WO2021109085A1 - 通信资源单元分配方法、装置、通信设备及存储介质 - Google Patents

通信资源单元分配方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2021109085A1
WO2021109085A1 PCT/CN2019/123395 CN2019123395W WO2021109085A1 WO 2021109085 A1 WO2021109085 A1 WO 2021109085A1 CN 2019123395 W CN2019123395 W CN 2019123395W WO 2021109085 A1 WO2021109085 A1 WO 2021109085A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
wireless communication
resource units
antennas
information element
Prior art date
Application number
PCT/CN2019/123395
Other languages
English (en)
French (fr)
Inventor
董贤东
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN201980003425.9A priority Critical patent/CN113228795B/zh
Priority to PCT/CN2019/123395 priority patent/WO2021109085A1/zh
Priority to US17/781,766 priority patent/US20230010370A1/en
Publication of WO2021109085A1 publication Critical patent/WO2021109085A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • This application relates to the field of wireless communication technology but is not limited to the field of wireless communication technology, and in particular relates to a communication resource unit allocation method, device, communication equipment, and storage medium.
  • the Institute of Electrical and Electronics Engineers established a Study Group (SG, Study Group) to study the next-generation mainstream Wi-Fi technology.
  • the research scope is: 320MHz bandwidth transmission, the use of multiple frequency band aggregation and collaboration technologies, etc.
  • the proposed vision is relatively
  • the current IEEE802.11ax standard increases the speed and throughput by at least four times.
  • the main application scenarios of the new technology are video transmission, augmented reality (AR, Augmented Reality), virtual reality (VR, Virtual Reality), etc.
  • a Wi-Fi data frame transmission resource includes multiple sub-carriers.
  • the second grouping can be performed within a Wi-Fi data frame transmission resource.
  • a certain number of sub-carriers are defined as a resource unit (RU, Resource Unit).
  • the RU can provide transmission resources for a terminal. In this way, each data frame is divided into multiple parts, which can provide transmission resources for multiple users at the same time.
  • the embodiments of the present disclosure provide a communication resource unit allocation method, device, communication equipment, and storage medium.
  • a communication resource unit allocation method which is applied to a first wireless communication device, and the method includes:
  • the method further includes:
  • the number of resource units allocated to the second wireless communication device is determined according to the number of antennas that the second wireless communication device has.
  • the determining the number of resource units allocated to the second wireless communication device according to the number of antennas the second wireless communication device has includes:
  • the number of resource units allocated to the second wireless communication device is less than or equal to the first 2. The number of said antennas that the wireless communication device has.
  • the determining the number of resource units allocated to the second wireless communication device according to the number of antennas the second wireless communication device has includes:
  • the number of resource units allocated to the second wireless communication device in the bandwidth is determined according to the number of antennas that the second wireless communication device has.
  • the method further includes:
  • the method further includes:
  • the method further includes: if two or more of the resource units allocated to the second wireless communication device are continuous in the frequency domain, and two or more of the resources If the sum of the number of subcarriers included in the unit is greater than or less than the number of first subcarriers, beamforming is performed on the carrier of each resource unit of the two or more resource units.
  • the method further includes:
  • the two or more resource units allocated to the second wireless communication device are continuous in the frequency domain, combining the carriers of the two or more resource units for beamforming.
  • the information element includes at least one of the following:
  • Information element identification used to identify the information element
  • the length identifier is used to indicate the length of the information element
  • the number of antennas is used to indicate the number of antennas that the second wireless communication device has.
  • a communication resource unit allocation method which is applied to a second wireless communication device, and the method includes:
  • Sending a message the message including an information element for indicating the number of antennas that the second wireless communication device has.
  • the number of resource units allocated to the second wireless communication device is determined according to the number of antennas.
  • the information element includes at least one of the following:
  • Information element identification used to identify the information element
  • the length identifier is used to indicate the length of the information element
  • the number of antennas is used to indicate the number of antennas that the second wireless communication device has.
  • the method further includes:
  • beamforming is performed on the carrier of each of the resource units that are not continuous.
  • the method further includes:
  • the method further includes:
  • the method further includes:
  • the carriers of the two or more resource units are combined to perform beamforming.
  • a communication resource unit allocation device which is applied to a first wireless communication device, and the device includes: a receiving module, wherein:
  • the receiving module is configured to receive a message sent by a second wireless communication device, where the message includes an information element indicating the number of antennas that the second wireless communication device has.
  • the device further includes:
  • the determining module is configured to determine the number of resource units allocated to the second wireless communication device according to the number of antennas that the second wireless communication device has.
  • the determining module includes:
  • the first determining submodule is configured to, if two or more of the resource units allocated to the second wireless communication device are not continuous in the frequency domain, then the value of the resource unit allocated to the second wireless communication device The number is less than or equal to the number of antennas that the second wireless communication device has.
  • the determining module includes:
  • the second determining submodule is configured to determine the number of resource units allocated to the second wireless communication device in a predetermined bandwidth according to the number of antennas that the second wireless communication device has.
  • the device further includes:
  • the first beamforming module is configured to, if two or more of the resource units allocated to the second wireless communication device are not continuous in the frequency domain, respectively, perform a separate measurement on each of the resource units that are not continuous.
  • the carrier is beamformed.
  • the device further includes:
  • the second beamforming module is configured to: if two or more of the resource units allocated to the second wireless communication device are continuous in the frequency domain, and two or more of the resource units include sub If the sum of the number of carriers is equal to the number of first subcarriers, the carriers of two or more resource units are combined for beamforming.
  • the device further includes:
  • the third beamforming module is configured to: if two or more of the resource units allocated to the second wireless communication device are continuous in the frequency domain, and two or more of the resource units include sub If the sum of the number of carriers is greater than or less than the number of first subcarriers, beamforming is performed on the carriers of each of the two or more resource units.
  • the device further includes:
  • the fourth beamforming module is configured to combine the two or more resource units if the two or more resource units allocated to the second wireless communication device are continuous in the frequency domain Carrier combining for beamforming.
  • the information element includes at least one of the following:
  • Information element identification used to identify the information element
  • the length identifier is used to indicate the length of the information element
  • the number of antennas is used to indicate the number of antennas that the second wireless communication device has.
  • a communication resource unit allocation device which is applied to a second wireless communication device, and the device includes: a sending module, wherein:
  • the sending module is configured to send a message to the first wireless communication device, where the message includes an information element for indicating the number of antennas the second wireless communication device has.
  • the number of resource units allocated to the second wireless communication device is determined according to the number of antennas.
  • the information element includes at least one of the following:
  • Information element identification used to identify the information element
  • the length identifier is used to indicate the length of the information element
  • the number of antennas is used to indicate the number of antennas that the second wireless communication device has.
  • the device further includes:
  • the fifth beamforming module is configured to, if two or more of the resource units allocated to the second wireless communication device are not continuous in the frequency domain, separately perform the The carrier is beamformed.
  • the device further includes:
  • the sixth beamforming module is configured to: if two or more of the resource units allocated to the second wireless communication device are continuous in the frequency domain, and two or more of the resource units include sub If the sum of the number of carriers is equal to the number of first subcarriers, the carriers of two or more resource units are combined for beamforming.
  • the device further includes:
  • the seventh beamforming module is configured to: if two or more of the resource units allocated to the second wireless communication device are continuous in the frequency domain, and two or more of the resource units include sub If the sum of the number of carriers is greater than or less than the number of first subcarriers, beamforming is performed on the carriers of each of the two or more resource units.
  • the device further includes:
  • the eighth beamforming module is configured to, if two or more of the resource units allocated to the second wireless communication device are continuous in the frequency domain, combine the two or more of the resource units Carrier combining for beamforming.
  • a communication device including a processor, a transceiver, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs all When the executable program is described, the steps of the communication resource unit allocation method described in the first aspect or the second aspect are executed.
  • a storage medium on which an executable program is stored, wherein when the executable program is executed by a processor, the communication resource unit as described in the first aspect or the second aspect is implemented The steps of the allocation method.
  • a first wireless communication device receives a message sent by a second wireless communication device, wherein the message includes an indication that the second wireless communication device has Information element of the number of antennas.
  • the second wireless communication device indicates the number of antennas the second wireless communication device has through the information element in the message, providing an explicit indication of the number of antennas.
  • the first wireless communication device can determine the second wireless communication device according to the information element indication information.
  • the number of antennas of the communication device; the number of antennas of the second wireless communication device can be labeled with communication capabilities such as beamforming of the second wireless communication, thereby improving the identification efficiency of the first wireless communication device for the communication capabilities of the second wireless communication device.
  • Fig. 1 is a schematic flowchart showing a method for allocating communication resource units according to an exemplary embodiment
  • Fig. 2 is a schematic diagram showing the structure of an information element according to an exemplary embodiment
  • Fig. 3 is a schematic flowchart showing another communication resource unit allocation method according to an exemplary embodiment
  • Fig. 4 is a block diagram showing the structure of a communication resource unit allocation device according to an exemplary embodiment
  • Fig. 5 is a block diagram showing the composition and structure of another communication resource unit allocation device according to an exemplary embodiment
  • Fig. 6 is a block diagram showing a device for communication resource unit allocation according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • word “if” as used herein can be interpreted as "when” or "when” or "in response to determination”.
  • the executive bodies involved in the embodiments of the present disclosure include but are not limited to: wireless communication networks, especially Wi-Fi networks, such as under the IEEE802.11a/b/g/n/ac standard, and under the IEEE802.11be standard in the next-generation Wi-Fi network Network equipment, where the network equipment includes but not limited to: wireless access point (AP, Access Point), wireless station (STA, Station), etc.
  • wireless communication networks especially Wi-Fi networks, such as under the IEEE802.11a/b/g/n/ac standard
  • Wi-Fi networks such as under the IEEE802.11a/b/g/n/ac standard
  • IEEE802.11be standard in the next-generation Wi-Fi network Network equipment where the network equipment includes but not limited to: wireless access point (AP, Access Point), wireless station (STA, Station), etc.
  • An application scenario of an embodiment of the present disclosure is that, in the IEEE802.11ax standard, it is stipulated that only one RU can be allocated to a wireless station at a time under a certain bandwidth. In order to improve the efficiency of spectrum utilization, in IEEE802.11be, two or more RUs can be allocated to a wireless station under a certain bandwidth. The specific number of RUs that can be allocated to a wireless station is not determined.
  • this exemplary embodiment provides a method for allocating communication resource units, which can be applied to a first wireless communication device for wireless communication, and the method includes:
  • Step 101 Receive a message sent by a second wireless communication device, where the message includes an information element indicating the number of antennas that the second wireless communication device has.
  • the first wireless communication device may be a wireless access point (AP, Access Point) in Wi-Fi communication technology
  • the second wireless communication device may be a wireless station (STA, Station) in Wi-Fi communication technology.
  • the message may be a message frame.
  • the message may be a management frame and/or a data frame.
