WO2021217486A1 - 数据传输方法、装置、通信设备和存储介质 - Google Patents

数据传输方法、装置、通信设备和存储介质 Download PDF

Info

Publication number
WO2021217486A1
WO2021217486A1 PCT/CN2020/087743 CN2020087743W WO2021217486A1 WO 2021217486 A1 WO2021217486 A1 WO 2021217486A1 CN 2020087743 W CN2020087743 W CN 2020087743W WO 2021217486 A1 WO2021217486 A1 WO 2021217486A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit length
field
sequence
sequence control
control field
Prior art date
Application number
PCT/CN2020/087743
Other languages
English (en)
French (fr)
Inventor
董贤东
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US17/996,466 priority Critical patent/US20230224069A1/en
Priority to PCT/CN2020/087743 priority patent/WO2021217486A1/zh
Priority to CN202080000864.7A priority patent/CN113966601B/zh
Priority to KR1020227041596A priority patent/KR20230003113A/ko
Priority to EP20933799.7A priority patent/EP4145786A4/en
Priority to JP2022565718A priority patent/JP7515617B2/ja
Priority to BR112022021725A priority patent/BR112022021725A2/pt
Publication of WO2021217486A1 publication Critical patent/WO2021217486A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/34Flow control; Congestion control ensuring sequence integrity, e.g. using sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1642Formats specially adapted for sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • This application relates to the field of wireless communication technology, but is not limited to the field of wireless communication technology, and in particular to data transmission methods, devices, communication equipment, and storage media.
  • the Institute of Electrical and Electronics Engineers established a Study Group (SG, Study Group) to study the next-generation mainstream Wi-Fi technology.
  • the research scope is: Wi-Fi transmission with a bandwidth of 320MHz, aggregation and collaboration technologies using multiple frequency bands, etc., proposed Compared with the existing IEEE802.11ax, the vision to increase the speed and throughput by at least four times.
  • the main application scenarios of the new technology are video transmission, augmented reality (AR, Augmented Reality), virtual reality (VR, Virtual Reality), etc.
  • the aggregation and coordination technology of multiple frequency bands means that Wi-Fi devices communicate in different frequency bands such as 2.4GHz, 5.8GHz and 6-7GHz at the same time, or in different bandwidths under the same frequency band.
  • Wi-Fi technology introduces a sequence number (SN, Sequence Number) to uniquely characterize each data frame.
  • the embodiments of the present disclosure provide a data transmission method, device, communication device, and storage medium.
  • a data transmission method applied to a first communication terminal includes:
  • Determining a first sequence control field for a first type of data frame where the first sequence control field has a first bit length, and the first bit length is configured to enable the first sequence control field to support multi-connection communication;
  • the first sequence control field includes a first sequence number field, and the first sequence number field includes at least a first quality of service management frame (QMF, Quality Management Frame) serial number field.
  • QMF Quality Management Frame
  • the first sequence control field includes a first fragment number field, and the first fragment number field indicates a fragment number of the first type of data frame.
  • bit length of the first sequence control field is a fixed value.
  • bit length of the first sequence control field is greater than the bit length of the second sequence control field in the second type of data frame, and the type of the first type of data frame is different from that of the second type of data frame.
  • the second type of data frame, and the bit length of the second sequence control field is configured to only support single connection communication.
  • bit length of the first sequence number field in the first sequence control field is greater than the bit length of the second sequence number field in the second sequence control field
  • the bit length of the first QMF sequence number field in the first sequence number field is greater than the bit length of the second QMF sequence number field in the second sequence number field.
  • bit length of the first sequence number field in the first sequence control field is greater than 12.
  • bit length of the first QMF sequence number field of the first sequence number field of the first sequence control field is greater than 10.
  • bit length of the first segment number field in the first sequence control field is greater than the bit length of the second segment number field in the second sequence control field.
  • bit length of the first segment number field in the first sequence control field is greater than 4.
  • the determining the first sequence control field for the first type of data frame includes:
  • the determining the bit length occupied by the first sequence control field based on the number of connections of the first device includes:
  • the determining the bit length of the first QMF sequence number field of the first sequence number field based on the number of connections of the first device includes:
  • the determining the bit length of the first segment number field in the first sequence control field based on the number of connections of the first device includes:
  • the sum of the bit length occupied by the binary value of the number of connections of the first device and the second basic value is determined as the bit length of the first segment number field in the first sequence control field.
  • the number of connections of the first device includes: the number of connections currently established by the first device and/or the maximum number of connections supported by the first device.
  • the method further includes:
  • a data transmission device for a first device including: a first determining module and a sending module, wherein,
  • the first determining module is configured to determine a first sequence control field for a first type of data frame, the first sequence control field has a first bit length, and the first bit length is configured such that the first The sequence control domain can support multi-connection communication;
  • the sending module is configured to send the first type data frame carrying the first sequence control field.
  • the first sequence control field includes a first sequence number field, and the first sequence number field includes at least a first quality of service management frame QMF sequence number indicating the sequence number of the first type of data frame area.
  • the first sequence control field includes a first fragment number field, and the first fragment number field indicates a fragment number of the first type of data frame.
  • bit length of the first sequence control field is a fixed value.
  • bit length of the first sequence control field is greater than the bit length of the second sequence control field in the second type of data frame, wherein the type of the first type of data frame is different from the type of the second type of data frame.
  • a data frame, and the bit length of the second sequence control field is configured to only support single connection communication.
  • bit length of the first sequence number field in the first sequence control field is greater than the bit length of the second sequence number field in the second sequence control field
  • the bit length of the first QMF sequence number field in the first sequence number field is greater than the bit length of the second QMF sequence number field in the second sequence number field.
  • bit length of the first sequence number field in the first sequence control field is greater than 12.
  • bit length of the first QMF sequence number field of the first sequence number field of the first sequence control field is greater than 10.
  • bit length of the first segment number field in the first sequence control field is greater than the bit length of the second segment number field in the second sequence control field.
  • bit length of the first segment number field in the first sequence control field is greater than 4.
  • the first determining module includes:
  • the determining submodule is configured to determine the bit length of the first sequence control field based on the number of connections of the first device.
  • the determining submodule includes:
  • the determining unit is configured to determine the bit length of the first QMF sequence number field of the first sequence number field and/or the first segment in the first sequence control field based on the number of connections of the first device The bit length of the number field.
  • the determining unit includes:
  • the first determining subunit is configured to determine the sum of the bit length occupied by the binary value of the number of connections of the first device and the first basic value as the first sequence number field in the first sequence control field The bit length of the sequence number field of the first quality of service management frame.
  • the determining unit includes:
  • the second determining subunit is configured to determine the sum of the bit length occupied by the binary value of the number of connections of the first device and the second basic value as the bit of the first segment number field in the first sequence control field length.
  • the number of connections of the first device includes: the number of connections currently established by the first device and/or the maximum number of connections supported by the first device.
  • the device further includes:
  • the second determining module is configured to determine whether the second device supports the multi-connection communication according to the indication information carried in the management frame received from the second device.
  • a communication equipment device including a processor, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs the When the program is executed, the steps of the data transmission method described in the first aspect are executed.
  • a storage medium on which an executable program is stored, wherein the executable program is executed by a processor to implement the steps of the data transmission method described in the first aspect.
  • the data transmission method, device, communication device, and storage medium provided according to the embodiments of the present disclosure include: determining a first sequence control field for a first type of data frame, the first sequence control field having a first bit length, and The first bit length is configured to enable the first sequence control field to support multi-connection communication; the first type of data frame carrying the first sequence control field is sent.
  • the first bit length can be set, so that the first sequence control field can identify more data frames, etc., so that the first sequence control field can meet the needs of multi-connection communication, and then the access point (AP, Access Point) And stations (STA, Station) can use multiple connections for QOS-based data frame transmission to increase transmission speed and network data throughput.
  • Fig. 1 is a schematic diagram showing the structure of a sequence control domain according to an exemplary embodiment
  • Fig. 2 is a schematic diagram showing a structure of a serial number field according to an exemplary embodiment
  • Fig. 3 is a schematic flowchart of a data transmission method according to an exemplary embodiment
  • Fig. 4 is a block diagram showing a data transmission device according to an exemplary embodiment
  • Fig. 5 is a block diagram showing a device for data transmission according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • word “if” as used herein can be interpreted as "when” or "when” or "in response to determination”.
  • the executive bodies involved in the embodiments of the present disclosure include but are not limited to: wireless communication networks, especially Wi-Fi networks, such as under the IEEE802.11a/b/g/n/ac standard, and under the IEEE802.11be standard in the next-generation Wi-Fi network Network equipment, including but not limited to: Wi-Fi routers and other wireless (AP, Access Point) access point equipment, wireless stations (STA, Station), user terminals, user nodes, mobile terminals or tablet computers, etc. .
  • Wi-Fi routers and other wireless (AP, Access Point) access point equipment wireless stations (STA, Station), user terminals, user nodes, mobile terminals or tablet computers, etc.
  • An application scenario of the embodiments of the present disclosure is that in related technologies, in order to ensure the QoS of data frames, SN is introduced, that is, an SN is allocated to each data frame, such as MSDU, A-MSDU, or MMPDU.
  • a sequence control field is set in the data frame, and the bit length of the sequence control field is 16.
  • the sequence control field there are a sequence number (Sequence Number) field and a fragment number field.
  • the sequence number field occupies 12 bits
  • the fragment number field occupies 4 bits.
  • the sequence number field can be used to set the data frame sequence number, etc.
  • a data packet is divided into multiple data fragments during transmission, and the fragment number field is used to indicate the data fragment to which the data frame belongs.
  • the sequence number field includes a service quality management frame (Quality Management Frame) sequence number field and an access category index (ACI, Access Category Index) field.
  • the QMF sequence number field is used to set the data frame sequence number.
  • the access type index is used to indicate the access type of the data frame, and data frames of different access types have different channel access priorities. There are four types of data frame access, for example: AC_BE Best Effort, AC_BK Background (Background), AC_VI Video (Video) and AC_VO Voice (Voice).
  • bit length of the QMF sequence number field in the related art is 10, and the bit length of the fragment number field is 4, which can only satisfy the identification of the data frame under a single connection.
  • the number of data frames exceeds the range that can be identified by the QMF sequence number field and the segment number field.
  • this exemplary embodiment provides a data transmission method.
  • the data transmission method can be applied to the first communication terminal of wireless communication, including:
  • Step 301 Determine a first sequence control field for a first type of data frame, where the first sequence control field has a first bit length, and the first bit length is configured to enable the first sequence control field to support multiple Connection communication
  • Step 302 Send the first type data frame carrying the first sequence control field.
  • the access point (AP, Access Point) or station (STA, Station) in the Wi-Fi communication system may send the first type data frame.
  • the first type of data frame may include, but is not limited to, data frames in multi-connection communication.
  • the first type of data frame may be a data frame complying with the IEEE802.11be standard in the next-generation Wi-Fi network.
  • the second type of data frame may be a data frame suitable for single-connection transmission in related technologies.
  • the first type of data frame may be a data frame complying with the IEEE802.11ax standard.
