WO2021218204A1 - 机器人的控制设备及机器人的控制方法、机器人 - Google Patents

机器人的控制设备及机器人的控制方法、机器人 Download PDF

Info

Publication number
WO2021218204A1
WO2021218204A1 PCT/CN2020/139452 CN2020139452W WO2021218204A1 WO 2021218204 A1 WO2021218204 A1 WO 2021218204A1 CN 2020139452 W CN2020139452 W CN 2020139452W WO 2021218204 A1 WO2021218204 A1 WO 2021218204A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
robot
safety circuit
safety
type
Prior art date
Application number
PCT/CN2020/139452
Other languages
English (en)
French (fr)
Inventor
周婀娜
黄诚成
魏佳欣
余显才
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to JP2022553158A priority Critical patent/JP2023519155A/ja
Publication of WO2021218204A1 publication Critical patent/WO2021218204A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/161Hardware, e.g. neural networks, fuzzy logic, interfaces, processor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • This application relates to the field of robot control, and specifically to a robot control device, a robot control method, and a robot.
  • This stop circuit should control its safety protection by stopping all the movements of the robot, removing the power of the robot driver, and stopping any other hazards that can be controlled by the robot system. risk.
  • the stop function can be started manually or by control logic.
  • the general approach is to copy a safety module with the same function, and the two modules are mutual backups.
  • the two safety modules respond at the same time to cut off the power source of the robot.
  • the other way can respond to the alarm signal.
  • this kind of protective stop circuit has serious circuit homogeneity, and there is a problem of potential safety hazards.
  • the embodiments of the present application provide a robot control device, a robot control method, and a robot, so as to at least solve the technical problem of serious circuit homogeneity in the protective stop circuit of the robot and potential safety hazards.
  • a safety control device for a robot including: a first controller, a second controller, a first safety circuit, and a second safety circuit, wherein the first controller and the second Any one of the controllers is connected to the first safety circuit and the second safety circuit, and is used to determine the type of the alarm signal from the outside of the robot, and control the first safety circuit and the second safety circuit to execute the type corresponding to the alarm signal Control instructions, the logic of the first safety circuit is opposite to that of the second safety circuit.
  • a first communication link is included between the first controller and the second controller, and the first controller and the second controller verify the first safety circuit and the second safety circuit through the first communication link. Whether there is a timing error in the returned data, if there is a timing error in the data returned by the first safety circuit and the second safety circuit, control to disconnect the first safety circuit and the second safety circuit, and send the first alarm message.
  • the first communication link is a communication link between the serial peripheral interfaces of the first controller and the second controller.
  • a second communication link is further included between the first controller and the second controller, and the first controller and the second controller respectively send preset bytes of data to each other through the second communication link. If any one of the first controller and the second controller does not receive the preset byte of data sent by the other party, control to disconnect the first safety circuit and the second safety circuit, and send a second alarm message.
  • the second communication link is a communication link between the input/output interfaces of the first controller and the second controller.
  • the first controller and the second controller are also used to perform the following control operations: if the type of the alarm signal is the first type, control the first safety circuit and the second safety circuit to be disconnected at the same time, and cut off the robot Power supply; if the type of the alarm signal is the second type, the alarm signal is sent to the controller of the robot; after the controller of the robot controls the robot to decelerate until the robot stops, it controls the first safety circuit and the second safety circuit to be disconnected at the same time Turn on to cut off the power supply of the robot; if the type of the alarm signal is the third type, the alarm signal is sent to the controller of the robot, and the controller of the robot controls the robot to decelerate and drive until the robot stops.
  • any one of the first safety circuit and the second safety circuit includes a safety relay and two field effect transistors, wherein the normally open contacts of the two safety relays are both connected to the first controller and the first controller.
  • the second controller, the first controller and the second controller monitor the operating status of the two safety relays through normally open contacts;
  • the two field effect transistors of the first safety circuit are PMOS field effect transistors, and the two of the second safety circuit
  • the field effect tube is an NMOS field effect tube.
  • the models of the first controller and the second controller are different.
  • a robot is also provided.
  • the robot includes: a controller; and the above safety control device.
  • a method for controlling a robot including: a first controller and a second controller obtain an alarm signal from outside the robot, and determine the type of the alarm signal; a first controller And the second controller controls the first safety circuit and the second safety circuit to execute the control instructions corresponding to the type of the alarm signal, and any one of the first controller and the second controller is connected to the first safety circuit and the second safety circuit Connection, the logic of the first safety circuit is opposite to that of the second safety circuit.
  • the first controller and the second controller control the first safety circuit and the second safety circuit to execute the control instructions corresponding to the type of the alarm signal, including: if the type of the alarm signal is the first type, controlling the second The first safety circuit and the second safety circuit are disconnected at the same time to cut off the power supply of the robot; if the type of the alarm signal is the second type, the alarm signal is sent to the controller of the robot; the controller of the robot controls the robot to decelerate and run until the robot stops After running, control the first safety circuit and the second safety circuit to be disconnected at the same time, and cut off the power supply of the robot; if the type of the alarm signal is the third type, the alarm signal is sent to the robot controller, and the robot controller controls the robot to decelerate Drive until the robot stops.
  • a computer-readable storage medium having a computer program stored thereon, which when executed by a processor realizes the method for controlling a robot as described in any of the above embodiments.
  • a control device for a robot including: a memory; a processor coupled to the memory, and the processor is configured to be based on Instructions to execute the robot control method described in any of the above embodiments.
  • a safety control device for a robot including: a first controller, a second controller, a first safety circuit, and a second safety circuit, wherein the first controller and the second controller Any one of the controllers is connected to the first safety circuit and the second safety circuit, and is used to determine the type of the alarm signal from the outside of the robot, and control the first safety circuit and the second safety circuit to execute the control command corresponding to the type of the alarm signal ,
  • the logic of the first safety circuit is opposite to that of the second safety circuit.
  • the safety control device provided by this application adopts a dual safety circuit design with dual CPUs to control the positive and negative logic, which avoids the homogeneity failure of the robot’s safety circuit and the backup safety circuit. Therefore, the technical effect of improving the stability and safety of the robot operation is realized, and the technical problem of serious circuit homogeneity in the protective stop circuit of the robot is solved, and there is a technical problem of hidden safety hazards.
  • Fig. 1 is a structural diagram of a safety control device for a robot according to some embodiments of the present application
  • Fig. 2 is a structural diagram of a safety control device for a robot according to other embodiments of the present application.
