WO2021218295A1 - 防眩显示装置、防眩显示方法和车内后视镜 - Google Patents

防眩显示装置、防眩显示方法和车内后视镜 Download PDF

Info

Publication number
WO2021218295A1
WO2021218295A1 PCT/CN2021/076541 CN2021076541W WO2021218295A1 WO 2021218295 A1 WO2021218295 A1 WO 2021218295A1 CN 2021076541 W CN2021076541 W CN 2021076541W WO 2021218295 A1 WO2021218295 A1 WO 2021218295A1
Authority
WO
WIPO (PCT)
Prior art keywords
glare
liquid crystal
polarizer
light
crystal screen
Prior art date
Application number
PCT/CN2021/076541
Other languages
English (en)
French (fr)
Inventor
李文波
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/435,047 priority Critical patent/US20220324385A1/en
Publication of WO2021218295A1 publication Critical patent/WO2021218295A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/08Rear-view mirror arrangements involving special optical features, e.g. avoiding blind spots, e.g. convex mirrors; Side-by-side associations of rear-view and other mirrors
    • B60R1/083Anti-glare mirrors, e.g. "day-night" mirrors
    • B60R1/088Anti-glare mirrors, e.g. "day-night" mirrors using a cell of electrically changeable optical characteristic, e.g. liquid-crystal or electrochromic mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/08Rear-view mirror arrangements involving special optical features, e.g. avoiding blind spots, e.g. convex mirrors; Side-by-side associations of rear-view and other mirrors
    • B60R1/083Anti-glare mirrors, e.g. "day-night" mirrors
    • B60R1/086Anti-glare mirrors, e.g. "day-night" mirrors using a mirror angularly movable between a position of use and a non-glare position reflecting a dark field to the user, e.g. situated behind a transparent glass used as low-reflecting surface; Wedge-shaped mirrors
    • B60R1/087Anti-glare mirrors, e.g. "day-night" mirrors using a mirror angularly movable between a position of use and a non-glare position reflecting a dark field to the user, e.g. situated behind a transparent glass used as low-reflecting surface; Wedge-shaped mirrors with remote or automatic control means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes

Definitions

  • the embodiments of the present disclosure relate to, but are not limited to, the field of display technology, and in particular to an anti-glare display device, an anti-glare display method, and an interior rearview mirror.
  • the car is usually equipped with an on-board display screen, which is used to display vehicle instrument parameters to the occupants of the vehicle, or to display entertainment programs to the occupants of the vehicle.
  • the vehicle-mounted display screen is usually suspended on the dashboard of the vehicle, arranged on the right side of the cab, and the surface is basically flat with the plastic panel of the cab, and it is fixed.
  • the on-board display screen can easily reflect light. Especially in summer, the strong reflected light can easily dazzle the driver and cause the driver to lose sight of it. It is not conducive to driving safety to be clear about the content on the on-board display.
  • an anti-glare display device including: a sensor unit, a display unit, and an anti-glare unit located on the light-emitting side of the display unit, wherein
  • the anti-glare unit is configured to adjust the reflectivity of the incident ambient light and the transmittance of the image light emitted from the display unit in response to the light intensity of the ambient light sensed by the sensor unit.
  • the anti-glare unit includes: an anti-glare liquid crystal screen and a transflective film, the transflective film being located between the anti-glare liquid crystal screen and the display unit, the The anti-glare liquid crystal screen is configured to load a preset voltage at an initial moment in a balanced state with respect to the reflectance and the transmittance.
  • the sensor unit includes: a first photosensitive sensor, a second photosensitive sensor, and a first controller, wherein
  • the first photosensitive sensor is located on the light emitting side of the anti-glare unit
  • the second photosensitive sensor is located on a side of the display unit away from the semi-reflective and semi-permeable membrane;
  • the first controller is configured to control the voltage loaded on the anti-glare liquid crystal screen according to the light intensity sensed by the first photosensitive sensor and the light intensity sensed by the second photosensitive sensor to control the reflection Rate and transmittance.
  • the sensor unit includes: a third photosensitive sensor and a second controller, wherein
  • the third photosensitive sensor is located on the light emitting side of the anti-glare unit
  • the second controller is configured to control the voltage applied to the anti-glare liquid crystal screen according to the light intensity sensed by the third photosensitive sensor to control the reflectance and the transmittance.
  • the anti-glare liquid crystal screen is an advanced super dimensional field conversion technology liquid crystal display screen, and the anti-glare liquid crystal screen is configured to adjust the polarization state of incident light in response to a loaded voltage.
  • the display unit includes: a display panel, a first polarizer located on a side of the display panel away from the transflective film, and a first polarizer located near the display panel.
  • the anti-glare liquid crystal screen includes: a third polarizer located on the side of the liquid crystal molecules in the anti-glare liquid crystal screen away from the transflective film; wherein ,
  • the absorption axis of the first polarizer is orthogonal to the absorption axis of the second polarizer, the absorption axis of the second polarizer is orthogonal to the absorption axis of the third polarizer, and the half mirror
  • the transmission axis of the transparent film is orthogonal to the absorption axis of the second polarizer;
  • the display unit is composed of a display panel and a first polarizer located on the side of the display panel away from the transflective film; the anti-glare liquid crystal screen also includes: liquid crystal molecules located far away from the transflective film The third polarizer on one side of the film; wherein the absorption axis of the first polarizer and the absorption axis of the third polarizer are the same; the transmission axis of the semi-reflective film is the same as the absorption axis of the first polarizer .
  • the anti-glare liquid crystal screen further includes: a first substrate and a second substrate located on both sides of the liquid crystal molecules in the anti-glare liquid crystal screen;
  • the first substrate includes: a first electrode area, the first electrode area includes: a shielding electrode, and the shielding electrode is located on a side of the liquid crystal molecules away from the transflective film;
  • the second substrate includes: a second electrode area, and the second electrode area includes: stacked pixel electrodes, insulating layers, and common electrodes, wherein,
  • the pixel electrode is located on the side of the insulating layer close to the semi-reflective film, and the common electrode is located on the side of the insulating layer away from the semi-reflective film,
  • the pixel electrode is located on a side of the insulating layer away from the transflective film, and the common electrode is located on a side of the insulating layer close to the transflective film.
  • the anti-glare liquid crystal screen further includes a first area and a second area other than the first area, wherein,
  • the first area is configured to adjust the reflectivity of the incident ambient light in response to the light intensity of the ambient light sensed by the sensor unit;
  • the second area is configured to adjust the transmittance of the image light emitted by the display unit in response to the light intensity of the ambient light sensed by the sensor unit.
  • the anti-glare liquid crystal screen is a twisted nematic liquid crystal display, and the anti-glare liquid crystal screen is configured to adjust the polarization state of incident light in response to a loaded voltage.
  • the display unit includes: a display panel, a fourth polarizer located on a side of the display panel away from the transflective film, and a fourth polarizer located near the display panel.
  • the anti-glare liquid crystal screen further includes: a sixth polarizer on the side of the anti-glare liquid crystal screen where the liquid crystal molecules are away from the semi-reflective film; wherein ,
  • the absorption axis of the fourth polarizer is orthogonal to the absorption axis of the fifth polarizer, the absorption axis of the fifth polarizer is parallel to the absorption axis of the sixth polarizer, and the transmission axis of the semi-reflective film It is orthogonal to the absorption axis of the sixth polarizer;
  • the display unit is composed of a display panel and a fourth polarizer located on the side of the display panel away from the transflective film;
  • the anti-glare liquid crystal screen further includes: liquid crystals located in the anti-glare liquid crystal screen The sixth polarizer on the side of the molecule away from the semi-reflective semi-permeable film;
  • the absorption axis of the fourth polarizer is orthogonal to the absorption axis of the sixth polarizer
  • the transmission axis of the semi-reflective film is orthogonal to the absorption axis of the sixth polarizer.
  • the embodiments of the present disclosure provide an anti-glare display method using the anti-glare display device described in the foregoing embodiment, including:
  • the sensor unit senses ambient light and outputs light intensity
  • the anti-glare unit adjusts the reflectivity of the incident ambient light and the transmittance of the image light emitted from the display unit in response to the light intensity.
  • the anti-glare unit includes an anti-glare liquid crystal screen and a transflective film, and the transflective film is located between the anti-glare liquid crystal screen and the display unit; Before the sensor unit senses the ambient light and outputs the light intensity, the anti-glare display method further includes:
  • the anti-glare liquid crystal screen is loaded with a preset voltage in a balanced state with respect to the reflectance and the transmittance.
  • an embodiment of the present disclosure provides an interior rearview mirror, which includes the anti-glare display device described in the foregoing embodiment.
  • FIG. 1 is a schematic structural diagram of an anti-glare display device in an embodiment of the disclosure
  • 2a is a schematic diagram of an optical path of the anti-glare display device in an embodiment of the disclosure
  • 2b is a schematic diagram of another light path of the anti-glare display device in the embodiment of the disclosure.
  • FIG. 3 is a schematic diagram of the balance point of the anti-glare liquid crystal screen in an embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of a structure of an anti-glare liquid crystal screen in an embodiment of the disclosure.
  • FIG. 5 is a schematic diagram of another structure of the anti-glare liquid crystal screen in an embodiment of the disclosure.
  • FIG. 6 is a schematic diagram of light sensing of an anti-glare liquid crystal screen in an embodiment of the disclosure.
  • FIG. 7a is a schematic diagram of still another structure of the anti-glare liquid crystal screen in an embodiment of the disclosure.
  • FIG. 7b is a schematic diagram of another structure of the anti-glare liquid crystal screen in an embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of another structure of the anti-glare display device in an embodiment of the disclosure.
  • FIG. 9a is a schematic diagram of still another light path of the anti-glare display device in an embodiment of the disclosure.
  • FIG. 9b is a schematic diagram of another light path of the anti-glare display device in the embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of still another structure of the anti-glare display device in the embodiment of the disclosure.
  • FIG. 11a is a schematic diagram of a structure of an electrode of an anti-glare liquid crystal screen in an embodiment of the disclosure.
  • FIG. 11b is a schematic diagram of another structure of the electrode of the anti-glare liquid crystal screen in the embodiment of the disclosure.
  • FIG. 12 is a schematic diagram of another structure of the electrode of the anti-glare liquid crystal screen in the embodiment of the disclosure.
  • FIG. 13a is a schematic diagram of another structure of the anti-glare display device in an embodiment of the disclosure.
  • FIG. 13b is a schematic diagram of another structure of the anti-glare display device in the embodiment of the disclosure.
  • FIG. 14 is a flowchart of an anti-glare display method in an embodiment of the disclosure.
  • on may mean that one layer is directly formed or disposed on another layer, or may mean that one layer is formed or disposed indirectly There may be other layers on another layer, that is, between two layers.
  • the embodiment of the present disclosure provides an anti-glare display device, as shown in FIG. It is configured to adjust the reflectivity of the incident ambient light and the transmittance of the image light emitted from the display unit in response to the light intensity of the ambient light sensed by the sensor unit.
  • the light intensity of the ambient light is sensed according to the sensor unit, and the light path of the ambient light incident on the anti-glare unit and the image light emitted by the display unit is controlled by the anti-glare unit.
  • the reflectance is adjusted to reduce the reflection of the incident light from the environment, and the transmittance is adjusted to display the image light, thereby improving the driver's viewing experience and improving driving safety.
  • the anti-glare unit may include: an anti-glare liquid crystal screen 10 and a semi-reflective film 20, and the semi-reflective film 20 is located on the anti-glare liquid crystal screen 10.
  • display unit 30 the anti-glare liquid crystal screen 10 adjusts the polarization state of the incident light 40 and the polarization state of the image light 50 emitted by the display unit 30 in response to the voltage loaded on the anti-glare liquid crystal screen 10;
  • the semi-reflective film 20 is configured To reflect polarized light perpendicular to the transmission axis of the reflective semi-transparent film 20, or to transmit polarized light parallel to the transmission axis of the reflective semi-transparent film 20.
  • the anti-glare unit is configured to adjust the polarization state of incident ambient light by controlling the voltage loaded on the anti-glare liquid crystal screen according to the light intensity sensed by the sensor unit, and pass the semi-reflective film Adjust the reflection of the incident ambient light; in the same way, adjust the polarization state of the image light transmitted from the semi-reflective film by controlling the voltage loaded on the anti-glare LCD screen, so as to realize the anti-glare function and display function.
  • the light path control of the anti-glare display device will be described in the following two extreme situations presented by the anti-glare unit, that is, the light path conditions of the anti-glare unit in the anti-glare state and in the display state.
  • the ambient light 40 is incident from the anti-glare liquid crystal screen 10 of the anti-glare display device.
  • the anti-glare liquid crystal screen 10 uses the selective reflection and transmission characteristics of the semi-reflective film 20, the anti-glare liquid crystal screen 10 responds The voltage applied to it adjusts the polarization state of the incident light 40, and adjusts the incident light 40 to the first polarized light perpendicular to the transmission axis of the transflective film 20, and the first polarized light is transflected and transflected.
  • the film 20 reflects and exits through the anti-glare liquid crystal screen 10, that is, by controlling the reflectivity of the anti-glare unit, the light intensity of the incident ambient light is reduced, thereby realizing the anti-glare function; moreover, the anti-glare liquid crystal screen 10 can absorb the half mirror The image light 50 emitted by the display unit 30 transmitted by the transparent film 20.
  • the ambient light 40 is incident from the anti-glare liquid crystal screen 10 of the anti-glare display device.
  • the anti-glare liquid crystal screen 10 responds to The voltage applied to it adjusts the polarization state of the incident light 40, and adjusts the incident light 40 to the second polarized light perpendicular to the transmission axis of the semi-reflective film 20, and the second polarized light is from the semi-reflective film 20 is transmitted into the display unit 30 and absorbed by the display unit 30; at the same time, the image light 50 emitted from the display unit 30 transmitted by the semi-reflective film 20 enters the anti-glare liquid crystal screen 10, and the anti-glare liquid crystal screen 10 responds to loading on it The voltage on the image light adjusts the polarization state of the image light and emits the image light, that is, the transmission of the image light is realized by controlling the transmittance of the anti-glare unit,
  • the reflectance and transmittance of the anti-glare unit can be adjusted at the same time. Controlling the voltage applied to the anti-glare unit will affect the reflectance and transmittance of the anti-glare unit. For example, FIG.
  • FIG. 3 is a schematic diagram of controlling the influence of the voltage loaded on the anti-glare unit on the reflectance and transmittance of the anti-glare unit in an exemplary embodiment, wherein when the voltage loaded on the anti-glare unit gradually increases , The reflectivity presents a decreasing trend, and the transmittance presents an increasing trend; and, after testing under a normal environment, it is found that there is a balance point between the reflectance change curve and the transmittance change curve, and the reflectance and transmittance show a balance point The best anti-glare function and transmission function.
  • the anti-glare unit may include: an anti-glare liquid crystal screen and a transflective film, wherein the transflective film is located between the anti-glare liquid crystal screen and the display unit, and the anti-glare liquid crystal screen is configured In order to load the preset voltage at the initial moment, it is in a balanced state with respect to reflectance and transmittance.