  • the data frame can be: Media Access Control Service Data Unit (MSDU, Media Access Control Service Data Unit), Aggregation-Media Access Control Service Data Unit (A-MSDU, Aggregation-Media Access Control Service Data Unit), or Media Access Control Management Protocol Data unit (MMPDU Media Access Control Management Protocol Data Unit).
  • the first sequence control field is used to uniquely identify data frames, and is used to filter repeated data frames when the AP or STA performs transmission that meets QoS.
  • the first sequence control field may include the QMF sequence number field, ACI field, and fragment number field.
  • the first bit length can be determined based on the data packet fragments that need to be identified in the multi-transmission communication and the number of first-type data frames that need to be identified.
  • the first bit length of the first sequence control field in the first type of data frame can be changed so that the first sequence control field can support multi-connection communication.
  • the first sequence control domain can support multi-connection communication may mean that the first sequence control domain can be used for both single connection communication and multi-connection communication.
  • the number of different identification information that can be characterized by the first sequence control field of the first bit length may be greater than or equal to the number of data frames transmitted by at least two connections.
  • the number of different QMF sequence numbers that can be characterized by the bit length of the QMF sequence number field in the first sequence control field may be greater than or equal to the number of data frames transmitted by at least two connections, and/or the fragment number in the first sequence control field
  • the number of different segment numbers that can be characterized by the bit length of the field may be greater than or equal to the number of different segments to which the data frames transmitted by at least two connections belong. In this way, the first sequence of control fields can meet the requirement of the number of data frames simultaneously transmitted by at least two connections.
  • the bit length of the QMF sequence number field of the second sequence control field of the related technology is 10, which can represent the QMF sequence number of 1024 data frames, and the 1024 QMF sequence numbers can identify data frames transmitted on a connection. Meet the data frame transmission requirements on a connection.
  • the bit length of the QMF sequence number field of the first sequence control field can be set to 11, so that the QMF sequence number field of the first sequence control field can represent the QMF sequence number of 2048 data frames, and the 2048 QMF sequence numbers can identify two connections
  • the data frames transmitted at the same time meet the data frame transmission requirements on two connections.
  • the first bit length can be set so that the first sequence control field can identify more data frames, etc., so that the first sequence control field can meet the needs of multi-connection communication, and AP and STA can use multi-connection based QOS data frame transmission improves transmission speed and network data throughput.
  • the first sequence control field includes a first sequence number field, and the first sequence number field includes at least a first QMF sequence number field indicating a sequence number of the first type of data frame.
  • the first sequence control field includes the first sequence number field.
  • the first sequence number field includes the first QMF sequence number field.
  • the first QMF sequence number field is used to set the sequence number of the first data frame.
  • the sequence number of the first data frame can uniquely identify the first data frame.
  • the bit length of the first QMF sequence number field may be determined based on the maximum number of possible first-type data frames in the multi-transmission communication.
  • the first sequence control field includes a first fragment number field, and the first fragment number field indicates a fragment number of the first type of data frame.
  • the first segment number field is used to set the segment number of the first data frame.
  • the sequence number of the first data frame can uniquely identify the segment to which the first data frame belongs.
  • a data packet is divided into multiple fragments during transmission, and the fragment number field is used to indicate the fragment to which the data frame belongs.
  • the bit length of the first segment number field may be determined based on the number of possible segments in the multi-transmission communication.
  • bit length of the first sequence control field is a fixed value.
  • the bit length of the first sequence control field may adopt a fixed value, that is, the bit length of the first sequence control field does not change with changes in the transmission environment such as the number of transmission connections.
  • the bit length of the sequence number field in the first sequence control field, the bit length of the segment number field, and the bit length of the QMF sequence number field in the sequence number field may all adopt fixed values.
  • the first sequence control field may be 18 bits, and the QMF sequence number field has an additional two bits compared to the related technology, which is 14 bits. In this way, the number of QMF serial numbers that can be set in the QMF serial number field is 4 times the original number.
  • the bit length of the first sequence control field adopts a fixed value, which can reduce the complexity of dynamically adjusting the bit length of the first sequence control field and reduce the difficulty of development.
  • bit length of the first sequence control field is greater than the bit length of the second sequence control field in the second type of data frame, and the type of the first type of data frame is different from that of the second type of data frame.
  • the second type of data frame, and the bit length of the second sequence control field is configured to only support single connection communication.
  • the second sequence control field may be the sequence control field of the second type of data frame under the IEEE802.11ax standard.
  • the bit length of the second sequence control field can be 16.
  • multiple transmission connections will be established between AP and STA.
  • an AP connects to 3 STAs, and each STA establishes 3 transmission connections with the AP.
  • the AP establishes 9 transmission connections with 3 STAs at the same time.
  • the amount of data transmitted by the 9 transmission connections has greatly increased, that is, the number of data frames has greatly increased.
  • the number of QMF sequence numbers that can be supported by the QMF sequence number field in the sequence control field and/or the number of fragment numbers supported by the fragment number field cannot meet the requirement of uniquely identifying each data frame.
  • the bit length of the first sequence control field in the first type data frame can be greater than the bit length of the second sequence control field in the second type data frame, so that the first sequence control field in the first type data frame can support
  • the number of QMF sequence numbers and/or the number of fragment numbers can meet the requirements of the number of data frames for multi-connection communication.
  • the bit length of the first sequence control field in the first type data frame can be increased by two bits compared to the bit length of the second sequence control field in the second type data frame, that is, the first sequence control field is 18 bits.
  • the increased bit length can be used in the QMF sequence number field, and/or the segment number field. For example, adding one bit to the QMF sequence number field can double the number of QMF sequence numbers that can be set in the QMF sequence number field. In this way, the transmission requirements for more data frames can be met.
  • increasing the bit length of the first sequence control field in the first type data frame can increase the number of data frames that the first sequence control field can identify, so that the first sequence control
  • the domain can meet the needs of multi-connection communication, and AP and STA can use multi-connection for data frame transmission, which can increase transmission speed, increase network data throughput and increase spectrum utilization.
  • bit length of the first sequence number field in the first sequence control field is greater than the bit length of the second sequence number field in the second sequence control field
  • the bit length of the first QMF sequence number field in the first sequence number field is greater than the bit length of the second QMF sequence number field in the second sequence number field.
  • bit length of the first sequence number field can be increased relative to the second sequence number field, the first QMF sequence number field in the sequence number field in the first sequence control field can be increased, and/or the first sequence number field in the first sequence control field can be added.
  • the bit length of the access type index field of the sequence number field can be increased relative to the second sequence number field, the first QMF sequence number field in the sequence number field in the first sequence control field can be increased, and/or the first sequence number field in the first sequence control field can be added.
  • the bit length of the QMF sequence number field in the sequence number field of the first sequence control field is increased. In this way, the number of QMF sequence numbers that can be supported by the first sequence control field can be increased to meet the demand for an increase in the number of data frames under multi-connection communication.
  • the bit length of the access type index field in the sequence number field of the first sequence control field is increased. In this way, the data types that can be indicated by the access type index field can be increased to meet the needs of more types of data transmission.
  • bit length of the first sequence number field in the first sequence control field is greater than 12.
  • bit length of the second sequence control field in the second type of data frame in the related art may be set to be greater than 12.
  • the bit length of the first sequence number field in the first sequence control field can be set to 16.
  • the 4 newly added bits may all be allocated to the first QMF sequence number field and/or the access type index field of the first sequence control field.
  • bit length of the first QMF sequence number field of the first sequence number field of the first sequence control field is greater than 10.
  • bit length of the QMF sequence number field of the second sequence control field in the second type of data frame in the related art is 10, and the bit length of the first QMF sequence number field of the sequence number field in the first sequence control field can be set to be greater than 10
  • the bit length of the first QMF sequence number field of the first sequence number field in the first sequence control field may be set to 14 bits. After adding the last 4 bits, the number of data frames that the QMF sequence number field can indicate is 16 times that of related technologies, which can increase the number of data frames that can be transmitted by multiple connections and improve network data throughput.
  • bit length of the first segment number field in the first sequence control field is greater than the bit length of the second segment number field in the second sequence control field.
  • Increasing the bit length of the first segment number field of the first sequence control field can increase the number of segments that can be indicated by the first segment number field, so that the multi-transmission connection can transmit more data packet segments and improve network data throughput.
  • bit length of the first segment number field in the first sequence control field is greater than 4.
  • the bit length of the first segment number field of the second sequence control field in the second type of data frame in the related art is 4, and the bit length of the first segment number field in the first sequence control field may be set to be greater than 4.
  • the bit length of the first segment number field in the first sequence control field may be set to 8. After adding the last 4 digits, the number of fragments into which the data packet can be indicated by the first fragment number field is 16 times that of the related technology. In this way, the number of data packet fragments that can be transmitted by multiple connections can be increased, and network data throughput can be improved.
  • the determining the first sequence control field for the first type of data frame includes:
  • the bit length of the first sequence control field can be changed according to the number of connections established between the AP and the STA.
  • the bit length of the first sequence control field is 16, where the bit length of the sequence number field in the first sequence control field is 12, and the fragment number field in the first sequence control field
  • the bit length of is 4.
  • the bit length of the first sequence control field can be increased by 1 bit.
  • the bit length of the first sequence control field is 17.
  • the added bits can be allocated to the QMF sequence number field of the sequence number field in the first sequence control field. In this way, the number of data frames indicated by the QMF sequence number field can be increased, and the number of data frames that can be transmitted by multiple connections can be increased, thereby improving transmission efficiency.
  • the bit length of the first sequence control field in the first type of data frame is increased, and the bit length of the first sequence control field can be flexibly adjusted according to the number of connections to meet the needs of multi-connection communication and improve the first sequence.
  • the bit length configuration of a sequence of control fields is flexible, so that AP and STA can use multiple connections for data frame transmission, which improves transmission speed and network data throughput.
  • connection refers to the communication channel for data transmission between the site and the access point, which can be at least two channels or all of the 2.4GHz, 5GHz and 6-7GHz frequency bands, or a connection formed by different bandwidths in any frequency band. .
  • the determining the bit length occupied by the first sequence control field based on the number of connections of the first device includes:
  • bit length of the first QMF sequence number field in the sequence number field in the first sequence control field and/or the bit length of the first fragment number field in the first sequence control field can be determined based on the change in the number of connections. Bit length.
  • the bit length of the first QMF sequence number field in the first sequence number field of the first sequence control field can be increased.
  • the number of QMF sequence numbers that can be supported by the first sequence control field can be increased to satisfy Under the multi-connection communication, the number of data frames increases.
