WO2021217983A1 - 充电公路、地下供电小车、电动车辆、充电系统及方法 - Google Patents

充电公路、地下供电小车、电动车辆、充电系统及方法 Download PDF

Info

Publication number
WO2021217983A1
WO2021217983A1 PCT/CN2020/112151 CN2020112151W WO2021217983A1 WO 2021217983 A1 WO2021217983 A1 WO 2021217983A1 CN 2020112151 W CN2020112151 W CN 2020112151W WO 2021217983 A1 WO2021217983 A1 WO 2021217983A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
electric vehicle
charging
underground
trolley
Prior art date
Application number
PCT/CN2020/112151
Other languages
English (en)
French (fr)
Inventor
成志东
钟东洲
李阳
Original Assignee
五邑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五邑大学 filed Critical 五邑大学
Publication of WO2021217983A1 publication Critical patent/WO2021217983A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/37Means for automatic or assisted adjustment of the relative position of charging devices and vehicles using optical position determination, e.g. using cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B25/00Tracks for special kinds of railways
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/22Gutters; Kerbs ; Surface drainage of streets, roads or like traffic areas
    • E01C11/224Surface drainage of streets
    • E01C11/227Gutters; Channels ; Roof drainage discharge ducts set in sidewalks
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C9/00Special pavings; Pavings for special parts of roads or airfields
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/045Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention relates to the technical field of vehicle charging, in particular to a charging highway, underground power supply trolley, electric vehicle, charging system and method.
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • the present invention proposes a charging road, underground power supply trolley, electric vehicle, charging system and method.
  • the underground power supply trolley is used to track electric vehicles located on the charging road to provide full power for the electric vehicles to realize short-distance charging and improve charging efficiency. .
  • the charging road according to the embodiment of the first aspect of the present invention includes a power supply rail arranged along the extending direction of the road surface and an underground passage for accommodating the power supply rail.
  • the underground passage is arranged below the road surface, and the underground passage includes A power supply opening arranged in an extension direction, the power supply rail includes a rail part for carrying the movement of the underground power supply trolley and a power supply part for providing power, and the power supply part is connected to an external power source.
  • the charging road according to the embodiment of the present invention has at least the following beneficial effects: Different from the existing road structure, the charging road in the embodiment of the present invention opens an underground passage under the road surface to accommodate the power supply rail, thereby using the power supply rail to carry the underground power supply trolley.
  • the underground power supply car can follow the movement of the electric vehicle along the power supply track under the premise of unchanged road, and provide power supply for the driving electric vehicle to ensure the endurance of the electric vehicle.
  • Electric vehicles are basically relatively stationary, can realize short-distance charging, and improve charging efficiency.
  • the power supply rail further includes a waterproof cover provided above the power supply part to shield water falling into the underground passage from the power supply opening.
  • the waterproof cover includes water blocking parts distributed on both sides of the power supply part, and the water blocking part and the power supply rail form a structure with a T-shaped cross section.
  • the water blocking portion is a horizontal baffle, an L-shaped baffle, or a baffle inclined toward the bottom of the underground passage.
  • the first aspect of the present invention further includes a drainage ditch, the drainage ditch is arranged along the extension direction of the road surface, and the drainage ditch is arranged at the bottom of the underground passage.
  • the drainage ditch further includes spaced drainage outlets, and the drainage outlets are connected to an external sewer system.
  • the first aspect of the present invention further includes a road guide line as a reference for automatic driving, and the road guide line is parallel to the power supply track.
  • the underground power supply trolley according to the embodiment of the second aspect of the present invention is applied to a charging road.
  • the charging road includes a power supply rail arranged along the extension direction of the road surface and an underground passage for accommodating the power supply rail.
  • the underground passage includes power supply openings arranged along the extension direction of the road surface
  • the power supply rail includes a rail part for carrying the movement of the underground power supply trolley and a power supply part for providing power
  • the underground power supply trolley includes:
  • a driving mechanism connected to the track portion and capable of moving on the track portion
  • a contact part contacting the power supply part to take power from the power supply part
  • Power supply device facing the electric vehicle on the road to provide electric energy to the electric vehicle
  • a sensing module which faces the electric vehicle to obtain the position of the electric vehicle in real time
  • the controller is connected to the sensor module and drives the driving mechanism according to the position signal returned by the sensor module.
  • the underground power supply trolley has at least the following beneficial effects: the underground power supply trolley takes electricity from the power supply part through the contact part, and transmits the electric energy to the electric vehicle through the power supply device. Since the electric vehicle is in motion on the charging road, Therefore, the underground power supply car needs to track the electric vehicle through the driving mechanism and the sensor module.
  • the controller obtains the position signal of the electric vehicle according to the sensor module, adjusts the driving mechanism to follow the position of the electric vehicle, and at the same time, the controller sends the current position to the electric vehicle. Let the electric vehicle know the current location of the underground power supply trolley and automatically adjust the driving speed, so that the underground power supply trolley and the electric vehicle can drive synchronously on the charging road, thereby realizing short-distance power transmission and improving charging efficiency.
  • the driving mechanism includes a roller and a box body, the rollers are arranged below or on both sides of the box body, the controller is installed in the box body, and the box body The surface of the body is provided with the contact part, the power supply device and the sensor module.
  • the track portion is provided with a guide groove for guiding the roller, and the roller is inserted into the guide groove.
  • the contact part includes a power-taking brush, and the power-taking brush always contacts the power supply part during the driving of the underground power supply trolley.
  • the power supply device is a contact power transmission device or a non-contact power transmission device.
  • the contact type power transmission device includes a flexible cable and a power supply connector is provided at one end of the flexible cable, and the other end of the flexible cable is connected to the contact part, the The power supply connector is connected to the charging head on the electric vehicle.
  • the contact type power transmission device includes a first extension part extending in an up-down direction and a second extension part rotating in a horizontal direction, and the first extension part is connected to the second extension part.
  • the second extension portion is provided with a flexible brush facing the electric vehicle, and the flexible brush moves upward following the second extension portion so as to contact the charging board of the electric vehicle.
  • the non-contact power transmission device includes a wireless charging unit for connecting with a wireless charging device on an electric vehicle.
  • the sensor module is a camera and an image recognition module
  • the camera and the image recognition module are connected to the controller, and the camera faces the
  • the reference object is used to capture the reference object to obtain a reference image
  • the image recognition module recognizes the reference image to recognize the current relative position of the electric vehicle.
  • the sensor module is a laser receiver array
  • the laser receiver array is connected to the controller, and the laser receiver array is used to receive laser light emitted by the electric vehicle to obtain Location information of the electric vehicle.
  • An electric vehicle includes an automatic driving module and an electronic control system, and the electronic control system is communicatively connected with the controller of the underground power supply trolley according to any one of the above-mentioned embodiments of the second aspect, so The automatic driving module is activated after entering the charging road described in any one of the embodiments of the first aspect, and the electronic control system controls the automatic driving module according to the synchronization instruction of the controller of the underground power supply trolley, so that all The electric vehicle and the underground power supply trolley move synchronously.
  • the underground power supply trolley according to the embodiment of the present invention has at least the following beneficial effects: due to the limitation of the one-way extension of the power supply track, the electric vehicle needs to travel in the direction of the power supply track and cannot produce a large left-to-right deviation from the power supply track, so the automatic The driving module is used to avoid the direction shift that may occur when driving by hand.
  • the electronic control system communicates with the underground power supply trolley during the driving process of the electric vehicle to realize the synchronous movement of the electric vehicle and the underground power supply trolley, realize short-distance power transmission, and improve charging efficient.
  • the electric vehicle includes a laser transmitter, and the laser transmitter faces the underground power supply trolley.
  • the charging system according to the embodiment of the fourth aspect of the present invention includes the charging road according to any one of the embodiments of the first aspect, the underground power supply trolley according to any one of the embodiments of the second aspect, and the charging system according to the third aspect.
  • the charging system according to the embodiment of the present invention has at least the following beneficial effects: the charging road in the embodiment of the present invention opens an underground passage under the road surface to accommodate the power supply rail, so that the power supply rail is used to carry the underground power supply trolley, and the electric vehicle runs on the charging road. Under the premise of keeping the same path, the underground power supply car can follow the movement of the electric vehicle along the power supply track to provide power supply for the driving electric vehicle to ensure the endurance of the electric vehicle.
  • the electric vehicle keeps running through the automatic driving module
  • the stability of the process avoiding the possible deviation of the direction when driving by hand, can make the electric vehicle and the underground power supply trolley move synchronously; since the underground power supply trolley and the electric vehicle are basically relatively stationary, short-distance charging can be realized, which improves Charging efficiency.
  • the charging road includes at least charging service stations respectively arranged at the beginning and end of the road, and the charging service stations are used when the electric vehicle enters or leaves the charging road. , Allocate or recycle the underground power supply trolley.
  • a charging method is applied to a charging system.
  • the charging system includes a charging road, an underground power supply trolley, and an electric vehicle.
  • the underground passage accommodating the power supply rail, the underground passage is provided below the road surface, the underground passage includes a power supply opening arranged along the extension direction of the road surface, and the power supply rail includes a rail part for carrying the movement of the underground power supply trolley And a power supply part that provides power, the underground power supply trolley includes a driving mechanism, a contact part, a power supply device, a sensing module, and a controller, the electric vehicle includes an automatic driving module and an electronic control system, and the charging method includes:
  • the controller controls the contact part to contact the power supply part, so that the power supply device is connected to an external power source;
  • the controller controls the sensing module to obtain the position information of the electric vehicle on the charging road;
  • the controller controls the movement of the driving mechanism according to the position information, so that the power supply device and the electric vehicle are relatively stationary;
  • the controller controls the power supply device to connect to the electric vehicle and charge the electric vehicle
  • the electronic control system controls the electric vehicle to perform an automatic driving mode
  • the controller controls the sensing module to obtain the position of the electric vehicle in real time, and the electronic control system controls the automatic driving module according to the synchronization instruction of the controller, so that the power supply device and the electric vehicle Synchronized movement.
  • the charging method according to the embodiment of the present invention has at least the following beneficial effects: the underground power supply trolley automatically moves to the vicinity of the corresponding electric vehicle and is relatively stationary with the electric vehicle, so that it is convenient to connect to the electric vehicle to charge it, and the electric vehicle can continue.
  • the charging highway provides the power source for the underground power supply trolley through the power supply part, and at the same time, the electric vehicle and the underground power supply trolley maintain communication to synchronize movement, thereby realizing short-distance charging and improving the charging efficiency.
  • the controller controlling the movement of the driving mechanism according to the position information so that the power supply device and the electric vehicle are relatively stationary including:
  • the controller obtains the lane code of the lane where the electric vehicle is located;
  • the controller controls the underground power supply trolley to move to the lane coded by the lane;
  • the controller controls the underground power supply trolley to move to the location of the electric vehicle, and updates the location of the electric vehicle in real time;
  • the controller obtains the position signal returned by the sensor module and compares it with a preset reference value
  • the controller controls the driving mechanism to continue to move, and if the position signal and the preset reference value are within the error threshold range, then The controller obtains the current speed of the electric vehicle, and adjusts the driving mechanism so that the speed of the underground power supply trolley is the same as the current speed of the electric vehicle.
  • the controller controlling the underground power supply trolley to move to the location of the electric vehicle includes:
  • the controller obtains the GPS information of the electric vehicle and the GPS information of the underground power supply trolley;
  • the controller activates the sensing module to perform position.
  • FIG. 1 is a schematic diagram of a cross-sectional structure of a charging road and an underground power supply trolley perpendicular to the extending direction of the road according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a cross-sectional structure of a charging road and an underground power supply trolley perpendicular to the extending direction of the road according to another embodiment of the present invention
  • FIG. 3 is a schematic diagram of a cross-sectional structure of a charging road and an underground power supply trolley perpendicular to the extending direction of the road according to another embodiment of the present invention
  • FIG. 4 is a schematic diagram of a cross-sectional structure of an underground passage according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a cross-sectional structure of an underground passage according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a cross-sectional structure of an underground passage according to another embodiment of the present invention.
  • Figure 7 is a schematic structural diagram of an underground power supply trolley according to an embodiment of the present invention.
  • Figure 8 is a schematic structural diagram of an underground power supply trolley according to another embodiment of the present invention.
  • Fig. 9 is a schematic structural diagram of a drainage system according to an embodiment of the present invention (a top view of the road surface plane direction);
  • Fig. 10 is a schematic diagram of a road guide line according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a side structure of a charging system according to an embodiment of the present invention.
  • orientation description involved such as up, down, front, back, left, right, etc. indicates the orientation or positional relationship based on the orientation or positional relationship shown in the drawings, but In order to facilitate the description of the present invention and simplify the description, it does not indicate or imply that the device or element referred to must have a specific orientation, be configured and operate in a specific orientation, and therefore cannot be understood as a limitation to the present invention.
  • Electric vehicles that are charged while driving usually have two sets of batteries that can be switched in turn. During driving, one set of batteries is used to drive the electric vehicle, and the other set of batteries is used for charging. When the power of the battery that drives the electric vehicle is low When the threshold is reached, the electronic control system switches to another set of batteries to take over driving the electric vehicle, and the switched back low-power battery can be charged to achieve long-distance endurance.
  • the current charging facilities for driving cars based on this technology are not complete. It is necessary to consider the outdoor weather environment, project cost and charging efficiency. Among them, the relatively easy-to-implement wireless charging facilities need to cover the entire surface of the highway. Therefore, the charging efficiency is not high, and other wired charging facilities need to consider weather and engineering costs.
  • the present invention proposes a charging road, underground power supply trolley, electric vehicle, charging system and method.
  • a rail-type charging facility is set on the charging road to allow the underground power supply trolley to move on the track and track the electric vehicle.
  • the underground power supply trolley Taking electricity on the track to supply electric vehicles can enable electric vehicles to obtain charging energy during driving, so as to realize charging while driving. Because the distance between underground power supply trolleys and electric vehicles is short, the charging efficiency is higher.
  • FIGS 1 to 6 are cross-sectional structure diagrams of a charging road provided by the first aspect of an embodiment of the present invention.
  • the charging road 1 includes a power supply rail 100 arranged along the extending direction of the road surface and an underground passage 200 for accommodating the power supply rail 100.
  • the underground passage 200 is arranged below the road surface, and the underground passage 200 includes a power supply opening 210 arranged along the extending direction of the road surface.
  • the track 100 includes a track part 110 for carrying the movement of the underground power supply trolley 2 and a power supply part 120 for providing electric power, and the power supply part 120 is connected to an external power source.
  • Charging road 1 is divided by lanes. Underneath charging road 1 is an underground passage 200 (it can be divided into ordinary lanes and charging lanes. Under ordinary lanes, there is no need to open underground passage 200).
  • Underground passage 200 forms a cavity extending along the road surface.
  • the power supply rail 100 is provided in the cavity of the underground passage 200.
  • the power supply rail 100 can be installed at the bottom of the cavity, as shown in Figures 4 to 6, or on the sidewall of the cavity, on the power supply rail 100.
  • the electric vehicle 3 transmits electric energy. It is worth noting that, in order to achieve short-distance transmission, the underground power supply trolley 2 carried on the power supply rail 100 should be as close as possible to the power supply opening 210.
  • the cross-sectional shape of the power supply rail 100 can be rectangular.
  • the rail part 110 can be arranged on the upper side of the power supply rail 100, or on the left and right sides of the power supply rail 100, and the rail part 110 can also be arranged on the power supply rail.
  • the upper side of 100 can also be arranged on the left and right sides of the power supply rail 100; for example, the rail part 110 is arranged on the upper side of the power supply rail 100, and the power supply part 120 is arranged on the left and right sides of the power supply rail 100, so that the bottom of the underground power supply trolley 2 contacts
  • the track part 110 realizes movement, and the underground power supply trolley 2 needs to lead out two contact parts 22 to go around the left and right sides of the power supply rail 100 to contact the power supply part 120, so as to obtain electricity.
  • the power supply part 120 may be connected to an external AC power source or an external DC power source. Since the power supply part 120 is located in the underground passage 200, it is less affected by the weather environment, so high-voltage power supply can be used. Under the same charging power, the transmission current can be reduced, and the heat of the power supply part 120 can be reduced.
  • the power supply rail 100 further includes a waterproof cover 130, which is disposed above the power supply part 120 to shield water falling into the underground passage 200 from the power supply opening 210.
  • the waterproof cover 130 can shield the power supply part 120 from rainwater and other liquids.
  • the power supply part 120 is arranged on the left and right sides of the power supply rail 100. In this way, the waterproof cover 130 can shield the power supply part 120 from the power supply opening 210. Falling liquid.
  • the waterproof cover 130 includes water blocking portions distributed on both sides of the power supply portion 120, and the water blocking portion and the power supply rail 100 form a T-shaped cross-section structure.
  • the waterproof cover 130 is a horizontal baffle that extends from the left and right sides or the upper side of the power supply rail 100 to the left and right sides; for another example, refer to Figure 5, another One embodiment is that the water blocking part is an L-shaped baffle. Compared with the horizontal baffle of the previous embodiment, the L-shaped baffle is based on the horizontal baffle and extends downwards in the vertical direction from the edge of the horizontal baffle.
  • a section of structure for shielding rainwater splashing from the side can prevent rainwater from splashing from the side to the power supply part 120 and causing a short circuit; another example, referring to FIG. 6, another embodiment is that the water baffle is directed toward the bottom of the underground passage 200
  • the inclined baffle, the inclined setting of the baffle can unload rainwater falling on the water baffle to the left and right sides, thereby improving the waterproof effect.
  • the water baffle can also adopt other forms of structure, which will not be repeated here.
  • the drainage ditch 300 is further included, and the drainage ditch 300 is arranged along the extension direction of the road surface, and the drainage ditch 300 is arranged at the bottom of the underground passage 200.
  • the drainage ditch 300 further includes a drainage outlet 310 arranged at intervals, and the drainage outlet 310 is connected to an external sewer system.
  • the drainage outlet 310 is connected to the sewer system of the city to discharge sewage in real time and keep the underground passage 200 clean.
  • the drainage outlet 310 can also be used to put in the sewage robot. By regularly putting in the sewage robot, the solid debris in the underground passage 200 can be cleaned. Because the terrain complexity in the underground passage 200 is very low, the sewage robot can complete it along a fixed route. Fully clean.
  • a road surface guide line 220 as a reference for automatic driving is further included, and the road surface guide line 220 is parallel to the power supply rail 100.
  • the road guide line 220 in this embodiment is used for the automatic driving positioning of the electric vehicle 3.
  • the road guide line 220 corresponds to a single power supply track 100, so the road guide line 220 is limited to one lane.