  • the message may also be in any appropriate manner, which is not limited in the embodiment of the present disclosure.
  • the message may be a management frame sent by the first wireless communication device in Wi-Fi communication technology.
  • the management frame may include: a probe request (probe request) frame, an association request (association request) frame, or an authorization request frame (authentication request) frame.
  • Information Element is a basic information element used to set indication information in a message.
  • the message may also be a data frame.
  • the second wireless communication is set to send management frames to each other during an association (re-association) process with the first wireless communication device.
  • the second wireless communication device may send to the first wireless communication device a message including the information element of the number of antennas possessed by the second wireless communication device during the association process or the re-association process.
  • the first wireless communication device can determine the number of antennas that the second wireless communication device has through the message.
  • the information element containing the number of antennas of the second wireless communication device may be an information element of a new application.
  • wireless stations associate with wireless access points in order to gain full access to the network. Association is a record keeping process, which allows AP to record wireless stations in order to send messages sent to wireless stations to the correct wireless stations.
  • the re-association process refers to the process of re-associating after the wireless station and the wireless access point are separated from the association.
  • the second wireless communication device can be provided with two or more antennas. Different antennas can have different directions. When transmitting signals, antennas with different directions can concentrate energy in the direction that they want to transmit, which increases signal transmission performance and improves signal transmission performance. When signal, you can receive signals from different directions to enhance the receiving effect.
  • the first wireless communication device may determine the data transmission capability of the second wireless communication device according to the number of antennas supported by the second wireless communication device, as a basis for subsequent operations such as beamforming.
  • the second wireless communication device indicates the number of antennas the second wireless communication device has through the information element in the message, providing an explicit indication of the number of antennas.
  • the first wireless communication device can determine the second wireless communication device according to the information element indication information.
  • the number of antennas of the communication device; the number of antennas of the second wireless communication device can be labeled with communication capabilities such as beamforming of the second wireless communication, thereby improving the identification efficiency of the first wireless communication device for the communication capabilities of the second wireless communication device.
  • the method further includes: determining the number of resource units (RU, Resource Unit) allocated to the second wireless communication device according to the number of antennas the second wireless communication device has.
  • the RU may be a transmission resource composed of two or more subcarriers.
  • the supported RU formats include: 26-subcarrier (tone), 52-tone, 106-tone, 242-tone, 484-tone, 996-tone or 2*996-tone.
  • the first wireless communication device and the second communication device use RUs for data exchange, they can perform beamforming on the carrier of each RU.
  • Beamforming is related to the number of antennas. Generally, a continuous bandwidth carrier can only occupy one antenna for beamforming. Therefore, the number of antennas can determine the number of carriers with continuous bandwidth, which in turn determines the number of RUs.
  • the first wireless communication device may be allocated to RUs with the same number of antennas as the second communication device. In this way, each RU carrier can occupy one antenna for beamforming.
  • the number of antennas of the second wireless communication device is used as the basis for RU allocation, so that the allocation of RUs matches the number of antennas of the second wireless communication device, and the number of discontinuous carriers does not exceed the number of antennas.
  • the accuracy of RU allocation improves the reliability of data transmission.
  • determining the number of RUs allocated to the second wireless communication device according to the number of antennas the second wireless communication device has includes:
  • the number of RUs allocated to the second wireless communication device is less than or equal to the number of antennas that the second wireless communication device has.
  • the first wireless communication device may allocate two or more RUs to a second wireless communication device, and the two or more RUs may be continuous in the frequency domain or discontinuous in the frequency domain.
  • each assigned RU is discontinuous or partially discontinuous in the frequency domain, beamforming should be performed separately for the carrier of each discontinuous RU, and continuous RUs can be beamformed together or separately Do beamforming. Since a carrier with a bandwidth needs to occupy one antenna during beamforming, that is, each RU needs to occupy one antenna, therefore, the maximum number of RUs allocated by the first wireless communication device to the second wireless communication device is the second wireless communication device The number of antennas, that is, the number of RUs that the first wireless communication device can allocate is less than or equal to the number of antennas that the second wireless communication device has.
  • the allocation of RUs is more in line with actual transmission conditions, the accuracy of RU allocation is improved, and the reliability of data transmission is improved; on the other hand, when the number of antennas of the second wireless communication device is two or more, Two or more RUs can be allocated to improve spectrum utilization, thereby increasing transmission throughput.
  • determining the number of RUs allocated to the second wireless communication device according to the number of antennas the second wireless communication device has includes:
  • the number of RUs allocated to the second wireless communication device in the bandwidth is determined.
  • the second wireless communication device may support working in different working bandwidths, for example: 20MHz, 40MHz, 80MHz, 160MHz, 160MHz+80MHz, 160MHz+160MHz or 320MHz, etc.
  • the number of RUs allocated to the second wireless communication device may be the number of RUs under one working bandwidth.
  • the first wireless communication device may determine the number of RUs in the 20 MHz operating bandwidth of the second wireless communication device according to the number of antennas that the second wireless communication device has.
  • the method further includes at least one of the following:
  • the first number of subcarriers may be any one of the seven subcarrier numbers of 26, 52, 106, 242, 484, 996, and 2*996 included in the RU format supported by the IEEE802.11ax standard. That is, in the IEEE802.11ax standard, the number of subcarriers in the RU that can be transmitted may only be any one of the above seven types.
  • combining the carriers of two or more RUs for beamforming may be combining the carriers of two or more RUs into one carrier, and then beamforming the one carrier.
  • the first wireless communication device can allocate two or more RUs to a second wireless communication device.
  • These RUs may be continuous in the frequency domain, or discontinuous in the frequency domain, or may be partial RUs. It is continuous in the frequency domain and some RUs are discontinuous in the frequency domain.
  • each allocated RU is discontinuous in the frequency domain or some RUs are discontinuous in the frequency domain, the carriers of the discontinuous RUs need to be beamformed separately. Since a carrier with a bandwidth needs to occupy one antenna during beamforming, that is, each RU in a discontinuous RU needs to occupy an antenna. Therefore, the first wireless communication device or the second wireless communication device needs to be specific to each RU. The carriers are beamformed separately.
  • the first wireless communication device allocates two discontinuous RUs in two frequency domains to the second wireless communication device.
  • One RU includes 26 subcarriers and the other includes 52 subcarriers.
  • the first wireless communication device or the second wireless communication device The two wireless communication devices can respectively perform beamforming for two RUs.
  • the RU format includes any one of the number of subcarriers, so two or more RU carriers can be beamformed together, and one antenna is used for transmission.
  • the two RUs allocated by the first wireless communication device to the second wireless communication device are continuous in the frequency domain, and the numbers of subcarriers included in the two RUs are 26 and 26, respectively.
  • the sum of the number of subcarriers contained in the two RUs is 52, which belongs to one of the seven RU formats supported by the IEEE802.11ax standard and contains the number of subcarriers. Then the carriers of these RUs can be beamformed together and one antenna is used. Send it.
  • the two RU formats include any one of the number of subcarriers, and the first wireless communication device or the second wireless communication device may perform beamforming on the carrier of each RU respectively.
  • the first wireless communication device allocates two consecutive RUs in the frequency domain to the second wireless communication device, one RU includes 26 subcarriers, the other RU includes 52 subcarriers, and the total number of subcarriers included in the two RUs
  • the sum is 78 sub-carriers, which are not included in the seven RU formats supported by the IEEE802.11ax standard. It contains any one of the number of sub-carriers; at this time, in order to be compatible with the IEEE802.11ax standard, the first wireless communication device or the second wireless communication device
  • the carriers of the two RUs can be beamformed separately.
  • the number of first subcarriers in all embodiments of the present disclosure can also be adjusted accordingly, and the embodiments of the present disclosure do not limit this.
  • the number of the first subcarriers can also be determined based on other methods, which is not limited in the embodiment of the present disclosure.
  • the method in the embodiment of the present disclosure includes :
  • each allocated RU is discontinuous in the frequency domain or some RUs are discontinuous in the frequency domain, the carriers of the discontinuous RUs need to be beamformed separately. Since a carrier with a bandwidth needs to occupy one antenna during beamforming, that is, each RU in a discontinuous RU needs to occupy an antenna. Therefore, the first wireless communication device or the second wireless communication device needs to be specific to each RU. The carriers are beamformed separately.
  • the RU adopted by the first wireless communication device for the second wireless communication device can be compatible with the IEEE802.11ax standard, thereby improving data transmission compatibility.
  • the two or more two or more resource units allocated to the second wireless communication device are continuous in the frequency domain, combine the carriers of the two or more two or more resource units for beaming Shaping. That is, regardless of the total number of subcarriers included in the carriers of two or more RUs, beamforming is performed together when two or more RUs are continuous in the frequency domain.
  • the information element includes at least one of the following: an information element identifier, used to identify the information element; a length identifier, used to indicate the length of the information element; an antenna number identifier, used to indicate that the second wireless communication device has The number of antennas.
  • the information element may occupy 3 bytes.
  • the information element identifier can occupy 1 byte, and the information element identifier is used to identify the information element.
  • the length identifier can occupy 1 byte.
  • the number of antennas occupies 1 byte, and the number of antennas can be represented by a binary number.
  • this exemplary embodiment provides a method for allocating communication resource units, which can be applied to a second wireless communication device for wireless communication, and the method includes:
  • Step 201 Send a message, where the message includes an information element for indicating the number of antennas that the second wireless communication device has.
  • the first wireless communication device may be a wireless access point (AP, Access Point) in Wi-Fi communication technology
  • the second wireless communication device may be a wireless station (STA, Station) in Wi-Fi communication technology.
  • the message may be a message frame.
  • the message may be a management frame and/or a data frame.
  • the message may also be in any appropriate manner, which is not limited in the embodiment of the present disclosure.
  • the message may be a management frame sent by the first wireless communication device in Wi-Fi communication technology.
  • the message may include: a probe request (probe request) frame, an association request (association request) frame, or an authorization request (authentication request) frame, etc.
  • Information Element is a basic information element used to set indication information in a message.
  • the message may also be a data frame.
  • the second wireless communication is set to send management frames to each other during an association (re-association) process with the first wireless communication device.
  • the second wireless communication device may send to the first wireless communication device a message containing the information element of the number of antennas possessed by the second wireless communication device during the association process or the re-association process.
  • the first wireless communication device can determine the number of antennas that the second wireless communication device has through the message.
  • the information element containing the number of antennas of the second wireless communication device may be an information element of a new application.
  • the wireless station is associated with the wireless access point in order to obtain full access to the network.
  • Association is a record keeping process, which allows AP to record wireless stations in order to send messages sent to wireless stations to the correct wireless stations.
  • the re-association process refers to the process of re-associating after the wireless station and the wireless access point are separated from the association.
  • the second wireless communication device can be provided with two or more antennas. Different antennas can have different directions. When transmitting signals, antennas with different directions can concentrate energy in the direction that they want to transmit, which increases signal transmission performance and improves signal transmission performance. When signal, you can receive signals from different directions to enhance the receiving effect.