  • the bit length of the first segment number field of the first sequence control field can be increased, and the number of segments that can be indicated by the first segment number field can be increased, so as to meet the requirement of increasing the number of segments under multi-connection communication.
  • the transmission connection can transmit more data packets and improve transmission efficiency.
  • the determining the bit length of the first QMF sequence number field of the first sequence number field based on the number of connections of the first device includes:
  • the first basic value may be the bit length of the second QMF sequence number field in the related art.
  • the second QMF sequence number field is 10 digits.
  • the number of QMF sequence numbers that can be supported by the QMF sequence number field also needs to be doubled. Therefore, the bit length occupied by the binary value of the number of connections of the access point and the sum of 10 can be determined as the first QMF The bit length of the sequence number field.
  • the bit length of the second QMF sequence number field is 10, three stations establish initial associations with the AP, and each STA establishes three connections with the AP. In this way, the AP communicates under 9 connections.
  • the binary number of 9 is 1001, which occupies a length of 4 bits. Therefore, the bit length of the first QMF sequence number field can be set to 14 bits.
  • the determining the bit length of the first segment number field in the first sequence control field based on the number of connections of the first device includes:
  • the sum of the bit length occupied by the binary value of the number of connections of the first device and the second basic value is determined as the bit length of the first segment number field in the first sequence control field.
  • the second basic value may be the bit length of the segment number field in the related art.
  • the second segment number field is 4 bits.
  • the bit length occupied by the binary value of the number of connections of the access point plus the sum of 4 can be determined as the first segment number field. Bit length.
  • the bit length of the second segment number field is 4, and 3 stations have established initial associations with the AP, and each STA has established three connections with the AP. In this way, the AP communicates under 9 connections.
  • the binary number of 9 is 1001, which occupies a length of 4 bits. Therefore, the bit length of the first segment number field can be set to 8 bits.
  • the number of connections of the first device includes: the number of connections currently established by the first device and/or the maximum number of connections supported by the first device.
  • the access point can establish multiple connections with a site.
  • An access point can establish multiple connections with a site at the same time, and use multiple connections to transmit data, increase data transmission speed, and increase network data throughput.
  • the multiple connections may include each connection established in the multi-connection communication, and/or a single connection established.
  • the number of connections of the first device may be multiple connections established by the current access point and/or station, or may be the maximum number of connections that the current access point and/or station can support. Determine the bit length of the first sequence control field based on the number of currently established connections and/or the maximum number of connections supported, so that the first sequence control field can satisfy the access point and/or station to communicate under the currently established connection, And/or communicate at the maximum number of connections.
  • the method further includes:
  • the second device may be an STA in wireless communication.
  • the management frame may carry indication information indicating that the station supports multiple connections.
  • the AP may determine whether the STA supports multiple connections based on the indication information. If the STA supports multiple connections, the AP can establish multiple connections with the STA for data transmission. Improve data transmission speed and increase network data throughput.
  • the management frame may include a beacon request (probe request), an association request frame (association request), a re-association request frame (re-association request), and so on. The number of connections established between the AP and the STA can be determined during the data communication process.
  • the newly defined sequence control field has a length of 24 bits, specifically:
  • the fragment number (fragment number) field can be 8 bits, and the sequence number (Sequence number) field is 16 bits.
  • serial number field can be specifically defined as:
  • the QMF sequence number field is set to 14 bits, and the ACI is 2 bits.
  • Method 2 Set the bit length of the sequence control field according to the number of connections supported by the AP:
  • a new information element can be defined to determine the sequence number field, and the AP can allocate the existing bit length sequence number field for use by STAs other than IEEE802.11be.
  • the AP can determine the length of the sequence number field and the fragment number field according to the communication connections of all STAs associated with it. For example: 3 stations have established an initial association with the AP, and they can communicate in 9 connections.
  • the defined QMF sequence number field has a bit length of 14 bits, and the segment number field has a bit length of 8 bits.
  • management frames such as probe request frames, association request frames, and re-association request frames carry its ability to support multiple connections.
  • Information value The specific number of communication connections can be determined during the AP and STA data communication process. The number of communication connections can be used as the basis for method 2 above.
  • the embodiment of the present invention also provides a data transmission device, which is applied to the first communication terminal of wireless communication.
  • the data transmission device 100 includes: a first determining module 110 and a sending module 120, wherein,
  • the first determining module 110 is configured to determine a first sequence control field for a first type of data frame, where the first sequence control field has a first bit length, and the first bit length is configured such that the first A sequence of control domains can support multi-connection communication;
  • the sending module 120 is configured to send the first type data frame carrying the first sequence control field.
  • the first sequence control field includes a first sequence number field, and the first sequence number field includes at least a first QMF sequence number field indicating a sequence number of the first type of data frame.
  • the first sequence control field includes a first fragment number field, and the first fragment number field indicates a fragment number of the first type of data frame.
  • bit length of the first sequence control field is a fixed value.
  • bit length of the first sequence control field is greater than the bit length of the second sequence control field in the second type of data frame, wherein the type of the first type of data frame is different from the type of the second type of data frame.
  • a data frame, and the bit length of the second sequence control field is configured to only support single connection communication.
  • bit length of the first sequence number field in the first sequence control field is greater than the bit length of the second sequence number field in the second sequence control field
  • the bit length of the first QMF sequence number field in the first sequence number field is greater than the bit length of the second QMF sequence number field in the second sequence number field.
  • bit length of the first sequence number field in the first sequence control field is greater than 12.
  • bit length of the first QMF sequence number field of the first sequence number field of the first sequence control field is greater than 10.
  • bit length of the first segment number field in the first sequence control field is greater than the bit length of the second segment number field in the second sequence control field.
  • bit length of the first segment number field in the first sequence control field is greater than 4.
  • the first determining module 110 includes:
  • the determining submodule 111 is configured to determine the bit length of the first sequence control field based on the number of connections of the first device.
  • the determining submodule 111 includes:
  • the determining unit 1111 is configured to determine the bit length of the first QMF sequence number field in the first sequence number field and/or the first QMF sequence number field in the first sequence control field based on the number of connections of the first device The bit length of the fragment number field.
  • the determining unit 1111 includes:
  • the first determining subunit 11111 is configured to determine the sum of the bit length occupied by the binary value of the number of connections of the first device and the first basic value as the first sequence number in the first sequence control field The bit length of the first QMF sequence number field of the field.
  • the determining unit 1111 includes:
  • the second determining subunit 11112 is configured to determine the sum of the bit length occupied by the binary value of the number of connections of the first device and the second basic value as the value of the first segment number field in the first sequence control field Bit length.
  • the number of connections of the first device includes: the number of connections currently established by the first device and/or the maximum number of connections supported by the first device.
  • the device 100 further includes:
  • the second determining module 130 is configured to determine whether the second device supports the multi-connection communication according to the indication information carried in the management frame received from the second device.
  • the first determining module 110, the sending module 120, and the second determining module 130, etc. may be implemented by one or more central processing units (CPU, Central Processing Unit), graphics processing units (GPU, Graphics Processing Unit), etc. , Baseband processor (BP, baseband processor), Application Specific Integrated Circuit (ASIC, Application Specific Integrated Circuit), DSP, Programmable Logic Device (PLD, Programmable Logic Device), Complex Programmable Logic Device (CPLD, Complex Programmable Logic Device) ), Field-Programmable Gate Array (FPGA, Field-Programmable Gate Array), general-purpose processor, controller, microcontroller (MCU, Micro Controller Unit), microprocessor (Microprocessor), or other electronic components to achieve Perform the aforementioned method.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • BP Baseband processor
  • ASIC Application Specific Integrated Circuit
  • DSP Programmable Logic Device
  • PLD Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • Fig. 5 is a block diagram showing a device 3000 for data transmission according to an exemplary embodiment.
  • the device 3000 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the device 3000 may include one or more of the following components: a processing component 3002, a memory 3004, a power supply component 3006, a multimedia component 3008, an audio component 3010, an input/output (I/O) interface 3012, a sensor component 3014, And the communication component 3016.
  • a processing component 3002 a memory 3004, a power supply component 3006, a multimedia component 3008, an audio component 3010, an input/output (I/O) interface 3012, a sensor component 3014, And the communication component 3016.
  • the processing component 3002 generally controls the overall operations of the device 3000, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 3002 may include one or more processors 3020 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 3002 may include one or more modules to facilitate the interaction between the processing component 3002 and other components.
  • the processing component 3002 may include a multimedia module to facilitate the interaction between the multimedia component 3008 and the processing component 3002.
  • the memory 3004 is configured to store various types of data to support the operation of the device 3000. Examples of such data include instructions for any application or method operating on the device 3000, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 3004 can be implemented by any type of volatile or non-volatile storage devices or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • the power supply component 3006 provides power for various components of the device 3000.
  • the power supply component 3006 may include a power management system, one or more power supplies, and other components associated with the generation, management, and distribution of power for the device 3000.
  • the multimedia component 3008 includes a screen that provides an output interface between the device 3000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor can not only sense the boundary of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 3008 includes a front camera and/or a rear camera. When the device 3000 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 3010 is configured to output and/or input audio signals.
  • the audio component 3010 includes a microphone (MIC), and when the device 3000 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 3004 or transmitted via the communication component 3016.
  • the audio component 3010 further includes a speaker for outputting audio signals.
  • the I/O interface 3012 provides an interface between the processing component 3002 and a peripheral interface module.
  • the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor assembly 3014 includes one or more sensors for providing the device 3000 with various aspects of status assessment.
  • the sensor component 3014 can detect the open/close status of the device 3000 and the relative positioning of components, such as the display and keypad of the device 3000.
  • the sensor component 3014 can also detect the position change of the device 3000 or a component of the device 3000. The presence or absence of contact with the device 3000, the orientation or acceleration/deceleration of the device 3000, and the temperature change of the device 3000.
  • the sensor assembly 3014 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 3014 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 3014 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 3016 is configured to facilitate wired or wireless communication between the device 3000 and other devices.
  • the device 3000 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 3016 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 3016 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the device 3000 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • non-transitory computer-readable storage medium including instructions, such as the memory 3004 including instructions, and the foregoing instructions may be executed by the processor 3020 of the device 3000 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and so on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