  • there are two road guide lines 220. Distributed on the left and right edges of the lane, the automatic driving module of the electric vehicle 3 can adjust the driving direction in real time by identifying the road guide line 220, so that the electric vehicle 3 keeps following the power supply rail 100 to drive, ensuring the stability of the charging process.
  • FIGS 7 and 8 are a side view of an underground power supply trolley 2 provided by the second aspect of an embodiment of the present invention.
  • the underground power supply trolley 2 is applied to a charging road 1, and the charging road 1 includes A power supply rail 100 is arranged along the extending direction of the road surface and an underground passage 200 for accommodating the power supply rail 100.
  • the underground passage 200 is arranged under the road surface.
  • the underground passage 200 includes a power supply opening 210 arranged along the extending direction of the road surface.
  • the underground power supply trolley 2 includes:
  • the driving mechanism 21 is connected to the track portion 110 and can move on the track portion 110;
  • the contact part 22 contacts the power supply part 120 to take power from the power supply part 120;
  • the power supply device 23 faces the electric vehicle 3 on the road surface to provide electric energy to the electric vehicle 3;
  • the sensing module 24 faces the electric vehicle 3 to obtain the position of the electric vehicle 3 in real time;
  • the controller is connected to the sensor module 24 and drives the driving mechanism 21 according to the position signal returned by the sensor module 24.
  • the underground power supply trolley 2 in this embodiment is applied to a charging road 1.
  • a charging road 1 As the first aspect of the embodiment of the present invention has already described the structure of the charging road 1 in detail, in order to avoid repetition, the following is based on the present invention
  • the charging road 1 of the embodiment of the first aspect will describe the underground power supply trolley 2 in detail.
  • the interaction structure between the charging road 1 and the underground power supply trolley 2 can be found in the embodiment of the first aspect of the present invention, and it is understandable Yes, this does not limit that the underground power supply trolley 2 in the second aspect of the embodiments of the present invention can only be applied to the charging road 1 in the first aspect.
  • the underground power supply trolley 2 in the embodiment of the present invention is used to follow the electric vehicle 3 to move and provide power support for the driving electric vehicle 3. Since the underground power supply trolley 2 has low functional requirements, the underground power supply trolley 2 can be made relatively light. In order to follow the electric vehicle 3 on the power supply track 100; in practical applications, the underground power supply trolley 2 starts to work in two scenarios. Slow down or stop.
  • the underground power supply trolley 2 is connected to the charging interface of the electric vehicle 3 when the electric vehicle 3 is at a low speed or stopped, and then the underground power supply trolley 2 and the electric vehicle 3 enter the charging road 1 together; the other is an electric vehicle 3 has entered the charging road 1 for a certain distance, because the electric vehicle 3 may not be driving or stopping at a low speed, the underground power supply car 2 enters the corresponding lane at the starting point of the charging road 1 and catches up with the electric vehicle 3, and is in a driving state.
  • the electric vehicle 3 is kept relatively stationary so as to be connected to the charging interface of the electric vehicle 3; the second case has certain performance requirements for the driving mechanism 21 of the underground power supply trolley 2.
  • the contact part 22 of the underground power supply trolley 2 may be in the form of a pulley.
  • the pulley keeps rotating during the movement of the underground power supply trolley 2 while maintaining contact with the power supply part 120.
  • the contact part 22 may also be in the form of a brush, and the contact with the power supply part 120 is maintained by a flexible metal wire on the brush.
  • the contact portion 22 may also adopt other structural forms, which will not be repeated here.
  • the power supply device 23 may be a voltage conversion module or a rectifier module.
  • the power supply device 23 since the power supply part 120 adopts high-voltage power supply, and the charging voltage of the electric vehicle 3 is limited to a certain extent, the power supply device 23 is required to perform a reduction.
  • the charging interface of the electric vehicle 3 is DC-compatible. If the power supply part 120 is AC, the power supply device 23 needs to convert the AC power into DC power and adjust the voltage accordingly, so as to be suitable for Electric vehicles 3.
  • the driving mechanism 21 includes a roller and a box body.
  • the rollers are arranged below or on both sides of the box body.
  • the box body contains a controller.
  • the surface of the box body is provided with a contact portion 22, a power supply device 23 and a sensor module 24. .
  • the car body includes an engine part, and the engine part uses an electric motor to drive the rollers to achieve better control performance, which is suitable for rapid response during the sudden braking and acceleration of the electric vehicle 3, wherein the rollers are based on the track part 110.
  • the rollers are arranged on the upper side of the power supply rail 100, the rollers are arranged at the bottom of the box body so that the rollers can rotate on the track part 110.
  • the track parts 110 are arranged on the left and right sides of the power supply rail 100. On the side, the rollers are extended from both sides of the box body to form a structure that clamps the track portion 110.
  • the track portion 110 is provided with a guide groove 140 for guiding the roller, and the roller is inserted into the guide groove 140.
  • the guide groove 140 restricts the movement path of the rollers, so that the underground power supply trolley 2 does not easily deviate from the track portion 110.
  • the power supply device 23 is a contact power transmission device or a non-contact power transmission device. If the power supply device 23 is a contact type, in one embodiment, referring to FIG. 7, the contact type power transmission device includes a flexible cable and a power supply connector 25 is provided at one end of the flexible cable, and the other end of the flexible cable is connected to the contact portion 22 , The power supply connector 25 is connected to the charging head on the electric vehicle 3; in another embodiment, referring to FIG. 8, the contact-type power transmission device includes a first extension portion 26 that extends in the vertical direction and a second extension portion 27 that rotates in the horizontal direction. , The first extension 26 is connected to the second extension 27. The second extension 27 is provided with a flexible brush 28 facing the electric vehicle 3. The flexible brush 28 moves upward following the second extension 27 to contact the charging of the electric vehicle 3. plate.
  • Two types of contact power transmission device structures are provided above. Among them, for the small displacement that may occur between the electric vehicle 3 and the underground power supply trolley 2, the structure connected by a flexible cable has better adaptability, as long as the electric vehicle 3 is connected to the underground The displacement change between the power supply trolleys 2 does not exceed the length of the flexible cable projected on the horizontal plane, but the structure connected by the flexible cable cannot be applied to the situation after the electric vehicle 3 has entered the charging road 1, and it must be at the start of the charging road 1.
  • the flexible cable is connected to the electric vehicle 3 at the beginning; although the structure connected by the extension part has a slightly lower flexibility and requires a corresponding charging board on the outside of the electric vehicle 3, it can be applied to the situation after the electric vehicle 3 has entered the charging road 1 After the underground power supply trolley 2 catches up with the electric vehicle 3, the power transmission connection can be made.
  • the non-contact power transmission device includes a wireless charging unit 29, and the wireless charging unit 29 is used to connect with the wireless charging device on the electric vehicle 3.
  • the advantage of using wireless charging is that it gets rid of contact-type components and requires lower charging distance and accuracy. Therefore, the displacement difference threshold between the electric vehicle 3 and the underground power supply trolley 2 is also larger, which is compared with the general wireless charging with a wide range of coverage.
  • the wireless charging unit 29 of this embodiment is limited to a small range, that is, the actual linear distance between the underground power supply trolley 2 and the charging board of the electric vehicle 3 may not exceed one meter, so the charging efficiency can be guaranteed.
  • the sensor module 24 is a camera and an image recognition module, the camera and the image recognition module are connected to the controller, the camera faces the reference object on the electric vehicle 3 to capture the reference object to obtain the reference image, and the image recognition module recognizes Refer to the image to identify the current relative position of the electric vehicle 3.
  • the controller of the underground power supply trolley 2 obtains the reference object through image analysis, and automatically adjusts the driving mechanism 21 according to the position of the reference object during driving to follow the electric vehicle 3.
  • image analysis technology can identify reference objects outside the electric vehicle 3 (such as charging ports, vehicle edges, or chassis guard holes, etc.), and take multiple images during driving to identify the position of the reference object in real time.
  • the driving mechanism 21 is adjusted according to the current position of the reference object to control the speed of the underground power supply trolley 2.
  • the sensing module 24 is a laser receiver array
  • the laser receiving array is connected to the controller, and the laser receiver array is used to receive the laser emitted by the electric vehicle 3 to obtain the position information of the electric vehicle 3.
  • the laser receiver array on the underground power supply trolley 2 corresponds to the laser transmitter 31 on the electric vehicle 3 to determine the current position of the electric vehicle 3; it is understandable that the electric vehicle 3 and the underground power supply trolley 2 are moving in synchronization Some positional deviation is inevitable. If the underground power supply car 2 only has a single laser receiver, and the single laser beam on the electric vehicle 3 is offset from the receiving range of the single laser receiver, the underground power supply car 2 will not be able to obtain an electric vehicle. 3. Therefore, the laser receiver array is set so that the offset laser can be received by another laser receiver, and the controller can obtain the current position information of the electric vehicle.
  • FIG. 11 is a schematic structural diagram of an electric vehicle 3 provided in the third aspect of an embodiment of the present invention.
  • the electric vehicle 3 includes an automatic driving module and an electronic control system.
  • the automatic driving module starts after entering the charging road 1 of any one of the above-mentioned first aspect embodiments, and the electronic control system controls the automatic control system according to the synchronization command of the underground power supply trolley 2 controller.
  • the driving module is used to make the electric vehicle 3 and the underground power supply trolley 2 move synchronously.
  • the electric vehicle 3 When the electric vehicle 3 enters the charging road 1 and is connected to the underground power supply vehicle 2, it must be switched to the automatic driving mode.
  • the driving speed of the electric vehicle 3 in the lane is stabilized through the automatic driving module, which can effectively maintain the underground power supply vehicle 2 and the electric vehicle 3 power transmission connection, so as to ensure the stability of power transmission and improve the efficiency of charging conversion.
  • the electric vehicle 3 includes a laser transmitter 31, and the laser transmitter 31 faces the underground power supply trolley 2.
  • This embodiment corresponds to the embodiment in which the laser receiver array is arranged on the underground power supply trolley 2.
  • the laser light emitted by the laser transmitter 31 should pass through the power supply opening 210 and enter the underground passage 200 when the electric vehicle 3 is running.
  • the launching direction is vertical downwards or inclined downwards.