  • the first wireless communication device may determine the data transmission capability of the second wireless communication device according to the number of antennas supported by the second wireless communication device, as a basis for subsequent operations such as beamforming.
  • the second wireless communication device indicates the number of antennas the second wireless communication device has through the information element in the message, which provides an explicit indication of the number of antennas.
  • the first wireless communication device can determine the number of antennas that the second wireless communication device has according to the information element indication information; the number of antennas that the second wireless communication device has can mark the communication capabilities such as beamforming of the second wireless communication, thereby improving the first wireless communication
  • the number of RUs allocated to the second wireless communication device is determined based on the number of antennas.
  • the RU may be a transmission resource composed of two or more subcarriers.
  • the supported RU formats include: 26-subcarrier (tone), 52-tone, 106-tone, 242-tone, 484-tone, 996-tone or 2*996-tone.
  • the first wireless communication device and the second communication device use RUs for data exchange, they can perform beamforming on the carrier of each RU.
  • Beamforming is related to the number of antennas. Generally, a continuous bandwidth carrier needs to occupy one antenna for beamforming. Therefore, the number of antennas can determine the number of carriers with continuous bandwidth, which in turn determines the number of RUs.
  • the first wireless communication device may be allocated to RUs with the same number of antennas as the second communication device. In this way, each RU carrier can occupy one antenna for beamforming.
  • the number of antennas of the second wireless communication device is used as the basis for RU allocation, so that the allocation of RUs matches the number of antennas of the second wireless communication device, and the number of discontinuous carriers does not exceed the number of antennas.
  • the first wireless communication device can allocate two or more RUs to a second wireless communication device.
  • These RUs may be continuous in the frequency domain, or discontinuous in the frequency domain, or may be partial RUs. It is continuous in the frequency domain and other RUs are not continuous in the frequency domain.
  • the maximum number of RUs allocated by the first wireless communication device to the second wireless communication device is the second wireless communication device
  • the number of antennas, that is, the number of RUs that the first wireless communication device can allocate is less than or equal to the number of antennas that the second wireless communication device has.
  • the RU allocation is more in line with the actual transmission conditions, and the accuracy of the RU allocation is improved to match the number of antennas of the second wireless communication device. There will be no more discontinuous carriers than the number of antennas. Improve the accuracy of RU allocation and improve the reliability of data transmission; on the other hand, when the number of antennas of the second wireless communication device is two or more, two or more RUs can be allocated to improve spectrum utilization. In turn, the transmission throughput is improved.
  • the information element includes at least one of the following: an information element identifier, used to identify the information element; a length identifier, used to indicate the length of the information element; an antenna number identifier, used to indicate the antenna that the second wireless communication device has Quantity.
  • the information element may occupy 3 bytes.
  • the information element identifier can occupy 1 byte, and the information element identifier is used to identify the information element.
  • the length identifier can occupy 1 byte.
  • the number of antennas occupies 1 byte, and the number of antennas can be represented by a binary number.
  • the method further includes at least one of the following:
  • the number of first subcarriers may be any one of the number of seven subcarriers including 26, 52, 106, 242, 484, 996, and 2*996 included in the RU format supported by the IEEE802.11ax standard. That is, in the IEEE802.11ax standard, the number of subcarriers in the RU that can be transmitted may only be any one of the above seven types.
  • combining the carriers of two or more RUs for beamforming may be combining the carriers of two or more RUs into one carrier, and then beamforming the one carrier.
  • the first wireless communication device can allocate two or more RUs to a second wireless communication device.
  • These RUs may be continuous in the frequency domain, or discontinuous in the frequency domain, or may be partial RUs. It is continuous in the frequency domain and some RUs are discontinuous in the frequency domain.
  • each allocated RU is discontinuous in the frequency domain or some RUs are discontinuous in the frequency domain, the carriers of the discontinuous RUs need to be beamformed separately. Since a carrier with a bandwidth needs to occupy one antenna during beamforming, that is, each RU in a discontinuous RU needs to occupy an antenna. Therefore, the first wireless communication device or the second wireless communication device needs to be specific to each RU. The carriers are beamformed separately.
  • the first wireless communication device allocates two discontinuous RUs in two frequency domains to the second wireless communication device.
  • One RU includes 26 subcarriers and the other includes 52 subcarriers.
  • the first wireless communication device or the second wireless communication device The two wireless communication devices can respectively perform beamforming for two RUs.
  • the RU format includes any one of the number of subcarriers, so two or more RU carriers can be beamformed together, and one antenna is used for transmission.
  • the two RUs allocated by the first wireless communication device to the second wireless communication device are continuous in the frequency domain, and the numbers of subcarriers included in the two RUs are 26 and 26, respectively.
  • the sum of the number of subcarriers contained in the two RUs is 52, which belongs to one of the seven RU formats supported by the IEEE802.11ax standard and contains the number of subcarriers. Then the carriers of these RUs can be beamformed together and one antenna is used. Send it.
  • the two RU formats include any one of the number of subcarriers, and the first wireless communication device or the second wireless communication device may perform beamforming on the carrier of each RU respectively.
  • the first wireless communication device allocates two consecutive RUs in the frequency domain to the second wireless communication device, one RU includes 26 subcarriers, the other RU includes 52 subcarriers, and the total number of subcarriers included in the two RUs
  • the sum is 78 sub-carriers, which are not included in the seven RU formats supported by the IEEE802.11ax standard. It contains any one of the number of sub-carriers; at this time, in order to be compatible with the IEEE802.11ax standard, the first wireless communication device or the second wireless communication device
  • the carriers of the two RUs can be beamformed separately.
  • the number of first subcarriers in all the embodiments of the present disclosure can also be adjusted accordingly, which is not limited in the embodiments of the present disclosure.
  • the first wireless communication device and the second wireless communication device in the embodiment of the present disclosure do not comply with the IEEE802.11ax standard, there is no need to set the parameter of the number of first subcarriers, which is the method in the embodiment of the present disclosure.
  • each allocated RU is discontinuous in the frequency domain or some RUs are discontinuous in the frequency domain, the carriers of the discontinuous RUs need to be beamformed separately. Since a carrier with a bandwidth needs to occupy one antenna during beamforming, that is, each RU in a discontinuous RU needs to occupy an antenna. Therefore, the first wireless communication device or the second wireless communication device needs to be specific to each RU. The carriers are beamformed separately.
  • the RU adopted by the first wireless communication device for the second wireless communication device can be compatible with the IEEE802.11ax standard, thereby improving data transmission compatibility.
  • the two or more two or more resource units allocated to the second wireless communication device are continuous in the frequency domain, combine the carriers of the two or more two or more resource units for beaming Shaping. That is, regardless of the total number of subcarriers included in the carriers of two or more RUs, beamforming is performed together when two or more RUs are continuous in the frequency domain.
  • the wireless access point allocates a certain number of RUs to a wireless station. Before communication, the wireless station and the wireless access point will perform beamforming operations. If the allocation of each RU is Discontinuous, or RU allocation is continuous, but the sum of the number of RU subcarriers is not compatible with the IEEE802.11ax regulations, the allocated RU can be regarded as a channel communication alone.
  • the wireless access point performs beamforming on each RU before communication. Since beamforming involves the number of antennas supported by the wireless station, the maximum number of RUs allocated by the wireless access point to the wireless station is determined by the wireless station. The maximum number of antennas supported; when beamforming is performed, a null data frame (NDP, Null data packet) can be sent first as the beamforming detection frame.
  • NDP Null data packet
  • the supported RU formats include: 26-(subcarrier) tone, 52-tone, 106-tone, 242-tone, 484-tone, 996-tone and 2*996-tone Seven types.
  • the continuous RU allocated by a wireless station under one bandwidth is 26-tone and 52-tone.
  • two 26-tones can be used as one channel for beamforming.
  • the wireless station can work in: 20MHz, 40MHz, 80MHz, 160MHz, 160MHz+80MHz, 160MHz+160MHz or 320MHz bandwidth.
  • IEEE802.11ax is not required to be compatible, there is no need to consider the limitation of IEEE802.11ax on the RU format. It is only necessary to determine how to perform beamforming according to whether the allocated RUs are continuous.
  • the wireless station sends the capability information value of the maximum number of antennas supported by the wireless station to the wireless access point.
  • the information element can be used in the probe request frame, association request frame, or authorization request frame.
  • the specific format of the information element can be shown in Figure 2, where the element ID (element ID) defines the information element as a new information element, and the information element identifies the maximum number of antennas supported by the wireless station.
  • FIG. 4 is a schematic diagram of the composition structure of the communication resource unit allocating device 100 provided by an embodiment of the present invention; as shown in FIG. 4, the device 100 includes: a receiving module 110, in which,
  • the receiving module 110 is configured to receive a message sent by the second wireless communication device, where the message includes an information element indicating the number of antennas the second wireless communication device has.
  • the apparatus 100 further includes:
  • the determining module 120 is configured to determine the number of resource units allocated to the second wireless communication device according to the number of antennas the second wireless communication device has.
  • the determining module 120 includes:
  • the first determining submodule 121 is configured to, if two or more resource units allocated to the second wireless communication device are not continuous in the frequency domain, the number of resource units allocated to the second wireless communication device is less than or equal to The number of antennas that the second wireless communication device has.
  • the determining module 120 includes:
  • the second determining submodule 122 is configured to determine the number of resource units allocated to the second wireless communication device in the predetermined bandwidth according to the number of antennas the second wireless communication device has.
  • the apparatus 100 further includes:
  • the first beamforming module 130 is configured to, if two or more resource units allocated to the second wireless communication device are not continuous in the frequency domain, beamforming the carrier of each resource unit that is not continuous .
  • the apparatus 100 further includes:
  • the second beamforming module 140 is configured to: if two or more resource units allocated to the second wireless communication device are continuous in the frequency domain, and the sum of the number of subcarriers included in the two or more resource units is equal to For the first number of subcarriers, the carriers of two or more resource units are combined for beamforming.
  • the apparatus 100 further includes:
  • the third beamforming module 150 is configured to, if two or more resource units allocated to the second wireless communication device are continuous in the frequency domain, and the sum of the number of subcarriers included in the two or more resource units is greater than Or less than the first number of subcarriers, beamforming is performed on the carrier of each resource unit of two or more resource units.
  • the apparatus 100 further includes:
  • the fourth beamforming module 160 is configured to combine the carriers of the two or more resource units to perform beamforming if the two or more resource units allocated to the second wireless communication device are continuous in the frequency domain .
  • the information element includes at least one of the following:
  • Information element identification used to identify information elements
  • Length identifier used to indicate the length of the information element
  • the number of antennas is used to indicate the number of antennas that the second wireless communication device has.
  • FIG. 5 is a schematic diagram of the composition structure of the communication resource unit allocation device 200 provided by an embodiment of the present invention; as shown in FIG. 5, the device 200 includes: a sending module 210, in which,
  • the sending module 210 is configured to send a message to the first wireless communication device, where the message includes an information element used to indicate the number of antennas the second wireless communication device has.
