flow to the heat exchange space 222 between the cool air duct 20 and the rear wall 13 of the inner case 12 and then be heat-exchanged with the evaporator 30. Thereafter, the air may flow through the inside of the cool air duct 20 and then be supplied to the storage space 11.
  • The cool air duct 20 may include, but is not limited thereto, a first duct 210 and a second duct 220 coupled to a rear surface of the first duct 210.
  • A front surface of the first duct 210 is a surface facing the storage space 11, and a rear surface of the first duct 220 is a surface facing the rear wall 13 of the inner case 12.
  • A cool air passage 212 may be provided between the first duct 210 and the second duct 220 in a state in which the first duct 210 and the second duct 220 are coupled to each other.
  • Also, a cool air inflow hole 221 may be defined in the second duct 220, and a cool air discharge hole 211 may be defined in the first duct 210.
  • A blower fan (not shown) may be provided in the cool air passage 212. Thus, when the blower fan rotates, air passing through the evaporator 30 is introduced into the cool air passage 212 through the cool air inflow hole 221 and is discharged to the storage space 11 through the cool air discharge hole 211.
  • The evaporator 30 is disposed between the cool air duct 20 and the rear wall 13. Here, the evaporator 30 may be disposed below the cool air inflow hole 221.
  • Thus, the air in the storage space 11 ascends to be heat-exchanged with the evaporator 30 and then is introduced into the cool air inflow hole 221.
  • According to this arrangement, when an amount of frost generated on the evaporator 30 increases, an amount of air passing through the evaporator 30 may be reduced to deteriorate heat exchange efficiency.
  • In this embodiment, a time point at which defrosting for the evaporator 30 is required may be determined using a parameter that is changed according to the amount of frost generated on the evaporator 30.
  • For example, the cool air duct 20 may further include a frost generation sensing portion configured so that at least a portion of the air flowing through the heat exchange space 222 is bypassed and used to determine a time point, at which the defrosting is required, by using a sensor having a different output according to a flow rate of the air.
  • The frost generation sensing portion may include a bypass passage 230 bypassing at least a portion of the air flowing through the heat exchange space 222 and a sensor 270 disposed in the bypass passage 230.
  • Although not limited, the bypass passage 230 may be provided in a recessed shape in the first duct 210. Alternatively, the bypass passage 230 may be provided in the second duct 220.
  • The bypass passage 230 may be provided by recessing a portion of the first duct 210 or the second duct 220 in a direction away from the evaporator 30.
  • The bypass passage 230 may extend from the cool air duct 20 in a vertical direction.
  • The bypass passage 230 may be disposed to face the evaporator 30 within a left and right width range of the evaporator 30 so that the air in the heat exchange space 222 is bypassed to the bypass passage 230.
  • The frost generation sensing portion may further include a passage cover 260 that allows the bypass passage 230 to be partitioned from the heat exchange space 222.
  • The passage cover 260 may be coupled to the cool air duct 20 to cover at least a portion of the bypass passage 230 extending vertically.
  • The passage cover 260 may include a cover plate 261, an upper extension portion 262 extending upward from the cover plate 261, and a barrier 263 provided below the cover plate 261.
  • FIGS. 4(a) and 4(b) are views illustrating a flow of air in the heat exchange space and the bypass passage before and after frost is generated.
  • FIG. 4(a) illustrates a flow of air before frost is generated, and FIG. 4(b) illustrates a flow of air after frost is generated. In this embodiment, as an example, it is assumed that a state after a defrosting operation is completed is a state before frost is generated.
  • First, referring to FIG. 4(a), in the case in which frost does not exist on the evaporator 30, or an amount of generated frost is remarkably small, most of the air passes through the evaporator 30 in the heat exchange space 222 (see arrow A). On the other hand, some of the air may flow through the bypass passage 230 (see arrow B).
  • Referring to FIG. 4(b), when the amount of frost generated on the evaporator 30 is large (when the defrosting is required), since the frost of the evaporator 30 acts as flow resistance, an amount of air flowing through the heat exchange space 222 may decrease (see arrow C), and an amount of air flowing through the bypass passage 230 may increase (see arrow D).
  • As described above, the amount (or flow rate) of air flowing through the bypass passage 230 varies according to an amount of frost generated on the evaporator 30.
  • In this embodiment, the sensor 270 may have an output value that varies according to a change in flow rate of the air flowing through the bypass passage 230. Thus, whether the defrosting is required may be determined based on the change in output value.
  • Hereinafter, a structure and principle of the sensor 270 will be described.
  • FIG. 5 is a schematic view illustrating a state in which the sensor is disposed in the bypass passage, FIG. 6 is a view of the sensor according to an embodiment of the present disclosure, and FIG. 7 is a view illustrating a thermal flow around the sensor depending on a flow of air flowing through the bypass passage.
  • Referring to FIGS. 5 to 7, the sensor 270 may be disposed at one point in the bypass passage 230. Thus, the sensor 270 may contact the air flowing along the bypass passage 230, and an output value of the sensor 270 may be changed in response to a change in a flow rate of air.
  • The sensor 270 may be disposed at a position spaced from each of an inlet 231 and an outlet 232 of the bypass passage 230. For example, the sensor 270 may be positioned a central portion of the bypass passage 230.
  • Since the sensor 270 is disposed on the bypass passage 230, the sensor 270 may face the evaporator 30 within the left and right width range of the evaporator 30.
  • The sensor 270 may be, for example, a generated heat temperature sensor. For example, the sensor 270 may include a sensor printed circuit board (PCB) 271, a heat generating element 273 installed on the sensor PCB 271, and a sensing element 274 installed on the sensor PCB 271 to sense a temperature of the heat generating element 273.
  • The heat generating element 273 may be a resistor that generates heat when current is applied.
  • The sensing element 274 may sense a temperature of the heat generating element 273.
  • When a flow rate of air flowing through the bypass passage 230 is low, since a cooled amount of the heat generating element 273 by the air is small, a temperature sensed by the sensing element 274 is high.
  • On the other hand, if a flow rate of the air flowing through the bypass passage 230 is large, since the cooled amount of the heat generating element 273 by the air flowing through the bypass passage 230 increases, a temperature sensed by the sensing element 274 decreases.
  • The sensor PCB 271 may determine a difference between a temperature sensed by the sensing element 274 in a state in which the heat generating element 273 is turned off and a temperature by the sensing element 274 in a state in which the heat generating element 273 is turned on.
  • The sensor PCB 271 may determine whether the difference value between the states in which the heat generating element 273 is turned on/off is less than a reference difference value.
  • For example, referring to FIGS. 4(a), 4(b), and 7, when an amount of frost generated on the evaporator 30 is small, a flow rate of air flowing to the bypass passage 230 is small. In this case, a heat loss of the heat generating element 273 is small since a cooled amount of the heat generating element 273 by the air is small.
  • On the other hand, when the amount of frost generated on the evaporator 30 is large, a flow rate of air flowing to the bypass passage 230 is large. Then, the heat loss of the heat generating element 273 is large since the cooled amount of the heat generating element 273 by the air flowing along the bypass passage 230 is large.