  • the control voltage corresponding to the balance point of the reflectivity and the transmittance is set as a preset voltage.
  • the preset voltage is loaded to make the anti-glare LCD screen in a balanced state, that is, the anti-glare LCD screen is set to show the best anti-glare function and transmission function in a normal environment.
  • the anti-glare LCD screen shown in FIG. 3 is still taken as an example for description.
  • the voltage loaded on the anti-glare LCD screen can be increased.
  • the voltage loaded on the anti-glare LCD screen can be reduced to reduce the transmittance. Therefore, the voltage applied to the anti-glare LCD screen at the initial moment is set to the balance point voltage where the reflectance and transmittance are relatively balanced, and the reflectance and transmittance can be fine-tuned by adjusting the voltage loaded on the anti-glare LCD screen.
  • the initial time in the embodiment of the present disclosure is not limited to a specific time point, it can be the time when the anti-glare display device is turned on, or can be set in the case of mode conversion, for example, the anti-glare display device is set to a pure display mode or set to Pure reflection mode, or set to automatic adjustment mode, etc.
  • the present disclosure does not limit this.
  • Those skilled in the art can select the appropriate initial time and the voltage loaded on the anti-glare LCD screen according to actual application requirements to achieve proper reflection. Rate and transmittance are the design criteria, so I won’t repeat them here.
  • the sensor unit may include: a first photosensitive sensor 81, a second photosensitive sensor 82, and a first controller, wherein the first photosensitive sensor 81 is located at the light output of the anti-glare unit Side; the second photosensitive sensor 82 is located on the side of the display unit 30 away from the transflective film 20; the first controller is configured to be based on the light intensity sensed by the first photosensitive sensor 81 and the light sensed by the second photosensitive sensor 82 Intensity, the voltage loaded on the anti-glare LCD screen 10 is controlled to control the reflectance and transmittance.
  • a voltage is applied to the anti-glare liquid crystal screen 10, for example, increasing the voltage loaded on the anti-glare liquid crystal screen 10 reduces the reflectivity, thereby reducing The glare effect caused by the strong light intensity of the reflected light.
  • the sensor unit may include: a third photosensitive sensor 83 and a second controller, wherein the third photosensitive sensor 83 is located on the light emitting side of the anti-glare unit;
  • the device is configured to control the voltage applied to the anti-glare liquid crystal screen 10 according to the light intensity sensed by the third photosensitive sensor 83 to control the reflectance and transmittance.
  • a photosensitive sensor is used to continuously collect the light intensity of light, so as to obtain a waveform diagram of the light intensity and time.
  • the third photosensitive sensor 83 senses the light intensity during the T1 period.
  • the measured first light intensity is L0
  • the second light intensity sensed by the third photosensitive sensor 83 during the T2 period is L1.
  • the anti-glare design can be performed according to the first light intensity L0 and the second light intensity L1.
  • the anti-glare design can be performed according to the difference between the first light intensity L0 and the second light intensity L1.
  • the difference is greater than the preset difference threshold and the difference is positive, the voltage loaded on the anti-glare LCD screen can be increased; or, when the difference is greater than the preset difference threshold and the difference is negative, then Can reduce the voltage loaded on the anti-glare LCD screen.
  • the anti-glare design may be performed according to the ratio of the first light intensity L0 to the second light intensity L1.
  • the ratio is greater than the preset ratio threshold, the voltage loaded on the anti-glare LCD screen can be increased; or, when the ratio is not greater than the preset ratio threshold, the voltage loaded on the anti-glare LCD screen can be reduced.
  • the present disclosure does not limit this.
  • Those skilled in the art can choose an appropriate method to measure the change in the light intensity of the ambient light according to actual application requirements, and adjust the voltage loaded on the anti-glare LCD screen according to the change to achieve anti-glare Functions and display functions are not repeated here.
  • the anti-glare liquid crystal screen may be an advanced super dimensional field conversion technology liquid crystal display screen, and the anti-glare liquid crystal screen is configured to adjust the polarization state of incident light in response to the applied voltage.
  • the anti-glare LCD screen with advanced super-dimensional field conversion technology can be used with the semi-reflective film to complete the control of the light path, thereby realizing the anti-glare function and the display function.
  • the display panel may be a color liquid crystal display screen with advanced super dimensional field conversion technology
  • the anti-glare liquid crystal screen may be a black and white liquid crystal display screen with advanced super dimensional field conversion technology.
  • the advanced super-dimensional field conversion technology black-and-white liquid crystal display is configured to present different states in response to the loaded different voltages of the liquid crystal molecules. For example, two extreme situations presented by the anti-glare unit are described: as shown in FIG. 7a, when the voltage applied to the first electrode 121 and the second electrode 123 of the anti-glare liquid crystal screen 10 is 0V, the The liquid crystal molecules 122 are in the normal state and do not change the polarization state of the incident light; as shown in FIG.
  • the anti-glare LCD screen 10 when the voltage applied to the first electrode 121 and the second electrode 123 of the anti-glare LCD screen 10 is 5V, the anti-glare LCD screen 10
  • the liquid crystal molecules 122 are in a twisted angle state, which can change the polarization state of incident light.
  • the display unit 30 may include: a display panel 32, a first polarizer 31 located on the side of the display panel 32 away from the transflective film 20, and a display panel
  • the anti-glare liquid crystal screen 10 may also include: a third polarizer located on the side of the liquid crystal molecules in the anti-glare liquid crystal screen 10 away from the transflective film 20 Sheet 11; wherein the absorption axis of the first polarizer 31 and the absorption axis of the second polarizer 32 are orthogonal, the absorption axis of the second polarizer 32 and the absorption axis of the third polarizer 11 are orthogonal, semi-reflective and semi-transparent film
  • the transmission axis of 20 is orthogonal to the absorption axis of the second polarizer 32.
  • the absorption axis of the first polarizer 31 may be 90 degrees, that is, it absorbs light with a polarization state of 90 degrees; the absorption axis of the second polarizer 33 may be 0 degrees, that is, the absorption polarization state is 0 degree light; the absorption axis of the third polarizer 11 can be 90 degrees, that is, it absorbs light with a polarization state of 90 degrees; the transmission axis of the semi-reflective film 20 can be 90 degrees, that is, the transmission polarization state is 90 Degrees of light.
  • the first polarizer, the second polarizer, the anti-glare liquid crystal screen, the third polarizer, and the semi-reflective film can be used to realize the control of the light path.
  • the embodiment of the present disclosure does not limit the degree of the absorption axis of the first polarizer, the degree of the absorption axis of the second polarizer, the degree of the absorption axis of the third polarizer, and the degree of the transmission axis of the transflective film.
  • Those skilled in the art can set according to actual application requirements to meet the light path control of the anti-glare display device as a design criterion, which will not be repeated here.
  • two extreme situations still presented by the anti-glare unit are used to illustrate the light path control of the anti-glare display device, that is, the light path conditions of the anti-glare unit in the anti-glare state and in the display state.
  • the ambient light 40 is incident from the anti-glare liquid crystal screen 10 of the anti-glare display device.
  • the polarizer absorbs light parallel to its absorption axis and transmits light perpendicular to its absorption axis.
  • the absorption axis of the third polarizer 11 can be 90 degrees, and the third polarizer 11 can absorb the vertical light of the ambient light 40 and transmit the horizontal light of the ambient light 40.
  • the anti-glare LCD screen 10 can adjust the polarization state of the incident ambient light 40 to the polarized light perpendicular to the transmission axis of the transflective film 20, and considering the characteristics of the anti-glare LCD screen, it can be loaded on the anti-glare liquid crystal
  • the voltage of the screen is set to 0 voltage, that is, the polarization state of the horizontal light is not changed, and the first polarized light output is horizontal light.
  • the transmission axis of the semi-reflective film 20 can be 90 degrees.
  • the first polarized light is horizontal light
  • the semi-reflective film has a reflective function. Reflect horizontal light.
  • the horizontal light passes through the anti-glare liquid crystal screen 12 again, and the polarization state is unchanged. At this time, since the absorption axis of the third polarizer 11 is 90 degrees, the horizontal light can exit through the third polarizer 11.
  • the image light 50 displayed by the display unit 30 enters the second polarizer 33, and the absorption axis of the second polarizer 33 may be 0 degrees, then the horizontal light of the image light 50 is absorbed and the vertical light of the image light 50 is transmitted.
  • the transmission axis of the semi-reflective film 20 may be 90 degrees, and the vertical light of the image light 50 is transmitted from the semi-reflective film 20 to the anti-glare liquid crystal screen 10.
  • the anti-glare liquid crystal screen 10 is loaded with zero voltage, and the polarization state of the vertical light of the image light 50 is not changed. At this time, since the absorption axis of the third polarizer 11 is 90 degrees and absorbs the vertical light of the image light 50, the image light 50 cannot be emitted from the anti-glare liquid crystal panel.
  • the reflectivity of the anti-glare unit can be reduced to realize the anti-glare function.
  • the ambient light 40 is incident from the anti-glare liquid crystal screen 10 of the anti-glare display device.
  • the absorption axis of the third polarizer 11 may be 90 degrees, and the third polarizer 11 absorbs the vertical light of the ambient light 40 and transmits the horizontal light of the ambient light 40.
  • the voltage applied to the anti-glare liquid crystal screen 10 can be adjusted Set to 5V, that is, to change the polarization state of the horizontal light, and the output first polarized light is vertical light.
  • the transmission axis of the semi-reflective film 20 can be 90 degrees. According to the selective reflection and transmission characteristics of the semi-reflective film 20, the first polarized light is horizontal light, and the semi-reflective film has a transmission function. Transmits vertical light.
  • the absorption axis of the second polarizer 33 may be 0 degrees and transmit vertical light. Then the vertical light passes through the display panel to the first polarizer.
  • the absorption axis of the first polarizer may be 90 degrees, and if the vertical light is absorbed, the ambient light incident on the anti-glare display device is completely absorbed.
  • the image light 50 displayed by the display unit 30 enters the second polarizer 33, and the absorption axis of the second polarizer 33 may be 0 degrees, and the horizontal light that absorbs the image light 50 transmits the vertical light.
  • the transmission axis of the semi-reflective film 20 may be 90 degrees, and the vertical light of the image light 50 is transmitted from the semi-reflective film 20 to the anti-glare liquid crystal screen 10.
  • the anti-glare liquid crystal screen 10 is loaded with a voltage of 5V to change the polarization state of the vertical light of the image light 50 to horizontal light.
  • the absorption axis of the third polarizer 11 is 90 degrees, the horizontal light of the image light 50 is transmitted, and the image light 50 is emitted from the anti-glare liquid crystal screen.
  • the transmittance of the anti-glare unit is adjusted by controlling the voltage loaded on the anti-glare liquid crystal screen to realize the display function.
  • the display unit 30 may be displayed
  • the panel 32 and the first polarizer 31 located on the side of the display panel 32 away from the transflective film 20 are composed;
  • the anti-glare liquid crystal screen 10 may also include: liquid crystal molecules located in the anti-glare liquid crystal screen 10 away from the transflective film
  • the third polarizer 11 on the side 20 wherein the absorption axis of the first polarizer 31 and the absorption axis of the third polarizer 11 are the same; the transmission axis of the semi-reflective film 20 is the same as the absorption axis of the first polarizer 31 same.
  • the selective reflection and transmission characteristics of the semi-reflective semi-transmissive film are fully utilized. Since the absorption axis of the second polarizer is orthogonal to the transmission axis of the semi-reflective semi-transparent film, the second polarizer can be omitted.
  • the image light 50 displayed by the display unit 30 enters the semi-reflective semi-transparent film 20. Since the transmission axis of the semi-reflective semi-transparent film 20 is 90 degrees, the vertical light in the image light 50 is transmitted from the semi-reflective semi-transparent film 20 to Anti-glare LCD screen 10. That is, among the image light emitted from the display panel, only light parallel to the transmission axis of the semi-reflective film can be transmitted. Therefore, the function of the second polarizer can be realized by the semi-reflective film, and the second polarizer can be omitted. In order to reduce the process cost and device cost of the anti-glare display device.
  • the anti-glare liquid crystal screen may include: a first substrate and a second substrate located on both sides of the liquid crystal molecules of the anti-glare liquid crystal screen; the first substrate may include The first electrode area on the first substrate.
  • the first electrode area may include a shielding electrode 121, which may be located on the side of the liquid crystal molecules away from the transflective film;
  • the second substrate may include a second electrode located on the first substrate Area, the second electrode area 123 may include: stacked pixel electrodes 1232, an insulating layer, and a common electrode 123, wherein the pixel electrode is located on the side of the insulating layer close to the transflective film, and the common electrode is located on the insulating layer away from the half transflective film.
  • the shielding electrode 121 is used to protect the liquid crystal molecules from static electricity.
  • the liquid crystal molecules control the twist angle through the lateral electrodes located on the lower substrate; as shown in FIG. 11b, the second The electrode area 123 may include a common electrode 1231 and a pixel electrode 1232, wherein the common electrode 1231 is farther away from the transflective film than the pixel electrode 1232, and the anti-glare liquid crystal screen is configured to respond to the load on the common electrode 1231 and the pixel electrode 1232.
  • the voltage adjusts the twist angle of the liquid crystal molecules to adjust the polarization state of incident light.