  • the number of resource units allocated to the second wireless communication device is determined according to the number of antennas.
  • the information element includes at least one of the following:
  • Information element identification used to identify information elements
  • Length identifier used to indicate the length of the information element
  • the number of antennas is used to indicate the number of antennas that the second wireless communication device has.
  • the apparatus 200 further includes:
  • the fifth beamforming module 220 is configured to, if two or more resource units allocated to the second wireless communication device are not continuous in the frequency domain, beamforming the carrier of each resource unit that is not continuous .
  • the apparatus 200 further includes:
  • the sixth beamforming module 230 is configured to: if two or more resource units allocated to the second wireless communication device are continuous in the frequency domain, and the sum of the number of subcarriers included in the two or more resource units is equal to For the first number of subcarriers, the carriers of two or more resource units are combined for beamforming.
  • the apparatus 200 further includes:
  • the seventh beamforming module 240 is configured to: if two or more resource units allocated to the second wireless communication device are continuous in the frequency domain, and the sum of the number of subcarriers included in the two or more resource units is greater than Or less than the first number of subcarriers, beamforming is performed on the carrier of each resource unit of two or more resource units.
  • the apparatus 200 further includes:
  • the eighth beamforming module 250 is configured to combine the carriers of the two or more resource units to perform beamforming if the two or more resource units allocated to the second wireless communication device are continuous in the frequency domain .
  • CPU Central Processing Unit
  • GPU Graphics processor
  • BP baseband processor
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • PLD programmable logic device
  • CPLD Complex Programming logic device
  • FPGA Field-Programmable Gate Array
  • controller microcontroller
  • MCU Micro Controller Unit
  • microprocessor Microprocessor
  • Fig. 6 is a block diagram showing an apparatus 3000 for communication resource unit allocation or transmission block configuration parameter determination according to an exemplary embodiment.
  • the device 3000 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the device 3000 may include one or more of the following components: a processing component 3002, a memory 3004, a power supply component 3006, a multimedia component 3008, an audio component 3010, an input/output (I/O) interface 3012, a sensor component 3014, And the communication component 3016.
  • a processing component 3002 a memory 3004, a power supply component 3006, a multimedia component 3008, an audio component 3010, an input/output (I/O) interface 3012, a sensor component 3014, And the communication component 3016.
  • the processing component 3002 generally controls the overall operations of the device 3000, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 3002 may include one or more processors 3020 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 3002 may include one or more modules to facilitate the interaction between the processing component 3002 and other components.
  • the processing component 3002 may include a multimedia module to facilitate the interaction between the multimedia component 3008 and the processing component 3002.
  • the memory 3004 is configured to store various types of data to support the operation of the device 3000. Examples of such data include instructions for any application or method operating on the device 3000, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 3004 can be implemented by any type of volatile or non-volatile storage devices or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable and Programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable and Programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic or optical disk.
  • the power supply component 3006 provides power for various components of the device 3000.
  • the power supply component 3006 may include a power management system, one or more power supplies, and other components associated with the generation, management, and distribution of power for the device 3000.
  • the multimedia component 3008 includes a screen that provides an output interface between the device 3000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, slide, and gestures on the touch panel. The touch sensor can not only sense the boundary of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 3008 includes a front camera and/or a rear camera. When the device 3000 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 3010 is configured to output and/or input audio signals.
  • the audio component 3010 includes a microphone (MIC), and when the device 3000 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 3004 or transmitted via the communication component 3016.
  • the audio component 3010 further includes a speaker for outputting audio signals.
  • the I/O interface 3012 provides an interface between the processing component 3002 and a peripheral interface module.
  • the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor assembly 3014 includes one or more sensors for providing the device 3000 with various aspects of status assessment.
  • the sensor component 3014 can detect the on/off status of the device 3000 and the relative positioning of components, such as the display and keypad of the device 3000.
  • the sensor component 3014 can also detect the position change of the device 3000 or a component of the device 3000. The presence or absence of contact with the device 3000, the orientation or acceleration/deceleration of the device 3000, and the temperature change of the device 3000.
  • the sensor assembly 3014 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 3014 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 3014 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 3016 is configured to facilitate wired or wireless communication between the device 3000 and other devices.