  • Thus, the temperature sensed by the sensing element 274 when the amount of frost generated on the evaporator 30 is large is less than that sensed by the sensing element 274 when the amount of frost generated on the evaporator 30 is small.
  • Thus, in this embodiment, when the difference between the temperature sensed by the sensing element 274 in the state in which the heat generating element 273 is turned on and the temperature sensed by the sensing element 274 in the state in which the heat generating element 273 is turned off is less than the reference temperature difference, it may be determined that the defrosting is required.
  • According to this embodiment, the sensor 270 may sense a variation in temperature of the heat generating element 273, which varies by the air of which a flow rate varies according to the amount of generated frost, to accurately determine a time point, at which the defrosting is required, according to the amount of frost generated on the evaporator 30.
  • The sensor 270 may be further provided with a sensor housing 272 such that air flowing through the bypass passage 230 is prevented from directly contacting the sensor PCB 271, the heat generating element 273, and the temperature sensor 274. In a state in which the sensor housing 272 is opened at one side, an electric wire connected to the sensor PCB 271 may be drawn out and then the opened portion may be covered by a cover portion.
  • The sensor housing 271 may surround the sensor PCB 271, the heat generating element 273, and the temperature sensor 274.
  • FIG. 8 is a control block diagram of a refrigerator according to an embodiment of the present disclosure.
  • Referring to FIG. 8, the refrigerator 1 according to an embodiment of the present disclosure may include the sensor 270 described above, a defrosting device 50 operating for defrosting the evaporator 30, a compressor 60 for compressing refrigerant, a blowing fan 70 for generating air flow, and a controller 40 for controlling the sensor 270, the defrosting device 50, the compressor 60 and the blowing fan 70. The controller 40 may be an electronic processor.
  • The defrosting device 50 may include, for example, a heater. When the heater is turned on, heat generated by the heater is transferred to the evaporator 30 to melt frost generated on the surface of the evaporator 30. The heater may be connected to one side of the evaporator 30, or may be disposed spaced apart from a position adjacent to the evaporator 30.
  • The defrosting device 50 may further include a defrost temperature sensor. The defrost temperature sensor may detect an ambient temperature of the defrosting device 50. A temperature value detected by the defrost temperature sensor may be used as a factor that determines when the heater is turned on or off.
  • The compressor 60 is a device for compressing a low-temperature low-pressure refrigerant into a high-temperature high-pressure supersaturated gaseous refrigerant. Specifically, the high-temperature high-pressure supersaturated gaseous refrigerant compressed in the compressor 60 flows into a condenser (not shown). The refrigerant is condensed into a high-temperature high-pressure saturated liquid refrigerant, and the condensed high-temperature high-pressure saturated liquid refrigerant is introduced to an expander (not shown) and is expanded to a low-temperature low-pressure two-phase refrigerant.
  • Further, the low-temperature low-pressure two-phase refrigerant is evaporated as the low-temperature low-pressure gaseous refrigerant while passing through the evaporator 30. In this process, the refrigerant flowing through the evaporator 30 may exchange heat with outside air, that is, air flowing through the heat exchange space 222, thereby achieving air cooling.
  • The blowing fan 70 is provided in the cool air passage 212 to generate air flow. Specifically, when the blowing fan 70 is rotated, air passing through the evaporator 30 flows into the cool air passage 212 through the cool air inflow hole 221 and is then discharged to the storage compartment 11 through the cool air discharge hole 211.
  • The controller 40 may control the heat generating element 273 of the sensor 270 to be turned on at regular cycles.
  • In order to determine when defrosting is necessary, the heat generating element 273 may maintain a turned-on state for a predetermined period of time, and the temperature of the heat generating element 273 may be detected by the sensing element 274.
  • After the heat generating element 273 is turned on for the predetermined period of time, the heat generating element 273 is turned off, and the sensing element 274 may detect the temperature of the heat generating element 273 which is turned off. In addition, the sensor PCB 271 may determine whether the maximum value of the temperature difference between the turned-on/off state of the heat generating element 273 is equal to or less than a reference difference value.
  • In addition, it is determined that defrosting is necessary when the maximum value of the temperature difference between the turned-on/off states of the heat generating element 273 is equal to or less than the reference difference value, and the defrosting device 50 may be turned on by the controller 40.
  • Although it has been described above that the sensor PCB 271 determines whether the temperature difference between the turned-on/off states of the heat generating element 273 is equal to or less than the reference difference value, alternatively, the controller 40 may determine whether the temperature difference between the turned-on/off states of the heat generating element 273 is equal to or less than the reference difference value, and control the defrosting device 50 according to a result of the determination. That is, the sensor PCB 271 and the controller 40 may be electrically connected to each other.
  • The controller 40 may detect a temperature of the heat generating element 273 in a state in which the heat generating element 273 is turned on or off, and detect clogging of an air passage based on a temperature difference value between a first detection temperature and a second detection temperature among the detection temperatures of the heat generating element 273.
  • For example, the first detection temperature may be a temperature detected by the sensing element 274 immediately after the heat generating element 273 is turned on, and the second detection temperature may be a temperature detected by the sensing element 274 immediately after the heat generating element 273 is turned off.
  • As another example, the first detection temperature may be a lowest temperature value during a period of time when the heat generating element 273 is turned on, and the second detection temperature may be a highest temperature value during a period of time when the heat generating element 273 is turned on.
  • Hereinafter, a method for detecting the amount of frost on the evaporator 30 using the heat generating element 273 will be described in detail with reference to the drawings.
  • FIG. 9 is a flowchart showing a method of performing a defrost operation by determining a time point when a refrigerator needs to be defrosted according to an embodiment of the present disclosure, and FIGS. 10(a) and 10(b) are views showing changes in a temperature of a heat generating element according to the on/off of the heat generating element before and after frost on the evaporator according to an embodiment of the present disclosure. The flowchart may be performed by the controller 40 based on instructions stored in a memory.
  • FIG. 10(a) shows a change in temperature of the freezing compartment and a change in temperature of the heat generating element before occurrence of frost on the evaporator 30, and FIG. 10(b) shows a change in temperature of the freezing compartment and a change in temperature of the heat generating element after occurrence of frost on the evaporator 30. In the present embodiment, it is assumed that a state before occurrence of frost is a state after a defrosting operation is completed.
  • Referring to FIGS. 9, 10(a), and 10(b), in step S21, the heat generating element 273 is turned on.