  • the anti-glare liquid crystal screen may include a first substrate and a second substrate located on both sides of its liquid crystal molecules; the first substrate may include The first electrode area on the first substrate, the first electrode area may include a shielding electrode, and the shielding electrode is located on the side of the liquid crystal molecules away from the transflective film; the second substrate may include a second electrode area on the second substrate, The second electrode region may include a stacked pixel electrode, an insulating layer and a common electrode, wherein the pixel electrode is located on the side of the insulating layer away from the transflective film, and the common electrode is located on the side of the insulating layer close to the transflective film.
  • the first electrode area includes a shielding electrode; as shown in FIG. 12, the second electrode area 123 may include a common electrode 1231 and a pixel electrode 1232, wherein the common electrode 1231 is closer to the half mirror than the pixel electrode 1232.
  • Semi-permeable film which saves one exposure, etching and development steps in the production process, thereby effectively simplifying the production process and reducing production costs; the anti-glare LCD screen is configured to adjust in response to the voltage loaded on the common electrode 1231 and the pixel electrode 1232 The twist angle of the liquid crystal molecules is used to adjust the polarization state of the incident light.
  • the anti-glare liquid crystal screen may include a first area and a second area other than the first area, where the first area, It is configured to adjust the reflectivity of the incident ambient light in response to the light intensity of the ambient light sensed by the sensor unit; the second area is configured to adjust the image light emitted to the display unit in response to the light intensity of the ambient light sensed by the sensor unit The transmittance.
  • the anti-glare LCD screen is divided into a first zone and a second zone.
  • the first zone is responsive to the sensor unit.
  • the measured light intensity of the ambient light adjusts the reflectance of the incident ambient light, so that the second area adjusts the transmittance of the image light emitted by the display unit in response to the light intensity of the ambient light sensed by the sensor unit.
  • the distribution ratio of the first zone and the second zone is not limited, and those skilled in the art can set it according to actual application requirements, which will not be repeated here.
  • the anti-glare liquid crystal screen may be a twisted nematic liquid crystal display screen, and the anti-glare liquid crystal screen is configured to adjust the polarization state of incident light in response to the applied voltage.
  • the twisted nematic liquid crystal display screen is used with the semi-reflective semi-transparent film to complete the control of the light path, thereby realizing the anti-glare function and the display function.
  • the display unit 70 includes a display panel, a fourth polarizer 71 located on the side of the display panel away from the transflective film, and a fourth polarizer 71 located near the half of the display panel.
  • the fifth polarizer 73 on the side of the transflective film; the anti-glare liquid crystal screen 60 may also include: a sixth polarizer 61 on the side of the liquid crystal molecules of the anti-glare liquid crystal screen 60 away from the transflective film;
  • the absorption axis of the polarizer 71 is orthogonal to the absorption axis of the fifth polarizer 73, the absorption axis of the fifth polarizer 73 and the absorption axis of the sixth polarizer 61 are parallel, and the transmission axis of the semi-reflective film 20 is parallel to that of the sixth polarizer.
  • the absorption axis of the polarizer is orthogonal.
  • the display unit 70 may be a liquid crystal display, including: a fourth polarizer 71, a liquid crystal display panel 72, a fifth polarizer 73 and a backlight 74; the anti-glare liquid crystal screen 60 may include a sixth polarizer 61.
  • the anti-glare liquid crystal screen 60 is configured to respond to different voltages applied to the liquid crystal molecules to present different states: as shown in Figure 13a, when the voltage applied to the anti-glare liquid crystal screen 60 is 0V, the liquid crystal molecules are parallel to the substrate and change the polarization of the incident light. As shown in FIG. 13b, when an electric field is formed when a certain voltage is applied to the anti-glare liquid crystal screen 60, the liquid crystal molecules are aligned along the direction of the electric field, and the polarization state of the incident light is not changed.
  • the absorption axis of the fourth polarizer 71 may be 0 degrees
  • the absorption axis of the fifth polarizer 73 may be 90 degrees
  • the absorption axis of the sixth polarizer 61 may be 90 degrees.
  • the transmission axis of the semipermeable membrane 20 may be 0 degrees.
  • the embodiment of the present disclosure does not limit the degree of the absorption axis of the fourth polarizer, the degree of the absorption axis of the fifth polarizer, the degree of the absorption axis of the sixth polarizer, and the degree of the transmission axis of the semi-reflective film.
  • Those skilled in the art can set according to actual application requirements to meet the light path control of the anti-glare display device as a design criterion, which will not be repeated here.
  • the twisted nematic liquid crystal display screen presents different states in response to the loaded different voltages of the liquid crystal molecules, and the two extreme conditions presented by the anti-glare unit are still used for explanation:
  • the ambient light 40 is incident from the anti-glare liquid crystal screen 60 of the anti-glare display device.
  • the polarizer absorbs light parallel to its absorption axis and transmits light perpendicular to its absorption axis.
  • the absorption axis of the sixth polarizer 61 may be 90 degrees, and the sixth polarizer 61 may absorb the vertical light of the ambient light 40 and transmit the horizontal light of the ambient light 40.
  • the anti-glare liquid crystal screen 60 adjusts the polarization state of the incident ambient light 40 to the polarized light perpendicular to the transmission axis of the transflective film 20, and considering the characteristics of the anti-glare liquid crystal screen, it can be loaded on the anti-glare liquid crystal screen
  • the voltage of is set to 0 voltage, that is, the polarization state of the horizontal light is changed, and the first polarized light output is vertical light.
  • the transmission axis of the semi-reflective film 20 can be 0 degrees. According to the selective reflection and transmission characteristics of the semi-reflective film 20, the first polarized light is vertical light and the semi-reflective film has a reflective function. Vertical light.
  • the vertical light passes through the anti-glare LCD screen again, and the polarization state changes to horizontal light.
  • the absorption axis of the sixth polarizer 61 is 90 degrees, the horizontal light exits through the sixth polarizer 61.
  • the image light 50 displayed by the display unit 70 enters the fifth polarizer 73, and the absorption axis of the fifth polarizer 73 is 90 degrees, and the vertical light that absorbs the image light 50 transmits horizontal light.
  • the transmission axis of the semi-reflective film 20 may be 0 degrees, and the horizontal light of the image light 50 is transmitted from the semi-reflective film 20 to the anti-glare liquid crystal screen 60.
  • Zero voltage can be applied to the anti-glare liquid crystal screen 60 to change the polarization state of the horizontal light of the image light 50 to vertical light.
  • the absorption axis of the sixth polarizer 61 may be 90 degrees, and absorb the vertical light of the image light 50, and the image light 50 cannot be emitted from the anti-glare liquid crystal screen.
  • the ambient light 40 is incident from the anti-glare liquid crystal screen 60 of the anti-glare display device.
  • the absorption axis of the sixth polarizer 61 may be 90 degrees, and the sixth polarizer 61 absorbs the vertical light of the ambient light 40 and transmits the horizontal light of the ambient light 40.
  • the anti-glare liquid crystal screen 60 adjusts the polarization state of the incident ambient light 40 to polarized light parallel to the transmission axis of the transflective film 20, and considering the characteristics of the anti-glare liquid crystal screen, it can be loaded on the anti-glare liquid crystal screen
  • the voltage of is set to a certain voltage and an electric field is formed.
  • the liquid crystal molecules are arranged along the direction of the electric field, that is, the polarization state of the horizontal light is not changed, and the output first polarized light is horizontal light.
  • the transmission axis of the semi-reflective film 20 can be 0 degrees. According to the selective reflection and transmission characteristics of the semi-reflective film 20, the first polarized light is horizontal light and the semi-reflective film has a transmission function. Horizontal light.
  • the absorption axis of the fifth polarizer 73 may be 90 degrees and transmit horizontal light.
  • the horizontal light passes through the display panel to the fourth polarizer.
  • the absorption axis of the fourth polarizer may be 0 degrees, and if it absorbs horizontal light, the ambient light incident on the anti-glare display device is completely absorbed.
  • the image light 50 displayed by the display unit 70 enters the fifth polarizer 73, and the absorption axis of the fifth polarizer 73 is 90 degrees, and the vertical light that absorbs the image light 50 transmits horizontal light.
  • the transmission axis of the semi-reflective film 20 may be 0 degrees, and the horizontal light of the image light 50 is transmitted from the semi-reflective film 20 to the anti-glare liquid crystal screen 60.
  • a certain voltage can be applied to the anti-glare liquid crystal screen 60 to form an electric field, and the liquid crystal molecules are arranged along the direction of the electric field without changing the polarization state of the horizontal light of the image light 50.
  • the absorption axis of the sixth polarizer 61 may be 90 degrees, and transmit the horizontal light of the image light 50, and the image light 50 is emitted from the anti-glare liquid crystal screen 60.
  • the image light 50 passes through the semi-reflective film 20 and the anti-glare liquid crystal screen 60, and exits from the anti-glare liquid crystal screen 60 to realize the display function; moreover, since the sixth polarizer 11 of the anti-glare liquid crystal screen 60 absorbs the incident For the vertical light of the ambient light 40, the third polarizer 71 of the display unit absorbs the remaining incident ambient light, and will not affect the emitted image light.
  • the display unit may be composed of a display panel and a display panel located far away from the display panel.
  • the anti-glare liquid crystal screen can also include a sixth polarizer on the side of its liquid crystal molecules away from the semi-reflective film; wherein the absorption axis of the fourth polarizer and the sixth polarizer The absorption axis of the polarizer is orthogonal, and the transmission axis of the semi-reflective film is orthogonal to the absorption axis of the sixth polarizer.
  • the selective reflection and transmission characteristics of the semi-reflective film are fully utilized. Since the absorption axis of the fifth polarizer is orthogonal to the transmission axis of the semi-reflective film, the fifth polarizer is omitted.
  • the image light 50 displayed by the display unit 70 enters the semi-reflective semi-transparent film 20, and since the transmission axis of the semi-reflective semi-transparent film 20 is 0 degrees, the vertical light in the image light 50 is transmitted from the semi-reflective semi-transparent film 20 to Anti-glare LCD screen 60. That is, among the image light emitted by the display panel, only light parallel to the transmission axis of the semi-reflective film can be transmitted. Therefore, the function of the fifth polarizer can be realized by using the semi-reflective film, and the fifth polarizer can be omitted to reduce the resistance.
  • the process cost and device cost of the dazzling display device are examples of the dazzling display device.
  • an embodiment of the present disclosure further provides an in-vehicle rearview mirror including the above-mentioned anti-glare display device.
  • the vehicle interior rearview mirror includes the above-mentioned anti-glare display device, the light intensity of the ambient light is sensed by the sensor unit in the anti-glare display device, and the light intensity of the ambient light is sensed by the anti-glare unit.
  • the light and the image light emitted by the display unit are controlled by the light path, and the reflectance can be adjusted to reduce the reflection of the environmental incident light according to the detected ambient light in the case of ambient light glare, and the transmittance can be adjusted to display the image light, thereby improving driving The viewing experience of the driver and improve driving safety.
  • an embodiment of the present disclosure also provides an anti-glare display method using the above-mentioned anti-glare display device.
  • the anti-glare display device provided in the embodiment corresponds to the anti-glare display device provided in the embodiment. Therefore, the previous implementation manner is also applicable to the anti-glare display method provided in this embodiment.
  • the embodiment of the present disclosure will not be described in detail.
  • an embodiment of the present disclosure also provides an anti-glare display method using the above-mentioned anti-glare display device.
  • the anti-glare display method may include: a sensor unit senses ambient light and outputs light intensity; and the anti-glare unit responds to The light intensity adjusts the reflectivity of the incident ambient light and adjusts the transmittance of the image light emitted from the display unit.
  • the light intensity of the ambient light is sensed by the sensor unit, and the light path of the ambient light incident on the anti-glare unit and the image light emitted by the display unit is controlled by the anti-glare unit, so that the reflectance can be adjusted to reduce the glare of the ambient light.
  • the reflection of incident light from the environment adjusts the transmittance to display the image light, thereby improving the driver's viewing experience and improving driving safety.
  • the anti-glare unit may include an anti-glare liquid crystal screen and a transflective film.
  • the transflective film is located between the anti-glare liquid crystal screen and the display unit. Then, the sensor unit senses the environment Before the light and output the light intensity, the anti-glare display method may further include: loading the anti-glare liquid crystal screen with a preset voltage to be in a balanced state with respect to reflectance and transmittance.
  • the control voltage corresponding to the balance point of the reflectance and transmittance is set as the preset voltage, and the load is applied when the anti-glare LCD screen is at the initial moment.
  • the preset voltage makes the anti-glare LCD screen in a balanced state, that is, the anti-glare LCD screen is set to show the best anti-glare function and transmission function in a normal environment.
  • the reflectivity of the anti-glare unit can be adjusted according to the light intensity of the ambient light to reduce the incidence of ambient light.
  • Light intensity so as to realize the anti-glare function; and adjust the transmittance of the anti-glare unit to transmit the image light emitted by the display unit to realize the display function; it can make up for the problems in the prior art and effectively improve the driver’s viewing experience. Furthermore, driving safety is improved, and it has a wide range of application prospects.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种防眩显示装置,包括传感器单元、显示单元和位于显示单元出光侧的防眩单元,防眩单元配置为响应于传感器单元感测的环境光的光线强度调整对入射环境光的反射率,以及调整对显示单元出射的图像光的透射率。一种防眩显示方法和车内后视镜也被公开。