  • Fig. 3 is a structural diagram of a safety control device for a robot according to still other embodiments of the present application.
  • Figure 4 is a circuit diagram of a safety circuit according to some embodiments of the present application.
  • Figure 5 is a structural diagram of a robot according to some embodiments of the present application.
  • Fig. 6 is a flowchart of a method for controlling a robot according to some embodiments of the present application.
  • Fig. 7 is a block diagram of a control device of a robot according to some embodiments of the present application.
  • an embodiment of a safety control device for a robot is provided. It should be noted that the steps shown in the flowchart of the accompanying drawings can be executed in a computer system such as a set of computer-executable instructions, and Although the logical sequence is shown in the flowchart, in some cases, the steps shown or described can be performed in a different order than here.
  • Fig. 1 is a structural diagram of a safety control device for a robot according to some embodiments of the present application. As shown in Figure 1, the safety control equipment includes:
  • the second safety circuit 16 is connected to determine the type of the alarm signal from the outside of the robot, and to control the first safety circuit 14 and the second safety circuit 16 to execute the control command corresponding to the type of the alarm signal, the first safety circuit 14 and the second safety circuit 16
  • the logic of the safety circuit 16 is reversed.
  • the models of the first controller 10 and the second controller 12 are different.
  • the first controller 10 and the second controller 12 use different types of CPUs from different manufacturers, which can also avoid the problem of circuit homogeneity failure.
  • both the first controller 10 and the second controller 12 are connected to the first safety circuit 14 and the second safety circuit 16, for judging the status of each safety input signal, and monitoring the status of the safety circuit.
  • the robot When the robot is in an abnormal state, it can control the MOS tube in the safety circuit, disconnect the safety circuit, and cut off the power supply of the robot.
  • the dual safety loop design with dual CPU control positive and negative logic is adopted to avoid the problem of homogeneity failure of the safety circuit of the robot and the backup safety circuit, thereby improving the stability and safety of the robot operation.
  • Fig. 2 is a structural diagram of a safety control device for a robot according to other embodiments of the present application.
  • a first communication link 18 is included between the first controller 10 and the second controller 12, and the first controller 10 and the second controller 12 verify the first security through the first communication link 18. Whether there is a timing error in the data returned by the loop 14 and the second safety loop 16, if there is a timing error in the data returned by the first safety loop 14 and the second safety loop 16, control to disconnect the first safety loop 14 and the second safety loop 16, And send the first alarm message.
  • the first communication link 18 is a communication link between the serial peripheral interfaces of the first controller 10 and the second controller 12.
  • the two controllers perform mutual verification through SPI to verify whether there are timing errors in the data sent by the two safety loops to the two controllers. If there is a timing error, the first safety circuit and the second safety circuit are controlled to be disconnected, and an alarm message is sent.
  • the voice alarm information can be sent by voice broadcast, or the alarm information can be sent to the terminal device connected to the controller through RS485.
  • Fig. 3 is a structural diagram of a safety control device for a robot according to still other embodiments of the present application.
  • the first controller 10 and the second controller 12 further include a second communication link 110, and the first controller 10 and the second controller 12 send to each other through the second communication link 110 respectively.
  • Preset bytes of data if either of the first controller 10 and the second controller 12 does not receive the preset bytes of data sent by the other party, control to disconnect the first safety circuit 14 and the second safety circuit 16 , And send the second alarm message.
  • the second communication link 110 is a communication link between the input/output interfaces of the first controller 10 and the second controller 12.
  • the two controllers have a communication link directly connected through the IO interface.
  • the two controllers regularly send fixed bytes of data through the communication link. If one of them cannot receive the data sent by the other party, it will immediately enter the protection state. Specifically, the two safety circuits are controlled to be disconnected, and an alarm message is sent.
  • the voice alarm information can be sent through voice broadcast, or the alarm information can be sent to a user terminal that is communicatively connected with the controller.
  • the safety control device provided by the present application can work normally only when both CPUs are working normally, the implementation of the above method to detect the running status of the two CPUs can improve the stability of the operation of the safety control device.
  • the first controller 10 and the second controller 12 are also used to perform the following control operations: if the type of the alarm signal is the first type, control the first safety circuit 14 and the second safety circuit 16 At the same time, disconnect and cut off the power supply of the robot; if the type of the alarm signal is the second type, the alarm signal is sent to the controller of the robot, and the controller of the robot controls the robot to decelerate until the robot stops, and then controls the first safety circuit 14 and the second safety circuit 16 are disconnected at the same time to cut off the power supply of the robot; if the type of the alarm signal is the third type, the alarm signal is sent to the controller of the robot, and the controller of the robot controls the robot to decelerate and drive until the robot stops.
  • the robot can be divided into the following three stopping methods according to whether the robot can be controlled to stop:
  • Category 0 Sudden external power failure or emergency stop signal is valid, cut off the power source of the robot or trigger a free stop or brake stop, which is an uncontrollable stop;
  • Type 1 Make the robot stop quickly, maintain the current planned path, and cut off the power source of the robot when the robot stops, which is a controllable stop;
  • Type 2 Make the robot stop quickly and maintain the current planned path. When the robot stops, control the driver without cutting off the power source of the robot, which is a controllable stop.
  • the safety control equipment of the aforementioned industrial robot provided in this application can be directly applied to the industrial robot and classify externally input safety signals.
  • a category 0 alarm signal (the above-mentioned first type of alarm signal) appears, the safety module can be If the software is not controlled by the hardware, the power source of the robot is directly cut off through the hardware to avoid the safety circuit failure due to software processing errors; when a type 1 alarm signal (the second type of alarm signal above) occurs, the safety circuit can be disconnected through the software. Turn on the robot power source; when a type 2 alarm signal (the third type of alarm signal mentioned above) occurs, the safety control device uploads the alarm information to the robot controller, and the robot controller controls the robot to decelerate and stop.
  • any one of the first safety circuit 14 and the second safety circuit 16 includes a safety relay and two field effect transistors, wherein the normally open contacts of the two safety relays are both connected to the first control
  • the first controller and the second controller monitor the operation status of the two safety relays through normally open contacts;
  • the two field effect transistors of the first safety circuit are PMOS field effect transistors, and the second safety circuit
  • the two field effect transistors are NMOS field effect transistors.
  • Fig. 4 is a circuit diagram of a safety circuit according to some embodiments of the present application.
  • K11 and K12 are safety relays with forced guided contacts.
  • a set of normally open contacts of the safety relay are connected back to the first controller 10 and the second controller 12. It is used to monitor the status of the safety relay and avoid the contact sticking of the safety relay. The signal on the auxiliary contact of the safety relay is fed back to the controller, and then the monitoring of the safety relay can ensure the safe and reliable operation of the safety circuit.