  • Specifically, the heat generating element 273 may be turned on in a state in which a cooling operation is being performed on the storage compartment 11 (e.g., freezing compartment).
  • Here, the state in which the cooling operation of the freezing compartment is performed may mean a state in which the compressor 60 and the blowing fan 70 are being driven.
  • As described above, when a change in the flow rate of the air increases as the amount of frost on the evaporator 30 is large or small, the detection accuracy of the sensor 260 may be improved. That is, when the change in the flow rate of the air is large as the amount of frost on the evaporator 30 is large or small, the amount of change in the temperature detected by the sensor 270 becomes large, so that the time point at which the defrosting is necessary may be accurately determined.
  • Therefore, it is possible to increase the accuracy of the sensor when frost on the evaporator 30 is detected in a state in which air flow occurs, that is, the blowing fan 70 is being driven.
  • As an example, as shown in FIGS. 10(a) and 10(b), the heat generating element 273 may be turned on at a certain time point S1 while the blowing fan 70 is being driven.
  • The blower fan 70 may be driven for a predetermined period of time to cool the freezing compartment. In this case, the compressor 60 may be driven at the same time. Therefore, when the blowing fan 70 is driven, the temperature Ft of the freezing compartment may decrease.
  • On the other hand, when the heat generating element 273 is turned on, the temperature detected by the sensing element 274, that is, the temperature Ht of the heat generating element 273 may increase rapidly.
  • Next, in step S22, it may be determined whether the blowing fan 70 is turned on.
  • As described above, the sensor 270 may detect a change in temperature of the heat generating element 273, which is changed due to air of which the flow rate is changed according to the amount of frost on the evaporator 30. Therefore, when no air flow occurs, it is difficult for the sensor 270 to accurately detect the amount of frost on the evaporator 30.
  • When the blowing fan 70 is being driven, in step S23, the temperature Ht1 of the heat generating element 273 may be detected.
  • Specifically, the heat generating element 273 may be turned on for a predetermined period of time, and the temperature (Ht1) of the heat generating element 273 may be detected by the sensing element 274 at a certain time point in the state in which the heat generating element 273 is turned on.
  • In the present embodiment, the temperature Ht1 of the heat generating element 273 may be detected at a time point at which the heat generating element 273 is turned on. That is, in the present disclosure, the temperature immediately after the heat generating element 273 is turned on may be detected. Therefore, the detection temperature Ht1 of the heat generating element may be defined as the lowest temperature in the state in which the heat generating element 273 is turned on.
  • Here, the temperature of the heat generating element 273 detected for the first time may be referred to as a “first detection temperature (Ht1)”.
  • Next, in step S24, it is determined whether a first reference time T1 has elapsed while the heat generating element 273 is turned on.
  • When the heat generating element 273 is maintained in the turned-on state, the temperature detected by the sensing element 274, that is, the temperature Ht1 of the heat generating element 273 may continuously increase. However, when the heat generating element 273 is maintained in the turned-on state, the temperature of the heat generating element 273 may start to increase gradually and converge to the highest temperature point.
  • On the other hand, when the amount of frost on the evaporator 30 is large, the flow rate of the air flowing into the bypass passage 230 increases, and thus the amount of cooling of the heat generating element 273 by air flowing through the bypass passage 230 increases. Then, the highest temperature point of the heat generating element 273 may be low due to the large amount of air flowing through the bypass passage 230 (see FIG. 10(b)).
  • When the amount of frost on the evaporator 30 is small, the flow rate of the air flowing into the bypass passage 230 decreases, and thus the amount of cooling for the heat generating element 273 by air flowing through the bypass passage 230 decreases. Then, the highest temperature point of the heat generating element 273 may be high due to the small amount of air flowing through the bypass passage 230 (see FIG. 10(a)).
  • In the present embodiment, the temperature of the heat generating element 273 may be detected at a time point at which the heat generating element 273 is turned on. That is, in the present disclosure, the lowest temperature value of the heat generating element 273 is detected after the heat generating element 273 is turned on.
  • Here, the first reference time T1 for which the heat generating element 273 is maintained in the turned-on state may be 3 minutes but is not limited thereto.
  • When a predetermined period of time has elapsed while the heat generating element 273 is turned on, in step S25, the heat generating element 273 is turned off.
  • As in FIGS. 10(a) and 10(b), the heat generating element 273 may be turned on for the first reference time T1 and then turned off. When the heat generating element 273 is turned off, the heat generating element 273 may be rapidly cooled by air flowing through the bypass passage 230. Therefore, the temperature Ht of the heat generating element 273 may rapidly decrease.
  • However, when the turned-off state of the heat generating element 273 is maintained, the temperature Ht of the heat generating element may start to gradually decrease, and the decrease rate thereof is significantly reduced.
  • Next, in step S26, the temperature Ht2 of the heat generating element may be detected.
  • That is, the temperature Ht2 of the heat generating element is detected by the sensing element 273 at a certain time point S2 in a state in which the heat generating element 273 is turned off.
  • In the present embodiment, the temperature Ht2 of the heat generating element may be detected at a time point at which the heat generating element 273 is turned off. That is, in the present disclosure, the temperature immediately after the heat generating element 273 is turned off may be detected. Therefore, the detection temperature Ht2 of the heat generating element may be defined as the highest temperature in the state in which the heat generating element 273 is turned off.
  • Here, the temperature of the heat generating element 273 detected for the second time may be referred to as a “second detection temperature (Ht2)”.
  • In summary, the temperature Ht of the heat generating element may be first detected at a time point S1 when the heat generating element 273 is turned on, and may be additionally detected at a time point S2 at which the heat generating element 273 is turned off. In this case, the first detection temperature Ht1 that is detected for the first time may be the lowest temperature in the state in which the heat generating element 273 is turned on, and the second detection temperature Ht2 that is additionally detected may be the highest temperature in the state in which the heat generating element 273 is turned off.
  • Next, in step S27, it is determined whether a temperature stabilization state has been achieved.
  • Here, the temperature stabilization state may mean a state in which internal refrigerator load does not occur, that is, a state in which the cooling of the storage compartment is normally performed. In other words, the fact that the temperature stabilization state is made may mean that the opening/closing of a refrigerator door is not performed or there are no defects in components (e.g., a compressor and an evaporator) for cooling the storage compartment or the sensor 270.
  • That is, the sensor 270 may accurately detect the amount of frost on the evaporator 30 by determining whether or not temperature stabilization has been achieved.