  • the device 3000 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 3016 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 3016 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the device 3000 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • non-transitory computer-readable storage medium including instructions, such as the memory 3004 including instructions, and the foregoing instructions may be executed by the processor 3020 of the device 3000 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例是关于通信资源单元分配方法、装置、通信设备及存储介质。接收第二无线通信设备发送的消息,其中,消息包含指示第二无线通信设备具有的天线数量的信息元素。

Description

通信资源单元分配方法、装置、通信设备及存储介质 技术领域
本申请涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及通信资源单元分配方法、装置、通信设备及存储介质。
背景技术
电气和电子工程师协会成立了学习组(SG,Study Group)来研究下一代主流Wi-Fi技术,研究的范围为:320MHz带宽的传输、采用多个频段的聚合及协同技术等,提出的愿景相对于现有的IEEE802.11ax标准提高至少四倍的速率以及吞吐量。新技术的主要应用场景为视频传输,增强现实(AR,Augmented Reality)、虚拟现实(VR,Virtual Reality)等。
一个Wi-Fi数据帧传输资源中包括多个子载波,可以在一个Wi-Fi数据帧传输资源内进行二次分组,将一定数量的子载波定义为一个资源单元(RU,Resource Unit),每个RU可以为一个终端提供传输资源,如此,每一数据帧就被分成多份,可以同时为多个用户提供传输资源。
发明内容
有鉴于此,本公开实施例提供了一种通信资源单元分配方法、装置、通信设备及存储介质。
根据本公开实施例的第一方面,提供一种通信资源单元分配方法,应用于第一无线通信设备,所述方法包括:
接收第二无线通信设备发送的消息,其中,所述消息包含指示所述第二无线通信设备具有的天线数量的信息元素。
在一些实施例中,所述方法还包括:
根据所述第二无线通信设备具有的所述天线数量,确定分配给所述第二无线通信设备的资源单元的数量。
在一些实施例中,所述根据所述第二无线通信设备具有的所述天线数量,确定分配给所述第二无线通信设备的资源单元的数量,包括:
如果为所述第二无线通信设备分配的两个或两个以上所述资源单元在频域上不连续,则分配给所述第二无线通信设备的资源单元的数量,小于或等于所述第二无线通信设备具有的所述天线数量。
在一些实施例中,所述根据所述第二无线通信设备具有的所述天线数量,确定分配给所述第二无线通信设备的资源单元的数量,包括:
根据所述第二无线通信设备具有的所述天线数量,确定在带宽中分配给所述第二无线通信设备的所述资源单元的数量。
在一些实施例中,所述方法还包括以:
如果为所述第二无线通信设备分配的两个或两个以上所述资源单元在频域上不连续,则分别对不连续的每个所述资源单元的载波进行波束赋形;
在一些实施例中,所述方法还包括以:
如果为所述第二无线通信设备分配的两个或两个以上所述资源单元在频域上连续,并且多个所述资源单元包括的子载波数之和等于第一子载波数,则将多个所述资源单元的载波合并进行波束赋形;
在一些实施例中,所述方法还包括以:如果为所述第二无线通信设备分配的两个或两个以上所述资源单元在频域上连续,并且两个或两个以上所述资源单元包括的子载波数之和大于或小于第一子载波数,则对所述两个或两个以上资源单元的每个所述资源单元的载波进行波束赋形。
在一些实施例中,所述方法还包括:
如果为所述第二无线通信设备分配的两个或两个以上所述资源单元在频域上连续,则将所述两个或两个以上所述资源单元的载波合并进行波束 赋形。
在一些实施例中,所述信息元素包括以下至少之一:
信息元素标识,用于标识所述信息元素;
长度标识,用于指示所述信息元素的长度;
天线数量标识,用于指示所述第二无线通信设备具有的天线数量。
根据本公开实施例的第二方面,提供一种通信资源单元分配方法,应用于第二无线通信设备,所述方法包括:
发送消息,所述消息包括用于指示所述第二无线通信设备具有的天线数量的信息元素。
在一些实施例中,分配给所述第二无线通信设备的资源单元数量是根据所述天线数量确定的。
在一些实施例中,所述信息元素包括以下至少之一:
信息元素标识,用于标识所述信息元素;
长度标识,用于指示所述信息元素的长度;
天线数量标识,用于指示所述第二无线通信设备具有的天线数量。
在一些实施例中,所述方法还包括:
如果为所述第二无线通信设备分配的两个或两个以上资源单元在频域上不连续,则分别对不连续的每个所述资源单元的载波进行波束赋形。
在一些实施例中,所述方法还包括:
如果为所述第二无线通信设备分配的两个或两个以上资源单元在频域上连续,并且所述两个或两个以上所述资源单元包括的子载波数之和等于第一子载波数,则将所述两个或两个以上资源单元的载波合并进行波束赋形。
在一些实施例中,所述方法还包括:
如果为所述第二无线通信设备分配的两个或两个以上资源单元在频域 上连续,并且两个或两个以上所述资源单元包括的子载波数之和大于或小于第一子载波数,则对所述两个或两个以上资源单元的每个所述资源单元的载波分别进行波束赋形。
在一些实施例中,所述方法还包括:
如果为所述第二无线通信设备分配的两个或两个以上资源单元在频域上连续,则将所述两个或两个以上所述资源单元的载波合并进行波束赋形。
根据本公开实施例的第三方面,提供一种通信资源单元分配装置,应用于第一无线通信设备,所述装置包括:接收模块,其中,
所述接收模块,配置为接收第二无线通信设备发送的消息,其中,所述消息包含指示所述第二无线通信设备具有的天线数量的信息元素。
在一些实施例中,所述装置还包括:
确定模块,配置为根据所述第二无线通信设备具有的所述天线数量,确定分配给所述第二无线通信设备的资源单元的数量。
在一些实施例中,所述确定模块,包括:
第一确定子模块,配置为如果为所述第二无线通信设备分配的两个或两个以上所述资源单元在频域上不连续,则分配给所述第二无线通信设备的资源单元的数量,小于或等于所述第二无线通信设备具有的所述天线数量。
在一些实施例中,所述确定模块,包括:
第二确定子模块,配置为根据所述第二无线通信设备具有的所述天线数量,确定在预定带宽中分配给所述第二无线通信设备的所述资源单元的数量。
在一些实施例中,所述装置还包括:
第一波束赋形模块,配置为如果为所述第二无线通信设备分配的两个或两个以上所述资源单元在频域上不连续,则分别对不连续的每个所述资 源单元的载波进行波束赋形。
在一些实施例中,所述装置还包括:
第二波束赋形模块,配置为如果为所述第二无线通信设备分配的两个或两个以上所述资源单元在频域上连续,并且两个或两个以上所述资源单元包括的子载波数之和等于第一子载波数,则将两个或两个以上所述资源单元的载波合并进行波束赋形。
在一些实施例中,所述装置还包括:
第三波束赋形模块,配置为如果为所述第二无线通信设备分配的两个或两个以上所述资源单元在频域上连续,并且两个或两个以上所述资源单元包括的子载波数之和大于或小于第一子载波数,则对所述两个或两个以上资源单元的每个所述资源单元的载波分别进行波束赋形。
在一些实施例中,所述装置还包括:
第四波束赋形模块,配置为如果为所述第二无线通信设备分配的两个或两个以上所述资源单元在频域上连续,则将所述两个或两个以上所述资源单元的载波合并进行波束赋形。
在一些实施例中,所述信息元素包括以下至少之一:
信息元素标识,用于标识所述信息元素;
长度标识,用于指示所述信息元素的长度;
天线数量标识,用于指示所述第二无线通信设备具有的天线数量。
根据本公开实施例的第四方面,提供一种通信资源单元分配装置,应用于第二无线通信设备,所述装置包括:发送模块,其中,
所述发送模块,配置为向第一无线通信设备发送消息,其中,所述消息包括用于指示所述第二无线通信设备具有的天线数量的信息元素。
在一些实施例中,分配给所述第二无线通信设备的资源单元数量是根据所述天线数量确定的。
在一些实施例中,所述信息元素包括以下至少之一:
信息元素标识,用于标识所述信息元素;
长度标识,用于指示所述信息元素的长度;
天线数量标识,用于指示所述第二无线通信设备具有的天线数量。
在一些实施例中,所述装置还包括:
第五波束赋形模块,配置为如果为所述第二无线通信设备分配的两个或两个以上所述资源单元在频域上不连续,则分别对不连续的每个所述资源单元的载波进行波束赋形。
在一些实施例中,所述装置还包括:
第六波束赋形模块,配置为如果为所述第二无线通信设备分配的两个或两个以上所述资源单元在频域上连续,并且两个或两个以上所述资源单元包括的子载波数之和等于第一子载波数,则将两个或两个以上所述资源单元的载波合并进行波束赋形。
在一些实施例中,所述装置还包括:
第七波束赋形模块,配置为如果为所述第二无线通信设备分配的两个或两个以上所述资源单元在频域上连续,并且两个或两个以上所述资源单元包括的子载波数之和大于或小于第一子载波数,则对所述两个或两个以上资源单元的每个所述资源单元的载波分别进行波束赋形。
在一些实施例中,所述装置还包括:
第八波束赋形模块,配置为如果为所述第二无线通信设备分配的两个或两个以上所述资源单元在频域上连续,则将所述两个或两个以上所述资源单元的载波合并进行波束赋形。
根据本公开实施例的第五方面,提供一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如第一方面或第二方面所述 通信资源单元分配方法的步骤。
根据本公开实施例的第六方面,提供一种存储介质,其上存储由可执行程序,其中,所述可执行程序被处理器执行时实现如第一方面或第二方面所述通信资源单元分配方法的步骤。
本公开实施例提供的通信资源单元分配方法、装置、通信设备及存储介质,第一无线通信设备接收第二无线通信设备发送的消息,其中,所述消息包含指示所述第二无线通信设备具有的天线数量的信息元素。如此,第二无线通信设备通过消息中的信息元素指示第二无线通信设备具有的天线数量,提供了一种天线数量显性指示方式,第一无线通信设备可以根据信息元素指示信息确定第二无线通信设备具有的天线数量;第二无线通信设备具有的天线数量可以标注第二无线通信的波束成形等通信能力,进而可以提高第一无线通信设备对于第二无线通信设备通信能力的识别效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种通信资源单元分配方法的流程示意图;
图2是根据一示例性实施例示出的一种信息元素的结构示意图;
图3是根据一示例性实施例示出的另一种通信资源单元分配方法的流程示意图;
图4是根据一示例性实施例示出的一种通信资源单元分配装置组成结构框图;
图5是根据一示例性实施例示出的另一种通信资源单元分配装置组成 结构框图;
图6是根据一示例性实施例示出的一种用于通信资源单元分配的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
本公开实施例涉及的执行主体包括但不限于:无线通信网络尤其是Wi-Fi网络如IEEE802.11a/b/g/n/ac标准下,以及下一代Wi-Fi网络中IEEE802.11be标准下的网络设备,其中,网络设备包括但不限于:无线接入点(AP,Access Point)、无线站点(STA,Station)等。
本公开实施例的一种应用场景为,在IEEE802.11ax标准中规定,在一 定带宽下一次只能够分配一个RU给无线站点。为了提高频谱的利用效率,在IEEE802.11be中在一定的带宽下能够分配两个或两个以上RU给一个无线站点,具体可以分配给一个无线站点的数量没有确定。
如图1所示,本示例性实施例提供一种于通信资源单元分配方法,可以应用于无线通信的第一无线通信设备中,该方法包括:
步骤101:接收第二无线通信设备发送的消息,其中,消息包含指示第二无线通信设备具有的天线数量的信息元素。
这里,第一无线通信设备可以是Wi-Fi通信技术中的无线接入点(AP,Access Point),第二无线通信设备可以是Wi-Fi通信技术中的无线站点(STA,Station)。
在本公开实施例中,该消息可以为消息帧。在一些实施例中,该消息可以为管理帧和/或数据帧。当然,该消息还可以是任何恰当的方式,本公开实施例中并不对此做出限定。
在一些实施例中,消息可以是Wi-Fi通信技术中第一无线通信设备发送的管理帧。
示例性的,管理帧可以包括:探测请求(probe request)帧、关联请求(association request)帧或授权请求帧(authentication request)帧等。信息元素(Information Element)是消息中用于设置指示信息的基本信息单元。
在一些实施例中,该消息还可以是数据帧。
第二无线通信设在与第一无线通信设备在关联(association)过程或重新关联(re-association)过程中,会互相向对方发送管理帧。第二无线通信设备可以在关联过程或重关联过程中,向第一无线通信设备发送包含第二无线通信设备具有的天线数量的信息元素的消息。如此,第一无线通信设备可以通过该消息确定第二无线通信设备具有的天线数量。其中,包含第二无线通信设备具有的天线数量的信息元素可以是新应用的信息元素。其 中,无线站点与无线接入点进行关联,以便获得网络的完全访问权。关联属于一种记录保持过程,它让AP能够记录无线站点,以便将传送给无线站点的消息送给正确的无线站点。重关联过程是指无线站点与无线接入点脱离关联关系后,再次进行关联的过程。