  • the safety signals of the safety interface of the robot are shown in the following table.
  • the safety interface includes power, safety input and safety output signals.
  • the safety input signal includes: safety door, teach pendant emergency stop 1, teach pendant emergency stop 2, external emergency stop 1, external emergency stop 2, limit switch.
  • Emergency stop processing flow When an emergency stop signal is generated, such as emergency stop of the teach pendant, external emergency stop, disconnect the safety circuit, the coils of the two safety relays are disconnected, and the normally closed contact of the safety relay is broken. Open, normally open contacts are closed, the action signal will be transmitted to the two controllers through the optocoupler, and the two controllers will transmit the signal to the servo drive, and the servo drive will decelerate.
  • the output of the safety relay directly disconnects the main circuit power supply of the servo drive through the relay to achieve the purpose of emergency braking.
  • SAFE_OUT1+ and SAFE_OUT1-, SAFE_OUT2+ and SAFE_OUT2- are safe output signals
  • Q15, Q16 are PMOS
  • Q14, Q18 are NMOS tubes
  • the safety output signal is connected in the following way:
  • MOS tube design scheme there are no two device and logic type design schemes, because when the device fails and other faults, it can effectively avoid and reduce the failure of one type of device (MOS tube). Risk of failure.
  • the MOS tube solution adopted in this application uses two different types of switching devices, one is NMOS tube (active high) and the other is PMOS tube (active low). These are two different logic control solutions.
  • the software logic In the software logic, it also plays a role of mutual inspection and protection, avoiding the high risk of errors caused by the use of a control logic, so as to play a better safety control.
  • the safety door signal is a type 1 stop signal.
  • the safety control device receives the safety door signal, it sends a safety alarm signal to the robot controller, and the controller informs the servo module to slow down, and then returns the signal to the safety control device for safety control
  • the equipment disconnects the safety circuit and cuts off the power source of the servo drive.
  • the limit signal belongs to the 2 types of stop signals.
  • the safety module receives the limit signal, it sends a safety alarm signal to the robot controller.
  • the controller informs the servo module to decelerate and then returns the signal to the safety module.
  • the safety output does not disconnect the power source of the servo drive, and the alarm signal can be cleared after manually moving the robot back into the safe area.
  • alarm signals belong to Type 2 stop signals.
  • the safety controller receives this type of signal, the servo drive will decelerate and stop without disconnecting the enable signal. After the alarm is eliminated, it can continue to move on the current trajectory.
  • the safety control equipment does not require additional PLC control modules, occupies a small space, is convenient for wiring and installation, and can meet the installation requirements of a compact control cabinet; it adopts a combination of software and hardware control scheme, software and hardware It can control and disconnect the safety circuit. In an emergency, software is not required.
  • the main power supply of the servo drive can be disconnected by hardware, which can ensure the safe and reliable operation of the industrial robot. In addition, it can also realize the classification of the alarm signal input to the robot. deal with.
  • Fig. 5 is a structural diagram of a robot according to some embodiments of the present application. As shown in FIG. 5, the robot includes: a controller 50; and the above safety control device 52.
  • the 24V power supply used by the safety circuit in the safety control device 52 must be different from the 24V power supply used by the robot controller 50.
  • Fig. 6 is a flowchart of a method for controlling a robot according to some embodiments of the present application. As shown in Figure 6, the method includes the following steps:
  • step S602 the first controller and the second controller obtain the alarm signal from the outside of the robot, and judge the type of the alarm signal.
  • Step S604 the first controller and the second controller control the first safety circuit and the second safety circuit to execute the control instruction corresponding to the type of the alarm signal, and any one of the first controller and the second controller and the first The safety circuit is connected to the second safety circuit, and the logic of the first safety circuit is opposite to that of the second safety circuit.
  • step S604 can be implemented by the following method: if the type of the alarm signal is the first type, control the first safety circuit and the second safety circuit to be disconnected at the same time, and cut off the power supply of the robot; The type is the second type, and the alarm signal is sent to the controller of the robot. After the controller of the robot controls the robot to decelerate and run until the robot stops running, the first safety circuit and the second safety circuit are controlled to be disconnected at the same time, and the power supply of the robot is cut off ; If the type of the alarm signal is the third type, the alarm signal is sent to the controller of the robot, and the controller of the robot controls the robot to decelerate until the robot stops.
  • An embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the robot control method described in any of the above embodiments is implemented.
  • the storage medium is used to store programs that perform the following functions: the first controller and the second controller obtain the alarm signal from the outside of the robot and determine the type of the alarm signal; the first controller and the second controller control the first safety circuit and The second safety circuit executes the control command corresponding to the type of alarm signal, any one of the first controller and the second controller is connected to the first safety circuit and the second safety circuit, and the first safety circuit is connected to the second safety circuit.
  • the logic is opposite.
  • An embodiment of the present application also provides a robot control device, including: a memory; and a processor coupled to the memory, the processor is configured to execute any of the above based on instructions stored in the memory device The robot control method described in an embodiment.
  • the processor executes the following functions when running the program: the first controller and the second controller obtain the alarm signal from the outside of the robot and judge the type of the alarm signal; the first controller and the second controller control the first safety circuit and the second The safety circuit executes the control command corresponding to the type of the alarm signal. Any one of the first controller and the second controller is connected to the first safety circuit and the second safety circuit. The logic of the first safety circuit and the second safety circuit on the contrary.
  • Fig. 7 is a block diagram of a control device of a robot according to some embodiments of the present application.
  • control device includes a memory 710 and a processor 720 coupled to the memory 710.
  • the processor 720 is configured to execute the control method in any one of the foregoing embodiments based on instructions stored in the memory 710.
  • the memory 710 may include, for example, a system memory, a fixed non-volatile storage medium, and the like.
  • the system memory stores, for example, an operating system, an application program, a boot loader (Boot Loader), and other programs.
  • the control device may also include an input/output interface 730, a network interface 740, a storage interface 750, and the like. These interfaces 730, 740, 750, and the memory 710 and the processor 720 may be connected by a bus 760, for example.
  • the input and output interface 730 provides a connection interface for input and output devices such as a display, a mouse, a keyboard, and a touch screen.
  • the network interface 740 provides connection interfaces for various networked devices.
  • the storage interface 750 provides a connection interface for external storage devices such as SD cards and U disks.
  • the disclosed technical content can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may be a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, units or modules, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, read-only memory (ROM, ReGREEd-Only Memory), random access memory (RGREEM, RGREEndom GREEccess Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program codes. .