Description

防眩显示装置、防眩显示方法和车内后视镜
本申请要求于2020年04月30日提交中国专利局、申请号为202010367834.1、发明名称为“一种防眩显示装置、防眩显示方法和车内后视镜”的中国专利申请的优先权,其内容应理解为通过引用的方式并入本申请中。
技术领域
本公开实施例涉及但不限于显示技术领域,尤其涉及一种防眩显示装置、防眩显示方法和车内后视镜。
背景技术
目前,为了提高用车方便及使用的舒适性,汽车上通常设置有车载显示屏,车载显示屏用于向车内人员显示车辆仪表参数,或者用于向车内人员显示娱乐节目。通常,车载显示屏通常悬浮设置在车辆的仪表台上,设置在驾驶室的右侧,表面与驾驶室塑料面板基本持平,且固定不动。在日常使用车辆的过程中,无论车载显示屏处于开启或者关闭状态,车载显示屏都很容易反射光线,尤其在夏季,较强的反射光线极易使驾驶员眩目,进而导致驾驶员看不清楚车载显示屏上的内容,不利于行车安全。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
第一方面,本公开实施例提供一种防眩显示装置,包括:传感器单元、显示单元和位于所述显示单元出光侧的防眩单元,其中
所述防眩单元,配置为响应于所述传感器单元感测的环境光的光线强度,调整对入射环境光的反射率,以及调整对所述显示单元出射的图像光的透射率。
在一种示例性实施例中,所述防眩单元,包括:防眩液晶屏和半反半透膜,所述半反半透膜位于所述防眩液晶屏和显示单元之间,所述防眩液晶屏 配置为在初始时刻加载预设电压处于对所述反射率和所述透射率的平衡态。
在一种示例性实施例中,所述传感器单元,包括:第一感光传感器、第二感光传感器以及第一控制器,其中
所述第一感光传感器位于所述防眩单元的出光侧;
所述第二感光传感器位于所述显示单元远离所述半反半透膜的一侧;
所述第一控制器,配置为根据所述第一感光传感器感测的光线强度和第二感光传感器感测的光线强度,控制加载在所述防眩液晶屏上的电压,以控制所述反射率和透射率。
在一种示例性实施例中,所述传感器单元,包括:第三感光传感器和第二控制器,其中
所述第三感光传感器位于所述防眩单元的出光侧;
所述第二控制器,配置为根据所述第三感光传感器感测的光线强度控制加载在所述防眩液晶屏的电压以控制所述反射率和所述透射率。
在一种示例性实施例中,所述防眩液晶屏为高级超维场转换技术液晶显示屏,所述防眩液晶屏,配置为响应于加载的电压调整入射光的偏振态。
在一种示例性实施例中,所述显示单元,包括:显示面板、位于所述显示面板的远离所述半反半透膜一侧的第一偏光片、以及位于所述显示面板靠近所述半反半透膜一侧的第二偏光片;所述防眩液晶屏,包括:位于所述防眩液晶屏中液晶分子的远离所述半反半透膜一侧的第三偏光片;其中,所述第一偏光片的吸收轴和所述第二偏光片的吸收轴正交,所述第二偏光片的吸收轴和所述第三偏光片的吸收轴正交,所述半反半透膜的透过轴与第二偏光片的吸收轴正交;
或者,
所述显示单元由显示面板和位于所述显示面板远离所述半反半透膜一侧的第一偏光片组成;所述防眩液晶屏还包括:位于其液晶分子远离所述半反半透膜一侧的第三偏光片;其中,所述第一偏光片的吸收轴和第三偏光片的吸收轴相同;所述半反半透膜的透过轴与第一偏光片的吸收轴相同。
在一种示例性实施例中,所述防眩液晶屏,还包括:位于所述防眩液晶 屏中液晶分子两侧的第一基板和第二基板;
所述第一基板包括:第一电极区域,所述第一电极区域包括:屏蔽电极,所述屏蔽电极位于所述液晶分子远离所述半反半透膜的一侧;
所述第二基板包括:第二电极区域,所述第二电极区域包括:层叠设置的像素电极、绝缘层和公共电极,其中,
所述像素电极位于所述绝缘层的靠近所述半反半透膜的一侧,所述公共电极位于所述绝缘层的远离所述半反半透膜的一侧,
或者,
所述像素电极位于所述绝缘层的远离所述半反半透膜的一侧,所述公共电极位于所述绝缘层的靠近所述半反半透膜的一侧。
在一种示例性实施例中,所述防眩液晶屏,还包括第一区和除所述第一区以外的第二区,其中,
所述第一区,配置为响应于所述传感器单元感测的环境光的光线强度调整对入射环境光的反射率;
所述第二区,配置为响应于所述传感器单元感测的环境光的光线强度调整对所述显示单元出射的图像光的透射率。
在一种示例性实施例中,所述防眩液晶屏为扭曲向列型液晶显示屏,所述防眩液晶屏,配置为响应于加载的电压调整入射光的偏振态。
在一种示例性实施例中,所述显示单元包括:显示面板、位于所述显示面板的远离所述半反半透膜一侧的第四偏光片、以及位于所述显示面板的靠近所述半反半透膜一侧的第五偏光片;所述防眩液晶屏,还包括:位于所述防眩液晶屏中液晶分子远离所述半反半透膜一侧的第六偏光片;其中,
所述第四偏光片的吸收轴和第五偏光片的吸收轴正交,所述第五偏光片的吸收轴和第六偏光片的吸收轴平行,所述半反半透膜的透过轴与第六偏光片的吸收轴正交;
或者,
所述显示单元由显示面板和位于所述显示面板的远离所述半反半透膜一 侧的第四偏光片组成;所述防眩液晶屏,还包括:位于所述防眩液晶屏中液晶分子远离所述半反半透膜一侧的第六偏光片;其中,
所述第四偏光片的吸收轴和第六偏光片的吸收轴正交,
所述半反半透膜的透过轴与第六偏光片的吸收轴正交。
第二方面,本公开实施例提供一种利用上述实施例所述的防眩显示装置的防眩显示方法,包括:
传感器单元感测环境光并输出光线强度;
防眩单元响应于所述光线强度,调整对入射环境光的反射率,以及调整对显示单元出射的图像光的透射率。
在一种示例性实施例中,所述防眩单元,包括防眩液晶屏和半反半透膜,所述半反半透膜位于所述防眩液晶屏和显示单元之间;在所述传感器单元感测环境光并输出光线强度之前,所述防眩显示方法还包括:
所述防眩液晶屏加载预设电压处于对所述反射率和所述透射率的平衡态。
第三方面,本公开实施例提供一种车内后视镜,包括:上述实施例所述的防眩显示装置。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例中的防眩显示装置的结构示意图;
图2a为本公开实施例中的防眩显示装置的一种光路示意图;
图2b为本公开实施例中的防眩显示装置的另一种光路示意图;
图3为本公开实施例中的防眩液晶屏的平衡点示意图;
图4为本公开实施例中的防眩液晶屏的一种结构示意图;
图5为本公开实施例中的防眩液晶屏的另一种结构示意图;
图6为本公开实施例中的防眩液晶屏的感光示意图;
图7a为本公开实施例中的防眩液晶屏的再一种结构示意图;
图7b为本公开实施例中的防眩液晶屏的又一种结构示意图;
图8为本公开实施例中的防眩显示装置的另一种结构示意图;
图9a为本公开实施例中的防眩显示装置的再一种光路示意图;
图9b为本公开实施例中的防眩显示装置的又一种光路示意图;
图10为本公开的实施例中的防眩显示装置的再一种结构示意图;
图11a为本公开实施例中的防眩液晶屏的电极的一种结构示意图;
图11b为本公开实施例中的防眩液晶屏的电极的另一种结构示意图;
图12为本公开实施例中的防眩液晶屏的电极的再一种结构示意图;
图13a为本公开的实施例中的防眩显示装置的又一种结构示意图;
图13b为本公开的实施例中的防眩显示装置的又一种结构示意图;
图14为本公开实施例中的防眩显示方法的流程图。
具体实施方式
下面结合示例性实施例和附图对本公开的技术方案进行说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员可以理解,下面所描述的内容是示例性的而非限制性的,不应以此限制本公开的保护范围。
本文中使用的“在……上”、“在……上形成”和“设置在……上”可以表示一层直接形成或设置在另一层上,或者,可以表示一层间接形成或设置在另一层上,即两层之间还可以存在其它的层。
本公开实施例提供了一种防眩显示装置,如图1所示,该防眩显示装置可以包括:传感器单元、显示单元和位于显示单元的出光侧的防眩单元,其中,防眩单元,配置为响应于传感器单元感测的环境光的光线强度,调整对入射环境光的反射率,以及调整对显示单元出射的图像光的透射率。
在一种示例性实施例中,根据传感器单元感测环境光的光线强度,并通 过防眩单元对入射防眩单元的环境光和显示单元发出的图像光进行光路控制,能够在环境光眩目的情况下调整反射率以降低对环境入射光的反射,调整透射率以显示图像光,从而改善驾驶员的观看体验,并提高驾驶安全。
在一种示例性实施例中,如图2a和图2b所示,防眩单元,可以包括:防眩液晶屏10和半反半透膜20,半反半透膜20位于防眩液晶屏10和显示单元30之间。其中,防眩液晶屏10响应于加载在防眩液晶屏10上的电压,调整入射光40的偏振态,以及调整显示单元30出射的图像光50的偏振态;半反半透膜20,配置为反射与反半透膜20的透过轴垂直的偏振光,或者,透射与反半透膜20的透过轴平行的偏振光。
在一种示例性实施例中,防眩单元,配置为根据传感器单元感测的光线强度,通过控制加载在防眩液晶屏上的电压调整入射环境光的偏振态,并通过半反半透膜调整对入射环境光的反射;同理,通过控制加载在防眩液晶屏上的电压调整从半反半透膜透射的图像光的偏振态,从而实现防眩功能和显示功能。
下面以防眩单元呈现的两种极端情况说明防眩显示装置的光路控制,即防眩单元处于防眩状态下、以及处于显示状态下的光路情况。
在防眩状态下,如图2a所示,环境光40从防眩显示装置的防眩液晶屏10入射,利用半反半透膜20的选择性反射和透射的特性,防眩液晶屏10响应于加载在其上的电压对入射光40的偏振态进行调整,将入射光40调整为与半反半透膜20的透过轴垂直的第一偏振光,第一偏振光被半反半透膜20反射,经防眩液晶屏10出射,即通过控制防眩单元的反射率,降低了入射环境光的光线强度,从而实现防眩功能;而且,防眩液晶屏10可以吸收从半反半透膜20透射的显示单元30发出的图像光50。
在显示状态下,如图2b所示,环境光40从防眩显示装置的防眩液晶屏10入射,利用半反半透膜20的选择性反射和透射的特性,防眩液晶屏10响应于加载在其上的电压对入射光40的偏振态进行调整,将入射光40调整为与半反半透膜20的透过轴垂直的第二偏振光,第二偏振光从半反半透膜20透射进入显示单元30并被该显示单元30吸收;同时,从半反半透膜20透射的显示单元30发出的图像光50进入防眩液晶屏10,防眩液晶屏10响应于 加载在其上的电压对图像光的偏振态进行调整并出射图像光,即通过控制防眩单元的透射率实现了图像光的透射,从而实现显示功能。
考虑到实际应用中可以同时实现防眩功能和显示功能,因此,可以同时调整防眩单元的反射率和透射率。控制加载在防眩单元上的电压会对防眩单元的反射率和透射率产生影响。例如,图3为一个示例性实施例中控制加载在防眩单元上的电压对防眩单元的反射率和透射率的影响的示意图,其中,当加载在防眩单元上的电压逐渐增大时,反射率呈现降低趋势,透射率呈现增大趋势;并且,经普通环境下测试发现,反射率的变化曲线和透射率的变化曲线存在一个平衡点,反射率和透射率在此平衡点呈现出最佳的防眩功能和透射功能。