本公开实施例是关于数据传输方法、装置、通信设备和存储介质,确定针对第一类数据帧的第一序列控制域,所述第一序列控制域具有第一比特长度,所述第一比特长度被配置为使得所述第一序列控制域能够支持多连接通信;发送携带有所述第一序列控制域的所述第一类数据帧。

Description

数据传输方法、装置、通信设备和存储介质 技术领域
本申请涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及数据传输方法、装置、通信设备和存储介质。
背景技术
电气和电子工程师协会成立了学习组(SG,Study Group)来研究下一代主流Wi-Fi技术,研究的范围为:320MHz带宽的Wi-Fi传输、采用多个频段的聚合及协同技术等,提出的愿景相对于现有的IEEE802.11ax提高至少四倍的速率以及吞吐量。新技术的主要应用场景为视频传输,增强现实(AR,Augmented Reality)、虚拟现实(VR,Virtual Reality)等。其中,多个频段的聚合及协同技术是指Wi-Fi设备间同时在2.4GHz、5.8GHz及6-7GHz等不同频段中,或在相同频段下的不同带宽中进行通信。
为了保证数据帧的服务质量QoS(quality of service),Wi-Fi技术引入了序列号(SN,Sequence Number)用于唯一表征每个数据帧。
发明内容
有鉴于此,本公开实施例提供了一种数据传输方法、装置、通信设备和存储介质。
根据本公开实施例的第一方面,提供一种数据传输方法,应用于第一通信端中,所述方法包括:
确定针对第一类数据帧的第一序列控制域,所述第一序列控制域具有第一比特长度,所述第一比特长度被配置为使得所述第一序列控制域能够支持多连接通信;
发送携带有所述第一序列控制域的所述第一类数据帧。
在一个实施例中,所述第一序列控制域包括第一序列号域,所述第一序列号域至少包括指示所述第一类数据帧的序列号的第一服务质量管理帧(QMF,Quality Management Frame)序列号域。
在一个实施例中,所述第一序列控制域包含有第一片段号域,所述第一片段号域指示所述第一类数据帧的片段号。
在一个实施例中,所述第一序列控制域的比特长度为固定值。
在一个实施例中,其中,所述第一序列控制域的比特长度大于第二类数据帧中的第二序列控制域的比特长度,其中,所述第一类数据帧的类型不同于所述第二类数据帧,并且所述第二序列控制域的比特长度被配置为仅用于支持单连接通信。
在一个实施例中,所述第一序列控制域中的所述第一序列号域的比特长度大于所述第二序列控制域中的第二序列号域的比特长度,
和/或,
所述第一序列号域中的第一QMF序列号域的比特长度大于所述第二序列号域中的第二QMF序列号域的比特长度。
在一个实施例中,所述第一序列控制域中的所述第一序列号域的比特长度大于12。
在一个实施例中,所述第一序列控制域的所述第一序列号域的第一所述QMF序列号域的比特长度大于10。
在一个实施例中,所述第一序列控制域中的第一片段号域的比特长度大于所述第二序列控制域中的第二片段号域的比特长度。
在一个实施例中,所述第一序列控制域中的所述第一片段号域的比特长度大于4。
在一个实施例中,所述确定针对第一类数据帧的第一序列控制域包括:
基于所述第一设备的连接数量,确定所述第一序列控制域的比特长度。
在一个实施例中,所述基于第一设备的连接数量,确定所述第一序列控制域占用的比特长度,包括:
基于所述第一设备的连接数量,确定所述第一序列号域的所述第一QMF序列号域的比特长度和/或所述第一序列控制域中的第一片段号域的比特长度。
在一个实施例中,所述基于所述第一设备的连接数量,确定所述第一序列号域的所述第一QMF序列号域的比特长度,包括:
将所述第一设备的连接数量的二进制值所占比特长度与第一基础值之和,确定为所述第一序列控制域中的所述第一序列号域的第一服务质量管理帧序列号域的比特长度。
在一个实施例中,所述基于所述第一设备的连接数量,确定所述第一序列控制域中的第一片段号域的比特长度包括:
将所述第一设备的连接数量的二进制值所占比特长度与第二基础值之和,确定为所述第一序列控制域中的第一片段号域的比特长度。
在一个实施例中,所述第一设备的连接数量,包括:所述第一设备当前建立的连接的数量和/或所述第一设备支持的最大连接数量。
在一个实施例中,所述方法还包括:
根据从第二设备接收的管理帧中携带的指示信息,确定所述第二设备是否支持所述多连接通信。
根据本公开实施例的第二方面,提供一种用于第一设备的数据传输装置,所述装置包括:第一确定模块和发送模块,其中,
所述第一确定模块,配置为确定针对第一类数据帧的第一序列控制域,所述第一序列控制域具有第一比特长度,所述第一比特长度被配置为使得所述第一序列控制域能够支持多连接通信;
所述发送模块,配置为发送携带有所述第一序列控制域的所述第一类数据帧。
在一个实施例中,所述第一序列控制域包括第一序列号域,所述第一序列号域至少包括指示所述第一类数据帧的序列号的第一服务质量管理帧QMF序列号域。
在一个实施例中,所述第一序列控制域包含有第一片段号域,所述第一片段号域指示所述第一类数据帧的片段号。
在一个实施例中,所述第一序列控制域的比特长度为固定值。
在一个实施例中,所述第一序列控制域的比特长度大于第二类数据帧中的第二序列控制域的比特长度,其中,所述第一类数据帧的类型不同于所述第二类数据帧,并且所述第二序列控制域的比特长度被配置为仅用于支持单连接通信。
在一个实施例中,所述第一序列控制域中的所述第一序列号域的比特长度大于所述第二序列控制域中的第二序列号域的比特长度,
和/或,
所述第一序列号域中的第一QMF序列号域的比特长度大于所述第二序列号域中的第二QMF序列号域的比特长度。
在一个实施例中,所述第一序列控制域中的所述第一序列号域的比特长度大于12。
在一个实施例中,所述第一序列控制域的所述第一序列号域的第一所述QMF序列号域的比特长度大于10。
在一个实施例中,所述第一序列控制域中的第一片段号域的比特长度大于所述第二序列控制域中的第二片段号域的比特长度。
在一个实施例中,所述第一序列控制域中的所述第一片段号域的比特长度大于4。
在一个实施例中,所述第一确定模块包括:
确定子模块,配置为基于所述第一设备的连接数量,确定所述第一序列控制域的比特长度。
在一个实施例中,所述确定子模块,包括:
确定单元,配置为基于所述第一设备的连接数量,确定所述第一序列号域的所述第一QMF序列号域的比特长度和/或所述第一序列控制域中的第一片段号域的比特长度。
在一个实施例中,所述确定单元,包括:
第一确定子单元,配置为将所述第一设备的连接数量的二进制值所占比特长度与第一基础值之和,确定为所述第一序列控制域中的所述第一序列号域的第一服务质量管理帧序列号域的比特长度。
在一个实施例中,所述确定单元,包括:
第二确定子单元,配置为将所述第一设备的连接数量的二进制值所占比特长度与第二基础值之和,确定为所述第一序列控制域中的第一片段号域的比特长度。
在一个实施例中,所述第一设备的连接数量,包括:所述第一设备当前建立的连接的数量和/或所述第一设备支持的最大连接数量。
在一个实施例中,所述装置还包括:
第二确定模块,配置为根据从第二设备接收的管理帧中携带的指示信息,确定所述第二设备是否支持所述多连接通信。
根据本公开实施例的第三方面,提供一种通信设备装置,包括处理器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如第一方面所述数据传输方法的步骤。
根据本公开实施例的第四方面,提供一种存储介质,其上存储由可执 行程序,其中,所述可执行程序被处理器执行时实现如第一方面所述数据传输方法的步骤。
根据本公开实施例提供的数据传输方法、装置、通信设备和存储介质,包括:确定针对第一类数据帧的第一序列控制域,所述第一序列控制域具有第一比特长度,所述第一比特长度被配置为使得所述第一序列控制域能够支持多连接通信;发送携带有所述第一序列控制域的所述第一类数据帧。如此,可以通过设置第一比特长度,使得第一序列控制域可以标识更多的数据帧等,从而使第一序列控制域可以满足多连接通信的需求,进而接入点(AP,Access Point)和站点(STA,Station)可以采用多连接进行基于QOS的数据帧传输,提高传输速度,提高网络数据吞吐量。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种序列控制域结构示意图;
图2是根据一示例性实施例示出的一种序列号域结构示意图;
图3是根据一示例性实施例示出的一种数据传输方法的流程示意图;
图4是根据一示例性实施例示出的一种数据传输装置的框图;
图5是根据一示例性实施例示出的一种用于数据传输的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施 例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
本公开实施例涉及的执行主体包括但不限于:无线通信网络尤其是Wi-Fi网络如IEEE802.11a/b/g/n/ac标准下,以及下一代Wi-Fi网络中IEEE802.11be标准下的网络设备,其中,网络设备包括但不限于:Wi-Fi路由器等无线(AP,Access Point)接入点设备、无线站点(STA,Station)、用户终端、用户节点、移动终端或平板电脑等。
本公开实施例的一个应用场景为,相关技术中,为了保证数据帧的QoS,引入了SN,即给每个数据帧,如MSDU、A-MSDU或MMPDU等分配的一个SN。
如图1所示,数据帧中设置有序列控制域(Sequence Control Field),序列控制域的比特长度为16。序列控制域中有序列号(Sequence Number)域和片段号域。其中,序列号域占有12个比特位,片段号域占有4个比特位。序列号域可以用于设置数据帧序列号等。通常一个数据包在传输时会 被分成多个数据片段,片段号域用于指示数据帧所属的数据片段。
如图2所示,序列号域包含有服务质量管理帧(Quality Management Frame)序列号域和访问类型索引(ACI,Access Category Index)域。QMF序列号域用于设置数据帧序列号。访问类型索引用于指示数据帧的访问类型,不同访问类型的数据帧具有不同的信道访问优先级。数据帧的访问类型有四种,例如:AC_BE尽力而为(Best Effort)、AC_BK背景(Background)、AC_VI视频(Video)和AC_VO语音(Voice)。
相关技术的QMF序列号域的比特长度为10,片段号域的比特长度为4,只可以满足单连接下对数据帧的标识。
针对多连接通信,数据帧的数量超出了QMF序列号域及片段号域可以标识的范围。
如图3所示,本示例性实施例提供一种数据传输方法,数据传输方法可以应用于无线通信的第一通信端中,包括:
步骤301:确定针对第一类数据帧的第一序列控制域,所述第一序列控制域具有第一比特长度,所述第一比特长度被配置为使得所述第一序列控制域能够支持多连接通信;
步骤302:发送携带有所述第一序列控制域的所述第一类数据帧。
这里,可以由Wi-Fi通信系统中的接入点(AP,Access Point)或者站点(STA,Station)发送第一类数据帧。