Abstract

一种机器人的控制设备及机器人的控制方法、机器人。其中,该控制设备包括:第一控制器(10)、第二控制器(12)、第一安全回路(14)及第二安全回路(16),其中,第一控制器(10)和第二控制器(12)中任意一个控制器与第一安全回路(14)和第二安全回路(16)连接,用于判断来自机器人外部的报警信号的类型,并控制第一安全回路(14)和第二安全回路(16)执行与报警信号的类型对应的控制指令,第一安全回路(14)与第二安全回路(16)的逻辑相反。该设备和方法解决了机器人的保护性停止电路存在电路同质化严重,存在安全隐患的技术问题。

Description

机器人的控制设备及机器人的控制方法、机器人
相关申请的交叉引用
本申请是以CN申请号为202010340781.4,申请日为2020年4月26日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本申请涉及机器人控制领域,具体而言,涉及一种机器人的控制设备及机器人的控制方法、机器人。
背景技术
工业机器安全要求机器人应该具有一个或多个保护性停止电路,此停止电路应通过停止的机器人所有运动、撤除机器人驱动器的动力,中止可由机器人系统控制的任何其他危险等方式来控制其安全防护的风险。停止功能可由手动或者控制逻辑启动。
在现有的技术中,一般的做法是将具有相同功能的安全模块复制一份,两个模块互为备份,当出现安全告警信号时,两个安全模块同时响应,切断机器人的动力源,当出现一路失效时,另外一路能够响应告警信号。但这种保护性停止电路存在电路同质化严重,存在安全隐患的问题。
针对上述的问题,目前尚未提出有效的解决方案。
发明内容
本申请实施例提供了一种机器人的控制设备及机器人的控制方法、机器人,以至少解决机器人的保护性停止电路存在电路同质化严重,存在安全隐患的技术问题。
根据本申请实施例的一个方面,提供了一种机器人的安全控制设备,包括:第一控制器、第二控制器、第一安全回路及第二安全回路,其中,第一控制器和第二控制器中任意一个控制器与第一安全回路和第二安全回路连接,用于判断来自机器人外部的报警信号的类型,并控制第一安全回路和第二安全回路执行与报警信号的类型对应的控制指令,第一安全回路与第二安全回路的逻辑相反。
在一些实施例中,第一控制器和第二控制器之间包括第一通信链路,第一控制器和第二控制器通过第一通信链路校验第一安全回路和第二安全回路返回的数据是否存在时序误差,如果第一安全回路和第二安全回路返回的数据存在时序误差,控制断开第一安全回路和第二安全回路,并发送第一报警信息。
在一些实施例中,第一通信链路为第一控制器和第二控制器的串行外设接口之间的通信链路。
在一些实施例中,第一控制器和第二控制器之间还包括第二通信链路,第一控制器和第二控制器分别通过第二通信链路向对方发送预设字节的数据,如果第一控制器和第二控制器中的任意一方未接收到对方发送的预设字节的数据,控制断开第一安全回路和第二安全回路,并发送第二报警信息。
在一些实施例中,第二通信链路为第一控制器和第二控制器的输入/输出接口之间的通信链路。
在一些实施例中,第一控制器和第二控制器还用于执行如下控制操作:如果报警信号的类型为第一类型,控制第一安全回路和第二安全回路同时断开,切断机器人的供电电源;如果报警信号的类型为第二类型,将报警信号发送至机器人的控制器;在机器人的控制器控制机器人减速行驶直至机器人停止行驶后,控制第一安全回路和第二安全回路同时断开,切断机器人的供电电源;如果报警信号的类型为第三类型,将报警信号发送至机器人的控制器,机器人的控制器控制机器人减速行驶直至机器人停止行驶。
在一些实施例中,第一安全回路和第二安全回路中任意一个安全回路包括一个安全继电器和两个场效应管,其中,两个安全继电器的常开触点均连接第一控制器和第二控制器,第一控制器和第二控制器通过常开触点监控两个安全继电器的运行状态;第一安全回路的两个场效应管为PMOS场效应管,第二安全回路的两个场效应管为NMOS场效应管。
在一些实施例中,第一控制器和第二控制器的型号不同。
根据本申请实施例的另一方面,还提供了一种机器人,机器人包括:控制器;以及以上的安全控制设备。
根据本申请实施例的另一方面,还提供了一种机器人的控制方法,包括:第一控制器和第二控制器获取来自机器人外部的报警信号,并判断报警信号的类型;第一控制器和第二控制器控制第一安全回路和第二安全回路执行与报警信号的类型对应的控制指令,第一控制器和第二控制器中任意一个控制器与第一安全回路和第二安全回路连接,第一安全回路与第二安全回路的逻辑相反。
在一些实施例中,第一控制器和第二控制器控制第一安全回路和第二安全回路执行与报警信号的类型对应的控制指令,包括:如果报警信号的类型为第一类型,控制第一安全回路和第二安全回路同时断开,切断机器人的供电电源;如果报警信号的类型为第二类型,将报警信号发送至机器人的控制器;在机器人的控制器控制机器人减速运行直至机器人停止运行后,控制第一安全回路和第二安全回路同时断开,切断机器人的供电电源;如果报警信号的类型为第三类型,将报警信号发送至机器人的控制器,机器人的控制器控制机器人减速行驶直至机器人停止行驶。
根据本申请实施例的再一方面,还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如以上任一实施例所述的机器人的控制方法。
根据本申请实施例的再一方面,还提供了一种机器人的控制装置,包括:存储器;耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器装置中的指令,执 行以上任一实施例所述的机器人的控制方法。
在本申请实施例中,提供了一种机器人的安全控制设备,包括:第一控制器、第二控制器、第一安全回路及第二安全回路,其中,第一控制器和第二控制器中任意一个控制器与第一安全回路和第二安全回路连接,用于判断来自机器人外部的报警信号的类型,并控制第一安全回路和第二安全回路执行与报警信号的类型对应的控制指令,第一安全回路与第二安全回路的逻辑相反,本申请提供的安全控制设备采用双CPU控制正反逻辑的双安全回路设计,达到了避免了机器人的安全电路与备份安全电路同质化失效的问题,从而实现了提高机器人运行的稳定性及安全性的技术效果,进而解决了机器人的保护性停止电路存在电路同质化严重,存在安全隐患技术问题。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本申请一些实施例的机器人的安全控制设备的结构图;