  • the underground power supply trolley 2 has pre-configured its relative position with the electric vehicle 3 in the direction of the laser at the charging service station, so that it is convenient to follow the electric vehicle 3 when the electric vehicle 3 is traveling.
  • Vehicle 3 requests to be charged while driving on charging highway 1, so when the vehicle that needs to be powered is approaching electric vehicle 3, it communicates with the electric control system of electric vehicle 3 to determine the laser direction of electric vehicle 3 that needs to be charged at present, and underground power supply trolley 2 The following state is adjusted according to the laser direction information returned by the electric vehicle 3.
  • the fourth aspect of an embodiment of the present invention provides a charging system, including the charging road 1 in the first aspect of the embodiment, the underground power supply trolley 2 in the second aspect, and the electric vehicle 3 in the third aspect.
  • the charging road 1 at least includes charging service stations respectively arranged at the beginning and the end of the road. The charging service stations are used to allocate or recycle the underground power supply trolleys 2 when the electric vehicles 3 enter or leave the charging road 1.
  • the charging system works as follows:
  • the charging service stations are similar to the current highway toll stations.
  • the electric vehicles 3 stop at the charging service station or pass slowly before entering the charging highway 1.
  • Electric vehicle 3 can apply to match an underground power supply trolley 2, the system arranges an available lane for electric vehicle 3, and allocates an underground power supply trolley 2 to communicate with electric vehicle 3, and the electric control system of electric vehicle 3 knows The electric vehicle 3 is about to enter the charging highway 1, and learns the current lane situation through the camera module of the electric vehicle 3, and enters the automatic driving mode.
  • the underground power supply trolley 2 starts to try to supply power, and the electric control system of the electric vehicle 3 connects the battery pack that needs to be charged to the power supply device 23 after receiving the charging request.
  • the electronic control system can send a data packet for maintaining communication to the underground power supply trolley 2.
  • the data packet can contain information such as the current automatic driving speed, direction, battery power, etc., and can also include information used to detect the electric vehicle 3 and the underground power supply. Information about the distance between the trolleys 2 and the electric vehicle 3 can then start driving on the corresponding lane.
  • the underground power supply trolley 2 obtains power from the power supply rail 100 and supplies power to the electric vehicle 3 through the power supply device 23. At the same time, the underground power supply trolley 2 obtains the current position of the electric vehicle 3 in real time and Calculate the relative position between itself and the electric vehicle 3, and according to the relative position and the current speed sent by the electric vehicle 3, the underground power supply trolley 2 adjusts its own speed to follow the electric vehicle 3.
  • the electric vehicle 3 requests to disconnect the current power supply connection (maybe the battery is full, or the electric vehicle 3 needs to switch lanes, etc.), the electric vehicle 3 sends the power supply disconnection message to the underground power supply trolley 2.
  • the underground power supply trolley 2 disconnects the power supply device 23, and records information such as the current total charging capacity of the electric vehicle 3, and then the underground power supply trolley 2 continues to the next power supply service station. If the electric vehicle 3 switches lanes and needs to continue to be charged in another lane, it will be handled according to the situation that the electric vehicle 3 requests charging on the charging road 1, and the charging service station will send a new underground power supply trolley 2 to do it. powered by. Of course, if there is an idle underground power supply trolley 2 near the current lane (the underground power supply trolley 2 that is in an idle state after disconnecting the power supply during driving and has not driven to the next charging service station), the system can allocate the underground power supply trolley 2 Perform power supply service at the location of the electric vehicle 3 that requests power supply.
  • the electric vehicle 3 leaves the charging road 1.
  • the charging service station retrieves the underground power supply trolley 2 and obtains charging data, such as the charging amount, charging time, and so on.
  • the electric vehicle 3 is disconnected from the underground power supply trolley 2 and can resume normal driving.
  • a charging service station can also be set at any position in the middle of the charging road 1, which is convenient for vehicle management.
  • the fifth aspect of an embodiment of the present invention provides a charging method, which is applied to a charging system.
  • the charging system includes a charging road 1, an underground power supply car 2 and an electric vehicle 3.
  • the charging road 1 includes power supplies arranged along the extension direction of the road surface
  • the rail 100 and the underground passage 200 for accommodating the power supply rail 100.
  • the underground passage 200 is arranged below the road surface.
  • the underground passage 200 includes a power supply opening 210 arranged along the extension direction of the road surface.
  • the power supply rail 100 includes a rail for carrying the underground power supply trolley 2 to move. Part 110 and the power supply part 120 that provide power.
  • the underground power supply car 2 includes a driving mechanism 21, a contact part 22, a power supply device 23, a sensor module 24, and a controller.
  • the electric vehicle 3 includes an automatic driving module and an electronic control system.
  • the charging method includes :
  • the controller controls the contact part 22 to contact the power supply part 120, so that the power supply device 23 is connected to an external power source;
  • the controller controls the sensing module 24 to obtain position information of the electric vehicle 3 on the charging road 1;
  • the controller controls the driving mechanism 21 to move according to the position information, so that the power supply device 23 and the electric vehicle 3 are relatively stationary;
  • S400 The controller controls the power supply device 23 to connect to the electric vehicle 3 and charge the electric vehicle 3;
  • the electronic control system controls the electric vehicle 3 to perform the automatic driving mode
  • the controller controls the sensing module 24 to obtain the position of the electric vehicle 3 in real time, and the electronic control system controls the automatic driving module according to the synchronization instruction of the controller, so that the power supply device 23 and the electric vehicle 3 move synchronously.
  • the charging method of the fifth aspect of the embodiment of the present invention is applicable to the charging system with the above-mentioned characteristics, and is also applicable to the charging system of the fourth aspect of the embodiment of the present invention, because the charging system of the fourth aspect of the embodiment of the present invention
  • the specific composition and working mode of the charging highway 1, the underground power supply trolley 2 and the electric vehicle 3 have been fully explained. Therefore, the following description of the charging method is based on the charging system of the fourth aspect of the embodiment, but this does not limit the implementation of the present invention.
  • the charging method of the fifth aspect can only be applied to the charging system of the fourth aspect of the embodiment.
  • the above charging method embodies the process in which the underground power supply trolley 2 is connected to the electric vehicle 3 for power supply and synchronized driving when the underground power supply trolley 2 is in the vicinity of the electric vehicle 3.
  • the working mode of the underground power supply trolley 2 can be seen from There are two situations in the vicinity of the electric vehicle 3, one is in the charging service station, the electric vehicle 3 stops or slows down. At this time, the underground power supply trolley 2 can match the electric vehicle 3 for power supply at low speed, and the other One is that the electric vehicle 3 is already driving on the charging road 1 and charging is requested. At this time, the underground power supply vehicle 2 quickly approaches the electric vehicle 3 and then executes the above-mentioned charging method.
  • step S300 specifically includes:
  • S310 The controller obtains the lane code of the lane where the electric vehicle 3 is located;
  • the controller controls the underground power supply trolley 2 to move to the lane coded;
  • S330 The controller controls the underground power supply trolley 2 to move to the location of the electric vehicle 3, and updates the location of the electric vehicle 3 in real time;
  • S340 The controller obtains the position signal returned by the sensor module 24 and compares it with a preset reference value
  • This embodiment proposes a method for the underground power supply trolley 2 to follow the electric vehicle 3.
  • the underground power supply trolley 2 recognizes the position signal of the electric vehicle 3 through the sensor module 24, for example, takes an image of the bottom of the electric vehicle 3 to identify the captured image
  • the feature points in the image are used as reference points. After recording the location of the feature points in the image, the image of the bottom of the electric vehicle 3 can be acquired in real time.
  • the underground power supply trolley 2 adjusts its speed in the direction of deviation; another example, the charging connection line between the electric vehicle 3 and the underground power supply trolley 2 has an LED light, and the underground power supply trolley 2 can identify the light source position of the LED light as a reference point for comparison position.
  • Steps S310 and S320 correspond to the actions that the underground power supply trolley 2 needs to perform when starting from the charging service station.
  • the underground power supply trolley 2 selects the corresponding lane in advance at the charging service station.
  • the controller records the current lane and the code of the underground power supply trolley 2 as an identification code group, so that the identification can be The code group performs charging calculation, charging time calculation, etc.
  • the underground power supply vehicle 2 can perform step S330 to step S350 according to the distance from the electric vehicle 3. It is understandable that if the electric vehicle 3 that issued the charging request is already driving on the charging highway 1, then the electric vehicle 3 needs to share its current location so that the underground power supply vehicle 2 can catch up.
  • step S330 includes:
  • S331 The controller obtains GPS information of the electric vehicle 3 and GPS information of the underground power supply trolley 2;
  • S332 According to the GPS information of the electric vehicle 3 and the GPS information of the underground power supply trolley 2, if the linear distance between the electric vehicle 3 and the underground power supply trolley 2 is less than a preset distance threshold, the controller activates the sensing module 24 for positioning.
  • the above steps are directed to the situation that the electric vehicle 3 that issued the charging request is already driving on the charging road 1, the underground power supply trolley 2 needs to obtain the current position of the electric vehicle 3 in order to catch up with the electric vehicle 3 from the charging service station.
  • the highest accuracy of GPS may be only 1 meter, so when the distance between local power supply trolley 2 and electric vehicle 3 is less than 1 meter GPS can no longer play the role of precise positioning.
  • the underground power supply trolley 2 needs to activate the sensor module 24, and obtain positioning information through methods such as images or lasers instead of GPS information.
  • the embodiment of the present invention proposes a solution for short-distance power supply to electric vehicles 3 through underground power supply trolley 2, wherein a power supply rail 100 is built in charging road 1 to provide power supply for underground power supply trolley 2 throughout, and underground power supply trolley 2 is on power supply rail 100 During driving, electric power is obtained from the power supply rail 100 and converted into a voltage and current suitable for charging the electric vehicle 3, so that the electric vehicle 3 is charged while driving. Since the underground power supply trolley 2 can follow the electric vehicle 3, the charging distance is short and the charging efficiency is high.