  • In the present embodiment, in order to determine that the temperature stabilization state is achieved, it is possible to determine the amount of change in the temperature of the freezing compartment for a predetermined period of time. Alternatively, in order to determine that the temperature stabilization state is achieved, it is possible to determine the amount of change in the temperature of the evaporator 30 for a predetermined period of time.
  • For example, a state in which the amount of change in temperature of the freezing compartment or in temperature of the evaporator 30 during the predetermined period of time does not exceed 1.5 degrees may be defined as the temperature stabilization state.
  • As described above, the temperature Ht of the heat generating element may rapidly decrease immediately after the heat generating element 273 is turned off, and then the temperature Ht of the heat generating element may gradually decrease. Here, it is possible to determine whether temperature stabilization has been achieved by determining whether the temperature Ht of the heat generating element decreases normally after decreasing rapidly.
  • When the temperature stabilization state is achieved, in step S28, the temperature difference ΔHt between the temperature Ht1 detected when the heat generating element 273 is turned on and the temperature Ht2 detected when the heat generating element 273 is turned off may be calculated.
  • In step S29, it is determined whether the temperature difference ΔHt is less than a first reference temperature value.
  • Specifically, when the amount of frost on the evaporator 30 is large, the flow rate of the air flowing into the bypass passage 230 increases, and thus the amount of cooling for the heat generating element 273 by air flowing through the bypass passage 230 may increase. When the amount of cooling increases, the temperature Ht2 of the heat generating element detected immediately after the heat generating element 273 is turned off may be relatively low compared to a case where the amount of frost on the evaporator 30 is small.
  • As a result, when the amount of frost on the evaporator 30 is large, the temperature difference ΔHt may be small. Accordingly, it is possible to determine the amount of frost on the evaporator 30 through the temperature difference ΔHt.
  • Here, the first reference temperature value may be 32 degrees, for example.
  • Next, when the temperature difference ΔHt is less than the first reference temperature value, in step S30, a defrosting operation is performed.
  • When the defrosting operation is performed, the defrosting device 50 is driven and heat generated by the heater is transferred to the evaporator 30 so that the frost generated on the surface of the evaporator 30 is melted.
  • On the other hand, in step S27, when the temperature stabilization state is not achieved or, in step S29, when the temperature difference ΔHt is greater than or equal to the first reference temperature value, the algorithm ends without performing the defrosting operation.
  • In the present embodiment, the temperature difference value ΔHt may be defined as a “logic temperature” for detection of frosting. The logic temperature may be used as a temperature for determining a time point for a defrosting operation of the refrigerator, and may be used as a temperature for detecting clogging of an air passage, which will now be described.
  • In the present disclosure, it may be possible to detect whether the air passage of the refrigerator is clogged or a sensor failure occurred by determining whether the temperature difference value between the first detection temperature Ht1 and the second detection temperature Ht2 is out of a normal range.
  • Here, the clogging of the air passage may include at least one or more of clogging of a passage through which cool air circulating inside the refrigerator flows, that is, clogging of the cool air inflow hole 221 or the cool air discharge hole 211 of the cool air duct 20 defining the heat-exchange space 222, clogging of the blowing fan 70 provided in the cool air duct 20, or clogging of the bypass passage 230.
  • The cool air inflow hole 221, the cool air discharge hole 211, the blowing fan 70, and/or the bypass passage 230 may be clogged by frost due to condensation of moisture contained in the air on the surface thereof. As described above, when the air passage is clogged by growth of frost, there is a problem in that air flow resistance is caused, and as a result, heat exchange efficiency of the evaporator is reduced and power consumption is increased.
  • Accordingly, the present disclosure is characterized in that the cause of the clogging of the air passage of the refrigerator is diagnosed and appropriate measures are taken accordingly.
  • FIG. 11 is a flowchart schematically showing a method of detecting clogging of an air passage of a refrigerator according to an embodiment of the present disclosure. The flowchart may be performed by the controller 40 based on instructions stored in the memory.
  • Referring to FIG. 11, in step S41, the heat generating element 273 is operated for a predetermined time.
  • Specifically, the heat generating element 273 may be turned on for a predetermined time and then turned off. For example, the heat generating element 273 may be turned on for 3 minutes.
  • Next, in step S43, the controller 40 may detect a temperature of the heat generating element 273 in a state in which the heat generating element 273 is turned on or off.
  • For example, the controller 40 may detect the temperature of the heat generating element 273 immediately after the heat generating element 273 is turned on and the heat generating element 273 is turned off.
  • As another example, the controller 40 may detect the temperature of the heat generating element 273 during a period of time when the heat generating element 273 is turned on.
  • Next, in step S45, the controller 40 may detect clogging of the air passage based on a temperature difference value between the first detection temperature that is the lowest value and the second detection temperature that is the highest value, among detection temperatures of the heat generating element 273.
  • The method of detecting the amount of frost on the evaporator 30 according to a temperature difference value between the first detection temperature and the second detection temperature of the heat generating element 273, that is, a logic temperature ΔHt has been described above.
  • However, in the present embodiment, when the logic temperature ΔHt has an abnormally large value, it may be determined that a failure has occurred in the sensor 270.
  • Although the defrosting operation is performed when the logic temperature ΔHt is less than a reference value, it may be determined that the air passage of the refrigerator has been clogged when the logic temperature ΔHt is still kept low.
  • In this case, the clogging of the air passage may mean that at least one of the cool air inflow hole 221, the cool air discharge hole 211, the blowing fan 70, and the bypass passage 230 is clogged. In this case, it is difficult to solve the clogging of the air passage. That is, when the clogging of the air passage occurs, it is difficult to remove frost formed in the cool air inflow hole 221, the cool air discharge hole 211, the blowing fan 70, or the bypass passage 230 even though the defrosting operation is performed. Accordingly, when it is determined that the air passage is clogged, it may be immediately notified to the user so that the clogging of the air passage may be resolved.
  • FIG. 12 is a flowchart showing a detailed method for detecting clogging of an air passage of a refrigerator according to an embodiment of the present disclosure. The flowchart may be performed by the controller 40 based on instructions stored in the memory.
  • Referring to FIG. 12, in step S51, a logic temperature ΔHt may be updated. Here, updating the logic temperature ΔHt means may that steps S21 to S28 of FIG. 9 described above are performed again.
  • Also, update of the logic temperature may mean that steps S21 to S28 of FIG. 9 described above are performed initially.
  • Next, in step S52, the controller 40 may determine whether the updated logic temperature ΔHt is less than the second reference temperature value. In this case, the second reference temperature value may be greater than the first reference temperature value. As an example, the second reference temperature value may be 50 degrees, but is not limited thereto.