因此,本领域技术人员可以根据实际应用的防眩液晶屏的加载电压与其反射率和透射率的影响进行相应的设置,以确定适合的平衡点,在此不再赘述。
在一个可选的实施例中,防眩单元,可以包括:防眩液晶屏和半反半透膜,其中,半反半透膜位于防眩液晶屏和显示单元之间,防眩液晶屏配置为在初始时刻加载预设电压处于对反射率和透射率的平衡态。
在一种示例性实施例中,针对防眩单元与加载的电压对反射率和透射率的影响趋势,将反射率和透射率处于平衡点对应的控制电压设置为预设电压,当防眩液晶屏处于初始时刻时加载该预设电压使得防眩液晶屏处于平衡态,即将防眩液晶屏设置为在普通环境下呈现出最佳的防眩功能和透射功能。
那么,根据传感器单元感测的环境光的光线强度,在此平衡态的基础上,调整加载在防眩液晶屏上的电压,从而实现对防眩单元调整的快速响应,避免在车辆行驶过程中,因防眩调整不及时导致的安全隐患。
在一种示例性实施例中,仍以图3所示的防眩液晶屏为例进行说明,当环境光的光线强度较强希望调整反射率时,可以提高加载在防眩液晶屏上的电压,以降低反射率;同理,当希望防眩液晶屏实现更好的镜面功能时,可以降低加载在防眩液晶屏上的电压,以降低透射率。因此,将防眩液晶屏在初始时刻加载的电压设置为反射率与透射率相对平衡的平衡点电压,通过调节加载在防眩液晶屏的电压即可实现对反射率和透射率进行微调节。
这里,本公开实施例中的初始时刻不仅限于特定时间点,可以为防眩显示装置的开机时刻,或者可以设置在模式转换情况下,例如将防眩显示装置设置为纯显示模式、或者设置为纯反射模式、再或者设置为自动调节模式等,本公开对此不作限定,本领域技术人员可以根据实际应用需求选择合适的初始时刻以及加载在防眩液晶屏上的电压,以实现适当的反射率和透射率为设计准则,在此不再赘述。
在一个可选的实施例中,如图4所示,传感器单元可以包括:第一感光传感器81、第二感光传感器82以及第一控制器,其中,第一感光传感器81位于防眩单元的出光侧;第二感光传感器82位于显示单元30远离半反半透膜20的一侧;第一控制器,配置为根据第一感光传感器81感测的光线强度和第二感光传感器82感测的光线强度,控制加载在防眩液晶屏10上的电压,以控制反射率和透射率。
在一种示例性实施例中,如图4所示,当第一感光传感器81感测的光线强度大于第二感光传感器82感测的光线强度,或者,第一感光传感器81感测的光线强度大于第二感光传感器82感测的光线强度且达到预设阈值时,向防眩液晶屏10施加电压,例如,增加加载在防眩液晶屏10上的电压降低反射率,从而,减小因入射反射光的光线强度较强导致的眩目影响。
在另一个可选的实施例中,如图5所示,传感器单元可以包括:第三感光传感器83和第二控制器,其中,第三感光传感器83位于防眩单元的出光侧;第二控制器,配置为根据第三感光传感器83感测的光线强度,控制加载在防眩液晶屏10的电压以控制反射率和透射率。
在一种示例性实施例中,如图6所示,使用一个感光传感器对光的光线强度进行连续采集,从而获取光线强度与时间的波形图,例如,在T1周期内第三感光传感器83感测的第一光线强度为L0,在T2周期内第三感光传感器83感测的第二光线强度为L1,如此,可以根据第一光线强度L0和第二光线强度L1进行防眩设计。
例如,可以根据第一光线强度L0和第二光线强度L1的差值进行防眩设计。当差值大于预设差值阈值并且差值为正值时,则可以增加加载在防眩液晶屏上的电压;或者,当差值大于预设差值阈值并且差值为负值时,则可以 降低加载在防眩液晶屏上的电压。
再例如,可以根据第一光线强度L0和第二光线强度L1的比值进行防眩设计。当比值大于预设比值阈值时,则可以增加加载在防眩液晶屏上的电压;或者,当比值不大于预设比值阈值时,则可以降低加载在防眩液晶屏上的电压。
这里,本公开对此不作限定,本领域技术人员可以根据实际应用需求选择合适的方式测量环境光的光线强度的变化,并根据该变化调整加载在防眩液晶屏上的电压,以实现防眩功能和显示功能,在此不再赘述。
在一个可选的实施例中,防眩液晶屏可以为高级超维场转换技术液晶显示屏,防眩液晶屏配置为响应于加载的电压调整入射光的偏振态。如此,可以利用具有高级超维场转换技术的防眩液晶屏,配合半反半透膜完成对光路的控制,从而实现防眩功能和显示功能。
在一种示例性实施例中,显示面板可以为高级超维场转换技术彩色液晶显示屏,防眩液晶屏可以为高级超维场转换技术黑白液晶显示屏。高级超维场转换技术黑白液晶显示屏配置为响应于加载的不同电压液晶分子呈现不同的状态。例如,以防眩单元呈现的两种极端情况进行说明:如图7a所示,当防眩液晶屏10的第一电极121和第二电极123加载的电压为0V时,防眩液晶屏10的液晶分子122为常规态,不改变入射光的偏振态;如图7b所示,当防眩液晶屏10的第一电极121和第二电极123加载的电压为5V时,防眩液晶屏10的液晶分子122为扭转角度的状态,可以改变入射光的偏振态。
在一个可选的实施例中,如图8所示,显示单元30可以包括:显示面板32、位于显示面板32的远离半反半透膜20一侧的第一偏光片31、以及位于显示面板32的靠近半反半透膜20一侧的第二偏光片33;防眩液晶屏10还可以包括:位于防眩液晶屏10中液晶分子的远离半反半透膜20一侧的第三偏光片11;其中,第一偏光片31的吸收轴和第二偏光片32的吸收轴正交,第二偏光片32的吸收轴和第三偏光片11的吸收轴正交,半反半透膜20的透过轴与第二偏光片32的吸收轴正交。
在一种示例性实施例中,第一偏光片31的吸收轴可以为90度,即吸收偏振态为90度的光线;第二偏光片33的吸收轴可以为0度,即吸收偏振态 为0度的光线;第三偏光片11的吸收轴可以为90度,即吸收偏振态为90度的光线;半反半透膜20的透过轴可以为90度,即透过偏振态为90度的光线。如此,本公开实施例可以利用第一偏光片、第二偏光片、防眩液晶屏、第三偏光片与半反半透膜配合实现对光路的控制。
这里,本公开实施例对第一偏光片的吸收轴的度数、第二偏光片的吸收轴的度数、第三偏光片的吸收轴的度数和半反半透膜的透过轴的度数不作限定,本领域技术人员可以根据实际应用需求进行设定,以满足防眩显示装置的光路控制为设计准则,在此不再赘述。
在一种示例性实施例中,仍以防眩单元呈现的两种极端情况说明防眩显示装置的光路控制,即防眩单元处于防眩状态下、以及处于显示状态下的光路情况。
例如,在防眩状态下,如图9a所示,
一方面,环境光40从防眩显示装置的防眩液晶屏10入射。
根据偏光片的特性,吸收与其吸收轴平行的光,透射与其吸收轴垂直的光。其中,第三偏光片11的吸收轴可以为90度,则第三偏光片11可以吸收环境光40的垂直光并透射环境光40的水平光。
防眩液晶屏10将入射环境光40的偏振态可以调整为与半反半透膜20的透过轴相垂直的偏振光,并且考虑到防眩液晶屏的特性,可以将加载在防眩液晶屏的电压设置为0电压,即不改变水平光的偏振态,输出的第一偏振光为水平光。
半反半透膜20的透过轴可以为90度,根据半反半透膜20的选择性的反射和透射特性,第一偏振光为水平光,则半反半透膜表现为反射功能,反射水平光。
水平光再次经过防眩液晶屏12,偏振态未改变。此时,由于第三偏光片11的吸收轴为90度,那么,水平光可以经第三偏光片11出射。
另一方面,显示单元30显示的图像光50入射第二偏光片33,第二偏光片33的吸收轴可以为0度,则吸收图像光50的水平光并透射图像光50的垂直光。
半反半透膜20的透过轴可以为90度,则图像光50的垂直光从半反半透膜20透射至防眩液晶屏10。
防眩液晶屏10加载0电压,不改变图像光50的垂直光的偏振态。此时,由于第三偏光片11的吸收轴为90度,吸收图像光50的垂直光,图像光50无法从防眩液晶屏出射。
如此,通过控制加载在防眩液晶屏的电压,可以降低防眩单元的反射率以实现防眩功能。
再例如,在显示状态下,如图9b所示,
一方面,环境光40从防眩显示装置的防眩液晶屏10入射。
第三偏光片11的吸收轴可以为90度,则第三偏光片11吸收环境光40的垂直光并透射环境光40的水平光。
为了将入射环境光40的偏振态调整为与半反半透膜20的透过轴相平行的偏振光,并且考虑到防眩液晶屏10的特性,可以将加载在防眩液晶屏10的电压设置为5V,即改变水平光的偏振态,输出的第一偏振光为垂直光。
半反半透膜20的透过轴可以为90度,根据半反半透膜20的选择性的反射和透射特性,第一偏振光为水平光,则半反半透膜表现为透射功能,透射垂直光。
第二偏光片33的吸收轴可以为0度,透射垂直光。则垂直光经显示面板至第一偏光片。
第一偏光片的吸收轴可以为90度,吸收垂直光,则入射防眩显示装置的环境光被全部吸收。
另一方面,显示单元30显示的图像光50入射第二偏光片33,第二偏光片33的吸收轴可以为0度,则吸收图像光50的水平光透射垂直光。
半反半透膜20的透过轴可以为90度,则图像光50的垂直光从半反半透膜20透射至防眩液晶屏10。
防眩液晶屏10加载5V电压,改变图像光50的垂直光的偏振态为水平光。
由于第三偏光片11的吸收轴为90度,透射图像光50的水平光,图像光50从防眩液晶屏出射。
如此,通过控制加载在防眩液晶屏的电压调整防眩单元的透射率以实现显示功能。
本领域技术人员可以根据实际应用需求,设置合适的折射率与透射率,在此不再赘述。
考虑到半反半透膜的选择性反射和透射特性,以及降低防眩显示装置的工艺成本和器件成本,在另一个可选的实施例中,如图10所示,显示单元30可以由显示面板32和位于显示面板32的远离半反半透膜20一侧的第一偏光片31组成;防眩液晶屏10还可以包括:位于防眩液晶屏10中液晶分子的远离半反半透膜20一侧的第三偏光片11;其中,第一偏光片31的吸收轴和第三偏光片11的吸收轴相同;半反半透膜20的透过轴与第一偏光片31的吸收轴相同。如此,充分利用半反半透膜的选择性反射和透射特性,由于第二偏光片的吸收轴与半反半透膜的透过轴正交,可以省略第二偏光片。
例如,显示单元30显示的图像光50入射半反半透膜20,由于半反半透膜20的透过轴为90度,则图像光50中的垂直光从半反半透膜20透射至防眩液晶屏10。即显示面板出射的图像光中,仅与半反半透膜的透过轴平行的光能够透射,因此,利用半反半透膜能够实现第二偏光片的功能,可以省略第二偏光片,以降低防眩显示装置的工艺成本和器件成本。
实施过程与前述实施例相类似,在此不再赘述。
在一个可选的实施例中,如图11a和图11b所示,防眩液晶屏可以包括:位于防眩液晶屏的液晶分子两侧的第一基板和第二基板;第一基板可以包括位于第一基板上的第一电极区域,第一电极区域可以包括屏蔽电极121,屏蔽电极可以位于液晶分子远离半反半透膜的一侧;第二基板可以包括位于第一基板上的第二电极区域,第二电极区域123可以包括:层叠设置的像素电极1232、绝缘层和公共电极123,其中,像素电极位于绝缘层靠近半反半透膜的一侧,公共电极位于绝缘层远离半反半透膜的一侧,