第一类数据帧可以包括但不限于多连接通信中的数据帧。例如,第一类数据帧可以是符合下一代Wi-Fi网络中IEEE802.11be标准下的数据帧。相对于第一类数据帧,第二类数据帧可以是相关技术中适用于单连接传输的数据帧。例如,第一类数据帧可以是符合IEEE802.11ax标准下的数据帧。数据帧可以是:媒体访问控制服务数据单元(MSDU,Media Access Control Service Data Unit)、聚合媒体访问控制服务数据单元(A-MSDU, Aggregation-Media Access Control Service Data Unit)、或媒介访问控制管理协议数据单元(MMPDU Media Access Control Management Protocol Data Unit)。
第一序列控制域用于唯一标识数据帧,在AP或STA进行满足QoS的传输时用于过滤重复的数据帧。
第一序列控制域可以包含有QMF序列号域、ACI域和片段号域等。针对在多传输通信中传输速度块、传输数据量大的特点,可以基于多传输通信中需要标识的数据包片段、以及需要标识的第一类数据帧的数量等确定第一比特长度。可以通过改变第一类数据帧中第一序列控制域的第一比特长度,使第一序列控制域可以支持多连接通信。这里,第一序列控制域可以支持多连接通信可以指第一序列控制域既能够用于进行单连接通信,也能够用于进行多连接通信。
这里,为满足多连接传输的需求,第一比特长度的第一序列控制域能表征的不同标识信息的数量可以大于或等于至少两个连接传输的数据帧的数量。其中,第一序列控制域中QMF序列号域的比特长度能表征的不同QMF序列号的数量可以大于或等于至少两个连接传输的数据帧的数量、和/或第一序列控制域中片段号域的比特长度能表征的不同片段号的数量可以大于或等于至少两个连接传输的数据帧所属不同片段的数量。如此,第一序列控制域可以满足至少两个连接同时传输的数据帧的数量需求。
示例性的,相关技术的第二序列控制域的QMF序列号域的比特长度为10,可以表征1024个数据帧的QMF序列号,1024个QMF序列号可以标识在一个连接上传输的数据帧,满足一个连接上数据帧传输需求。第一序列控制域的QMF序列号域的比特长度可以设置为11,使得第一序列控制域的QMF序列号域可以表征2048个数据帧的QMF序列号,2048个QMF序列号可以标识两个连接同时传输的数据帧,满足两个连接上数据帧传输需 求。
如此,可以通过设置第一比特长度,使得第一序列控制域可以标识更多的数据帧等,从而使第一序列控制域可以满足多连接通信的需求,进而AP和STA可以采用多连接进行基于QOS的数据帧传输,提高传输速度,提高网络数据吞吐量。
在一个实施例中,所述第一序列控制域包括第一序列号域,所述第一序列号域至少包括指示所述第一类数据帧的序列号的第一QMF序列号域。
这里,如图1所示,第一序列控制域包括第一序列号域。如图2所示,第一序列号域包括第一QMF序列号域。第一QMF序列号域用于设置第一数据帧的序列号。第一数据帧的序列号可以唯一标识第一数据帧。
第一QMF序列号域的比特长度可以基于多传输通信中可能的最大第一类数据帧数量确定。
在一个实施例中,所述第一序列控制域包含有第一片段号域,所述第一片段号域指示所述第一类数据帧的片段号。
这里,第一片段号域用于设置第一数据帧的片段号。第一数据帧的序列号可以唯一标识第一数据帧所属片段。
通常一个数据包在传输时会被分成多个片段,片段号域用于指示数据帧所属的片段。
第一片段号域的比特长度可以基于多传输通信中可能的片段数量确定。
在一个实施例中,所述第一序列控制域的比特长度为固定值。
第一序列控制域的比特长度可以采用固定值,即第一序列控制域的比特长度不随传输连接数量等传输环境的变化而变化。
第一序列控制域中序列号域的比特长度、片段号域的比特长度,以及序列号域中QMF序列号域的比特长度等均可以采用固定值。
示例性的,第一序列控制域可以是18位,其中,QMF序列号域相对相关技术增加两位,为14位。如此,QMF序列号域可设置的QMF序列号数量为原来的4倍。
第一序列控制域的比特长度采用固定值,可以降低动态调节第一序列控制域的比特长度的复杂程度,降低开发难度。
在一个实施例中,其中,所述第一序列控制域的比特长度大于第二类数据帧中的第二序列控制域的比特长度,其中,所述第一类数据帧的类型不同于所述第二类数据帧,并且所述第二序列控制域的比特长度被配置为仅用于支持单连接通信。
第二序列控制域可以是IEEE802.11ax标准下第二类数据帧的序列控制域。第二序列控制域的比特长度可以是16。
在多连接通信下,AP和STA之间会建立多个传输连接。例如,一个AP连接3个STA,每个STA和AP建立3个传输连接,如此,AP同时和3个STA建立有9个传输连接。9个传输连接传输的数据量大大增加,即数据帧数量大大增加。如此,序列控制域中的QMF序列号域能支持的QMF序列号数量,和/或片段号域支持的片段号数量,不能满足唯一标识每个数据帧的需求。
因此,可以将第一类数据帧中第一序列控制域的比特长度,大于第二类数据帧中第二序列控制域的比特长度,使得第一类数据帧中第一序列控制域可以支持的QMF序列号数量,和/或片段号数量能满足多连接通信的数据帧数量的需求。
示例性的,可以使第一类数据帧中第一序列控制域的比特长度相比第二类数据帧中第二序列控制域的比特长度增加两位,即第一序列控制域为18位。增加的比特长度可以用于QMF序列号域,和/或片段号域。例如,QMF序列号域增加一个比特位,可以是QMF序列号域可设置的QMF序列 号数量增加一倍,如此,可以满足更多数据帧的传输需求。
如此,相对第二类数据帧中第二序列控制域,增加第一类数据帧中第一序列控制域的比特长度,可以增加第一序列控制域可以标识数据帧的数量,使得第一序列控制域可以满足多连接通信的需求,进而AP和STA可以采用多连接进行数据帧传输,提高传输速度,提高网络数据吞吐量及提高频谱利用率。
在一个实施例中,所述第一序列控制域中的所述第一序列号域的比特长度大于所述第二序列控制域中的第二序列号域的比特长度,
和/或,
所述第一序列号域中的第一QMF序列号域的比特长度大于所述第二序列号域中的第二QMF序列号域的比特长度。
这里,可以相对第二序列号域增加第一序列号域的比特长度,可以增加第一序列控制域中的序列号域的第一QMF序列号域,和/或增加中第一序列控制域的序列号域的访问类型索引域比特长度。
增加第一序列控制域的序列号域中QMF序列号域的比特长度,如此,可以增加第一序列控制域可以支持的QMF序列号数量,满足多连接通信下,数据帧数量增加的需求。
增加第一序列控制域的序列号域中访问类型索引域的比特长度,如此,可以增加访问类型索引域能指示的数据类型,满足更多类型数据传输的需求。
在一个实施例中,所述第一序列控制域中的所述第一序列号域的比特长度大于12。
针对相关技术中的第二类数据帧中第二序列控制域的比特长度为12,可以设置第一序列控制域中的第一序列号域的比特长度大于12。例如,可以设置第一序列控制域中的第一序列号域的比特长度为16。
这里,新增加的4个比特位,可以都分配给第一序列控制域的第一QMF序列号域和/或访问类型索引域。
在一个实施例中,所述第一序列控制域的所述第一序列号域的第一所述QMF序列号域的比特长度大于10。
相关技术中的第二类数据帧中第二序列控制域的QMF序列号域的比特长度为10,可以设置第一序列控制域中的序列号域的第一QMF序列号域的比特长度大于10
示例性的,可以设置第一序列控制域中的第一序列号域的第一QMF序列号域的比特长度为14比特位。增加后4比特位后,QMF序列号域可以指示的数据帧的数量是相关技术的16倍,进而可以增加多连接可传输的数据帧的数量,提高网络数据吞吐量。
在一个实施例中,所述第一序列控制域中的第一片段号域的比特长度大于所述第二序列控制域中的第二片段号域的比特长度。
增加第一序列控制域的第一片段号域的比特长度,可以增加第一片段号域能指示的片段数,使得多传输连接可以传输更多的数据包的片段,提高网络数据吞吐量。
在一个实施例中,所述第一序列控制域中的所述第一片段号域的比特长度大于4。
相关技术中的第二类数据帧中第二序列控制域的第一片段号域的比特长度为4,可以设置第一序列控制域中的第一片段号域的比特长度大于4。
示例性的,可以设置第一序列控制域中的第一的片段号域的比特长度为8。增加后4位后,第一片段号域可以指示的数据包分成的片段的数量是相关技术的16倍。如此,可以增加多连接可传输的数据包片段的数量,提高网络数据吞吐量。
在一个实施例中,所述确定针对第一类数据帧的第一序列控制域包括:
基于所述第一设备的连接数量,确定所述第一序列控制域的比特长度。
第一序列控制域的比特长度可以根据AP与STA建立的连接数变化。
例如,当AP与STA建立有1个连接时,第一序列控制域的比特长度为16,其中,第一序列控制域中序列号域的比特长度为12,第一序列控制域中片段号域的比特长度为4个。当AP与STA建立有两个连接时,第一序列控制域的比特长度可以增加1位。第一序列控制域的比特长度为17。增加的比特位可以配置给第一序列控制域中序列号域的QMF序列号域。如此,可以增加QMF序列号域指示的数据帧的数量,进而可以增加多连接可传输的数据帧的数量,提高传输效率。
如此,根据接入点的连接数量,增加第一类数据帧中第一序列控制域的比特长度,可以根据连接数量灵活调整第一序列控制域的比特长度,满足多连接通信的需求,提高第一序列控制域的比特长度配置灵活性,进而实现AP和STA可以采用多连接进行数据帧传输,提高传输速度,提高网络数据吞吐量。
更进一步地,连接是指站点与接入点进行数据传输的通信信道,可以是2.4GHz、5GHz及6-7GHz频段中的至少两个信道或全部,或为任意频段中不同的带宽形成的连接。
在一个实施例中,所述基于第一设备的连接数量,确定所述第一序列控制域占用的比特长度,包括:
基于所述第一设备的连接数量,确定所述第一序列号域的所述第一QMF序列号域的比特长度和/或所述第一序列控制域中的第一片段号域的比特长度。
连接数量越多,可以传输的数据帧的数量越多,数据帧携带的数据包的片段越多。因此,可以基于连接数量的变化,确定所述第一序列控制域中的序列号域的第一QMF序列号域的比特长度和/或所述第一序列控制域 中的第一片段号域的比特长度。
例如,可以在连接数量增加时,增加第一序列控制域的第一序列号域中第一QMF序列号域的比特长度,如此,可以增加第一序列控制域可以支持的QMF序列号数量,满足多连接通信下,数据帧数量增加的需求。
可以在连接数量增加时,增加第一序列控制域的第一片段号域的比特长度,可以增加第一片段号域能指示的片段数,满足多连接通信下,片段数增加的需求,使得多传输连接可以传输更多的数据包,提高传输效率。
在一个实施例中,所述基于所述第一设备的连接数量,确定所述第一序列号域的所述第一QMF序列号域的比特长度,包括:
将所述第一设备的连接数量的二进制值所占比特长度与第一基础值之和,确定为所述第一序列控制域中的所述第一序列号域的第一QMF序列号域的比特长度。
这里,第一基础值可以是相关技术中第二QMF序列号域的比特长度。
相关技术中,第二QMF序列号域为10位。当连接数量加倍时,QMF序列号域可以支持的QMF序列号数量也需要加倍,因此,可以将所述接入点的连接数量的二进制值所占比特长度加10之和,确定为第一QMF序列号域的比特长度。
示例性的,相关技术中,第二QMF序列号域比特长度为10,3个站点与AP建立了初始关联,每个STA与AP分别建立有三个连接,如此,AP在9个连接下通信。9的二进制数是1001,占用4个比特长度,因此,可以设置第一QMF序列号域的比特长度为14个比特位。
在一个实施例中,所述基于所述第一设备的连接数量,确定所述第一序列控制域中的第一片段号域的比特长度包括:
将所述第一设备的连接数量的二进制值所占比特长度与第二基础值之和,确定为所述第一序列控制域中的第一片段号域的比特长度。