  • Here, the reason to determine whether the updated logic temperature ΔHt is less than the second reference temperature value is to determine whether the updated logic temperature ΔHt is within a normal range. That is, when the updated logic temperature ΔHt is not within the normal range, that is, when the updated logic temperature ΔHt has an abnormally large value, it may be determined that a failure has occurred in the sensor 270.
  • For example, the cause of the failure of the sensor 270 may include a case where a wire of the heat generating element 273 is short-circuited, a case where a wire of the sensing element 274 is short-circuited, or a case where the heat generating element 273 is frozen. In this case, the sensor 270 may need to be repaired or replaced.
  • Therefore, when the updated logic temperature ΔHt exceeds the second reference temperature value, in step S53, the controller 40 may display, in a display, a failure of the sensor 270.
  • In step S54, the controller 40 may perform defrosting operation. That is, when a failure occurs in the sensor 270, the defrosting operation may be normally performed.
  • When the updated logic temperature ΔHt is less than the second reference temperature value, in step S55, the controller 40 may determine whether the updated logic temperature ΔHt is less than a third reference temperature value. In this case, the third reference temperature value may be a value less than the second reference temperature value. As an example, the third reference temperature value may be 45 degrees, but is not limited thereto.
  • The reason to determine whether the logic temperature ΔHt is less than the third reference temperature value may be to detect clogging of an air passage of the evaporator 1.
  • In the present disclosure, when one or more of the air passage of the refrigerator 1, that is, the cool air inflow hole 221, the cool air discharge hole 211, the blowing fan 70, and/or the bypass passage 230 are clogged, the flow rate or flow speed of air may be rapidly reduced, and as a result, the flow rate of air flowing into the bypass passage 230 may be rapidly decreased. Accordingly, since the flow rate of the air flowing into the bypass passage 230 is reduced, the temperature of the heat generating element 273 detected while the heat generating element 273 is turned on may increase rapidly.
  • According to the above-described principle, the fact that the updated logic temperature ΔHt is measured as being very high may mean that at least one or more of the cool air inflow hole 221, the cool air discharge hole 211, the blower fan 70, and/or the bypass passage 230 are clogged.
  • When the updated logic temperature ΔHt exceeds the third reference temperature value, it may be determined in steps S56 and S57 whether the updated logic temperature ΔHt exceeds the third reference temperature value for the first time. When the updated logic temperature ΔHt exceeds the third reference temperature value for the first time, in step S54, the controller 40 may perform defrosting operation.
  • Alternatively, in steps S56 and S57, when the updated logic temperature ΔHt exceeds the third reference temperature value more than the first time, that is, when it is determined that the ΔHt has exceeded the third reference temperature value for the second time or more, in step S58, the controller 40 may display, in the display, the clogging of the air passage and then perform defrosting operation.
  • According to this configuration, it may be possible to inform a user of the clogging of the air passage when the clogging of the air passage continuously occurs, so that accurate diagnosis is possible and maintenance and management are easy.
  • On the other hand, when the updated logic temperature ΔHt is less than the third reference temperature value, in step S59, the controller 40 may determine whether the updated logic temperature ΔHt is less than a fourth reference temperature value. In this case, the fourth reference temperature value may be a value less than the third reference temperature value. For example, the fourth reference temperature value may be 35 degrees, but is not limited thereto.
  • When the updated logic temperature ΔHt exceeds the fourth reference temperature value, that is, when the updated logic temperature ΔHt is less than the third reference temperature value and is greater than or equal to the fourth reference temperature value, the controller 40 may return to step S51 without performing the defrosting operation.
  • That is, when the updated logic temperature ΔHt is less than the third reference temperature value and is greater than or equal to the fourth reference temperature value, it means a state in which clogging of the air passage is occurring.
  • Conversely, when the updated logic temperature ΔHt is less than the fourth reference temperature value, in steps S60 and S61, the controller 40 may determine whether the updated logic temperature ΔHt does not exceed is the fourth reference temperature value for the first time. When the updated logic temperature ΔHt does not exceed the fourth reference temperature value for the first time, in step S62, the controller 40 may determine whether the updated logic temperature ΔHt is less than the first reference temperature value.
  • When the updated logic temperature ΔHt is less than the first reference temperature value, in step S54, the controller 40 may determines that the amount of frost on the evaporator 30 is large, and perform defrosting operation.
  • When the updated logic temperature ΔHt exceeds the first reference temperature value, the controller 40 may determine that the air passage has not been clogged, and may return to step S51 without performing the defrosting operation.
  • When the updated logic temperature ΔHt does not exceed the fourth reference temperature value for the second time or more in step S60 and step S61, in step S63, the controller 40 may determine whether the updated logic temperature ΔHt has increased by “A” degrees or more from the previously updated logic temperature.
  • Here, the reason to determine whether the updated logic temperature ΔHt has increased by “A” degrees or more from the previously updated logic temperature is for determining whether the air passage is being progressively clogged. That is, even when the air passage is not clogged completely, frost growth in the air passage may not be prevented fundamentally.
  • For example, the case where the updated logic temperature ΔHt is significantly higher than the previously updated logic temperature may mean that the air passage is being progressively clogged, and the amount of cooling of air flowing through the bypass passage 230 is significantly reduced. That is, when clogging of the air passage is continuously made, the air passage is completely clogged, causing a problem in that air is not circulated.
  • Therefore, when it is determined that the updated logic temperature ΔHt has been increased by “A” degrees or more from the previously updated logic temperature, in step S54, the controller 40 may perform a defrosting operation to prevent the air passage from being clogged.
  • When it is determined that the updated logic temperature ΔHt has not been increased by “A” degrees or more from the previously updated logic temperature, the controller 40 may proceed to step S62.
  • Although it has been descried in the present embodiment that the first detection temperature Ht1 may be a temperature detected by a sensing element of the sensor immediately after the heat generating element is turned on, and the second detection temperature Ht2 may be a temperature detected by a sensing element of the sensor immediately after the heat generating element is turned off, the present embodiment is not limited thereto.
  • According to another embodiment, the first detection temperature Ht1 and the second detection temperature Ht2 may be temperature values detected while the heat generating element is turned on. For example, the first detection temperature (Ht1) may be a lowest temperature value during a period of time when the heat generating element is turned on and the second detection temperature (Ht2) is a highest temperature value during the period of time when the heat generating element is turned on.