在一种示例性实施例中,如图11a所示,屏蔽电极121,用于保护液晶分子以避免静电影响,液晶分子通过位于下基板的横向电极控制扭转角度; 如图11b所示,第二电极区域123可以包括公共电极1231和像素电极1232,其中,公共电极1231相比于像素电极1232远离半反半透膜,防眩液晶屏配置为响应于加载在公共电极1231和像素电极1232上的电压调整液晶分子的扭转角度以实现对入射光的偏振态的调整。
考虑到简化制作所述防眩液晶屏的工艺步骤,在一个可选的实施例中,防眩液晶屏可以包括位于其液晶分子两侧的第一基板和第二基板;第一基板可以包括位于第一基板上的第一电极区域,第一电极区域可以包括屏蔽电极,屏蔽电极位于液晶分子远离半反半透膜的一侧;第二基板可以包括位于第二基板上的第二电极区域,第二电极区域可以包括层叠设置的像素电极、绝缘层和公共电极,其中,像素电极位于绝缘层远离半反半透膜的一侧,公共电极位于绝缘层靠近半反半透膜的一侧。
与前述实施例相类似,第一电极区域包括屏蔽电极;如图12所示,第二电极区域123可以包括公共电极1231和像素电极1232,其中,公共电极1231相比于像素电极1232靠近半反半透膜,从而在制作过程中节省一次曝光、刻蚀和显影步骤,从而有效简化制作工艺并降低制作成本;防眩液晶屏配置为响应于加载在公共电极1231和像素电极1232上的电压调整液晶分子的扭转角度以实现对入射光的偏振态的调整。
考虑到存在同时使用处于防眩状态和显示状态的情况,在一个可选的实施例中,防眩液晶屏可以包括第一区和除第一区以外的第二区,其中,第一区,配置为响应于传感器单元感测的环境光的光线强度,调整对入射环境光的反射率;第二区,配置为响应于传感器单元感测的环境光的光线强度调整对显示单元出射的图像光的透射率。
如此,对防眩液晶屏进行分区控制,分为第一区和第二区,通过向防眩液晶屏的第一区和第二区设置不同的加载电压,使得第一区响应于传感器单元感测的环境光的光线强度调整对入射环境光的反射率,使得第二区响应于传感器单元感测的环境光的光线强度调整对显示单元出射的图像光的透射率。
这里,本公开实施例中对第一区和第二区的分配比例不作限定,本领域技术人员可以根据实际应用需求进行设定,在此不再赘述。
在一个可选的实施例中,防眩液晶屏可以为扭曲向列型液晶显示屏,防 眩液晶屏配置为响应于加载的电压调整入射光的偏振态。
如此,利用扭曲向列型液晶显示屏,配合半反半透膜完成对光路的控制,从而实现防眩功能和显示功能。
在一个可选的实施例中,如图13a和13b所示,显示单元70包括显示面板、位于显示面板的远离半反半透膜一侧的第四偏光片71、以及位于显示面板的靠近半反半透膜一侧的第五偏光片73;防眩液晶屏60还可以包括:位于防眩液晶屏60液晶分子的远离半反半透膜一侧的第六偏光片61;其中,第四偏光片71的吸收轴和第五偏光片73的吸收轴正交,第五偏光片73的吸收轴和第六偏光片61的吸收轴平行,半反半透膜20的透过轴与第六偏光片的吸收轴正交。
例如,如图13a所示,显示单元70可以为液晶显示屏,包括:第四偏光片71、液晶显示面板72、第五偏光片73和背光74;防眩液晶屏60可以包括第六偏光片61。防眩液晶屏60配置为响应于加载的不同电压液晶分子呈现不同的状态:如图13a所示,当防眩液晶屏60加载的电压为0V时,液晶分子平行于基板,改变入射光的偏振态;如图13b所示,当防眩液晶屏60加载的一定电压时形成电场时,液晶分子沿电场方向排列,不改变入射光的偏振态。
在一种示例性实施例中,第四偏光片71的吸收轴可以为0度,第五偏光片73的吸收轴可以为90度,第六偏光片61的吸收轴可以为90度,半反半透膜20的透过轴可以为0度。如此,可以利用第四偏光片、第五偏光片、防眩液晶屏、以及第六偏光片与半反半透膜配合实现对光路的控制。
这里,本公开实施例对第四偏光片的吸收轴的度数、第五偏光片的吸收轴的度数、第六偏光片的吸收轴的度数和半反半透膜的透过轴的度数不作限定,本领域技术人员可以根据实际应用需求进行设定,以满足防眩显示装置的光路控制为设计准则,在此不再赘述。
在一种示例性实施例中,扭曲向列型液晶显示屏响应于加载的不同电压液晶分子呈现不同的状态,仍以防眩单元呈现的两种极端情况进行说明:
例如,在防眩状态下,如图13a所示,
一方面,环境光40从防眩显示装置的防眩液晶屏60入射。
根据偏光片的特性,吸收与其吸收轴平行的光,透射与其吸收轴垂直的光。这里,第六偏光片61的吸收轴可以为90度,则第六偏光片61可以吸收环境光40的垂直光并透射环境光40的水平光。
防眩液晶屏60将入射环境光40的偏振态调整为与半反半透膜20的透过轴相垂直的偏振光,并且考虑到防眩液晶屏的特性,可以将加载在防眩液晶屏的电压设置为0电压,即改变水平光的偏振态,输出的第一偏振光为垂直光。
半反半透膜20的透过轴可以为0度,根据半反半透膜20的选择性的反射和透射特性,第一偏振光为垂直光则半反半透膜表现为反射功能,反射垂直光。
垂直光再次经过防眩液晶屏,偏振态改变为水平光。
由于第六偏光片61的吸收轴为90度,水平光经第六偏光片61出射。
另一方面,显示单元70显示的图像光50入射第五偏光片73,第五偏光片73的吸收轴为90度,则吸收图像光50的垂直光透射水平光。
半反半透膜20的透过轴可以为0度,则图像光50的水平光从半反半透膜20透射至防眩液晶屏60。
可以给防眩液晶屏60加载0电压,改变图像光50的水平光的偏振态为垂直光。
第六偏光片61的吸收轴可以为90度,吸收图像光50的垂直光,图像光50无法从防眩液晶屏出射。
再例如,在显示状态下,如图13b所示,
一方面,环境光40从防眩显示装置的防眩液晶屏60入射。
第六偏光片61的吸收轴可以为90度,则第六偏光片61吸收环境光40的垂直光并透射环境光40的水平光。
防眩液晶屏60将入射环境光40的偏振态调整为与半反半透膜20的透过轴相平行的偏振光,并且考虑到防眩液晶屏的特性,可以将加载在防眩液晶 屏的电压设置为一定电压并形成电场,液晶分子沿电场方向排列,即不改变水平光的偏振态,输出的第一偏振光为水平光。
半反半透膜20的透过轴可以为0度,根据半反半透膜20的选择性的反射和透射特性,第一偏振光为水平光则半反半透膜表现为透射功能,透射水平光。
第五偏光片73的吸收轴可以为90度,透射水平光。
水平光经显示面板至第四偏光片。
第四偏光片的吸收轴可以为0度,吸收水平光,则入射防眩显示装置的环境光被全部吸收。
另一方面,显示单元70显示的图像光50入射第五偏光片73,第五偏光片73的吸收轴为90度,则吸收图像光50的垂直光透射水平光。
半反半透膜20的透过轴可以为0度,则图像光50的水平光从半反半透膜20透射至防眩液晶屏60。
可以给防眩液晶屏60加载一定电压形成电场,液晶分子沿电场方向排列,不改变图像光50的水平光的偏振态。
第六偏光片61的吸收轴可以为90度,透射图像光50的水平光,图像光50从防眩液晶屏60出射。
如此,图像光50经半反半透膜20和防眩液晶屏60,并从防眩液晶屏60出射从而实现了显示功能;而且,由于防眩液晶屏60的第六偏光片11吸收了入射环境光40的垂直光,显示单元的第三偏光片71吸收了剩余的入射环境光,不会影响出射的图像光。
本领域技术人员可以根据实际应用需求,设置合适的折射率与透射率,在此不再赘述。
考虑到半反半透膜的选择性反射和透射特性,以及降低防眩显示装置的工艺成本和器件成本,在另一个可选的实施例中,显示单元可以由显示面板和位于显示面板远离半反半透膜一侧的第四偏光片组成;防眩液晶屏还可以包括位于其液晶分子远离半反半透膜一侧的第六偏光片;其中,第四偏光片的吸收轴和第六偏光片的吸收轴正交,半反半透膜的透过轴与第六偏光片的 吸收轴正交。如此,充分利用半反半透膜的选择性反射和透射特性,由于第五偏光片的吸收轴与半反半透膜的透过轴正交,省略第五偏光片。
例如,显示单元70显示的图像光50入射半反半透膜20,由于半反半透膜20的透过轴为0度,则图像光50中的垂直光从半反半透膜20透射至防眩液晶屏60。即显示面板出射的图像光中,仅与半反半透膜的透过轴平行的光能够透射,因此利用半反半透膜能够实现第五偏光片的功能,省略第五偏光片以降低防眩显示装置的工艺成本和器件成本。
实施过程与前述实施例相类似,在此不再赘述。
基于上述防眩显示装置,本公开的一个实施例还提供一种车内后视镜,包括上述防眩显示装置。
在一种示例性实施例中,车内后视镜包括上述防眩显示装置,通过防眩显示装置中的传感器单元感测环境光的光线强度,并通过防眩单元对入射防眩单元的环境光和显示单元发出的图像光进行光路控制,能够在环境光眩目的情况下根据检测的环境光,调整反射率以降低对环境入射光的反射,并调整透射率以显示图像光,从而改善驾驶员的观看体验,并提高驾驶安全。
与上述实施例提供的防眩显示装置相对应,本公开的一个实施例还提供一种利用上述防眩显示装置的防眩显示方法,由于本公开实施例提供的防眩显示方法与上述几种实施例提供的防眩显示装置相对应,因此在前实施方式还适用于本实施例提供的防眩显示方法,这里,本公开实施例不再详细描述。
如图14所示,本公开实施例还提供一种利用上述防眩显示装置的防眩显示方法,该防眩显示方法可以包括:传感器单元感测环境光并输出光线强度;防眩单元响应于光线强度调整对入射环境光的反射率,以及调整对显示单元出射的图像光的透射率。
如此,通过传感器单元感测环境光的光线强度,并通过防眩单元对入射防眩单元的环境光和显示单元发出的图像光进行光路控制,能够在环境光眩目的情况下调整反射率以降低对环境入射光的反射,调整透射率以显示图像光,从而改善驾驶员的观看体验,并提高驾驶安全。实施方式详见前述实施例,在此不再赘述。
在一个可选的实施例中,防眩单元,可以包括防眩液晶屏和半反半透膜,半反半透膜位于防眩液晶屏和显示单元之间,那么,在传感器单元感测环境光并输出光线强度之前,防眩显示方法还可以包括:防眩液晶屏加载预设电压处于对反射率和透射率的平衡态。
如此,针对防眩单元与加载的电压对反射率和透射率的影响趋势,将反射率和透射率处于平衡点对应的控制电压设置为预设电压,当防眩液晶屏处于初始时刻时加载该预设电压使得防眩液晶屏处于平衡态,即将防眩液晶屏设置为在普通环境下呈现出最佳的防眩功能和透射功能。实施方式详见前述实施例,在此不再赘述。
本公开实施例所提供的一种防眩显示装置和防眩显示方法,通过防眩单元、显示单元和传感器单元,能够根据环境光的光线强度调整防眩单元的反射率以降低环境入射光的光线强度,从而实现防眩功能;以及调整防眩单元的透射率以透射显示单元出射的图像光,从而实现显示功能;能够弥补了现有技术中存在的问题,有效改善驾驶员的观看体验,进而提高驾驶安全,具有广泛的应用前景。
显然,本公开的上述实施例仅仅是为清楚地说明本公开所作的举例,而并非是对本公开的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本公开的技术方案所引伸出的变化或变动仍处于本公开的保护范围之列。