这里,第二基础值可以是相关技术中片段号域的比特长度。
相关技术中,第二片段号域为4位。当连接数量加倍时,片段号域可以支持的片段号也需要加倍,因此,可以将所述接入点的连接数量的二进制值所占比特长度加4之和,确定为第一片段号域的比特长度。
示例性的,相关技术中,第二片段号域比特长度为4,3个站点与AP建立了初始关联,每个STA与AP分别建立有三个连接,如此,AP在9个连接下通信。9的二进制数是1001,占用4个比特长度,因此,可以设置第一片段号域的比特长度为8个比特位。
在一个实施例中,所述第一设备的连接数量,包括:所述第一设备当前建立的连接的数量和/或所述第一设备支持的最大连接数量。
这里,接入点可以与一个站点建立多个连接。接入点与一个站点可以同时建立有多个连接,利用多个连接传输数据,提高数据传输速度,提高网络数据吞吐量。
多个连接可以包括多连接通信中建立的每个连接、和/或建立的单连接。
第一设备的连接数量可以是当前接入点和/或站点建立的多个连接,也可以是当前接入点和/或站点可以支持的最大连接数量。基于当前建立的连接的数量和/或支持的最大连接数量确定第一序列控制域的比特长度,可以使第一序列控制域可以满足接入点和/或站点在当前建立的连接下进行通信,和/或在最大连接数量进行通信。
在一个实施例中,所述方法还包括:
根据从第二设备接收的管理帧中携带的指示信息,确定所述第二设备是否支持所述多连接通信。
这里,第二设备可以是无线通信中的STA。
STA与AP建立初始关联的过程中,可以在管理帧中携带站点支持多连接的指示信息。AP可以基于指示信息确定STA是否支持多连接。如果STA 支持多连接,则AP可以与STA建立多个连接进行数据传输。提高数据传输速度,提高网络数据吞吐量。这里,管理帧可以包括信标请求(probe request)、关联请求帧(association request)和重关联请求帧(re-association request)等。AP与STA建立的连接数量可以在数据通信过程中确定。
以下结合上述任意实施例提供一个具体示例:
A、序列控制(sequence control)域的设置;
序列控制域可以采用两种比特长度设置方法:
方法1:固定比特长度的序列控制域:
新定义序列控制域,其长度为24比特位,具体为:
如图1所示,片段号(fragment number)域可为8比特位,序列号(Sequence number)域为16比特位。
其中,如图2所示,序列号域具体可定义为:
其中QMF序列号域设置14比特位,ACI为2比特位。
方法2:根据AP支持的连接数量设置序列控制域的比特长度:
可定义新的信息元素(IE,Information Element)来确定序列号域,AP可以分配现有比特长度序列号域为除IEEE802.11be之外的STA使用。AP可以根据与其关联所有STA的通信连接来确定序列号域及片段号域的长度。譬如:3个站点与AP建立了初始关联,且其能在9个连接下去通信,其定义的QMF序列号域比特长度为14比特位,片段号域的比特长度定义为8比特位。
B:同时多连接通信能力信息通知
STA与AP建立初始关联的过程中,譬如在信标请求(probe request)帧、关联请求(association request)帧、重关联请求(re-association request)帧等管理帧中携带其支持多连接的能力信息值。具体的通信连接数量在AP和STA数据通信过程中可以确定下来。通信连接数量可以作为上述方法2 中的依据。
本发明实施例还提供了一种数据传输装置,应用于无线通信的第一通信端中,如图4所示,所述数据传输装置100包括:第一确定模块110和发送模块120,其中,
所述第一确定模块110,配置为确定针对第一类数据帧的第一序列控制域,所述第一序列控制域具有第一比特长度,所述第一比特长度被配置为使得所述第一序列控制域能够支持多连接通信;
所述发送模块120,配置为发送携带有所述第一序列控制域的所述第一类数据帧。
在一个实施例中,所述第一序列控制域包括第一序列号域,所述第一序列号域至少包括指示所述第一类数据帧的序列号的第一QMF序列号域。
在一个实施例中,所述第一序列控制域包含有第一片段号域,所述第一片段号域指示所述第一类数据帧的片段号。
在一个实施例中,所述第一序列控制域的比特长度为固定值。
在一个实施例中,所述第一序列控制域的比特长度大于第二类数据帧中的第二序列控制域的比特长度,其中,所述第一类数据帧的类型不同于所述第二类数据帧,并且所述第二序列控制域的比特长度被配置为仅用于支持单连接通信。
在一个实施例中,所述第一序列控制域中的所述第一序列号域的比特长度大于所述第二序列控制域中的第二序列号域的比特长度,
和/或,
所述第一序列号域中的第一QMF序列号域的比特长度大于所述第二序列号域中的第二QMF序列号域的比特长度。
在一个实施例中,所述第一序列控制域中的所述第一序列号域的比特长度大于12。
在一个实施例中,所述第一序列控制域的所述第一序列号域的第一所述QMF序列号域的比特长度大于10。
在一个实施例中,所述第一序列控制域中的第一片段号域的比特长度大于所述第二序列控制域中的第二片段号域的比特长度。
在一个实施例中,所述第一序列控制域中的所述第一片段号域的比特长度大于4。
在一个实施例中,所述第一确定模块110包括:
确定子模块111,配置为基于所述第一设备的连接数量,确定所述第一序列控制域的比特长度。
在一个实施例中,所述确定子模块111,包括:
确定单元1111,配置为基于所述第一设备的连接数量,确定所述第一序列号域的所述第一QMF序列号域的比特长度和/或所述第一序列控制域中的第一片段号域的比特长度。
在一个实施例中,所述确定单元1111,包括:
第一确定子单元11111,配置为将所述第一设备的连接数量的二进制值所占比特长度与第一基础值之和,确定为所述第一序列控制域中的所述第一序列号域的第一QMF序列号域的比特长度。
在一个实施例中,所述确定单元1111,包括:
第二确定子单元11112,配置为将所述第一设备的连接数量的二进制值所占比特长度与第二基础值之和,确定为所述第一序列控制域中的第一片段号域的比特长度。
在一个实施例中,所述第一设备的连接数量,包括:所述第一设备当前建立的连接的数量和/或所述第一设备支持的最大连接数量。
在一个实施例中,所述装置100还包括:
第二确定模块130,配置为根据从第二设备接收的管理帧中携带的指示 信息,确定所述第二设备是否支持所述多连接通信。
在示例性实施例中,第一确定模块110、发送模块120和第二确定模块130等可以被一个或多个中央处理器(CPU,Central Processing Unit)、图形处理器(GPU,Graphics Processing Unit)、基带处理器(BP,baseband processor)、应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
图5是根据一示例性实施例示出的一种用于数据传输的装置3000的框图。例如,装置3000可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图5,装置3000可以包括以下一个或多个组件:处理组件3002,存储器3004,电源组件3006,多媒体组件3008,音频组件3010,输入/输出(I/O)的接口3012,传感器组件3014,以及通信组件3016。
处理组件3002通常控制装置3000的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件3002可以包括一个或多个处理器3020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件3002可以包括一个或多个模块,便于处理组件3002和其他组件之间的交互。例如,处理组件3002可以包括多媒体模块,以方便多媒体组件3008和处理组件3002之间的交互。
存储器3004被配置为存储各种类型的数据以支持在装置3000的操作。这些数据的示例包括用于在装置3000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器3004可以由 任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件3006为装置3000的各种组件提供电力。电源组件3006可以包括电源管理系统,一个或多个电源,及其他与为装置3000生成、管理和分配电力相关联的组件。
多媒体组件3008包括在装置3000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件3008包括一个前置摄像头和/或后置摄像头。当装置3000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件3010被配置为输出和/或输入音频信号。例如,音频组件3010包括一个麦克风(MIC),当装置3000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器3004或经由通信组件3016发送。在一些实施例中,音频组件3010还包括一个扬声器,用于输出音频信号。
I/O接口3012为处理组件3002和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件3014包括一个或多个传感器,用于为装置3000提供各个方面的状态评估。例如,传感器组件3014可以检测到装置3000的打开/关闭状态,组件的相对定位,例如组件为装置3000的显示器和小键盘,传感器组件3014还可以检测装置3000或装置3000一个组件的位置改变,用户与装置3000接触的存在或不存在,装置3000方位或加速/减速和装置3000的温度变化。传感器组件3014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件3014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件3014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件3016被配置为便于装置3000和其他设备之间有线或无线方式的通信。装置3000可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件3016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件3016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置3000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器3004,上述指令可由装置3000的处理器3020执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设 备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明实施例的其它实施方案。本申请旨在涵盖本发明实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明实施例的一般性原理并包括本公开实施例未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明实施例的范围仅由所附的权利要求来限制。