Abstract

本发明公开了一种充电公路、地下供电小车、电动车辆、充电系统及方法,通过地下供电小车为电动车辆近距离供电的方案,其中充电公路内建设供电轨道,为地下供电小车全程提供电力供给,地下供电小车在供电轨道上行驶过程中从供电轨道获取电力并转换成适合于给电动车辆充电的电压电流,以有线输电或者无线输电的方式向电动车辆供电,实现电动车辆边行驶边充电。由于地下供电小车能够跟随电动车辆行驶,因此充电距离短,充电效率高。

Description

充电公路、地下供电小车、电动车辆、充电系统及方法 技术领域
本发明涉及车辆充电技术领域,特别涉及一种充电公路、地下供电小车、电动车辆、充电系统及方法。
背景技术
纯电动车辆由于电池容量的限制,在行驶一定里程后需要寻找充电桩并停下等待充电,这样限制了纯电动车辆的便利性。目前边行驶边充电的技术虽然在一定程度上缓解了这种问题,但是边行驶边充电的技术基于现有的公路结构存在很多限制,充电过程中损失大量电能,充电效率不高。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种充电公路、地下供电小车、电动车辆、充电系统及方法,采用地下供电小车跟踪位于充电公路上的电动车辆,为电动车辆全程供电,实现短距离充电,提高充电效率。
根据本发明的第一方面实施例的充电公路,包括沿路面延伸方向设置的供电轨道和用于容纳所述供电轨道的地下通道,所述地下通道设置于路面下方,所述地下通道包括沿路面延伸方向设置的供电开口,所述供电轨道包括用于承载地下供电小车移动的轨道部分和提供电力的供电部分,所述供电部分连接外部电源。
根据本发明实施例的充电公路,至少具有如下有益效果:区别于现有公路结构,本发明实施例的充电公路通过在路面下开设地下通道以容纳供电轨道,从而用供电轨道承载地下供电小车,电动车辆在充电公路行驶过程中,在不变道的前提下,地下供电小车可以沿供电轨道跟随电动车辆运动,为行驶中的电动车辆提供电力供应,保证电动车辆的续航,由于地下供电小车与电动车辆基本相对静止,能够实现短距离充电,提高了充电效率。
根据本发明第一方面的一些实施例,所述供电轨道还包括防水罩,所述防水罩设置在所述供电部分上方以遮挡从所述供电开口落入所述地下通道的水。
根据本发明第一方面的一些实施例,所述防水罩包括分布在所述供电部分两侧的挡水部,所述挡水部与所述供电轨道构成截面为T形的结构。
根据本发明第一方面的一些实施例,所述挡水部为水平挡板、L形挡板或者向所述地下通道的底部方向倾斜的挡板。
根据本发明第一方面的一些实施例,还包括排水沟,所述排水沟沿路面的延伸方向设置,所述排水沟设置在所述地下通道的底部。
根据本发明第一方面的一些实施例,所述排水沟还包括间隔设置的排水出口,所述排水出口连接外部的下水道系统。
根据本发明第一方面的一些实施例,还包括作为自动行驶参照物的路面引导线,所述路面引导线与所述供电轨道平行。
根据本发明的第二方面实施例的地下供电小车,应用于一种充电公路,所述充电公路包括沿路面延伸方向设置的供电轨道和用于容纳所述供电轨道的地下通道,所述地下通道设置于路面下方,所述地下通道包括沿路面延伸方向设置的供电开口,所述供电轨道包括用于承载所述地下供电小车移动的轨道部分和提供电力的供电部分,所述地下供电小车包括:
驱动机构,连接所述轨道部分并能够在所述轨道部分上移动;
接触部分,接触所述供电部分以从所述供电部分取电;
供电装置,朝向路面上的电动车辆以向电动车辆提供电能;
传感模块,朝向所述电动车辆以实时获取所述电动车辆的位置;
控制器,连接所述传感模块并根据所述传感模块传回的位置信号驱动所述驱动机构。
根据本发明实施例的地下供电小车,至少具有如下有益效果:地下供电小车通过接触部分从供电部分取电,并将电能通过供电装置传输到电动车辆,由于电动车辆在充电公路上处于运动状态,因此地下供电小车需要通过驱动机构和传感模块跟踪电动车辆,控制器根据传感模块获取电动车辆的位置信号,调整驱动机构以跟随电动车辆的位置,同时控制器发送当前位置到电动车辆,可以让电动车辆获知当前地下供电小车的位置而自动调整行驶速度,使得地下供电小车和电动车辆在充电公路上同步行驶,从而实现短距离的电力传输,提高充电效率。
根据本发明第二方面的一些实施例,所述驱动机构包括滚轮和厢体,所述滚轮设置在所述厢体的下方或者两侧,所述厢体内容置所述控制器,所述厢体的表面设置所述接触部分、所述供电装置和所述传感模块。
根据本发明第二方面的一些实施例,所述轨道部分设置有导向所述滚轮的导向槽,所述滚轮置入所述导向槽。
根据本发明第二方面的一些实施例,所述接触部分包括取电电刷,所述取电电刷在所述地下供电小车行驶过程中始终接触所述供电部分。
根据本发明第二方面的一些实施例,所述供电装置为接触式输电装置或者非接触式输电装置。
根据本发明第二方面的一些实施例,所述接触式输电装置包括柔性电缆和设置在所述柔性电缆的一端设置有供电接头,所述柔性电缆的另一端连接到所述接触部分,所述供电接头连接所述电动车辆上的充电头。
根据本发明第二方面的一些实施例,所述接触式输电装置包括沿上下方向伸展的第一伸展部和沿水平方向转动的第二伸展部,所述第一伸展部连接所述第二伸展部,所述第二伸展部上设置有朝向所述电动车辆的柔性电刷,所述柔性电刷跟随所述第二伸展部向上移动从而接触所述电动车辆的充电板。
根据本发明第二方面的一些实施例,所述非接触式输电装置包括无线充电单元,所述无线充电单元用于与电动车辆上的无线充电装置连接。
根据本发明第二方面的一些实施例,所述传感模块为摄像头和图像识别模组,所述摄像头和所述图像识别模组连接所述控制器,所述摄像头朝向所述电动车辆上的参照物以拍摄所 述参照物得到参照图像,所述图像识别模组识别所述参照图像以识别当前电动车辆的相对位置。
根据本发明第二方面的一些实施例,所述传感模块为激光接收器阵列,所述激光器接收阵列连接所述控制器,所述激光接收器阵列用于接收所述电动车辆发射激光以获得所述电动车辆的位置信息。
根据本发明的第三方面实施例的电动车辆,包括自动驾驶模块和电控系统,所述电控系统与上述第二方面实施例任一项所述的地下供电小车的控制器通信连接,所述自动驾驶模块在进入上述第一方面实施例任一项所述的充电公路后启动,所述电控系统根据所述地下供电小车的控制器的同步指令控制所述自动驾驶模块,以使所述电动车辆与所述地下供电小车同步运动。
根据本发明实施例的地下供电小车,至少具有如下有益效果:由于供电轨道单向延伸的限制,电动车辆需要沿供电轨道的方向行驶并且不能与供电轨道产生较大的左右偏移,因此设置自动驾驶模块来避免人手驾驶时可能产生的方向偏移,同时电控系统在电动车辆的行驶过程中与地下供电小车通信以实现电动车辆和地下供电小车同步运动,实现短距离的电力传输,提高充电效率。
根据本发明第三方面的一些实施例,所述电动车辆包括激光发射器,所述激光发射器朝向所述地下供电小车。
根据本发明的第四方面实施例的充电系统,包括如第一方面实施例任一项所述的充电公路、如第二方面实施例任一项所述的地下供电小车和如第三方面实施例所述的电动车辆。
根据本发明实施例的充电系统,至少具有如下有益效果:本发明实施例的充电公路通过在路面下开设地下通道以容纳供电轨道,从而用供电轨道承载地下供电小车,电动车辆在充电公路行驶过程中,在不变道的前提下,地下供电小车可以沿供电轨道跟随电动车辆运动,为行驶中的电动车辆提供电力供应,保证电动车辆的续航,另一方面,电动车辆通过自动驾驶模块保持行驶过程的稳定性,避免人手驾驶时可能产生的方向偏移,可使所述电动车辆与所述地下供电小车同步运动;由于地下供电小车与电动车辆基本相对静止,能够实现短距离充电,提高了充电效率。
根据本发明第四方面的一些实施例,所述充电公路至少包括分别设置在公路起始端和末尾端的充电服务站,所述充电服务站用于在所述电动车辆进入或离开所述充电公路时,分配或回收所述地下供电小车。
根据本发明的第五方面实施例的一种充电方法,应用于充电系统,所述充电系统包括充电公路、地下供电小车和电动车辆,所述充电公路包括沿路面延伸方向设置的供电轨道和用于容纳所述供电轨道的地下通道,所述地下通道设置于路面下方,所述地下通道包括沿路面延伸方向设置的供电开口,所述供电轨道包括用于承载所述地下供电小车移动的轨道部分和提供电力的供电部分,所述地下供电小车包括驱动机构、接触部分、供电装置、传感模块和控制器,所述电动车辆包括自动驾驶模块和电控系统,所述充电方法包括:
所述控制器控制所述接触部分与所述供电部分接触,以使所述供电装置接入外部电源;
所述控制器控制所述传感模块获取所述充电公路上电动车辆的位置信息;
所述控制器根据所述位置信息控制所述驱动机构运动,以使所述供电装置与所述电动车辆相对静止;
所述控制器控制所述供电装置连接所述电动车辆并对所述电动车辆进行充电;
所述电控系统控制所述电动车辆进行自动驾驶模式;
所述控制器控制所述传感模块实时获取所述电动车辆的位置,所述电控系统根据所述控制器的同步指令控制所述自动驾驶模块,以使所述供电装置和所述电动车辆同步运动。
根据本发明实施例的充电方法,至少具有如下有益效果:地下供电小车自动移动到对应的电动车辆附近并与该电动车辆相对静止,方便接入所述电动车辆为其充电,此后电动车辆可以继续行驶或者启动行驶,在行驶过程中,充电公路通过供电部分为地下供电小车提供电力来源,同时电动车辆和地下供电小车之间保持通信以同步运动,从而实现短距离充电,提高了充电效率。
根据本发明第五方面的一些实施例,所述控制器根据所述位置信息控制所述驱动机构运动,以使所述供电装置与所述电动车辆相对静止,包括:
所述控制器获取所述电动车辆所在车道的车道编码;
所述控制器控制所述地下供电小车移动到所述车道编码的车道;
所述控制器控制所述地下供电小车往所述电动车辆所在位置处移动,并实时更新所述电动车辆所在位置;
所述控制器获取所述传感模块传回的位置信号,并对照预设参照值;
若所述位置信号与所述预设参照值在误差阈值范围外,则所述控制器控制所述驱动机构继续移动,若所述位置信号与所述预设参照值在误差阈值范围内,则所述控制器获取所述电动车辆的当前速度,并调整所述驱动机构使所述地下供电小车的速度与所述电动车辆的当前速度相同。
根据本发明第五方面的一些实施例,所述控制器控制所述地下供电小车往所述电动车辆所在位置处移动,包括:
所述控制器获取所述电动车辆的GPS信息以及所述地下供电小车的GPS信息;
根据所述电动车辆的GPS信息和所述地下供电小车的GPS信息,若所述电动车辆与所述地下供电小车的直线距离小于预设距离阈值,则所述控制器启动所述传感模块进行定位。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明一个实施例的充电公路和地下供电小车的垂直于公路延伸方向的截面结构示意图;
图2为本发明另一个实施例的充电公路和地下供电小车的垂直于公路延伸方向的截面 结构示意图;
图3为本发明另一个实施例的充电公路和地下供电小车的垂直于公路延伸方向的截面结构示意图;
图4为本发明一个实施例的地下通道的截面结构示意图;
图5为本发明另一个实施例的地下通道的截面结构示意图;
图6为本发明另一个实施例的地下通道的截面结构示意图;