Claims (20)

1. A control method by a refrigerator, comprising:
operating a heat generating element of a sensor disposed in a bypass passage for a predetermined period of time, the bypass passage allowing a portion of air flow to bypass an evaporator disposed in a heat-exchange space;
detecting a temperature of the heat generating element in a state in which the heat generating element is turned on or off; and
detecting clogging of an air passage in the heat-exchange space based on a temperature difference between a first detection temperature that is a lowest value and a second detection temperature that is a highest value among detection temperatures of the heat generating element.
2. The control method of claim 1, wherein the first detection temperature is a temperature detected by a sensing element of the sensor immediately after the heat generating element is turned on.
3. The control method of claim 1, wherein the second detection temperature is a temperature detected by a sensing element of the sensor immediately after the heat generating element is turned off.
4. The control method of claim 1, wherein the first detection temperature is the lowest value during a period of time when the heat generating element is turned on.
5. The control method of claim 1, wherein the second detection temperature is the highest value during a period of time when the heat generating element is turned on.
6. The control method of claim 1, further comprising:
performing a defrosting operation of the evaporator when a temperature difference value between the first detection temperature and the second detection temperature is less than a first reference value.
7. The control method of claim 6, further comprising:
updating a temperature difference value between the first detection temperature and the second detection temperature; and
displaying in a display, failure of the sensor when the updated temperature difference value exceeds a second reference value which is greater than the first reference value.
8. The control method of claim 7, further comprising:
determining whether the updated temperature difference value is less than a third reference value which is less than the second reference value when the updated temperature difference value is less than the second reference value; and
displaying in the display, the clogging of the air passage in the heat-exchange space when the updated temperature difference value exceeds the third reference value.
9. The control method of claim 8, wherein the clogging of the air passage is at least one of clogging of a cool air inflow hole of a cool air duct, clogging of a cool air discharge hole of the cool air duct, clogging of a blowing fan provided in the cool air duct, and clogging of the bypass passage.
10. The method of claim 8, further comprising:
determining whether the updated temperature difference value is less than a fourth reference value which is less than the third reference value when the updated temperature difference value is less than the third reference value; and
performing the defrosting operation of the evaporator when the updated temperature difference value is less than the fourth reference value.
11. The control method of claim 10, further comprising:
determining whether the updated temperature difference value is increased by a predetermined value or more compared to a temperature difference value before the updated temperature difference value; and
performing the defrosting operation of the evaporator when the updated temperature difference value is increased by the predetermined value or more compared to the temperature difference value before the updated temperature difference value.
12. The control method of claim 10, further comprising:
performing the defrosting operation of the evaporator according to whether the updated temperature difference value is less than the first reference value which is less than the fourth reference value when the updated temperature difference value is not increased by the predetermined value or more compared to the temperature difference value before the updated temperature difference value.
13. A refrigerator comprising:
an inner case including a storage space;
a cooling duct to guide flow of air in the storage space and defining a heat exchange space with the inner case;
an evaporator disposed in the heat exchange space;
a bypass passage to allow a portion of the air flow to bypass the evaporator;
a sensor including a heat generating element disposed in the bypass passage and a sensing element to detect a temperature of the heat generating element; and
a controller configured to detect clogging of an air passage in the heat-exchange space based on a temperature difference between a first detection temperature that is a lowest value and a second detection temperature that is a highest value among detection temperatures of the heat generating element.
14. The refrigerator of claim 13, wherein the first detection temperature is a temperature detected by the sensing element immediately after the heat generating element is turned on, and
wherein the second detection temperature is a temperature detected by the sensing element immediately after the heat generating element is turned off.
15. The refrigerator of claim 13, wherein the first detection temperature is a lowest temperature value during a period of time when the heat generating element is turned on, and
the second detection temperature is a highest temperature value during the period of time when the heat generating element is turned on.
16. The refrigerator of claim 13, wherein the controller is configured to perform a defrosting operation of the evaporator, when the temperature difference value between the first detection temperature and the second detection temperature is less than a first reference value,
17. The refrigerator of claim 16, wherein the controller is configured to update the temperature difference value between the first detection temperature and the second detection temperature after the defrosting operation is completed,
wherein failure of the sensor is displayed when the updated temperature difference value exceeds a second reference value which is greater than the first reference value.
18. The refrigerator of claim 17, wherein the controller is configured to:
determine whether the updated temperature difference value is less than a third reference value which is less than the second reference value when the updated temperature difference value is less than the second reference value, and
display in a display, the clogging of the air passage in the heat-exchange space when the updated temperature difference value exceeds the third reference value.
19. The refrigerator of claim 18, wherein the display of the clogging of the air passage includes at least one of clogging of a cool air inflow hole of a cool air duct, clogging of a cool air discharge hole of the cool air duct, clogging of a blowing fan provided in the cool air duct and clogging of the bypass passage.
20. The refrigerator of claim 18, wherein the controller is configured to:
determine whether the updated temperature difference value is less than a fourth reference value which is less than the third reference value when the updated temperature difference value is less than the third reference value, and
perform the defrosting operation of the evaporator when the updated temperature difference value is less than the fourth reference value.
US17/030,888 2018-03-26 2020-09-24 Refrigerator and method for controlling same Abandoned US20210010738A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020180034516A KR102536378B1 (en) 2018-03-26 2018-03-26 Refrigerator and controlling method the same
KR10-2018-0034516 2018-03-26
PCT/KR2019/003206 WO2019190114A1 (en) 2018-03-26 2019-03-19 Refrigerator and method for controlling same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003206 Continuation WO2019190114A1 (en) 2018-03-26 2019-03-19 Refrigerator and method for controlling same