Claims (34)

  1. 一种用于第一设备的数据传输方法,所述方法包括:
    确定针对第一类数据帧的第一序列控制域,所述第一序列控制域具有第一比特长度,所述第一比特长度被配置为使得所述第一序列控制域能够支持多连接通信;
    发送携带有所述第一序列控制域的所述第一类数据帧。
  2. 根据权利要求1的方法,其中,所述第一序列控制域包括第一序列号域,所述第一序列号域至少包括指示所述第一类数据帧的序列号的第一服务质量管理帧QMF序列号域。
  3. 根据权利要求2所述的方法,其中,所述第一序列控制域包含有第一片段号域,所述第一片段号域指示所述第一类数据帧的片段号。
  4. 根据权利要求2或3所述的方法,其中,
    所述第一序列控制域的比特长度为固定值。
  5. 根据权利要求4所述的方法,其中,
    所述第一序列控制域的比特长度大于第二类数据帧中的第二序列控制域的比特长度,其中,所述第一类数据帧的类型不同于所述第二类数据帧,并且所述第二序列控制域的比特长度被配置为仅用于支持单连接通信。
  6. 根据权利要求5所述的方法,其中,
    所述第一序列控制域中的所述第一序列号域的比特长度大于所述第二序列控制域中的第二序列号域的比特长度,
    和/或,
    所述第一序列号域中的第一QMF序列号域的比特长度大于所述第二序列号域中的第二QMF序列号域的比特长度。
  7. 根据权利要求4所述的方法,其中,
    所述第一序列控制域中的所述第一序列号域的比特长度大于12。
  8. 根据权利要求7所述的方法,其中,
    所述第一序列控制域的所述第一序列号域的第一所述QMF序列号域的比特长度大于10。
  9. 根据权利要求5所述的方法,其中,
    所述第一序列控制域中的第一片段号域的比特长度大于所述第二序列控制域中的第二片段号域的比特长度。
  10. 根据权利要求9所述的方法,其中,
    所述第一序列控制域中的所述第一片段号域的比特长度大于4。
  11. 根据权利要求2或3所述的方法,其中,所述确定针对第一类数据帧的第一序列控制域,包括:
    基于所述第一设备的连接数量,确定所述第一序列控制域的比特长度。
  12. 根据权利要求11所述的方法,其中,所述基于第一设备的连接数量,确定所述第一序列控制域占用的比特长度,包括:
    基于所述第一设备的连接数量,确定所述第一序列号域的所述第一QMF序列号域的比特长度和/或所述第一序列控制域中的第一片段号域的比特长度。
  13. 根据权利要求12所述的方法,其中,所述基于所述第一设备的连接数量,确定所述第一序列号域的所述第一QMF序列号域的比特长度,包括:
    将所述第一设备的连接数量的二进制值所占比特长度与第一基础值之和,确定为所述第一序列控制域中的所述第一序列号域的第一服务质量管理帧序列号域的比特长度。
  14. 根据权利要求12所述的方法,其中,所述基于所述第一设备的连接数量,确定所述第一序列控制域中的第一片段号域的比特长度包括:
    将所述第一设备的连接数量的二进制值所占比特长度与第二基础值之 和,确定为所述第一序列控制域中的第一片段号域的比特长度。
  15. 根据权利要求11所述的方法,其中,所述第一设备的连接数量,包括:所述第一设备当前建立的连接的数量和/或所述第一设备支持的最大连接数量。
  16. 根据权利要求11所述的方法,其中,所述方法还包括:
    根据从第二设备接收的管理帧中携带的指示信息,确定所述第二设备是否支持所述多连接通信。
  17. 一种用于第一设备的数据传输装置,所述装置包括:第一确定模块和发送模块,其中,
    所述第一确定模块,配置为确定针对第一类数据帧的第一序列控制域,所述第一序列控制域具有第一比特长度,所述第一比特长度被配置为使得所述第一序列控制域能够支持多连接通信;
    所述发送模块,配置为发送携带有所述第一序列控制域的所述第一类数据帧。
  18. 根据权利要求17的装置,其中,所述第一序列控制域包括第一序列号域,所述第一序列号域至少包括指示所述第一类数据帧的序列号的第一服务质量管理帧QMF序列号域。
  19. 根据权利要求18所述的装置,其中,所述第一序列控制域包含有第一片段号域,所述第一片段号域指示所述第一类数据帧的片段号。
  20. 根据权利要求18或19所述的装置,其中,
    所述第一序列控制域的比特长度为固定值。
  21. 根据权利要求20所述的装置,其中,
    所述第一序列控制域的比特长度大于第二类数据帧中的第二序列控制域的比特长度,其中,所述第一类数据帧的类型不同于所述第二类数据帧,并且所述第二序列控制域的比特长度被配置为仅用于支持单连接通信。
  22. 根据权利要求21所述的装置,其中,
    所述第一序列控制域中的所述第一序列号域的比特长度大于所述第二序列控制域中的第二序列号域的比特长度,
    和/或,
    所述第一序列号域中的第一QMF序列号域的比特长度大于所述第二序列号域中的第二QMF序列号域的比特长度。
  23. 根据权利要求20所述的装置,其中,
    所述第一序列控制域中的所述第一序列号域的比特长度大于12。
  24. 根据权利要求23所述的装置,其中,
    所述第一序列控制域的所述第一序列号域的第一所述QMF序列号域的比特长度大于10。
  25. 根据权利要求21所述的装置,其中,
    所述第一序列控制域中的第一片段号域的比特长度大于所述第二序列控制域中的第二片段号域的比特长度。
  26. 根据权利要求25所述的装置,其中,
    所述第一序列控制域中的所述第一片段号域的比特长度大于4。
  27. 根据权利要求18或19所述的装置,其中,所述第一确定模块包括:
    确定子模块,配置为基于所述第一设备的连接数量,确定所述第一序列控制域的比特长度。
  28. 根据权利要求27所述的装置,其中,所述确定子模块,包括:
    确定单元,配置为基于所述第一设备的连接数量,确定所述第一序列号域的所述第一QMF序列号域的比特长度和/或所述第一序列控制域中的第一片段号域的比特长度。
  29. 根据权利要求28所述的装置,其中,所述确定单元,包括:
    第一确定子单元,配置为将所述第一设备的连接数量的二进制值所占比特长度与第一基础值之和,确定为所述第一序列控制域中的所述第一序列号域的第一服务质量管理帧序列号域的比特长度。
  30. 根据权利要求28所述的装置,其中,所述确定单元,包括:
    第二确定子单元,配置为将所述第一设备的连接数量的二进制值所占比特长度与第二基础值之和,确定为所述第一序列控制域中的第一片段号域的比特长度。
  31. 根据权利要求27所述的装置,其中,所述第一设备的连接数量,包括:所述第一设备当前建立的连接的数量和/或所述第一设备支持的最大连接数量。
  32. 根据权利要求27所述的装置,其中,所述装置还包括:
    第二确定模块,配置为根据从第二设备接收的管理帧中携带的指示信息,确定所述第二设备是否支持所述多连接通信。
  33. 一种通信设备装置,包括处理器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至16任一项所述数据传输方法的步骤。
  34. 一种存储介质,其上存储由可执行程序,其中,所述可执行程序被处理器执行时实现如权利要求1至16任一项所述数据传输方法的步骤。
PCT/CN2020/087743 2020-04-29 2020-04-29 数据传输方法、装置、通信设备和存储介质 WO2021217486A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US17/996,466 US20230224069A1 (en) 2020-04-29 2020-04-29 Data transmission method and apparatus, and communication device and storage medium
PCT/CN2020/087743 WO2021217486A1 (zh) 2020-04-29 2020-04-29 数据传输方法、装置、通信设备和存储介质
CN202080000864.7A CN113966601B (zh) 2020-04-29 2020-04-29 数据传输方法、装置、通信设备和存储介质
KR1020227041596A KR20230003113A (ko) 2020-04-29 2020-04-29 데이터 전송 방법, 장치, 통신 기기 및 저장 매체
EP20933799.7A EP4145786A4 (en) 2020-04-29 2020-04-29 DATA TRANSMISSION METHOD AND DEVICE AS WELL AS COMMUNICATION DEVICE AND STORAGE MEDIUM
JP2022565718A JP7515617B2 (ja) 2020-04-29 データ伝送方法、装置、通信機器及び記憶媒体
BR112022021725A BR112022021725A2 (pt) 2020-04-29 2020-04-29 Método e aparelho para transmissão de dados de um primeiro dispositivo, dispositivo de comunicação, e, meio de armazenamento