图7为本发明一个实施例的地下供电小车的结构示意图;
图8为本发明另一个实施例的地下供电小车的结构示意图;
图9为本发明一个实施例的排水系统的结构示意图(俯视路面平面方向);
图10为本发明一个实施例的路面引导线的示意图;
图11为本发明一个实施例的充电系统的侧面结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
边行驶边充电的电动车辆通常具有两组可以轮流切换工作的电池,在行驶过程中,其中一组电池用于驱动电动车辆,另一组电池用于充电,当驱动电动车辆的电池的电量低于阈值时,电控系统切换到另一组电池接手驱动电动车辆,而切换回来的低电量电池则可以进行充电,从而实现长距离续航。但是目前基于这种技术对行驶中的汽车进行充电的设施并不完善,需要考虑户外天气环境、工程造价和充电效率等问题,其中,比较容易实现的无线充电设施,由于需要覆盖公路整个平面,因此充电效率并不高,而其他有线充电设施则需要考虑天气和工程造价的问题。
基于此,本发明提出了一种充电公路、地下供电小车、电动车辆、充电系统及方法,在充电公路上设置轨道式充电设施,让地下供电小车在轨道上移动并跟踪电动车辆,地下供电小车在轨道上取电供给电动车辆,可以使电动车辆在行驶过程中得到充电能源,从而实现边行驶边充电,由于地下供电小车和电动车辆的距离较短,因此充电效率较高。
下面结合附图,对本发明实施例作进一步阐述。
参照图1至图6,图1至图6是本发明的一个实施例的第一方面提供的充电公路的截面结构图,其中图1的截面为垂直于路面的延伸方向的截面,由图1可知,充电公路1包括沿路面延伸方向设置的供电轨道100和用于容纳供电轨道100的地下通道200,地下通道200设置于路面下方,地下通道200包括沿路面延伸方向设置的供电开口210,供电轨道100包括用于承载地下供电小车2移动的轨道部分110和提供电力的供电部分120,供电部分120连接外部电源。
充电公路1按车道划分,充电公路1的车道下方开设有地下通道200(可以划分为普通车道和充电车道,普通车道下方则不需要开设地下通道200),地下通道200形成沿路面方向延伸的腔体,在地下通道200的腔体中设置供电轨道100,供电轨道100可以设置在腔体的底部,如图4至图6所示,也可以设置在腔体中的侧壁,供电轨道100上承载用于为电动车辆3充电的地下供电小车2;为了能够提高电能的传输效率,地下通道200的腔体顶部开设有供电开口210,地下供电小车2通过有线或者无线的方式经供电开口210向电动车辆3传输电能。值得注意的是,为了实现短距离传输,供电轨道100上承载的地下供电小车2距离供电开口210应尽可能近。
值得注意的是,供电轨道100的截面形状可以是矩形,此时轨道部分110可以设置在供电轨道100的上侧面,也可以设置在供电轨道100的左右侧面,轨道部分110也可以设置在供电轨道100的上侧面,也可以设置在供电轨道100的左右侧面;例如,轨道部分110设置在供电轨道100的上侧面,供电部分120设置在供电轨道100的左右侧面,这样地下供电小车2的底部接触轨道部分110实现运动,并且地下供电小车2需要引出两个接触部分22绕到供电轨道100的左右侧面接触供电部分120,从而实现取电。
可以理解的是,供电部分120可以连接外部交流电源,也可以连接外部直流电源。由于供电部分120位于地下通道200中,其受到天气环境的影响较小,因此可以采用高压供电,在同一充电功率下,可以减小输电电流,降低供电部分120的发热。
在一些实施例中,参照图4至图6,供电轨道100还包括防水罩130,防水罩130设置在供电部分120上方以遮挡从供电开口210落入地下通道200的水。防水罩130可以为供电部分120遮挡雨水等液体,为了得到较好的防水效果,供电部分120设置在供电轨道100的左右侧面,这样,防水罩130就可以为供电部分120遮挡住从供电开口210下落的液体。
防水罩130在结构上实施方式较多,在一些实施例中,防水罩130包括分布在供电部分120两侧的挡水部,挡水部与供电轨道100构成截面为T形的结构。例如,参照图,4,最简单的一种实施方式是,防水罩130为水平挡板,从供电轨道100的左右侧面或上侧面向左右两侧延伸出去;又如,参照图5,另一种实施方式是,挡水部为L形挡板,相对于上一实施方式的水平挡板,L形挡板在水平挡板的基础上,在水平挡板的边缘沿垂直方向向下延伸出一段用于遮挡侧面溅入的雨水的结构,可以防止雨水从侧面溅到供电部分120造成短路;又如,参照图6,另一种实施方式是,挡水板为向地下通道200的底部方向倾斜的挡板,挡板 倾斜设置可以将落到挡水板上的雨水往左右两侧卸开,从而提高防水效果。挡水板还可以采用其他形式的结构,在此不一一赘述。
在一些实施例中,参照图9,还包括排水沟300,排水沟300沿路面的延伸方向设置,排水沟300设置在地下通道200的底部。充电公路1在使用过程中不可避免会出现地下通道200积水的情况,因此需要设置排水沟300疏通地下通道200,将污水集中排出。其中,排水沟300还包括间隔设置的排水出口310,排水出口310连接外部的下水道系统。排水出口310连接城市的下水道系统可以实时排出污水,保持地下通道200的清洁。实际上排水出口310还可以用于放入排污机器人,通过定期投入排污机器人,可以清理地下通道200内的固体杂物,由于地下通道200内地形复杂度很低,排污机器人沿固定路线即可完成全面清洁。
在一些实施例中,参照图10,还包括作为自动行驶参照物的路面引导线220,路面引导线220与供电轨道100平行。本实施例中的路面引导线220用于电动车辆3的自动驾驶定位,路面引导线220与单条供电轨道100对应,因此路面引导线220限制在一条车道内,例如,路面引导线220为两条,分布在车道左右边缘,电动车辆3的自动驾驶模块通过识别路面引导线220可以实时调整行驶方向,使电动车辆3保持跟随供电轨道100行驶,确保充电过程的稳定。
参照图7和图8,图7和图8是本发明的一个实施例的第二方面提供的地下供电小车2的侧视图,该地下供电小车2应用于一种充电公路1,充电公路1包括沿路面延伸方向设置的供电轨道100和用于容纳供电轨道100的地下通道200,地下通道200设置于路面下方,地下通道200包括沿路面延伸方向设置的供电开口210,供电轨道100包括用于承载地下供电小车2移动的轨道部分110和提供电力的供电部分120,地下供电小车2包括:
驱动机构21,连接轨道部分110并能够在轨道部分110上移动;
接触部分22,接触供电部分120以从供电部分120取电;
供电装置23,朝向路面上的电动车辆3以向电动车辆3提供电能;
传感模块24,朝向电动车辆3以实时获取电动车辆3的位置;
控制器,连接传感模块24并根据传感模块24传回的位置信号驱动驱动机构21。
本实施例中的地下供电小车2应用于一种充电公路1,由于本发明实施例第一方面实施例已经对充电公路1的结构进行了详细的描述,为了避免重复赘述,因此下面基于本发明第一方面实施例的充电公路1,对地下供电小车2进行详细说明,其中充电公路1与地下供电小车2之间具有相互作用的结构可以在本发明第一方面实施例中找到,可以理解的是,这并不限定本发明实施例第二方面的地下供电小车2仅能应用于第一方面的充电公路1。
本发明实施例的地下供电小车2用于跟随电动车辆3移动,为行驶中的电动车辆3提供电力支撑,由于地下供电小车2在功能上要求不高,地下供电小车2可以做得比较轻便,以便于在供电轨道100上跟随电动车辆3;在实际应用中,地下供电小车2开始工作于两种场景,一种是电动车辆3刚进入充电公路1,电动车辆3需要匹配地下供电小车2而减速或停下,此时地下供电小车2在电动车辆3低速或停止状态下连接电动车辆3的充电接口,然后地下供电小车2与电动车辆3一同进入充电公路1行驶;另一种是电动车辆3已经进入充电 公路1一段距离,由于电动车辆3可能不处于低速行驶或停下,因此地下供电小车2在充电公路1的起点处进入对应的车道并追上电动车辆3,并与行驶状态下的电动车辆3保持相对静止从而连接电动车辆3的充电接口;其中第二种情况对地下供电小车2的驱动机构21有一定的性能要求。
为了能够在移动过程中从供电轨道100的供电部分120取电,地下供电小车2的接触部分22可以是滑轮形式,滑轮在地下供电小车2移动过程中一直转动同时保持与供电部分120的接触,接触部分22也可以是电刷形式,通过电刷上的柔性金属线保持与供电部分120的接触。接触部分22也可以采用其他结构形式,在此不一一赘述。
供电装置23可以是电压转换模块,也可以是整流模块,例如,在一些实施例中,由于供电部分120采用高压供电,而电动车辆3的充电电压有一定的限制,因此需要供电装置23进行降压,又例如,在一些实施例中,电动车辆3的充电接口是适配直流的,如果供电部分120是交流的,那么供电装置23则需要将交流电转换成直流电并相应调整电压,从而适于电动车辆3。
在一实施例中,驱动机构21包括滚轮和厢体,滚轮设置在厢体的下方或者两侧,厢体内容置控制器,厢体的表面设置接触部分22、供电装置23和传感模块24。
可以理解的是,厢体中包括有引擎部分,并且引擎部分采用电动机驱动滚轮以达到更好控制效能,适于在电动车辆3的急刹和加速时快速响应,其中,滚轮依据轨道部分110来设置,例如,轨道部分110是设置在供电轨道100的上侧面,那么滚轮设置在厢体的底部,以使滚轮在轨道部分110上转动,又如,轨道部分110是设置在供电轨道100的左右侧面的,那么滚轮是由厢体的两侧延伸出来,形成夹持轨道部分110的结构。
在一实施例中,轨道部分110设置有导向滚轮的导向槽140,滚轮置入导向槽140。为了适应车道转弯时维持地下供电小车2在轨道部分110的稳定移动,通过导向槽140限制滚轮的移动路径,使地下供电小车2不容易偏离轨道部分110。
在一实施例中,供电装置23为接触式输电装置或者非接触式输电装置。若供电装置23为接触式的,那么在一实施例中,参照图7,接触式输电装置包括柔性电缆和设置在柔性电缆的一端设置有供电接头25,柔性电缆的另一端连接到接触部分22,供电接头25连接电动车辆3上的充电头;在另一实施例中,参照图8,接触式输电装置包括沿上下方向伸展的第一伸展部26和沿水平方向转动的第二伸展部27,第一伸展部26连接第二伸展部27,第二伸展部27上设置有朝向电动车辆3的柔性电刷28,柔性电刷28跟随第二伸展部27向上移动从而接触电动车辆3的充电板。
上述提供了两种接触式输电装置的结构,其中,对于电动车辆3和地下供电小车2之间可能发生的微小位移,通过柔性电缆连接的结构具有较好的适应性,只要电动车辆3和地下供电小车2之间移位变化不超过柔性电缆在水平面上投影的长度即可,但是通过柔性电缆连接的结构无法应用于电动车辆3已经进入充电公路1后的情况,必须在充电公路1的起始端将柔性电缆连接电动车辆3;而通过伸展部连接的结构虽然灵活性稍低,而且要求电动车辆 3的外部有相应的充电板,但是可以应用于电动车辆3已经进入充电公路1后的情况,地下供电小车2追赶上电动车辆3后可以进行输电连接。