Publications (1)

Publication Number Publication Date
US20210010738A1 true US20210010738A1 (en) 2021-01-14

Family

ID=68062307

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/030,888 Abandoned US20210010738A1 (en) 2018-03-26 2020-09-24 Refrigerator and method for controlling same

Country Status (6)

Country Link
US (1) US20210010738A1 (en)
EP (1) EP3779333A4 (en)
KR (1) KR102536378B1 (en)
CN (2) CN114704993B (en)
AU (1) AU2019243005B2 (en)
WO (1) WO2019190114A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200224953A1 (en) * 2019-01-10 2020-07-16 Lg Electronics Inc. Refrigerator
US11692770B2 (en) 2019-01-10 2023-07-04 Lg Electronics Inc. Refrigerator

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102536378B1 (en) * 2018-03-26 2023-05-25 엘지전자 주식회사 Refrigerator and controlling method the same
KR20220018177A (en) 2020-08-06 2022-02-15 엘지전자 주식회사 refrigerator
KR20220018179A (en) 2020-08-06 2022-02-15 엘지전자 주식회사 refrigerator
KR20220018181A (en) 2020-08-06 2022-02-15 엘지전자 주식회사 refrigerator
KR20220018180A (en) 2020-08-06 2022-02-15 엘지전자 주식회사 refrigerator
KR20220018178A (en) 2020-08-06 2022-02-15 엘지전자 주식회사 refrigerator and operating method thereof
EP4194776A1 (en) 2020-08-06 2023-06-14 LG Electronics Inc. Refrigerator
KR20220018176A (en) 2020-08-06 2022-02-15 엘지전자 주식회사 refrigerator
KR20220018175A (en) 2020-08-06 2022-02-15 엘지전자 주식회사 refrigerator
KR20230000232A (en) 2021-06-24 2023-01-02 엘지전자 주식회사 refrigerator
KR20230000231A (en) 2021-06-24 2023-01-02 엘지전자 주식회사 refrigerator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185968A (en) * 1983-04-08 1984-10-22 株式会社日立製作所 Frost clogging detector
JPH08303932A (en) * 1995-05-08 1996-11-22 Fuji Electric Co Ltd Defrosting device for freezer/refrigerator show case
WO1997024568A1 (en) * 1995-12-28 1997-07-10 Ishizuka Electronics Corporation Frosting detection device
US5934088A (en) * 1997-09-02 1999-08-10 Hoshizaki Denki Kabushiki Kaisha Error monitoring apparatus in refrigerator
WO2014137060A1 (en) * 2013-03-04 2014-09-12 주식회사 두텍 Apparatus for detecting time to defrost evaporation heat exchanger based on bypass airflow measurement and method for controlling operations of same
KR101536284B1 (en) * 2015-04-15 2015-07-14 주식회사 대일 Sensor device for detecting frost accumulation used for defrosting outdoor evaporator of a heat-pump system
US9127875B2 (en) * 2011-02-07 2015-09-08 Electrolux Home Products, Inc. Variable power defrost heater
US9557091B1 (en) * 2013-01-25 2017-01-31 Whirlpool Corporation Split air pathway