图2是根据本申请另一些实施例的机器人的安全控制设备的结构图;
图3是根据本申请又一些实施例的机器人的安全控制设备的结构图;
图4是根据本申请一些实施例的安全回路的电路图;
图5是根据本申请一些实施例的机器人的结构图;
图6是根据本申请一些实施例的机器人的控制方法的流程图;
图7是根据本申请一些实施例的机器人的控制装置的框图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
根据本申请实施例,提供了一种机器人的安全控制设备的实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1是根据本申请一些实施例的机器人的安全控制设备的结构图。如图1所示,该安全控制设备包括:
第一控制器10、第二控制器12、第一安全回路14及第二安全回路16,其中,第一控制器10和第二控制器12中任意一个控制器与第一安全回路14和第二安全回路16连接,用于判断来自机器人外部的报警信号的类型,并控制第一安全回路14和第二安全回路16执行与报警信号的类型对应的控制指令,第一安全回路14与第二安全回路16的逻辑相反。
根据本申请的一些实施例,第一控制器10和第二控制器12的型号不同。
在具体实施时,第一控制器10和第二控制器12采用不同厂家的不同型号的CPU,也可以避免电路同质化失效的问题。
如图1所示,第一控制器10和第二控制器12均与第一安全回路14第二安全回路16连接,用于判断各个安全输入信号的状态,监测安全回路的状态,当检测到机器人处于异常状态时,可以控制安全回路中的MOS管,断开安全回路,切断机器人的供电电源。
通过上述安全控制设备,采用双CPU控制正反逻辑的双安全回路设计,达到了避免了机器人的安全电路与备份安全电路同质化失效的问题,从而实现了提高机器人运行的稳定性及安全性的技术效果。
图2是根据本申请另一些实施例的机器人的安全控制设备的结构图。如图2所示,第一控制器10和第二控制器12之间包括第一通信链路18,第一控制器10和第二控制器12通过第一通信链路18校验第一安全回路14和第二安全回路16返回的数据是否存在时序误差,如果第一安全回路14和第二安全回路16返回的数据存在时序误差,控制断开第一安全回路14和第二安全回路16,并发送第一报警信息。
根据本申请的一个些实施例,第一通信链路18为第一控制器10和第二控制器12的串行外设接口之间的通信链路。
为了避免两个安全回路上有时序上的误差,两个控制器之间通过SPI进行相互校验,校验两个安全回路发送至两个控制器的数据是否存在时序误差。如果存在时序误差,控制第一安全回路和第二安全回路均断开,并且发送报警信息。发送语音报警信息可以通过语音播报,或者通过RS485将报警信息发送至与控制器通信连接的终端设备。通过上述时序校验过程,可以避免两个安全回路存在时序误差。
图3是根据本申请又一些实施例的机器人的安全控制设备的结构图。如图3所示,第一控制器10和第二控制器12之间还包括第二通信链路110,第一控制器10和第二控制器12分别通过第二通信链路110向对方发送预设字节的数据,如果第一控制器10和第二控 制器12中的任意一方未接收到对方发送的预设字节的数据,控制断开第一安全回路14和第二安全回路16,并发送第二报警信息。
根据本申请的一些实施例,第二通信链路110为第一控制器10和第二控制器12的输入/输出接口之间的通信链路。
两个控制器有一个通过IO接口直接相连的通信链路,两个控制器通过该通信链路定时发送固定字节的数据,若其中一方无法收到对方发送的数,则立马进入保护状态。具体的,控制断开两个安全回路,并发送报警信息。发送语音报警信息可以通过语音播报,或者将报警信息发送至与控制器通信连接的用户终端。
由于本申请提供的安全控制设备必须在两个CPU均正常工作的情况下,该安全设备才能正常工作,因此通过上述方法实施检测两个CPU的运行状态,可以提高安全控制设备运行的稳定性。
在本申请的一些实施例中,第一控制器10和第二控制器12还用于执行如下控制操作:如果报警信号的类型为第一类型,控制第一安全回路14和第二安全回路16同时断开,切断机器人的供电电源;如果报警信号的类型为第二类型,将报警信号发送至机器人的控制器,在机器人的控制器控制机器人减速行驶直至机器人停止行驶后,控制第一安全回路14和第二安全回路16同时断开,切断机器人的供电电源;如果报警信号的类型为第三类型,将报警信号发送至机器人的控制器,机器人的控制器控制机器人减速行驶直至机器人停止行驶。
根据国标要求并且结合机器人安全模块的具体设计,根据机器人是否能够可控停止分为以下三种停止方式:
0类:外部突然断电或急停信号有效,切断机器人动力源或者触发自由停止或抱闸停止,属于不可控停止;
1类:使机器人快速停止,保持当前规划路径,当机器人停止后,切断机器人动力源,属于可控停止;
2类:使机器人快速停止,保持当前规划路径,当机器人停止后,控制驱动器,不切断机器人动力源,属于可控停止。
本申请提供的上述工业机器人的安全控制设备能够直接应用在工业机器人上,并对外部输入的安全信号进行分类,当出现0类报警信号(上述第一类型的报警信号)时,安全模块能够在软件不控制的情况下直接通过硬件切断机器人动力源,避免因为软件处理出错而导致安全回路故障;出现1类报警信号(上述第二类型的报警信号)时,能够通过软件断开安全回路,断开机器人动力源;发生2类报警信号(上述第三类型的报警信号)时,安全控制设备将报警信息上传至机器人的控制器,机器人控制器控制机器人减速停止。
根据本申请的一些实施例,第一安全回路14和第二安全16中任意一个安全回路包括一个安全继电器和两个场效应管,其中,两个安全继电器的常开触点均连接第一控制器和 第二控制器,第一控制器和第二控制器通过常开触点监控两个安全继电器的运行状态;第一安全回路的两个场效应管为PMOS场效应管,第二安全回路的两个场效应管为NMOS场效应管。
图4是根据本申请一些实施例的安全回路的电路图。如图4所示,K11和K12为安全继电器,带强制导向触点,为了保证安全回路的状态,将安全继电器的一组常开触点接回第一控制器10和第二控制器12,用于监控安全继电器的状态,避免安全继电器的触点粘连。将安全继电器辅助触点上的信号反馈回控制器,进而实现对安全继电器的监控可以保证安全回路安全可靠地运行。
机器人的安全接口的安全信号如下表所示,安全接口上包括电源、安全输入和安全输出信号。
其中,安全输入信号包括:安全门、示教器急停1、示教器急停2、外部急停1、外部急停2、限位开关。