若供电装置23为非接触式的,那么非接触式输电装置包括无线充电单元29,无线充电单元29用于与电动车辆3上的无线充电装置连接。采用无线充电的好处在于摆脱接触式的部件,对充电距离和精度要求较低,因此电动车辆3和地下供电小车2之间移位差阈值也较大,相比于一般大范围覆盖的无线充电技术,本实施例的无线充电单元29限于小范围,即地下供电小车2到电动车辆3的充电板之间,实际直线距离可能不超过一米,因此可以保证充电效率。
在一实施例中,传感模块24为摄像头和图像识别模组,摄像头和图像识别模组连接控制器,摄像头朝向电动车辆3上的参照物以拍摄参照物得到参照图像,图像识别模组识别参照图像以识别当前电动车辆3的相对位置。地下供电小车2的控制器通过图像分析得到参照物,在行驶过程中根据参照物的位置自动调整驱动机构21从而跟随电动车辆3。本领域技术人员可知,图像分析技术能够识别电动车辆3外部的参照物(例如充电接口、车辆边缘或者底盘护板孔位等),并在行驶过程中多次拍摄图像来实时识别参照物的位置,根据参照物当前的位置调整驱动机构21来控制地下供电小车2的速度。
在一实施例中,传感模块24为激光接收器阵列,激光器接收阵列连接控制器,激光接收器阵列用于接收电动车辆3发射激光以获得电动车辆3的位置信息。地下供电小车2上的激光接收器阵列对应电动车辆3的上的激光发射器31,从而确定当前电动车辆3的位置;可以理解的是,由于电动车辆3与地下供电小车2同步运动的过程中不可避免出现一些位置偏移,若地下供电小车2仅设置单个激光接收器,电动车辆3上的单束激光在偏移出单个激光接收器的接收范围后,地下供电小车2将无法获得电动车辆3的位置信息,因此设置激光接收器阵列,使得偏移后的激光可以被另一激光接收器接收到,控制器即可获得当前电动车辆的位置信息。
参照图11,图11是本发明的一个实施例的第三方面提供的电动车辆3的结构示意图,该电动车辆3包括自动驾驶模块和电控系统,电控系统与上述第二方面实施例任一项的地下供电小车2的控制器通信连接,自动驾驶模块在进入上述第一方面实施例任一项的充电公路1后启动,电控系统根据地下供电小车2的控制器的同步指令控制自动驾驶模块,以使电动车辆3与地下供电小车2同步运动。
在电动车辆3进入充电公路1并连接地下供电小车2的情况下,必须切换成自动驾驶模式,通过自动驾驶模块稳定电动车辆3在车道上的行驶速度,可以有效维持地下供电小车2和电动车辆3的输电连接,从而保证输电的稳定,提高充电转换效率。
在一实施例中,电动车辆3包括激光发射器31,激光发射器31朝向地下供电小车2。本实施例对应地下供电小车2上设置激光接收器阵列的实施例,可以理解的是,在电动车辆3行驶过程中,激光发射器31发射的激光应穿过供电开口210进入地下通道200,因此发射方向为垂直向下或倾斜向下,地下供电小车2在充电服务站按照激光的方向预先配置好自身与电动车辆3的相对方位,便于在电动车辆3行驶过程中跟随电动车辆3,如果电动车辆3 在充电公路1上行驶过程中请求充电,那么需要供电汽车在接近电动车辆3时,与电动车辆3的电控系统通信,确定当前需要充电的电动车辆3的激光方向,地下供电小车2根据电动车辆3返回的激光方向信息调整跟随状态。
本发明的一个实施例的第四方面提供了一种充电系统,包括实施例第一方面的充电公路1、第二方面的地下供电小车2和第三方面的电动车辆3。其中充电公路1至少包括分别设置在公路起始端和末尾端的充电服务站,充电服务站用于在电动车辆3进入或离开充电公路1时,分配或回收地下供电小车2。充电系统的工作方式如下:
至少在充电公路1的公路起始端和末尾端分别设置充电服务站,充电服务站类似于现时公路的收费站,电动车辆3在进入充电公路1之前在充电服务站停车或慢速通行,此时电动车辆3可以申请匹配一辆地下供电小车2,系统为电动车辆3安排一条可用的车道,并且分配一辆地下供电小车2与电动车辆3通信连接,此时电动车辆3的电控系统得知电动车辆3即将进入充电公路1,并通过电动车辆3的摄像模组获知当前车道的情况,并进入自动驾驶模式。地下供电小车2开始尝试进行供电,电动车辆3的电控系统接收到充电请求后将需要充电的电池组连接到供电装置23。上述准备完成后,电控系统可以向地下供电小车2发送维持通信的数据包,数据包中可以包含当前自动驾驶速度、方向、电池电量等信息,也可以包含用于检测电动车辆3和地下供电小车2之间距离的信息,电动车辆3接着可以开始在对应的车道上行驶。
电动车辆3在充电公路1上行驶的过程中,地下供电小车2从供电轨道100中获取电力并通过供电装置23向电动车辆3供电,同时,地下供电小车2实时获取电动车辆3当前的位置并计算自身与电动车辆3之间的相对位置,根据相对位置和电动车辆3发送过来的当前速度,地下供电小车2调整自身的速度以跟随电动车辆3。在行驶过程中,当电动车辆3请求断开当前供电连接(可能是电池已经充满,或者可能是电动车辆3需要切换车道等情况),电动车辆3向地下供电小车2发送断开供电的信息,地下供电小车2断开供电装置23的连接,并记录当前电动车辆3总的充电量等信息,接着地下供电小车2往下一个供电服务站继续前进。如果电动车辆3切换了车道,并需要在另一条车道上需要继续接入充电,那么按照电动车辆3在充电公路1上请求充电的情况来处理,由充电服务站派出新的地下供电小车2进行供电。当然,如果当前车道附近有闲置的地下供电小车2(在行驶过程中断开供电连接后处于空闲状态的地下供电小车2,并且未行驶到下一个充电服务站),系统可以分配该地下供电小车2到请求供电的电动车辆3的位置处进行供电服务。
在充电服务站的末尾端,电动车辆3脱离充电公路1,此时充电服务站回收地下供电小车2,并获取充电数据,如充电量、充电时间等。电动车辆3断开与地下供电小车2的连接并可以恢复到正常行驶。
当然,除了充电公路1的起始端和末尾端两个充电服务站,还可以在充电公路1中途的任意位置设置充电服务站,便于车辆管理。
本发明的一个实施例的第五方面提供了一种充电方法,应用于充电系统,该充电系统包括充电公路1、地下供电小车2和电动车辆3,充电公路1包括沿路面延伸方向设置的供电 轨道100和用于容纳供电轨道100的地下通道200,地下通道200设置于路面下方,地下通道200包括沿路面延伸方向设置的供电开口210,供电轨道100包括用于承载地下供电小车2移动的轨道部分110和提供电力的供电部分120,地下供电小车2包括驱动机构21、接触部分22、供电装置23、传感模块24和控制器,电动车辆3包括自动驾驶模块和电控系统,充电方法包括:
S100,控制器控制接触部分22与供电部分120接触,以使供电装置23接入外部电源;
S200,控制器控制传感模块24获取充电公路1上电动车辆3的位置信息;
S300,控制器根据位置信息控制驱动机构21运动,以使供电装置23与电动车辆3相对静止;
S400,控制器控制供电装置23连接电动车辆3并对电动车辆3进行充电;
S500,电控系统控制电动车辆3进行自动驾驶模式;
S600,控制器控制传感模块24实时获取电动车辆3的位置,电控系统根据控制器的同步指令控制自动驾驶模块,以使供电装置23和电动车辆3同步运动。
可以理解的是,本发明实施例第五方面的充电方法,适用于具有上述特征的充电系统,也适用于本发明实施例第四方面的充电系统,由于本发明实施例第四方面的充电系统已经充分说明了充电公路1、地下供电小车2和电动车辆3的具体构成和工作方式,因此下面对充电方法的说明,基于实施例第四方面的充电系统,但这并不限定本发明实施例第五方面的充电方法仅能应用到实施例第四方面的充电系统。
上述充电方法体现了地下供电小车2在电动车辆3附近位置时,地下供电小车2接入电动车辆3进行供电并同步行驶的过程,由前述的地下供电小车2的工作方式可知,地下供电小车2在电动车辆3附近位置分为两种情况,一种是在充电服务站里,电动车辆3停止或缓速行驶,此时地下供电小车2可以在低速情况下匹配电动车辆3进行供电,另一种是电动车辆3已经行驶在充电公路1上并请求充电,此时地下供电小车2快速接近电动车辆3后执行上述充电方法。
在一实施例中,步骤S300具体包括:
S310,控制器获取电动车辆3所在车道的车道编码;
S320,控制器控制地下供电小车2移动到车道编码的车道;
S330,控制器控制地下供电小车2往电动车辆3所在位置处移动,并实时更新电动车辆3所在位置;
S340,控制器获取传感模块24传回的位置信号,并对照预设参照值;
S350,若位置信号与预设参照值在误差阈值范围外,则控制器控制驱动机构21继续移动,若位置信号与预设参照值在误差阈值范围内,则控制器获取电动车辆3的当前速度,并调整驱动机构21使地下供电小车2的速度与电动车辆3的当前速度相同。
本实施例提出了地下供电小车2的跟随电动车辆3行驶的方法,地下供电小车2通过传感模块24识别电动车辆3的位置信号,例如,拍摄电动车辆3车底的图像,识别所拍摄的图像中的特征点作为参考点,记录特征点在图像中的位置后,再实时获取电动车辆3车底的 图像,若获取的某帧图像中特征点的位置与参考点的位置存在偏差,那么地下供电小车2朝偏差方向调整速度;又如,电动车辆3与地下供电小车2之间的充电连接线具有一个LED灯,地下供电小车2可以通过识别该LED灯的光源位置作为参考点进行对比定位。
其中步骤S310和S320对应了地下供电小车2从充电服务站出发所需要执行的动作。根据发送充电请求的电动车辆3的车道,地下供电小车2在充电服务站预先选择对应的车道,控制器此时记录当前车道和该地下供电小车2的编码作为标识码组,从而可以对该标识码组进行充电量计算、充电时长计算等。此后地下供电小车2可以按照与电动车辆3的距离远近执行步骤S330至步骤S350。可以理解的是,如果发出充电请求的电动车辆3已经行驶在充电公路1上,那么电动车辆3需要共享它当前的位置以便地下供电小车2追赶。
因此,步骤S330包括:
S331,控制器获取电动车辆3的GPS信息以及地下供电小车2的GPS信息;
S332,根据电动车辆3的GPS信息和地下供电小车2的GPS信息,若电动车辆3与地下供电小车2的直线距离小于预设距离阈值,则控制器启动传感模块24进行定位。
上述步骤针对发出充电请求的电动车辆3已经行驶在充电公路1上的情况,地下供电小车2需要获取电动车辆3当前的位置,才能从充电服务站出发追赶电动车辆3。近距离下,由于GPS的定位精度无法满足地下供电小车2的跟踪需求,例如针对运动物体,GPS最高精度可能只有1米,那么当地下供电小车2和电动车辆3之间距离小于1米的时候GPS已经无法起到精确定位的作用,此时地下供电小车2需要启动传感模块24,通过图像或者激光等方法获取定位信息代替来GPS信息。
本发明实施例提出了通过地下供电小车2为电动车辆3近距离供电的方案,其中充电公路1内建设供电轨道100,为地下供电小车2全程提供电力供给,地下供电小车2在供电轨道100上行驶过程中从供电轨道100获取电力并转换成适合于给电动车辆3充电的电压电流,实现电动车辆3边行驶边充电。由于地下供电小车2能够跟随电动车辆3行驶,因此充电距离短,充电效率高。
以上是对本发明的较佳实施进行了具体说明,但本发明并不局限于上述实施方式,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本发明权利要求所限定的范围内。