Claims (13)

  1. 一种防眩显示装置,包括:传感器单元、显示单元和位于所述显示单元出光侧的防眩单元,其中
    所述防眩单元,配置为响应于所述传感器单元感测的环境光的光线强度,调整对入射环境光的反射率,以及调整对所述显示单元出射的图像光的透射率。
  2. 根据权利要求1所述的防眩显示装置,其中,所述防眩单元,包括:防眩液晶屏和半反半透膜,所述半反半透膜位于所述防眩液晶屏和显示单元之间,所述防眩液晶屏配置为在初始时刻加载预设电压处于对所述反射率和所述透射率的平衡态。
  3. 根据权利要求2所述的防眩显示装置,其中,所述传感器单元,包括:第一感光传感器、第二感光传感器以及第一控制器,其中
    所述第一感光传感器位于所述防眩单元的出光侧;
    所述第二感光传感器位于所述显示单元远离所述半反半透膜的一侧;
    所述第一控制器,配置为根据所述第一感光传感器感测的光线强度和第二感光传感器感测的光线强度,控制加载在所述防眩液晶屏上的电压,以控制所述反射率和所述透射率。
  4. 根据权利要求2所述的防眩显示装置,其中,所述传感器单元,包括:第三感光传感器和第二控制器,其中
    所述第三感光传感器位于所述防眩单元的出光侧;
    所述第二控制器,配置为根据所述第三感光传感器感测的光线强度,控制加载在所述防眩液晶屏的电压,以控制所述反射率和所述透射率。
  5. 根据权利要求2至4中任一项所述的防眩显示装置,其中,所述防眩液晶屏为高级超维场转换技术液晶显示屏,所述防眩液晶屏,配置为响应于加载的电压,调整入射光的偏振态。
  6. 根据权利要求5所述的防眩显示装置,其中,
    所述显示单元,包括:显示面板、位于所述显示面板的远离所述半反半 透膜一侧的第一偏光片、以及位于所述显示面板的靠近所述半反半透膜一侧的第二偏光片;所述防眩液晶屏,包括:位于所述防眩液晶屏中液晶分子的远离所述半反半透膜一侧的第三偏光片;其中,所述第一偏光片的吸收轴和所述第二偏光片的吸收轴正交,所述第二偏光片的吸收轴和所述第三偏光片的吸收轴正交,所述半反半透膜的透过轴与所述第二偏光片的吸收轴正交;
    或者,
    所述显示单元由显示面板和位于所述显示面板远离所述半反半透膜一侧的第一偏光片组成;所述防眩液晶屏还包括:位于其液晶分子远离所述半反半透膜一侧的第三偏光片;其中,所述第一偏光片的吸收轴和所述第三偏光片的吸收轴相同;所述半反半透膜的透过轴与所述第一偏光片的吸收轴相同。
  7. 根据权利要求5所述的防眩显示装置,其中,所述防眩液晶屏,还包括:位于所述防眩液晶屏中液晶分子两侧的第一基板和第二基板;
    所述第一基板包括:第一电极区域,所述第一电极区域包括:屏蔽电极,所述屏蔽电极位于所述液晶分子远离所述半反半透膜的一侧;
    所述第二基板包括:第二电极区域,所述第二电极区域包括:层叠设置的像素电极、绝缘层和公共电极,其中,
    所述像素电极位于所述绝缘层的靠近所述半反半透膜的一侧,所述公共电极位于所述绝缘层的远离所述半反半透膜的一侧;或者,所述像素电极位于所述绝缘层的远离所述半反半透膜的一侧,所述公共电极位于所述绝缘层的靠近所述半反半透膜的一侧。
  8. 根据权利要求5所述的防眩显示装置,其中,所述防眩液晶屏,还包括:第一区和除所述第一区以外的第二区,其中,
    所述第一区,配置为响应于所述传感器单元感测的环境光的光线强度,调整对入射环境光的反射率;
    所述第二区,配置为响应于所述传感器单元感测的环境光的光线强度,调整对所述显示单元出射的图像光的透射率。
  9. 根据权利要求2至4中任一项所述的防眩显示装置,其中,所述防眩液晶屏为扭曲向列型液晶显示屏,所述防眩液晶屏,配置为响应于加载的电 压,调整入射光的偏振态。
  10. 根据权利要求9所述的防眩显示装置,其中,
    所述显示单元包括:显示面板、位于所述显示面板的远离所述半反半透膜一侧的第四偏光片、以及位于所述显示面板的靠近所述半反半透膜一侧的第五偏光片;所述防眩液晶屏,还包括:位于所述防眩液晶屏中液晶分子远离所述半反半透膜一侧的第六偏光片;其中,所述第四偏光片的吸收轴和第五偏光片的吸收轴正交,所述第五偏光片的吸收轴和第六偏光片的吸收轴平行,所述半反半透膜的透过轴与第六偏光片的吸收轴正交;
    或者,
    所述显示单元由显示面板和位于所述显示面板的远离所述半反半透膜一侧的第四偏光片组成;所述防眩液晶屏还包括:位于所述防眩液晶屏中液晶分子远离所述半反半透膜一侧的第六偏光片;其中,所述第四偏光片的吸收轴和第六偏光片的吸收轴正交,所述半反半透膜的透过轴与第六偏光片的吸收轴正交。
  11. 一种利用权利要求1至10中任一项所述的防眩显示装置的防眩显示方法,包括:
    传感器单元感测环境光并输出光线强度;
    防眩单元响应于所述光线强度,调整对入射环境光的反射率,以及调整对显示单元出射的图像光的透射率。
  12. 根据权利要求11所述的防眩显示方法,其中,所述防眩单元,包括防眩液晶屏和半反半透膜,所述半反半透膜位于所述防眩液晶屏和显示单元之间;
    在所述传感器单元感测环境光并输出光线强度之前,所述防眩显示方法还包括:
    所述防眩液晶屏加载预设电压处于对所述反射率和所述透射率的平衡态。
  13. 一种车内后视镜,包括:如权利要求1至10中任一项所述的防眩显示装置。
PCT/CN2021/076541 2020-04-30 2021-02-10 防眩显示装置、防眩显示方法和车内后视镜 WO2021218295A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/435,047 US20220324385A1 (en) 2020-04-30 2021-02-10 Anti-dazzling Display Device, Anti-dazzling Display Method, and Interior Rearview Mirror

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010367834.1 2020-04-30
CN202010367834.1A CN111439204B (zh) 2020-04-30 2020-04-30 一种防眩显示装置、防眩显示方法和车内后视镜

Publications (1)

Publication Number Publication Date
WO2021218295A1 true WO2021218295A1 (zh) 2021-11-04

Family

ID=71654762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076541 WO2021218295A1 (zh) 2020-04-30 2021-02-10 防眩显示装置、防眩显示方法和车内后视镜

Country Status (3)

Country Link
US (1) US20220324385A1 (zh)
CN (1) CN111439204B (zh)
WO (1) WO2021218295A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111439204B (zh) * 2020-04-30 2022-01-28 北京京东方技术开发有限公司 一种防眩显示装置、防眩显示方法和车内后视镜
CN111812876A (zh) * 2020-08-11 2020-10-23 苏州萃为智能科技有限公司 一种无边框防眩后视镜及其制作方法
CN112015020A (zh) * 2020-09-29 2020-12-01 京东方科技集团股份有限公司 一种防炫目装置和制备方法以及oled显示装置
CN113376896B (zh) * 2021-06-04 2023-06-30 惠州华星光电显示有限公司 显示装置
CN114103808B (zh) * 2021-12-30 2024-03-22 北京京东方技术开发有限公司 具有显示功能的防眩后视镜
CN114428420A (zh) * 2022-02-28 2022-05-03 北京京东方技术开发有限公司 后视镜、后视镜的制备方法及车辆
CN117087540B (zh) * 2023-10-17 2024-01-19 宁波铼康光电有限公司 一种车辆防眩光后视镜

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0568210A1 (en) * 1992-04-30 1993-11-03 Britax (Geco) S.A. Rear view mirror
JP2005053468A (ja) * 2003-07-31 2005-03-03 Keitai Kin 光変色化合物を利用した自動車用防眩ミラー
CN203093901U (zh) * 2013-01-28 2013-07-31 广东铁将军防盗设备有限公司 多功能后视镜
CN103513305A (zh) * 2008-04-23 2014-01-15 雷文布里克有限责任公司 反射性和热反射性表面的眩光管理
CN106184016A (zh) * 2016-08-01 2016-12-07 微云(武汉)科技有限公司 一种智能后视镜系统及其控制方法
CN110053560A (zh) * 2019-06-20 2019-07-26 宁波市金榜汽车电子有限公司 一种汽车车载智能后视系统的控制方法
US20200018997A1 (en) * 2018-07-10 2020-01-16 Visteon Global Technologies, Inc. System and method for a mirror with active feedback dimming
CN111439204A (zh) * 2020-04-30 2020-07-24 北京京东方技术开发有限公司 一种防眩显示装置、防眩显示方法和车内后视镜

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111102A (ja) * 1982-12-16 1984-06-27 Nippon Denso Co Ltd 防眩型反射鏡
KR100872476B1 (ko) * 2002-07-10 2008-12-05 삼성전자주식회사 평판 표시 장치
US8004741B2 (en) * 2004-02-27 2011-08-23 Gentex Corporation Vehicular rearview mirror elements and assemblies incorporating these elements
US7477439B2 (en) * 2002-09-30 2009-01-13 Gentex Corporation Vehicular rear view mirror elements and assemblies incorporating these elements
KR100913325B1 (ko) * 2007-11-05 2009-08-20 주식회사 동부하이텍 듀얼 이미지 센서 및 그 제조 방법
CN101576681B (zh) * 2008-05-08 2013-08-21 群创光电股份有限公司 半透射半反射显示单元
US20110273659A1 (en) * 2010-05-07 2011-11-10 Magna Mirrors Of America, Inc. Liquid crystal mirror with display
WO2013116460A1 (en) * 2012-01-31 2013-08-08 Alphamicron Incorporated Electronically dimmable optical device
CN102736332B (zh) * 2012-02-22 2015-01-07 京东方科技集团股份有限公司 一种阵列基板、液晶显示面板及液晶显示器
JP6571935B2 (ja) * 2015-01-14 2019-09-04 日東電工株式会社 車両用映像表示ミラー
CN108303812B (zh) * 2017-01-12 2019-11-05 江苏集萃智能液晶科技有限公司 一种具有调光功能的后视镜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0568210A1 (en) * 1992-04-30 1993-11-03 Britax (Geco) S.A. Rear view mirror
JP2005053468A (ja) * 2003-07-31 2005-03-03 Keitai Kin 光変色化合物を利用した自動車用防眩ミラー
CN103513305A (zh) * 2008-04-23 2014-01-15 雷文布里克有限责任公司 反射性和热反射性表面的眩光管理
CN203093901U (zh) * 2013-01-28 2013-07-31 广东铁将军防盗设备有限公司 多功能后视镜
CN106184016A (zh) * 2016-08-01 2016-12-07 微云(武汉)科技有限公司 一种智能后视镜系统及其控制方法
US20200018997A1 (en) * 2018-07-10 2020-01-16 Visteon Global Technologies, Inc. System and method for a mirror with active feedback dimming
CN110053560A (zh) * 2019-06-20 2019-07-26 宁波市金榜汽车电子有限公司 一种汽车车载智能后视系统的控制方法
CN111439204A (zh) * 2020-04-30 2020-07-24 北京京东方技术开发有限公司 一种防眩显示装置、防眩显示方法和车内后视镜

Also Published As

Publication number Publication date
CN111439204A (zh) 2020-07-24
US20220324385A1 (en) 2022-10-13
CN111439204B (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
WO2021218295A1 (zh) 防眩显示装置、防眩显示方法和车内后视镜
US10649264B2 (en) Rearview mirror with dimming function
US6759945B2 (en) Variable transmittance birefringent device
US9519149B2 (en) Head-up display system, and method and apparatus for controlling the same
JP2018032042A (ja) 電子的調光可能光学装置
US5291184A (en) Head up display for a vehicle having a liquid crystal indicator and a reflecting prism
JP2015031924A (ja) 車両用ヘッドアップディスプレイ装置
JP7225531B2 (ja) 車両用調光システム、調光部材の制御方法、調光部材の制御プログラム、車両
WO2021000824A1 (zh) 防眩目后视镜及汽车
US11453340B2 (en) Display device
US11719967B2 (en) Display system and vehicle
KR20110068336A (ko) 엘시디 광 감쇄장치 및 이를 이용한 차량용 스마트 미러
WO2021258930A1 (zh) 遮阳板、前挡风玻璃和车辆
CN209858885U (zh) 一种具有自动调光功能的后视镜
KR20030091898A (ko) 반사율 조절이 가능한 엘시디 미러
JP5975928B2 (ja) 車両用表示装置
KR20110127470A (ko) 헤드-업 디스플레이
US7843404B2 (en) Smart mirror apparatus using LCD panel
EP3696582A1 (en) Polarising lens assembly for increasing contrast ratio of reflected light
JP2018144621A (ja) 車両
JP6981018B2 (ja) 車両
JP2009080321A (ja) 表示装置、偏光制御方法
CN219856986U (zh) 一种电子后视镜
CN214474327U (zh) 具改变出光方向的液晶显示装置
JP2023053376A (ja) 調光部材、合わせガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796405

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21796405

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/06/2023)