Figure PCTCN2020139452-appb-000001
急停处理流程:当有急停信号产生时,如示教器急停、外部急停,断开安全回路,则断开了两个安全继电器的线圈,此时安全继电器的常闭触点断开,常开触点闭合,动作信号会通过光耦传导两个控制器,两个控制器会将信号传输到伺服驱动器,伺服驱动器进行减速。安全继电器的输出通过继电器直接断开伺服驱动器的主回路电源用来达到紧急制动 的目的。
SAFE_OUT1+和SAFE_OUT1-、SAFE_OUT2+和SAFE_OUT2-属于安全输出信号,Q15、Q16为PMOS,Q14、Q18为NMOS管,避免电路的同质化,提高可靠性,安全输出信号按照以下方式连接:一般常规设计多采用一种类型的MOS管设计方案,未见有两种器件和逻辑类型的设计方案,因为当器件发生失效等故障时有效避免和降低了因一种类型器件(MOS管)失效的带来的故障风险。本申请采用的MOS管方案,使用两种不同类型的开关器件,一种是NMOS管(高电平有效),一种是PMOS管(低电平有效),这是两种不同逻辑控制的方案,在软件逻辑上也起到了互检和保护的作用,避免使用一种控制逻辑导致发生错误的高风险,从而起到更好的安全控制。用安全输出信号直接控制伺服驱动器上的交流接触器,交流接触器在发生0类报警(非外部断电的情况)时断开伺服驱动器的驱动源。只有在两个回路都正常的情况下才能够安全输出才能够正常工作。
其他信号处理流程:
安全门:安全门信号属于1类停止信号,当安全控制设备收到安全门信号时,将安全报警信号发送给机器人控制器,控制器通知伺服模块减速运行,然后再将信号返回给安全控制设备,安全控制设备断开安全回路,切断伺服驱动动力源。
限位信号:限位信号属于2类停止信号,当安全模块收到限位信号时,将安全报警信号发送给机器人控制器,控制器通知伺服模块减速运行,然后再将信号返回给安全模块,安全输出不断开伺服驱动器动力源,手动将机器人移回安全区域内后可清除报警信号。
其他告警信号属于2类停止信号,安全控制器接收到此类信号时,伺服驱动器减速停止,不断开使能信号,报警消除后可继续保持当前轨迹进行运动。
本申请实施例提供的安全控制设备,不需要增加额外的PLC控制模块,占用空间小,便于接线和安装,可以满足紧凑型控制柜的安装需求;采用软件与硬件相结合控制的方案,软硬件均能控制断开安全回路,在紧急情况下不需要软件参与,能够使用硬件断开伺服驱动器主电源,可以保证工业机器人的安全可靠地运行;此外,还可以实现对输入机器人的告警信号进行分类处理。
图5是根据本申请一些实施例的机器人的结构图。如图5所示,该机器人包括:控制器50;以及以上的安全控制设备52。
为了避免机器人控制器50电源故障导致安全控制设备52的安全回路失效,安全控制设备52中安全回路使用的24V电源必须与机器人控制器50使用24V电源不同。
需要说明的是,图5所示实施例的优选实施方式可以参见图1所示实施例的相关描述,此处不再赘述。
图6是根据本申请一些实施例的机器人的控制方法的流程图。如图6所示,该方法包括以下步骤:
步骤S602,第一控制器和第二控制器获取来自机器人外部的报警信号,并判断报警信 号的类型。
步骤S604,第一控制器和第二控制器控制第一安全回路和第二安全回路执行与报警信号的类型对应的控制指令,第一控制器和第二控制器中任意一个控制器与第一安全回路和第二安全回路连接,第一安全回路与第二安全回路的逻辑相反。
根据本申请的一些实施例,步骤S604可以通过以下方法实现:如果报警信号的类型为第一类型,控制第一安全回路和第二安全回路同时断开,切断机器人的供电电源;如果报警信号的类型为第二类型,将报警信号发送至机器人的控制器,在机器人的控制器控制机器人减速运行直至机器人停止运行后,控制第一安全回路和第二安全回路同时断开,切断机器人的供电电源;如果报警信号的类型为第三类型,将报警信号发送至机器人的控制器,机器人的控制器控制机器人减速行驶直至机器人停止行驶。
需要说明的是,图6所示实施例的优选实施方式可以参见图1所示实施例的相关描述,此处不再赘述。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以上任一实施例所述的机器人的控制方法。
存储介质用于存储执行以下功能的程序:第一控制器和第二控制器获取来自机器人外部的报警信号,并判断报警信号的类型;第一控制器和第二控制器控制第一安全回路和第二安全回路执行与报警信号的类型对应的控制指令,第一控制器和第二控制器中任意一个控制器与第一安全回路和第二安全回路连接,第一安全回路与第二安全回路的逻辑相反。
本申请实施例还提供了一种机器人的控制装置,包括:存储器;和耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器装置中的指令,执行以上任一实施例所述的机器人的控制方法。
处理器运行程序时执行以下功能:第一控制器和第二控制器获取来自机器人外部的报警信号,并判断报警信号的类型;第一控制器和第二控制器控制第一安全回路和第二安全回路执行与报警信号的类型对应的控制指令,第一控制器和第二控制器中任意一个控制器与第一安全回路和第二安全回路连接,第一安全回路与第二安全回路的逻辑相反。
图7是根据本申请一些实施例的机器人的控制装置的框图。
如图7所示,控制装置包括:存储器710以及耦接至该存储器710的处理器720,处理器720被配置为基于存储在存储器710中的指令,执行前述任意一个实施例中的控制方法。
存储器710例如可以包括系统存储器、固定非易失性存储介质等。系统存储器例如存储有操作系统、应用程序、引导装载程序(Boot Loader)以及其他程序等。
控制装置还可以包括输入输出接口730、网络接口740、存储接口750等。这些接口730、740、750以及存储器710和处理器720之间例如可以通过总线760连接。其中,输入输出接口730为显示器、鼠标、键盘、触摸屏等输入输出设备提供连接接口。网络接口 740为各种联网设备提供连接接口。存储接口750为SD卡、U盘等外置存储设备提供连接接口。在本申请的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,ReGREEd-Only Memory)、随机存取存储器(RGREEM,RGREEndom GREEccess Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (15)