Claims (10)

  1. 一种充电公路,其特征在于,包括沿路面延伸方向设置的供电轨道和用于容纳所述供电轨道的地下通道,所述地下通道设置于路面下方,所述地下通道包括沿路面延伸方向设置的供电开口,所述供电轨道包括用于承载地下供电小车移动的轨道部分和提供电力的供电部分,所述供电部分连接外部电源。
  2. 根据权利要求1所述的一种充电公路,其特征在于,所述供电轨道还包括防水罩,所述防水罩设置在所述供电部分上方以遮挡从所述供电开口落入所述地下通道的水。
  3. 根据权利要求2所述的一种充电公路,其特征在于,还包括排水沟,所述排水沟沿路面的延伸方向设置,所述排水沟设置在所述地下通道的底部。
  4. 一种地下供电小车,应用于一种充电公路,其特征在于,所述充电公路包括沿路面延伸方向设置的供电轨道和用于容纳所述供电轨道的地下通道,所述地下通道设置于路面下方,所述地下通道包括沿路面延伸方向设置的供电开口,所述供电轨道包括用于承载所述地下供电小车移动的轨道部分和提供电力的供电部分,所述地下供电小车包括:
    驱动机构,连接所述轨道部分并能够在所述轨道部分上移动;
    接触部分,接触所述供电部分以从所述供电部分取电;
    供电装置,朝向路面上的电动车辆以向电动车辆提供电能;
    传感模块,朝向所述电动车辆以实时获取所述电动车辆的位置;
    控制器,连接所述传感模块并根据所述传感模块传回的位置信号驱动所述驱动机构。
  5. 根据权利要求4所述的一种地下供电小车,其特征在于,所述供电装置为接触式输电装置或者非接触式输电装置。
  6. 根据权利要求5所述的一种地下供电小车,其特征在于,所述接触式输电装置包括柔性电缆和设置在所述柔性电缆的一端设置有供电接头,所述柔性电缆的另一端连接到所述接触部分,所述供电接头连接所述电动车辆上的充电头。
  7. 根据权利要求5所述的一种地下供电小车,其特征在于,所述接触式输电装置包括沿上下方向伸展的第一伸展部和沿水平方向转动的第二伸展部,所述第一伸展部连接所述第二伸展部,所述第二伸展部上设置有朝向所述电动车辆的柔性电刷,所述柔性电刷跟随所述第二伸展部向上移动从而接触所述电动车辆的充电板。
  8. 一种电动车辆,其特征在于,包括自动驾驶模块和电控系统,所述电控系统与权利要求4至7任一项所述的地下供电小车的控制器通信连接,所述自动驾驶模块在进入权利要求1至3任一项所述的充电公路后启动,所述电控系统根据所述地下供电小车的控制器的同步指令控制所述自动驾驶模块,以使所述电动车辆与所述地下供电小车同步运动。
  9. 一种充电系统,其特征在于,包括如权利要求1至3任一项所述的充电公路、如权利要求4至7任一项所述的地下供电小车和如权利要求8所述的电动车辆。
  10. 一种充电方法,应用于充电系统,其特征在于,所述充电系统包括充电公路、地下供电小车和电动车辆,所述充电公路包括沿路面延伸方向设置的供电轨道和用于容纳所述供电轨道的地下通道,所述地下通道设置于路面下方,所述地下通道包括沿路面延伸方向设 置的供电开口,所述供电轨道包括用于承载所述地下供电小车移动的轨道部分和提供电力的供电部分,所述地下供电小车包括驱动机构、接触部分、供电装置、传感模块和控制器,所述电动车辆包括自动驾驶模块和电控系统,所述充电方法包括:
    所述控制器控制所述接触部分与所述供电部分接触,以使所述供电装置接入外部电源;
    所述控制器控制所述传感模块获取所述充电公路上电动车辆的位置信号;
    所述控制器根据所述位置信息控制所述驱动机构运动,以使所述供电装置与所述电动车辆相对静止;
    所述控制器控制所述供电装置连接所述电动车辆并对所述电动车辆进行充电;
    所述电控系统控制所述电动车辆进行自动驾驶模式;
    所述控制器控制所述传感模块实时获取所述电动车辆的位置,所述电控系统根据所述控制器的同步指令控制所述自动驾驶模块,以使所述供电装置和所述电动车辆同步运动。
PCT/CN2020/112151 2020-04-26 2020-08-28 充电公路、地下供电小车、电动车辆、充电系统及方法 WO2021217983A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010339170.8A CN111497631B (zh) 2020-04-26 2020-04-26 充电公路、地下供电小车、电动车辆、充电系统及方法
CN202010339170.8 2020-04-26

Publications (1)

Publication Number Publication Date
WO2021217983A1 true WO2021217983A1 (zh) 2021-11-04

Family

ID=71867793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112151 WO2021217983A1 (zh) 2020-04-26 2020-08-28 充电公路、地下供电小车、电动车辆、充电系统及方法

Country Status (2)

Country Link
CN (1) CN111497631B (zh)
WO (1) WO2021217983A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110562069A (zh) * 2019-09-18 2019-12-13 中国电建集团铁路建设有限公司 一种地铁隧道施工方法及用于该方法的移动充电系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110267841B (zh) * 2017-02-15 2023-02-21 沃尔沃卡车集团 用于接触元件的主动对准控制的设备和方法
CN111497631B (zh) * 2020-04-26 2021-08-17 五邑大学 充电公路、地下供电小车、电动车辆、充电系统及方法
CN113386602B (zh) * 2021-06-15 2023-03-24 五邑大学 防水充电装置及充电公路
CN115343964B (zh) * 2022-08-17 2024-02-09 苏州泛科众维智能科技有限公司 一种用于自动驾驶测试的视频模拟设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001128304A (ja) * 1999-10-27 2001-05-11 Toshiba Corp 電気自動車の走行充電システム
TW200940375A (en) * 2008-03-26 2009-10-01 Gong-Shuo Xie Vehicle with electricity pick-up device
CN102105325A (zh) * 2007-09-06 2011-06-22 利维达克2有限公司 用于车辆的地面电能获取及引导装置和装有该装置的城市运输车辆
US20150041273A1 (en) * 2013-08-06 2015-02-12 Amres Network Coalition, LLC Systems and methods for providing in-road electric conductivity boxes and on-vehicle descent and pivot contacts for vehicles
DE102014223940A1 (de) * 2014-11-25 2016-05-25 Robert Bosch Gmbh Stromversorgungssystem für ein Elektrofahrzeug, Elektrofahrzeug und Versorgungskanal
CN107379998A (zh) * 2017-08-10 2017-11-24 尚圣杰 一种电动汽车移动充电单轨自巡航刷电系统
CN111497631A (zh) * 2020-04-26 2020-08-07 五邑大学 充电公路、地下供电小车、电动车辆、充电系统及方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2754932Y (zh) * 2004-06-22 2006-02-01 陈远鸿 能连续长久行使的可免电池的无线电动行车装置
CN101092114A (zh) * 2005-10-10 2007-12-26 袁立辉 越板电动汽车的运行方法及装置
JP4691000B2 (ja) * 2006-11-15 2011-06-01 三菱重工業株式会社 移動体の非接触給電装置
CN102275513B (zh) * 2011-06-01 2013-01-16 马冬 电动汽车在行驶过程中由地面取电的用电及充电方法
FR3001666B1 (fr) * 2013-02-06 2016-08-12 Alstom Transport Sa Tramway electrique et reseau de transport associe
GB2522051A (en) * 2014-01-13 2015-07-15 Jeremy Chun Chung Lau Method and system for charging electric road vehicles
FR3019112B1 (fr) * 2014-03-25 2016-05-06 Alstom Transp Tech Systeme d'alimentation par le sol pour vehicules electriques non guides et procede d'utilisation associe
CN204068362U (zh) * 2014-08-18 2014-12-31 中国矿业大学(北京) 一种轨道式自主移动电动车供电装置
CN104578267B (zh) * 2014-12-24 2016-11-23 山东新大洋电动车有限公司 一种纯电动汽车行车充电系统
US10239544B1 (en) * 2015-09-10 2019-03-26 888 Brands LLC Guided delivery vehicle
CN205335939U (zh) * 2016-02-02 2016-06-22 江苏金坛汽车工业有限公司 车辆充电系统
CN106004485B (zh) * 2016-05-26 2018-09-14 河海大学常州校区 一种基于传感器控制能量输出的olev系统
CN105946616A (zh) * 2016-06-24 2016-09-21 方亚明 一种公路嵌入式新能源汽车自动充电系统
CN106786955B (zh) * 2017-01-09 2019-06-04 朱幕松 电动汽车路面自动充电槽
CN106945565A (zh) * 2017-05-11 2017-07-14 上海电力学院 汽车行驶中的无线充电装置
CN107839696B (zh) * 2017-10-30 2020-11-10 莱芜美澳冶金科技有限公司 一种永磁轴式直驱空地共享立体快速轨道交通系统
CN110588386A (zh) * 2018-05-25 2019-12-20 比亚迪股份有限公司 线圈小车及用于轨道车辆的无线充电系统
CN110217126A (zh) * 2019-05-27 2019-09-10 五邑大学 一种安全低电压充电公路、行驶充电的车辆及充电方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001128304A (ja) * 1999-10-27 2001-05-11 Toshiba Corp 電気自動車の走行充電システム
CN102105325A (zh) * 2007-09-06 2011-06-22 利维达克2有限公司 用于车辆的地面电能获取及引导装置和装有该装置的城市运输车辆
TW200940375A (en) * 2008-03-26 2009-10-01 Gong-Shuo Xie Vehicle with electricity pick-up device
US20150041273A1 (en) * 2013-08-06 2015-02-12 Amres Network Coalition, LLC Systems and methods for providing in-road electric conductivity boxes and on-vehicle descent and pivot contacts for vehicles
DE102014223940A1 (de) * 2014-11-25 2016-05-25 Robert Bosch Gmbh Stromversorgungssystem für ein Elektrofahrzeug, Elektrofahrzeug und Versorgungskanal
CN107379998A (zh) * 2017-08-10 2017-11-24 尚圣杰 一种电动汽车移动充电单轨自巡航刷电系统
CN111497631A (zh) * 2020-04-26 2020-08-07 五邑大学 充电公路、地下供电小车、电动车辆、充电系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110562069A (zh) * 2019-09-18 2019-12-13 中国电建集团铁路建设有限公司 一种地铁隧道施工方法及用于该方法的移动充电系统

Also Published As

Publication number Publication date
CN111497631A (zh) 2020-08-07
CN111497631B (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
WO2021217983A1 (zh) 充电公路、地下供电小车、电动车辆、充电系统及方法
JP5877848B2 (ja) 架空電車線方式車両の走行中における自動着線および離線のためのシステム
CN104192017B (zh) 一种自主移动式电动车供电系统及其供电方法
CN109878355B (zh) 一种自动充电车及其运行方法和自动充电系统
CN102092296B (zh) 无轨电车智能受电弓装置及其应用方法
KR101231896B1 (ko) 전기자동차용 충전장치
CN106444748A (zh) 一种实现自机器人主充电的方法及系统
CN204068362U (zh) 一种轨道式自主移动电动车供电装置
US11148541B2 (en) Locating an electric vehicle at a charging station
CN209566797U (zh) 充电系统及充电场站
CN111867878B (zh) 一种基于智能交通系统的车辆共享充电方法及系统、移动充电车
CN107585519A (zh) 一种生产线、生产线母车及生产线子车
CN106608265A (zh) 轨道式移动机器人
CN204960424U (zh) 一种基于平面车库的载车装置
KR20210072175A (ko) 배터리 구동형 교통수단의 지붕 충전 감시 장치
CN105291894B (zh) 一种供电方法,受电方法及装置
CN111347885A (zh) 智轨无线公交电车系统
CN201961161U (zh) 无轨电车智能受电弓装置
CN104895366B (zh) 一种基于平面车库的载车装置
CN105270207B (zh) 一种车辆受电方法及装置
CN215621499U (zh) 一种基于自动行驶移动电源的充电机器人系统
CN111605570A (zh) 一种轨道式变电站智能巡视机器人
CN105270209A (zh) 一种供电网接入控制方法,接入请求方法及装置
CN109664789A (zh) 一种多功能智能充电方法及装置
CN112009285B (zh) 基于供电轨的轨道式充电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933416

Country of ref document: EP

Kind code of ref document: A1