第二无线通信设备可以设置有两个或两个以上天线,不同天线可以具有不同的指向,不同指向的天线在发送信号时可以将能量集中在想要传输的方向,增加信号传输性能,在接收信号时,可以接收不同方向的信号,加强接收效果。
第一无线通信设备可以根据第二无线通信设备支持的天线数量,确定第二无线通信设备的数据传输能力,作为后续进行波束赋形等操作的依据。
如此,第二无线通信设备通过消息中的信息元素指示第二无线通信设备具有的天线数量,提供了一种天线数量显性指示方式,第一无线通信设备可以根据信息元素指示信息确定第二无线通信设备具有的天线数量;第二无线通信设备具有的天线数量可以标注第二无线通信的波束成形等通信能力,进而可以提高第一无线通信设备对于第二无线通信设备通信能力的识别效率。
在一些实施例中,该方法还包括:根据第二无线通信设备具有的天线数量,确定分配给第二无线通信设备的资源单元(RU,Resource Unit)的数量。
这里,RU可以是由两个或两个以上子载波组成的传输资源。IEEE802.11ax标准中,支持的RU格式包括:26-子载波(tone)、52-tone、106-tone、242-tone、484-tone、996-tone或2*996-tone。
第一无线通信设备和第二通信设备在利用RU进行数据交互时,可以对每个RU的载波进行波束赋形。波束赋形和天线数量相关,一般一个连续带宽的载波进行波束赋形时可只占用一根天线。因此,天线数量可以决定连 续带宽的载波的数量,进而决定RU的数量。
示例性的,第一无线通信设备可以分配给第二通信设备与天线数量相同的RU。如此,每个RU的载波都可以占用一根天线进行波束赋形。
如此,将第二无线通信设备的天线数量作为RU分配的依据,使RU的分配与第二无线通信设备的天线数量相匹配,不会出现不连续载波的个数多于天线数量的情况,提高RU分配的准确性,提高数据传输可靠性。
在一些实施例中,其中,根据第二无线通信设备具有的天线数量,确定分配给第二无线通信设备的RU的数量,包括:
如果为第二无线通信设备分配的两个或两个以上RU在频域上不连续,则分配给第二无线通信设备的RU的数量,小于或等于第二无线通信设备具有的天线数量。
在工作带宽下,第一无线通信设备可以给一个第二无线通信设备分配两个或两个以上RU,两个或两个以上RU可以在频域上连续,也可以在频域上不连续。
如果分配的每个RU在频域上全部不连续或是部分不连续,则需要针对不连续的每个RU的载波分别做波束赋形,而连续的RU可以一起做波束赋形,也可以分别做波束赋形。由于一个带宽的载波在波束赋形时需要占用一个天线,即每个RU需要占用一个天线,因此,第一无线通信设备对第二无线通信设备所分配的最大RU的数量为第二无线通信设备所具有的天线数量,即第一无线通信设备可以分配的RU的数量小于或等于第二无线通信设备所具有的天线数量。
如此,一方面,使RU的分配更符合实际传输条件,提高RU分配的准确性,提高数据传输可靠性;另一方面,当第二无线通信设备的天线数量为两个或两个以上时,可以分配两个或两个以上RU,提高频谱利用率,进而提高传输吞吐量。
在一些实施例中,其中,根据第二无线通信设备具有的天线数量,确定分配给第二无线通信设备的RU的数量,包括:
根据第二无线通信设备具有的天线数量,确定在带宽中分配给第二无线通信设备的RU的数量。
第二无线通信设备可以支持在不同的工作带宽进行工作,例如:20MHz、40MHz、80MHz、160MHz、160MHz+80MHz、160MHz+160MHz或320MHz等。分配给第二无线通信设备的RU的数量可以是在一个工作带宽下的RU的数量。例如,第一无线通信设备可以根据在第二无线通信设备具有的天线数量,确定第二无线通信设备20MHz工作带宽下的RU的数量。
在一些实施例中,其中,该方法还包括以下至少之一:
如果为第二无线通信设备分配的两个或两个以上RU在频域上不连续,则分别对不连续的每个RU的载波进行波束赋形;
如果为第二无线通信设备分配的两个或两个以上RU在频域上连续,并且两个或两个以上RU包括的子载波数之和等于第一子载波数,则将两个或两个以上RU的载波合并进行波束赋形;
如果为第二无线通信设备分配的两个或两个以上RU在频域上连续,并且两个或两个以上RU包括的子载波数之和大于或小于第一子载波数,则对两个或两个以上RU的每个RU的载波分别进行波束赋形。
这里第一子载波数可以是IEEE802.11ax标准支持RU格式中包括的26、52、106、242、484、996和2*996七种子载波数中的任一种。即在IEEE802.11ax标准中,可以被传输的RU中的子载波数可只为上述七种中的任一种。
在一些实施例中,将两个或两个以上RU的载波合并进行波束赋形,可以是将两个或两个以上RU的载波合并成一个载波,然后对这一个载波进行波束赋形。
在工作带宽下,第一无线通信设备可以给一个第二无线通信设备分配两个或两个以上RU,这些RU可以在频域上连续,也可以在频域上不连续,还可以是部分RU在频域上连续而部分RU在频域上不连续。
如果分配的每个RU在频域上不连续或是部分RU在频域上不连续,则针对不连续的RU的载波需要分别做波束赋形。由于一个带宽的载波在波束赋形时需要占用一个天线,即不连续的RU中的每个RU各需要占用一个天线,因此,第一无线通信设备或第二无线通信设备需要针对每个RU的载波分别进行波束赋形。
示例性的,第一无线通信设备为第二无线通信设备分配了两个频域上不连续的两个RU,一个RU包括26个子载波,另一个包括52个子载波,第一无线通信设备或第二无线通信设备可以分别为两个RU分别进行波束赋形。
如果第一无线通信设备分配给第二无线通信设备的两个或两个以上RU在频域上连续,并且两个或两个以上RU的子载波数量之和为IEEE802.11ax标准支持的七种RU格式包含子载波数量中的任一种,则可以将两个或两个以上RU的载波一起进行波束赋形,采用一根天线进行发送。
示例性的,第一无线通信设备分配给第二无线通信设备的两个RU在频域上连续,两个RU包含的子载波数分别为26和26。两个RU包含的子载波数之和为52,属于IEEE802.11ax标准支持的七种RU格式包含子载波数量中的一种,则可以将这些RU的载波一起进行波束赋形,采用一根天线进行发送。
如果第一无线通信设备分配给第二无线通信设备的两个或两个以上RU在频域上连续,并且两个或两个以上RU的子载波数量之和不为IEEE802.11ax标准支持的七种RU格式包含子载波数量中的任一种,第一 无线通信设备或第二无线通信设备可以分别对每个RU的载波进行波束赋形。
示例性的,第一无线通信设备为第二无线通信设备分配了频域上连续的两个RU,一个RU包括26个子载波,另一个RU包括52个子载波,两个RU总共包括的子载波数之和为78个子载波,不属于IEEE802.11ax标准支持的七种RU格式包含子载波数量中的任一种;此时,为了兼容IEEE802.11ax标准,第一无线通信设备或第二无线通信设备可以分别对两个RU的载波单独进行波束赋形。
当然,如果IEEE802.11ax标准中支持的RU格式发生了变化,则本公开所有实施例中的第一子载波数也可以随之调整,本公开实施例并不对此做出限定。当然,也可以基于其他方式确定第一子载波数的数量,本公开实施例也不对此做出限定。其中,当本公开实施例中的第一无线通讯设备和第二无线通讯设备不遵循IEEE802.11ax标准时,则可以无需设定第一子载波数这一参数,即本公开实施例中的方法包括:
如果分配的每个RU在频域上不连续或是部分RU在频域上不连续,则针对不连续的RU的载波需要分别做波束赋形。由于一个带宽的载波在波束赋形时需要占用一个天线,即不连续的RU中的每个RU各需要占用一个天线,因此,第一无线通信设备或第二无线通信设备需要针对每个RU的载波分别进行波束赋形。
如此,第一无线通信设备为第二无线通信设备采用的RU可以与IEEE802.11ax标准兼容,从而提高数据传输兼容性。
如果为第二无线通信设备分配的两个或两个以上两个或两个以上资源单元在频域上连续,则将两个或两个以上两个或两个以上资源单元的载波合并进行波束赋形。即,不考虑两个或两个以上RU的载波包含的子载波总数,两个或两个以上RU在频域上连续时就一起做波束赋形。
在一些实施例中,其中,信息元素包括以下至少之一:信息元素标识,用于标识信息元素;长度标识,用于指示信息元素的长度;天线数量标识,用于指示第二无线通信设备具有的天线数量。
如图2所示,示例性的,信息元素可以占用3个字节。其中,信息元素标识可以占用1个字节,信息元素标识用于标识信息元素。长度标识可以占用1个字节。天线数量标识占用1个字节,可以采用二进制数表示天线数量。
如图3所示,本示例性实施例提供一种于通信资源单元分配方法,可以应用于无线通信的第二无线通信设备中,该方法包括:
步骤201:发送消息,其中,消息包括用于指示第二无线通信设备具有的天线数量的信息元素。
这里,第一无线通信设备可以是Wi-Fi通信技术中的无线接入点(AP,Access Point),第二无线通信设备可以是Wi-Fi通信技术中的无线站点(STA,Station)。
在本公开实施例中,该消息可以为消息帧。在一些实施例中,该消息可以为管理帧和/或数据帧。当然,该消息还可以是任何恰当的方式,本公开实施例中并不对此做出限定。
在一些实施例中,消息可以是Wi-Fi通信技术中第一无线通信设备发送的管理帧。
示例性的,消息可以包括:探测请求(probe request)帧、关联请求(association request)帧或授权请求(authentication request)帧等。信息元素(Information Element)是消息中用于设置指示信息的基本信息单元。
示例性的,该消息还可以是数据帧。
第二无线通信设在与第一无线通信设备在关联(association)过程或重新关联(re-association)过程中,会互相向对方发送管理帧。第二无线通信 设备可以在关联过程或重关联过程中,向第一无线通信设备发送包含第二无线通信设备具有的天线数量的信息元素的消息。如此,第一无线通信设备可以通过消息确定第二无线通信设备具有的天线数量。其中,包含第二无线通信设备具有的天线数量的信息元素可以是新应用的信息元素。其中,无线站点与无线接入点进行关联,以便获得网络的完全访问权。关联属于一种记录保持过程,它让AP能够记录无线站点,以便将传送给无线站点的消息送给正确的无线站点。重关联过程是指无线站点与无线接入点脱离关联关系后,再次进行关联的过程。
第二无线通信设备可以设置有两个或两个以上天线,不同天线可以具有不同的指向,不同指向的天线在发送信号时可以将能量集中在想要传输的方向,增加信号传输性能,在接收信号时,可以接收不同方向的信号,加强接收效果。
第一无线通信设备可以根据第二无线通信设备支持的天线数量,确定第二无线通信设备的数据传输能力,作为后续进行波束赋形等操作的依据。
如此,第二无线通信设备通过消息中的信息元素指示第二无线通信设备具有的天线数量,提供了一种天线数量显性指示方式。第一无线通信设备可以根据信息元素指示信息确定第二无线通信设备具有的天线数量;第二无线通信设备具有的天线数量可以标注第二无线通信的波束成形等通信能力,进而可以提高第一无线通信设备对于第二无线通信设备通信能力的识别效率。
在一些实施例中,分配给第二无线通信设备的RU数量是根据天线数量确定的。
这里,RU可以是由两个或两个以上子载波组成的传输资源。IEEE802.11ax中,支持的RU格式包括:26-子载波(tone)、52-tone、106-tone、242-tone、484-tone、996-tone或2*996-tone。
第一无线通信设备和第二通信设备在利用RU进行数据交互时,可以对每个RU的载波进行波束赋形。波束赋形和天线数量相关,一般一个连续带宽的载波进行波束赋形时需要占用一根天线。因此,天线数量可以决定连续带宽的载波的数量,进而决定RU的数量。
示例行的,第一无线通信设备可以分配给第二通信设备与天线数量相同的RU。如此,每个RU的载波都可以占用一根天线进行波束赋形。
如此,将第二无线通信设备的天线数量作为RU分配的依据,使RU的分配与第二无线通信设备的天线数量相匹配,不会出现不连续载波的个数多于天线数量的情况,,提高RU分配的准确性,提高数据传输可靠性。
在工作带宽下,第一无线通信设备可以给一个第二无线通信设备分配两个或两个以上RU,这些RU可以在频域上连续,也可以在频域上不连续,还可以是部分RU在频域上连续而其他RU在频域上不连续。
如果分配的两个或两个以上RU在频域上不连续,则需要针对不连续的每个RU的载波分别做波束赋形,而连续的RU可以一起做波束赋形,也可以分别做波束赋形。由于一个带宽的载波在波束赋形时需要占用一个天线,即每个RU需要占用一个天线,因此,第一无线通信设备对第二无线通信设备所分配的最大RU的数量为第二无线通信设备所具有的天线数量,即第一无线通信设备可以分配的RU的数量小于或等于第二无线通信设备所具有的天线数量。
如此,一方面,使RU的分配更符合实际传输条件,提高RU分配的准确性,与第二无线通信设备的天线数量相匹配,不会出现不连续载波的个数多于天线数量的情况,提高RU分配的准确性,提高数据传输可靠性;另一方面,当第二无线通信设备的天线数量为两个或两个以上时,可以分配两个或两个以上RU,提高频谱利用率,进而提高传输吞吐量。
在一些实施例中,信息元素包括以下至少之一:信息元素标识,用于 标识信息元素;长度标识,用于指示信息元素的长度;天线数量标识,用于指示第二无线通信设备具有的天线数量。
如图2所示,示例性的,信息元素可以占用3个字节。其中,信息元素标识可以占用1个字节,信息元素标识用于标识信息元素。长度标识可以占用1个字节。天线数量标识占用1个字节,可以采用二进制数表示天线数量。
在一些实施例中,该方法还包括以下至少之一:
如果为第二无线通信设备分配的两个或两个以上RU在频域上不连续,则分别对不连续的每个RU的载波进行波束赋形;
如果为第二无线通信设备分配的两个或两个以上RU在频域上连续,并且两个或两个以上RU包括的子载波数之和等于第一子载波数,则将两个或两个以上RU的载波合并进行波束赋形;
如果为第二无线通信设备分配的两个或两个以上RU在频域上连续,并且两个或两个以上RU包括的子载波数之和大于或小于第一子载波数,则对两个或两个以上RU的每个RU的载波分别进行波束赋形。
这里第一子载波个数可以是IEEE802.11ax标准支持RU格式中包括的26、52、106、242、484、996和2*996七种子载波数中的任一种。即在IEEE802.11ax标准中,可以被传输的RU中的子载波数可只为上述七种中的任一种。