  1. 一种机器人的控制设备,包括:第一控制器、第二控制器、第一安全回路及第二安全回路,其中,
    所述第一控制器和所述第二控制器中任意一个控制器与所述第一安全回路和所述第二安全回路连接,用于判断来自机器人外部的报警信号的类型,并控制所述第一安全回路和所述第二安全回路执行与所述报警信号的类型对应的控制指令,所述第一安全回路与所述第二安全回路的逻辑相反。
  2. 根据权利要求1所述的控制设备,其中,所述第一控制器和所述第二控制器之间包括第一通信链路,所述第一控制器和所述第二控制器通过所述第一通信链路校验所述第一安全回路和所述第二安全回路返回的数据是否存在时序误差,如果所述第一安全回路和所述第二安全回路返回的数据存在时序误差,控制断开所述第一安全回路和所述第二安全回路,并发送第一报警信息。
  3. 根据权利要求2所述的控制设备,其中,所述第一通信链路为所述第一控制器和所述第二控制器的串行外设接口之间的通信链路。
  4. 根据权利要求1所述的控制设备,其中,所述第一控制器和所述第二控制器之间还包括第二通信链路,所述第一控制器和所述第二控制器分别通过所述第二通信链路向对方发送预设字节的数据,如果所述第一控制器和所述第二控制器中的任意一方未接收到对方发送的所述预设字节的数据,控制断开所述第一安全回路和所述第二安全回路,并发送第二报警信息。
  5. 根据权利要求4所述的控制设备,其中,所述第二通信链路为所述第一控制器和所述第二控制器的输入/输出接口之间的通信链路。
  6. 根据权利要求1所述的控制设备,其中,所述第一控制器和所述第二控制器还用于执行如下控制操作:
    如果所述报警信号的类型为第一类型,控制所述第一安全回路和所述第二安全回路同时断开,切断所述机器人的供电电源;
    如果所述报警信号的类型为第二类型,将所述报警信号发送至所述机器人的控制器,在所述机器人的控制器控制所述机器人减速行驶直至所述机器人停止行驶后,控制所述第一安全回路和所述第二安全回路同时断开,切断所述机器人的供电电源;
    如果所述报警信号的类型为第三类型,将所述报警信号发送至所述机器人的控制器,所述机器人的控制器控制所述机器人减速行驶直至所述机器人停止行驶。
  7. 根据权利要求1所述的控制设备,其中,所述第一安全回路和所述第二安全回路中任意一个安全回路包括一个安全继电器和两个场效应管,其中,
    两个安全继电器的常开触点均连接所述第一控制器和所述第二控制器,所述第一控制器和所述第二控制器通过所述常开触点监控所述两个安全继电器的运行状态;
    所述第一安全回路的两个场效应管与所述第二安全回路的两个场效应管为不同类型的场效应管。
  8. 根据权利要求7所述的控制设备,其中,所述第一安全回路的两个场效应管为PMOS场效应管,所述第二安全回路的两个场效应管为NMOS场效应管。
  9. 根据权利要求1所述的控制设备,其中,所述第一控制器和所述第二控制器的型号不同。
  10. 一种机器人,包括:
    控制器;以及
    权利要求1至9中任意一项所述的安全控制设备。
  11. 根据权利要求10所述的机器人,还包括:
    第一电源,用于为所述控制器供电;和
    第二电源,用于为所述安全控制设备的安全回路供电,其中第二电源与第一电源不同。
  12. 一种机器人的控制方法,包括:
    第一控制器和第二控制器获取来自机器人外部的报警信号,并判断所述报警信号的类型;
    所述第一控制器和所述第二控制器控制第一安全回路和第二安全回路执行与所述报警信号的类型对应的控制指令,所述第一控制器和所述第二控制器中任意一个控制器与所述第一安全回路和所述第二安全回路连接,所述第一安全回路与所述第二安全回路的逻辑相反。
  13. 根据权利要求12所述的控制方法,其中,所述第一控制器和所述第二控制器控制第一安全回路和第二安全回路执行与所述报警信号的类型对应的控制指令,包括:
    如果所述报警信号的类型为第一类型,控制所述第一安全回路和所述第二安全回路同时断开,切断所述机器人的供电电源;
    如果所述报警信号的类型为第二类型,将所述报警信号发送至所述机器人的控制器,在所述机器人的控制器控制所述机器人减速运行直至所述机器人停止运行后,控制所述第一安全回路和所述第二安全回路同时断开,切断所述机器人的供电电源;
    如果所述报警信号的类型为第三类型,将所述报警信号发送至所述机器人的控制器,所述机器人的控制器控制所述机器人减速行驶直至所述机器人停止行驶。
  14. 一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如一种存储介质,其特征在于,所述存储介质包括存储的程序,其中,在所述程序运行时控制所述存储介质所在设备执行权利要求12或13中任意一项所述的机器人的控制方法。
  15. 一种机器人的控制装置,包括:
    存储器;和
    耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器装置中的指令,执行权利要求12或13中任意一项所述的机器人的控制方法。
PCT/CN2020/139452 2020-04-26 2020-12-25 机器人的控制设备及机器人的控制方法、机器人 WO2021218204A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022553158A JP2023519155A (ja) 2020-04-26 2020-12-25 ロボットの制御機器及びロボットの制御方法、ロボット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010340781.4 2020-04-26
CN202010340781.4A CN111331619B (zh) 2020-04-26 2020-04-26 机器人的安全控制设备及机器人的控制方法、机器人