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/087743 WO2021217486A1 (zh) 2020-04-29 2020-04-29 数据传输方法、装置、通信设备和存储介质

Publications (1)

Publication Number Publication Date
WO2021217486A1 true WO2021217486A1 (zh) 2021-11-04

Family

ID=78331589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087743 WO2021217486A1 (zh) 2020-04-29 2020-04-29 数据传输方法、装置、通信设备和存储介质

Country Status (6)

Country Link
US (1) US20230224069A1 (zh)
EP (1) EP4145786A4 (zh)
KR (1) KR20230003113A (zh)
CN (1) CN113966601B (zh)
BR (1) BR112022021725A2 (zh)
WO (1) WO2021217486A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015164998A1 (zh) * 2014-04-28 2015-11-05 华为技术有限公司 帧聚合与帧解析的装置及方法
CN106487476A (zh) * 2015-09-01 2017-03-08 华为技术有限公司 A-mpdu的接收状态指示方法及接收端设备
CN106851734A (zh) * 2012-02-17 2017-06-13 英特尔公司 用于无线网络中的分组流的方法和布置
US20170338910A1 (en) * 2014-10-27 2017-11-23 Lg Electronics Inc. Data transmission method in wireless communication system and device therefor
CN110169187A (zh) * 2017-01-09 2019-08-23 韦勒斯标准与技术协会公司 使用txop的无线通信方法和使用该方法的无线通信终端

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI106591B (fi) * 1999-01-15 2001-02-28 Nokia Mobile Phones Ltd Menetelmä tiedonsiirtovirtausten välittämiseksi
US7161909B2 (en) * 2004-04-23 2007-01-09 Samsung Electronics Co., Ltd. Method and system for acknowledging the receipt of a transmitted data stream in a wireless communication system
US9125179B2 (en) * 2009-06-10 2015-09-01 Lg Electronics Inc. Method and apparatus for transmitting frame in wireless local area network (WLAN) system
CN103109496B (zh) * 2010-09-10 2016-01-20 Lg电子株式会社 无线局域网络系统中针对利用服务质量机制的管理帧的密码通信的方法及设备
US11337263B2 (en) * 2017-01-19 2022-05-17 Qualcomm Incorporated Packet based link aggregation architectures
US10959153B2 (en) * 2017-09-11 2021-03-23 Qualcomm Incorporated Techniques for multi-link aggregation signaling
US10925065B2 (en) * 2018-06-15 2021-02-16 Intel Corporation Extreme high throughput physical layer data rate
CN112074020B (zh) * 2019-05-25 2024-03-26 华为技术有限公司 一种适用于多链路的通信方法及相关设备
US20220368481A1 (en) * 2019-06-25 2022-11-17 Huawei Technologies Co., Ltd. System and Method for Aggregating Communications Links
US11750329B2 (en) * 2020-01-04 2023-09-05 Nxp Usa, Inc. Apparatus and method for block acknowledgement management in multi-link communication systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106851734A (zh) * 2012-02-17 2017-06-13 英特尔公司 用于无线网络中的分组流的方法和布置
WO2015164998A1 (zh) * 2014-04-28 2015-11-05 华为技术有限公司 帧聚合与帧解析的装置及方法
US20170338910A1 (en) * 2014-10-27 2017-11-23 Lg Electronics Inc. Data transmission method in wireless communication system and device therefor
CN106487476A (zh) * 2015-09-01 2017-03-08 华为技术有限公司 A-mpdu的接收状态指示方法及接收端设备
CN110169187A (zh) * 2017-01-09 2019-08-23 韦勒斯标准与技术协会公司 使用txop的无线通信方法和使用该方法的无线通信终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4145786A4 *

Also Published As

Publication number Publication date
CN113966601A (zh) 2022-01-21
JP2023523063A (ja) 2023-06-01
EP4145786A1 (en) 2023-03-08
EP4145786A4 (en) 2024-01-03
BR112022021725A2 (pt) 2022-12-06
CN113966601B (zh) 2024-03-12
KR20230003113A (ko) 2023-01-05
US20230224069A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
WO2022006757A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2021114168A1 (zh) 块确认反馈控制方法、装置、通信设备及存储介质
WO2021012131A1 (zh) 资源分配方法及装置、消息帧处理方法及装置、存储介质
WO2021016771A1 (zh) 信道检测方式切换方法、装置及存储介质
WO2021217486A1 (zh) 数据传输方法、装置、通信设备和存储介质
WO2023122893A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2021087674A1 (zh) 数据传输方法、装置和通信设备
WO2021109141A1 (zh) 通信连接配置方法、装置、通信设备及存储介质
WO2021109085A1 (zh) 通信资源单元分配方法、装置、通信设备及存储介质
RU2797215C1 (ru) Способ и устройство для передачи данных и устройство связи
WO2021068204A1 (zh) 基本服务集标识符的处理方法、装置及计算机存储介质
JP7515617B2 (ja) データ伝送方法、装置、通信機器及び記憶媒体
EP4075853A1 (en) Transmission measurement method, transmission measurement device and storage medium
WO2021114149A1 (zh) 重关联指示方法、装置及通信设备
WO2021184173A1 (zh) 数据传输方法、装置及计算机存储介质
RU2799998C1 (ru) Способ и устройство для передачи данных и устройство связи
WO2021046729A1 (zh) 数据传输方法、装置及存储介质
WO2022021190A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2021056288A1 (zh) 接收反馈信息传输配置方法、装置、通信设备及存储介质
WO2023279243A1 (zh) 连接控制方法及装置、存储介质
WO2021179179A1 (zh) 传输数据的方法、装置、通信设备及存储介质
CN113261211B (zh) 资源分配方法、资源分配装置及存储介质
WO2021138909A1 (zh) 数据帧传输方法、数据帧传输装置及存储介质
WO2023197263A1 (zh) 一种资源分配方法、装置、通信设备及存储介质
WO2021120182A1 (zh) 数据传输方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933799

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565718

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022021725

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227041596

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020933799

Country of ref document: EP

Effective date: 20221129

ENP Entry into the national phase

Ref document number: 112022021725

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221026