在一些实施例中,将两个或两个以上RU的载波合并进行波束赋形,可以是将两个或两个以上RU的载波合并成一个载波,然后对这一个载波进行波束赋形。
在工作带宽下,第一无线通信设备可以给一个第二无线通信设备分配两个或两个以上RU,这些RU可以在频域上连续,也可以在频域上不连续,还可以是部分RU在频域上连续而部分RU在频域上不连续。
如果分配的每个RU在频域上不连续或是部分RU在频域上不连续,则针对不连续的RU的载波需要分别做波束赋形。由于一个带宽的载波在波束赋形时需要占用一个天线,即不连续的RU中的每个RU各需要占用一个天线,因此,第一无线通信设备或第二无线通信设备需要针对每个RU的载波分别进行波束赋形。
示例性的,第一无线通信设备为第二无线通信设备分配了两个频域上不连续的两个RU,一个RU包括26个子载波,另一个包括52个子载波,第一无线通信设备或第二无线通信设备可以分别为两个RU分别进行波束赋形。
如果第一无线通信设备分配给第二无线通信设备的两个或两个以上RU在频域上连续,并且两个或两个以上RU的子载波数量之和为IEEE802.11ax标准支持的七种RU格式包含子载波数量中的任一种,则可以将两个或两个以上RU的载波一起进行波束赋形,采用一根天线进行发送。
示例性的,第一无线通信设备分配给第二无线通信设备的两个RU在频域上连续,两个RU包含的子载波数分别为26和26。两个RU包含的子载波数之和为52,属于IEEE802.11ax标准支持的七种RU格式包含子载波数量中的一种,则可以将这些RU的载波一起进行波束赋形,采用一根天线进行发送。
如果第一无线通信设备分配给第二无线通信设备的两个或两个以上RU在频域上连续,并且两个或两个以上RU的子载波数量之和不为IEEE802.11ax标准支持的七种RU格式包含子载波数量中的任一种,第一无线通信设备或第二无线通信设备可以分别对每个RU的载波进行波束赋形。
示例性的,第一无线通信设备为第二无线通信设备分配了频域上连续 的两个RU,一个RU包括26个子载波,另一个RU包括52个子载波,两个RU总共包括的子载波数之和为78个子载波,不属于IEEE802.11ax标准支持的七种RU格式包含子载波数量中的任一种;此时,为了兼容IEEE802.11ax标准,第一无线通信设备或第二无线通信设备可以分别对两个RU的载波单独进行波束赋形。
当然,如果IEEE802.11ax标准中对于支持RU格式发生了变化,则本公开所有实施例中的第一子载波数也可以随之调整,本公开实施例并不对此做出限定。其中,当本公开实施例中的第一无线通讯设备和第二无线通讯设备不遵循IEEE802.11ax标准时,则可以无需设定第一子载波数这一参数,也就是本公开实施例中的方法包括:
如果分配的每个RU在频域上不连续或是部分RU在频域上不连续,则针对不连续的RU的载波需要分别做波束赋形。由于一个带宽的载波在波束赋形时需要占用一个天线,即不连续的RU中的每个RU各需要占用一个天线,因此,第一无线通信设备或第二无线通信设备需要针对每个RU的载波分别进行波束赋形。
如此,第一无线通信设备为第二无线通信设备采用的RU可以与IEEE802.11ax标准兼容,从而提高数据传输兼容性。
如果为第二无线通信设备分配的两个或两个以上两个或两个以上资源单元在频域上连续,则将两个或两个以上两个或两个以上资源单元的载波合并进行波束赋形。即,不考虑两个或两个以上RU的载波包含的子载波总数,两个或两个以上RU在频域上连续时就一起做波束赋形。
以下结合上述任意实施例提供一个具体示例:
1、RU分配最大数量的考虑
a、在一个的传输带宽下,无线接入点给一个无线站点分配一定数量的RU,在通信之前无线站点与无线接入点之间会进行波束赋形的操作,如果 每个RU的分配是不连续的,或者RU的分配连续,但RU子载波数之和与IEEE802.11ax规定不兼容,则所分配的RU可单独看作为一个信道通信。无线接入点在通信之前会对每个RU做波束赋形,由于波束赋形涉及到无线站点所支持天线的数量,所以无线接入点对无线站点所分配的最大RU的数量为无线站点所支持的最大天线数量;进行波束赋形时,可以首先发送零数据帧(NDP,Null data packet)作为波束赋形的探测帧。
b、兼容问题
在现有的IEEE802.11ax中,所支持的RU的格式包括:26-(子载波)tone、52-tone、106-tone、242-tone、484-tone、996-tone及2*996-tone七种,如无线站点在一个的带宽下所分配的连续RU为26-tone和52-tone,但考虑到兼容的问题,则在波束赋形时,只能作为两个信道,如连续分配了两个26-tone,则可作为一个信道做波束赋形。这里,无线站点可以工作在:20MHz、40MHz、80MHz、160MHz、160MHz+80MHz、160MHz+160MHz或320MHz的带宽下。当然,在不需要兼容IEEE802.11ax,则无需考虑IEEE802.11ax对于RU格式的限制,只需要根据分配的RU是否连续就可以确定如何进行波束赋形。
无线站点在与无线接入点的交互过程中将无线站点所支持天线最大数量的能力信息值发送给无线接入点,具体的可在探测请求帧、关联请求帧或授权请求帧中以信息元素的形式携带,信息元素具体格式可以如图2所示,其中元素标识(element ID)定义信息元素为新的信息元素,信息元素标识无线站点支持的最大天线数量。
本发明实施例还提供了一种通信资源单元分配装置,应用于第一无线通信设备,图4为本发明实施例提供的通信资源单元分配装置100的组成结构示意图;如图4所示,装置100包括:接收模块110,其中,
接收模块110,配置为接收第二无线通信设备发送的消息,其中,消息 包含指示第二无线通信设备具有的天线数量的信息元素。
在一些实施例中,装置100还包括:
确定模块120,配置为根据第二无线通信设备具有的天线数量,确定分配给第二无线通信设备的资源单元的数量。
在一些实施例中,确定模块120,包括:
第一确定子模块121,配置为如果为第二无线通信设备分配的两个或两个以上资源单元在频域上不连续,则分配给第二无线通信设备的资源单元的数量,小于或等于第二无线通信设备具有的天线数量。
在一些实施例中,确定模块120,包括:
第二确定子模块122,配置为根据第二无线通信设备具有的天线数量,确定在预定带宽中分配给第二无线通信设备的资源单元的数量。
在一些实施例中,装置100还包括:
第一波束赋形模块130,配置为如果为第二无线通信设备分配的两个或两个以上资源单元在频域上不连续,则分别对不连续的每个资源单元的载波进行波束赋形。
在一些实施例中,装置100还包括:
第二波束赋形模块140,配置为如果为第二无线通信设备分配的两个或两个以上资源单元在频域上连续,并且两个或两个以上资源单元包括的子载波数之和等于第一子载波数,则将两个或两个以上资源单元的载波合并进行波束赋形。
在一些实施例中,装置100还包括:
第三波束赋形模块150,配置为如果为第二无线通信设备分配的两个或两个以上资源单元在频域上连续,并且两个或两个以上资源单元包括的子载波数之和大于或小于第一子载波数,则对两个或两个以上资源单元的每个资源单元的载波分别进行波束赋形。
在一些实施例中,装置100还包括:
第四波束赋形模块160,配置为如果为第二无线通信设备分配的两个或两个以上资源单元在频域上连续,则将两个或两个以上资源单元的载波合并进行波束赋形。
在一些实施例中,信息元素包括以下至少之一:
信息元素标识,用于标识信息元素;
长度标识,用于指示信息元素的长度;
天线数量标识,用于指示第二无线通信设备具有的天线数量。
本发明实施例还提供了一种通信资源单元分配装置,应用于第二无线通信设备,图5为本发明实施例提供的通信资源单元分配装置200的组成结构示意图;如图5所示,装置200包括:发送模块210,其中,
发送模块210,配置为向第一无线通信设备发送消息,其中,消息包括用于指示第二无线通信设备具有的天线数量的信息元素。
在一些实施例中,分配给第二无线通信设备的资源单元数量是根据天线数量确定的。
在一些实施例中,信息元素包括以下至少之一:
信息元素标识,用于标识信息元素;
长度标识,用于指示信息元素的长度;
天线数量标识,用于指示第二无线通信设备具有的天线数量。
在一些实施例中,装置200还包括:
第五波束赋形模块220,配置为如果为第二无线通信设备分配的两个或两个以上资源单元在频域上不连续,则分别对不连续的每个资源单元的载波进行波束赋形。
在一些实施例中,装置200还包括:
第六波束赋形模块230,配置为如果为第二无线通信设备分配的两个或 两个以上资源单元在频域上连续,并且两个或两个以上资源单元包括的子载波数之和等于第一子载波数,则将两个或两个以上资源单元的载波合并进行波束赋形。
在一些实施例中,装置200还包括:
第七波束赋形模块240,配置为如果为第二无线通信设备分配的两个或两个以上资源单元在频域上连续,并且两个或两个以上资源单元包括的子载波数之和大于或小于第一子载波数,则对两个或两个以上资源单元的每个资源单元的载波分别进行波束赋形。
在一些实施例中,装置200还包括:
第八波束赋形模块250,配置为如果为第二无线通信设备分配的两个或两个以上资源单元在频域上连续,则将两个或两个以上资源单元的载波合并进行波束赋形。
在示例性实施例中,接收模块110、确定模块120、第一波束赋形模块130、第二波束赋形模块140、第三波束赋形模块150、第四波束赋形模块160、发送模块210、第五波束赋形模块220、第六波束赋形模块230、第七波束赋形模块240和第八波束赋形模块250等可以被一个或多个中央处理器(CPU,Central Processing Unit)、图形处理器(GPU,Graphics Processing Unit)、基带处理器(BP,baseband processor)、应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
图6是根据一示例性实施例示出的一种用于通信资源单元分配或传输块配置参数确定的装置3000的框图。例如,装置3000可以是移动电话, 计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图6,装置3000可以包括以下一个或多个组件:处理组件3002,存储器3004,电源组件3006,多媒体组件3008,音频组件3010,输入/输出(I/O)的接口3012,传感器组件3014,以及通信组件3016。
处理组件3002通常控制装置3000的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件3002可以包括一个或多个处理器3020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件3002可以包括一个或多个模块,便于处理组件3002和其他组件之间的交互。例如,处理组件3002可以包括多媒体模块,以方便多媒体组件3008和处理组件3002之间的交互。
存储器3004被配置为存储各种类型的数据以支持在设备3000的操作。这些数据的示例包括用于在装置3000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器3004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件3006为装置3000的各种组件提供电力。电源组件3006可以包括电源管理系统,一个或多个电源,及其他与为装置3000生成、管理和分配电力相关联的组件。
多媒体组件3008包括在装置3000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面 板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件3008包括一个前置摄像头和/或后置摄像头。当设备3000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件3010被配置为输出和/或输入音频信号。例如,音频组件3010包括一个麦克风(MIC),当装置3000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器3004或经由通信组件3016发送。在一些实施例中,音频组件3010还包括一个扬声器,用于输出音频信号。
I/O接口3012为处理组件3002和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件3014包括一个或多个传感器,用于为装置3000提供各个方面的状态评估。例如,传感器组件3014可以检测到设备3000的打开/关闭状态,组件的相对定位,例如组件为装置3000的显示器和小键盘,传感器组件3014还可以检测装置3000或装置3000一个组件的位置改变,用户与装置3000接触的存在或不存在,装置3000方位或加速/减速和装置3000的温度变化。传感器组件3014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件3014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件3014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件3016被配置为便于装置3000和其他设备之间有线或无线方 式的通信。装置3000可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件3016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件3016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置3000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器3004,上述指令可由装置3000的处理器3020执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明实施例的其它实施方案。本申请旨在涵盖本发明实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明实施例的一般性原理并包括本公开实施例未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明实施例的范围仅由所附的权利要求来限制。

Claims (20)

  1. 一种通信资源单元分配方法,其中,应用于第一无线通信设备,所述方法包括:
    接收第二无线通信设备发送的消息,其中,所述消息包含指示所述第二无线通信设备具有的天线数量的信息元素。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    根据所述第二无线通信设备具有的所述天线数量,确定分配给所述第二无线通信设备的资源单元的数量。
  3. 根据权利要求2所述的方法,其中,所述根据所述第二无线通信设备具有的所述天线数量,确定分配给所述第二无线通信设备的资源单元的数量,包括:
    如果为所述第二无线通信设备分配的两个或两个以上所述资源单元在频域上不连续,则分配给所述第二无线通信设备的资源单元的数量,小于或等于所述第二无线通信设备具有的所述天线数量。
  4. 根据权利要求2所述的方法,其中,所述根据所述第二无线通信设备具有的所述天线数量,确定分配给所述第二无线通信设备的资源单元的数量,包括:
    根据所述第二无线通信设备具有的所述天线数量,确定在带宽中分配给所述第二无线通信设备的所述资源单元的数量。
  5. 根据权利要求2至4任一项所述的方法,其中,所述方法还包括:
    如果为所述第二无线通信设备分配的两个或两个以上所述资源单元在频域上不连续,则分别对不连续的每个所述资源单元的载波进行波束赋形。
  6. 根据权利要求2至4任一项所述的方法,其中,所述方法还包括:
    如果为所述第二无线通信设备分配的两个或两个以上所述资源单元在频域上连续,并且所述两个或两个以上所述资源单元包括的子载波数之和 等于第一子载波数,则将所述两个或两个以上资源单元的载波合并进行波束赋形。
  7. 根据权利要求2至4任一项所述的方法,其中,所述方法还包括:
    如果为所述第二无线通信设备分配的两个或两个以上所述资源单元在频域上连续,并且多个所述资源单元包括的子载波数之和大于或小于第一子载波数,则对所述两个或两个以上资源单元的每个所述资源单元的载波分别进行波束赋形。
  8. 根据权利要求2至4任一项所述的方法,其中,所述方法还包括:
    如果为所述第二无线通信设备分配的两个或两个以上所述资源单元在频域上连续,则将所述两个或两个以上所述资源单元的载波合并进行波束赋形。
  9. 根据权利要求1至4任一项所述的方法,其中,所述信息元素包括以下至少之一:
    信息元素标识,用于标识所述信息元素;
    长度标识,用于指示所述信息元素的长度;
    天线数量标识,用于指示所述第二无线通信设备具有的天线数量。
  10. 一种通信资源单元分配方法,其中,应用于第二无线通信设备,所述方法包括:
    发送消息,其中,所述消息包括用于指示所述第二无线通信设备具有的天线数量的信息元素。
  11. 根据权利要求10所述的方法,其中,
    分配给所述第二无线通信设备的资源单元数量是根据所述天线数量确定的。
  12. 根据权利要求10或11所述的方法,其中,所述信息元素包括以下至少之一:
    信息元素标识,用于标识所述信息元素;
    长度标识,用于指示所述信息元素的长度;
    天线数量标识,用于指示所述第二无线通信设备具有的天线数量。
  13. 根据权利要求10或11所述的方法,其中,所述方法还包括:
    如果为所述第二无线通信设备分配的两个或两个以上资源单元在频域上不连续,则分别对不连续的每个所述资源单元的载波进行波束赋形。
  14. 根据权利要求10或11所述的方法,其中,所述方法还包括:
    如果为所述第二无线通信设备分配的两个或两个以上资源单元在频域上连续,并且所述两个或两个以上所述资源单元包括的子载波数之和等于第一子载波数,则将所述两个或两个以上资源单元的载波合并进行波束赋形。
  15. 根据权利要求10或11所述的方法,其中,所述方法还包括:
    如果为所述第二无线通信设备分配的两个或两个以上资源单元在频域上连续,并且多个所述资源单元包括的子载波数之和大于或小于第一子载波数,则对所述两个或两个以上资源单元的每个所述资源单元的载波分别进行波束赋形。
  16. 根据权利要求10或11所述的方法,其中,所述方法还包括:
    如果为所述第二无线通信设备分配的两个或两个以上资源单元在频域上连续,则将所述两个或两个以上所述资源单元的载波合并进行波束赋形。
  17. 一种通信资源单元分配装置,其中,应用于第一无线通信设备,所述装置包括:接收模块,其中,
    所述接收模块,配置为接收第二无线通信设备发送的消息,其中,所述消息包含指示所述第二无线通信设备具有的天线数量的信息元素。
  18. 一种通信资源单元分配装置,其中,应用于第二无线通信设备,所述装置包括:发送模块,其中,
    所述发送模块,配置为向第一无线通信设备发送消息,其中,所述消息包括用于指示所述第二无线通信设备具有的天线数量的信息元素。
  19. 一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至9或10至16任一项所述通信资源单元分配方法的步骤。
  20. 一种存储介质,其上存储由可执行程序,其中,所述可执行程序被处理器执行时实现如权利要求1至9或10至16任一项所述通信资源单元分配方法的步骤。
PCT/CN2019/123395 2019-12-05 2019-12-05 通信资源单元分配方法、装置、通信设备及存储介质 WO2021109085A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980003425.9A CN113228795B (zh) 2019-12-05 2019-12-05 通信资源单元分配方法、装置、通信设备及存储介质
PCT/CN2019/123395 WO2021109085A1 (zh) 2019-12-05 2019-12-05 通信资源单元分配方法、装置、通信设备及存储介质
US17/781,766 US20230010370A1 (en) 2019-12-05 2019-12-05 Method, communication device and storage medium for allocating communication resource units

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/123395 WO2021109085A1 (zh) 2019-12-05 2019-12-05 通信资源单元分配方法、装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021109085A1 true WO2021109085A1 (zh) 2021-06-10

Family

ID=76221056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123395 WO2021109085A1 (zh) 2019-12-05 2019-12-05 通信资源单元分配方法、装置、通信设备及存储介质

Country Status (3)

Country Link
US (1) US20230010370A1 (zh)
CN (1) CN113228795B (zh)
WO (1) WO2021109085A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115884398B (zh) * 2023-02-16 2023-05-02 天地信息网络研究院(安徽)有限公司 基于定向多波束天线的高机动自组网动态频率分配方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668402A (zh) * 2009-11-17 2012-09-12 高通股份有限公司 用于高速分组接入系统的多用户多输入和多输出
US20150146807A1 (en) * 2013-11-27 2015-05-28 Marvell World Trade Ltd. Sounding and tone block allocation for orthogonal frequency multiple access (ofdma) in wireless local area networks
WO2015163480A1 (en) * 2014-04-21 2015-10-29 Kabushiki Kaisha Toshiba Wireless communication terminal, memory card, wireless communication device and wireless communication method
CN105704822A (zh) * 2014-11-28 2016-06-22 索尼公司 频谱资源管理装置和方法、无线通信设备和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107113830B (zh) * 2014-11-01 2020-11-20 Lg电子株式会社 用于在无线lan中分配资源单元的方法和装置
EP3273729B1 (en) * 2015-03-20 2023-05-03 International Semiconductor Group Wireless communication integrated circuit and wireless communication method
CN106535251A (zh) * 2015-09-09 2017-03-22 中兴通讯股份有限公司 资源配置信息的处理方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668402A (zh) * 2009-11-17 2012-09-12 高通股份有限公司 用于高速分组接入系统的多用户多输入和多输出
US20150146807A1 (en) * 2013-11-27 2015-05-28 Marvell World Trade Ltd. Sounding and tone block allocation for orthogonal frequency multiple access (ofdma) in wireless local area networks
WO2015163480A1 (en) * 2014-04-21 2015-10-29 Kabushiki Kaisha Toshiba Wireless communication terminal, memory card, wireless communication device and wireless communication method
CN105704822A (zh) * 2014-11-28 2016-06-22 索尼公司 频谱资源管理装置和方法、无线通信设备和方法

Also Published As

Publication number Publication date
CN113228795A (zh) 2021-08-06
US20230010370A1 (en) 2023-01-12
CN113228795B (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
WO2020019351A1 (zh) 传输配置指示的配置方法及装置
WO2021007823A1 (zh) 信息指示、确定方法及装置、通信设备及存储介质
WO2021120121A1 (zh) 数据处理方法及装置、通信设备及存储介质
WO2021109085A1 (zh) 通信资源单元分配方法、装置、通信设备及存储介质
WO2024000541A1 (zh) 资源确定、多载波调度方法及装置、存储介质
WO2021109141A1 (zh) 通信连接配置方法、装置、通信设备及存储介质
US20220400406A1 (en) Data transmission method and apparatus, and communication device
US20230012708A1 (en) Transmission measurement method, transmission measurement device and storage medium
CN113383596A (zh) 网络分配向量的确定方法、装置及存储介质
WO2021114149A1 (zh) 重关联指示方法、装置及通信设备
CN113966601B (zh) 数据传输方法、装置、通信设备和存储介质
WO2023197263A1 (zh) 一种资源分配方法、装置、通信设备及存储介质
CN113261211B (zh) 资源分配方法、资源分配装置及存储介质
WO2022021190A1 (zh) 信息传输方法、装置、通信设备和存储介质
JP7378507B2 (ja) 通信リソース割り当て方法及び装置、並びにデータ伝送方法、装置及びアクセスポイント
JP7515617B2 (ja) データ伝送方法、装置、通信機器及び記憶媒体
WO2021179179A1 (zh) 传输数据的方法、装置、通信设备及存储介质
WO2024000551A1 (zh) 资源确定、多载波调度方法及装置、存储介质
RU2797215C1 (ru) Способ и устройство для передачи данных и устройство связи
RU2799998C1 (ru) Способ и устройство для передачи данных и устройство связи
WO2022205308A1 (zh) 信息传输方法、装置、终端设备、基站及存储介质
WO2022052122A1 (zh) 资源配置方法、装置、通信设备和存储介质
WO2021046729A1 (zh) 数据传输方法、装置及存储介质
CN114271009A (zh) 数据传输方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955268

Country of ref document: EP

Kind code of ref document: A1