Publications (1)

Publication Number Publication Date
WO2021218204A1 true WO2021218204A1 (zh) 2021-11-04

Family

ID=71179247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139452 WO2021218204A1 (zh) 2020-04-26 2020-12-25 机器人的控制设备及机器人的控制方法、机器人

Country Status (3)

Country Link
JP (1) JP2023519155A (zh)
CN (1) CN111331619B (zh)
WO (1) WO2021218204A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114347025A (zh) * 2022-01-04 2022-04-15 深圳市大族机器人有限公司 协作机器人功能安全控制电路,控制方法及协作机器人

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111331619B (zh) * 2020-04-26 2023-08-25 珠海格力电器股份有限公司 机器人的安全控制设备及机器人的控制方法、机器人
CN114076852B (zh) * 2020-08-21 2024-01-26 苏州艾利特机器人有限公司 一种用于工业机器人的安全控制系统及安全控制方法
WO2022037414A1 (zh) * 2020-08-21 2022-02-24 苏州艾利特机器人有限公司 安全控制方法、装置、工业机器人及计算机存储介质
CN113618744A (zh) * 2021-08-27 2021-11-09 库卡机器人(广东)有限公司 机器人的安全控制方法、装置、电子设备和可读存储介质
CN115657450B (zh) * 2022-12-28 2023-03-31 广东美的制冷设备有限公司 工业机器人的安全控制系统、电路及方法
CN117666452A (zh) * 2024-02-01 2024-03-08 季华实验室 机器人的多重安全控制方法、装置、电子设备及存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004237416A (ja) * 2003-02-07 2004-08-26 Fanuc Ltd 非常停止回路
WO2004089580A1 (ja) * 2003-04-02 2004-10-21 Kabushiki Kaisha Yaskawa Denki 産業用ロボットの制御装置
KR20110016315A (ko) * 2009-08-11 2011-02-17 삼성중공업 주식회사 다축 로봇장치의 비상정지 시스템
CN103057725A (zh) * 2013-01-14 2013-04-24 蒂森克虏伯机场系统(中山)有限公司 一种基于sil2 安全等级的机门保护控制装置
CN104440923A (zh) * 2014-11-11 2015-03-25 沈阳新松机器人自动化股份有限公司 一种用于机器人的急停信号控制系统及其机器人
CN106584452A (zh) * 2015-10-19 2017-04-26 沈阳新松机器人自动化股份有限公司 机器人通用安全控制装置
CN108098751A (zh) * 2017-12-06 2018-06-01 珠海格力节能环保制冷技术研究中心有限公司 机械手自动急停装置和自动急停控制方法
WO2018208984A1 (en) * 2017-05-09 2018-11-15 Brain Corporation System and method for motion control of robots
CN111331619A (zh) * 2020-04-26 2020-06-26 珠海格力电器股份有限公司 机器人的安全控制设备及机器人的控制方法、机器人
CN212020795U (zh) * 2020-04-26 2020-11-27 珠海格力电器股份有限公司 机器人的安全控制设备及机器人

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009155993A1 (en) * 2008-06-27 2009-12-30 Abb Research Ltd. A safety system for a machine
DE102010025781B4 (de) * 2010-07-01 2022-09-22 Kuka Roboter Gmbh Tragbare Sicherheitseingabeeinrichtung für eine Robotersteuerung
CN104777805B (zh) * 2015-02-11 2017-12-15 北京配天技术有限公司 一种工业机器人安全控制系统及备份安全电路、安全模块
CN108064359B (zh) * 2016-12-30 2020-06-02 深圳配天智能技术研究院有限公司 一种机器人模式切换告警电路、方法及机器人
CN109079793A (zh) * 2018-09-12 2018-12-25 珠海格力电器股份有限公司 工业机器人安全保护装置及其工作方法、工业机器人及其工作方法
CN209408506U (zh) * 2018-12-29 2019-09-20 上海新时达机器人有限公司 一种机器人控制系统
CN110794805B (zh) * 2019-10-08 2021-05-14 珠海格力电器股份有限公司 一种机器人安全电路及其控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004237416A (ja) * 2003-02-07 2004-08-26 Fanuc Ltd 非常停止回路
WO2004089580A1 (ja) * 2003-04-02 2004-10-21 Kabushiki Kaisha Yaskawa Denki 産業用ロボットの制御装置
KR20110016315A (ko) * 2009-08-11 2011-02-17 삼성중공업 주식회사 다축 로봇장치의 비상정지 시스템
CN103057725A (zh) * 2013-01-14 2013-04-24 蒂森克虏伯机场系统(中山)有限公司 一种基于sil2 安全等级的机门保护控制装置
CN104440923A (zh) * 2014-11-11 2015-03-25 沈阳新松机器人自动化股份有限公司 一种用于机器人的急停信号控制系统及其机器人
CN106584452A (zh) * 2015-10-19 2017-04-26 沈阳新松机器人自动化股份有限公司 机器人通用安全控制装置
WO2018208984A1 (en) * 2017-05-09 2018-11-15 Brain Corporation System and method for motion control of robots
CN108098751A (zh) * 2017-12-06 2018-06-01 珠海格力节能环保制冷技术研究中心有限公司 机械手自动急停装置和自动急停控制方法
CN111331619A (zh) * 2020-04-26 2020-06-26 珠海格力电器股份有限公司 机器人的安全控制设备及机器人的控制方法、机器人
CN212020795U (zh) * 2020-04-26 2020-11-27 珠海格力电器股份有限公司 机器人的安全控制设备及机器人

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114347025A (zh) * 2022-01-04 2022-04-15 深圳市大族机器人有限公司 协作机器人功能安全控制电路,控制方法及协作机器人
CN114347025B (zh) * 2022-01-04 2024-02-20 深圳市大族机器人有限公司 协作机器人功能安全控制电路,控制方法及协作机器人

Also Published As

Publication number Publication date
CN111331619B (zh) 2023-08-25
JP2023519155A (ja) 2023-05-10
CN111331619A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
WO2021218204A1 (zh) 机器人的控制设备及机器人的控制方法、机器人
JPS62500269A (ja) 信頼性ある通信プロトコルを用いる電源制御ネットワ−ク
CN107807630A (zh) 一种主备设备的切换控制方法、其切换控制系统及装置
CN212020795U (zh) 机器人的安全控制设备及机器人
WO2021047619A1 (zh) 虚拟网卡链路状态设置方法、装置及存储介质
CN108508740A (zh) 一种具备冗余功能的综合自动化控制系统
CN109995597B (zh) 一种网络设备故障处理方法及装置
CN217882960U (zh) 冗余切换单元及系统
US20220271562A1 (en) Power source switching control system and power source switching control method
JP4966610B2 (ja) 情報処理システム、情報処理システムの緊急時電源断方法
US20230168980A1 (en) Storage system
CN1485747A (zh) 双热插拔ide装置之控制电路及方法
CN219204558U (zh) 网络视频录像机及网络视频录像机系统
CN216927836U (zh) 一种消防模拟训练控制装置
CN115002128B (zh) Opc客户端实现主备提高可靠性的控制方法
CN218974796U (zh) 多重冗余控制系统
JPH02231603A (ja) 2重化切換方式
CN106786432A (zh) 一种电子设备开关装置及方法
JP2737480B2 (ja) 二重化通信制御装置の切り替え方法及び装置
JPS5872267A (ja) 2重系状態監視計算機装置
CN117951069A (zh) 一种服务器系统、通信方法和服务器
JPS59103495A (ja) 制御情報通信方式
KR20240034375A (ko) 마스터 모드로 동작하는 hmi 장치
JPH05334270A (ja) 構成制御方式及び複合情報処理システム
JPH0675876A (ja) 障害回線強制リセット方式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933330

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553158

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933330

Country of ref document: EP

Kind code of ref document: A1