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3355904A (en) * 1966-01-21 1967-12-05 Texas Instruments Inc Differential fluid velocity sensing
US3465534A (en) * 1967-10-31 1969-09-09 Texas Instruments Inc Differential flow sensing apparatus
US3643457A (en) * 1970-11-20 1972-02-22 Westinghouse Electric Corp Frost detector for refrigeration system
SE7710529L (en) * 1977-01-03 1978-07-04 Electric Power Res Inst DEFROST DEVICE FOR HEAT PUMPS
JPS60226688A (en) * 1984-04-26 1985-11-11 株式会社日立製作所 Defrostation controller
JPH01312378A (en) * 1988-06-10 1989-12-18 Toshiba Corp Frost sensor for heat exchanger
JPH07146306A (en) * 1993-11-25 1995-06-06 Murata Mfg Co Ltd Air-speed sensor
JPH0886557A (en) * 1994-09-19 1996-04-02 Ishizuka Denshi Kk Frost detector
KR19990005704A (en) * 1997-06-30 1999-01-25 배순훈 Defroster of the refrigerator
KR100292187B1 (en) 1998-06-30 2001-11-26 전주범 Defrost cycle variable method
KR100547421B1 (en) * 1998-09-04 2006-04-12 주식회사 엘지이아이 Freezing detector of the refrigerator
JP2000337753A (en) * 1999-05-27 2000-12-08 Denso Corp Air conditioner
KR20090103233A (en) * 2008-03-28 2009-10-01 삼성전자주식회사 Refrigerator and method for controlling defrost thereof
CN101738054B (en) * 2009-12-30 2012-07-04 天津大学 Method for defrosting based on by-pass circulating defrosting structure of refrigerator
JP5093263B2 (en) * 2010-02-24 2012-12-12 三菱電機株式会社 refrigerator
KR20160027761A (en) * 2014-09-02 2016-03-10 한국알프스 주식회사 Frost sensing unit and defrosting apparatus including the same and defrosting methods for refrigerator
CN106813447A (en) * 2015-11-27 2017-06-09 松下电器研究开发(苏州)有限公司 Refrigerator
CN106996675A (en) * 2016-01-22 2017-08-01 广州市美控电子科技有限公司 refrigeration temperature control intelligent defrosting control device
KR101843641B1 (en) * 2016-07-19 2018-03-30 엘지전자 주식회사 Defrosting apparatus and refrigerator including the same
CN106595215B (en) * 2016-11-11 2019-08-02 青岛海尔股份有限公司 The defrosting control method and device of wind cooling refrigerator
KR102614564B1 (en) * 2018-03-08 2023-12-18 엘지전자 주식회사 Refrigerator and controlling method the same
KR102536378B1 (en) * 2018-03-26 2023-05-25 엘지전자 주식회사 Refrigerator and controlling method the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185968A (en) * 1983-04-08 1984-10-22 株式会社日立製作所 Frost clogging detector
JPH08303932A (en) * 1995-05-08 1996-11-22 Fuji Electric Co Ltd Defrosting device for freezer/refrigerator show case
WO1997024568A1 (en) * 1995-12-28 1997-07-10 Ishizuka Electronics Corporation Frosting detection device
US5934088A (en) * 1997-09-02 1999-08-10 Hoshizaki Denki Kabushiki Kaisha Error monitoring apparatus in refrigerator
US9127875B2 (en) * 2011-02-07 2015-09-08 Electrolux Home Products, Inc. Variable power defrost heater
US9557091B1 (en) * 2013-01-25 2017-01-31 Whirlpool Corporation Split air pathway
WO2014137060A1 (en) * 2013-03-04 2014-09-12 주식회사 두텍 Apparatus for detecting time to defrost evaporation heat exchanger based on bypass airflow measurement and method for controlling operations of same
KR101536284B1 (en) * 2015-04-15 2015-07-14 주식회사 대일 Sensor device for detecting frost accumulation used for defrosting outdoor evaporator of a heat-pump system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200224953A1 (en) * 2019-01-10 2020-07-16 Lg Electronics Inc. Refrigerator
US11592228B2 (en) * 2019-01-10 2023-02-28 Lg Electronics Inc. Refrigerator
US11692770B2 (en) 2019-01-10 2023-07-04 Lg Electronics Inc. Refrigerator

Also Published As

Publication number Publication date
CN111868462B (en) 2022-04-15
AU2019243005B2 (en) 2022-07-14
CN114704993A (en) 2022-07-05
CN114704993B (en) 2024-04-02
EP3779333A1 (en) 2021-02-17
WO2019190114A1 (en) 2019-10-03
CN111868462A (en) 2020-10-30
EP3779333A4 (en) 2021-12-29
KR20190112482A (en) 2019-10-07
AU2019243005A1 (en) 2020-10-15
KR102536378B1 (en) 2023-05-25

Similar Documents

Publication Publication Date Title
US20210010738A1 (en) Refrigerator and method for controlling same
US11867448B2 (en) Refrigerator and method for controlling the same
US20210055034A1 (en) Refrigerator and controlling method the same
US10139149B2 (en) Refrigerator and method for controlling the same
US11835291B2 (en) Refrigerator and method for controlling the same
AU2015410544B2 (en) Refrigerator
KR20180052994A (en) Refrigerator and Controlling method for the same
JP2012026590A (en) Refrigerating apparatus
JP2001263912A (en) Refrigerator
US11879681B2 (en) Method for controlling refrigerator
US20230280081A1 (en) Refrigerator
KR20080090944A (en) Refrigerator and control method thereof
KR101535673B1 (en) Method for controlling refrigerator

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHOI, SANGBOK;PARK, KYONGBAE;KIM, SUNGWOOK;AND OTHERS;REEL/FRAME:053873/0039

Effective date: 20200921

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION