WO2021184173A1 - 数据传输方法、装置及计算机存储介质 - Google Patents

数据传输方法、装置及计算机存储介质 Download PDF

Info

Publication number
WO2021184173A1
WO2021184173A1 PCT/CN2020/079559 CN2020079559W WO2021184173A1 WO 2021184173 A1 WO2021184173 A1 WO 2021184173A1 CN 2020079559 W CN2020079559 W CN 2020079559W WO 2021184173 A1 WO2021184173 A1 WO 2021184173A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay
parameter information
communication connection
communication connections
access
Prior art date
Application number
PCT/CN2020/079559
Other languages
English (en)
French (fr)
Inventor
董贤东
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to JP2022555881A priority Critical patent/JP7498790B2/ja
Priority to EP20925920.9A priority patent/EP4123981A4/en
Priority to CN202080000550.7A priority patent/CN113692726A/zh
Priority to BR112022018474A priority patent/BR112022018474A2/pt
Priority to US17/910,788 priority patent/US20230113756A1/en
Priority to KR1020227035530A priority patent/KR20220153627A/ko
Priority to PCT/CN2020/079559 priority patent/WO2021184173A1/zh
Publication of WO2021184173A1 publication Critical patent/WO2021184173A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0958Management thereof based on metrics or performance parameters
    • H04W28/0967Quality of Service [QoS] parameters
    • H04W28/0975Quality of Service [QoS] parameters for reducing delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0017Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
    • H04L1/0018Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement based on latency requirement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2416Real-time traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/14Multichannel or multilink protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present disclosure relates to communication technology, and in particular to a data transmission method, device and computer storage medium.
  • the wireless network standard (IEEE802.11) established a study group (Study Group, SG) to study the next-generation WLAN standard (IEEE802.11be).
  • the research scope is: 320MHz bandwidth transmission, multiple frequency bands/connections
  • the aggregation and coordination of multiple frequency bands/connections means that devices simultaneously communicate in frequency bands/connections such as 2.4GHz, 5.8GHz, and 6-7GHz.
  • the present disclosure provides a data transmission method, device and computer storage medium.
  • a data transmission method including:
  • Receive delay parameter information of multiple communication connections where the delay parameter information is used to reflect the access category (Access Category, AC) corresponding to the Time Sensitive Network (TSN) data type of each communication connection Delay
  • the to-be-sent TSN data is sent on the first communication connection that satisfies the TSN data transmission delay requirement from the plurality of communication connections.
  • the delay parameter information includes: AC access delay information corresponding to the TSN data type, and the method further includes:
  • the communication connection with the smallest AC access delay value corresponding to the TSN data type is selected as the first communication connection.
  • the delay parameter information includes: basic service set (Basic Service Set, BSS) load information and AC access delay information corresponding to the TSN data type;
  • BSS Basic Service Set
  • the method also includes:
  • a communication connection whose AC access delay value corresponding to the TSN data type is lower than the preset delay threshold and the BSS load value lower than the preset load threshold is selected as the first communication connection .
  • the selection of the communication connection whose AC access delay value corresponding to the TSN data type is lower than the preset delay threshold and the BSS load value lower than the preset load threshold as the first communication connection includes:
  • the communication connection with the smallest AC access delay value corresponding to the TSN data type is selected from the at least two communication connections as the first communication connection.
  • the selection of the communication connection whose AC access delay parameter value corresponding to the TSN data type is lower than the preset delay threshold and the BSS load value is lower than the preset load threshold as the first communication connection includes:
  • the receiving delay parameter information of multiple communication connections includes:
  • the beacon frame includes multiple connection identification fields, wherein the different connection identification fields are used to indicate different communication connections among the multiple communication connections.
  • the different connection identification domains are also used to indicate the communication frequency bands to which the different communication connections belong.
  • the connected identification domain includes:
  • the first field is used to indicate the communication connection identifier
  • the second field is used to indicate the communication frequency band identifier corresponding to the communication connection identifier.
  • the beacon frame includes an AC access delay field
  • the AC access delay field includes:
  • the third field is used to indicate the AC access delay corresponding to the TSN data type.
  • the delay parameter information further includes:
  • the BSS access delay information is used to indicate to monitor the next beacon frame that arrives.
  • a data transmission method which includes:
  • the delay parameter information is used to reflect the access category (AC) access delay situation corresponding to the time sensitive network (TSN) data type under each communication connection;
  • AC access category
  • TSN time sensitive network
  • the delay parameter information includes:
  • the delay parameter information includes: basic service set (BSS) load information and AC access delay information.
  • BSS basic service set
  • the delay parameter information further includes: BSS access delay information.
  • the broadcasting delay parameter information of multiple communication connections includes:
  • the beacon frame includes multiple connection identification fields, wherein the different connection identification fields are used to indicate different communication connections among the multiple communication connections.
  • the different connection identification domains are also used to indicate the communication frequency bands to which the different communication connections belong.
  • the connected identification domain includes:
  • the first field is used to indicate the communication connection identifier
  • the second field is used to indicate the communication frequency band identifier corresponding to the communication connection identifier.
  • the beacon frame includes an AC access delay field
  • the AC access delay field includes:
  • the third field is used to indicate the AC access delay corresponding to the TSN data type.
  • the multiple communication connections include:
  • the broadcasting delay parameter information of multiple communication connections includes:
  • the delay parameter information of the multiple communication connections is broadcast.
  • the broadcasting delay parameter information of multiple communication connections includes:
  • the delay parameter information of the multiple communication connections is broadcast.
  • a data transmission device which includes:
  • the first receiving unit is configured to receive delay parameter information of a plurality of communication connections, where the delay parameter information is used to reflect the access category (AC) access corresponding to the time sensitive network (TSN) data type of each communication connection Time delay
  • the first sending unit is configured to send the to-be-sent TSN data on the first communication connection that meets the TSN data transmission delay requirement from the plurality of communication connections based on the delay parameter information.
  • a data transmission device which includes:
  • the second sending unit is configured to broadcast delay parameter information of multiple communication connections, where the delay parameter information is used to reflect the access category (AC) access corresponding to the time sensitive network (TSN) data type of each communication connection Time delay
  • the second receiving unit is configured to receive TSN data sent based on the delay parameter information on the first communication connection of the plurality of communication connections.
  • a data transmission device including:
  • a memory for storing processor executable instructions
  • the processor is configured to implement the data transmission method of any one of the foregoing first aspects by executing the executable instruction.
  • a data transmission device including:
  • a memory for storing processor executable instructions
  • the processor is configured to implement the data transmission method of any one of the foregoing second aspects by executing the executable instruction.
  • a computer storage medium that stores executable instructions in the computer storage medium. After the executable instructions are executed by a processor, they can implement any one of the foregoing first aspects. Data transfer method.
  • any one of the foregoing second aspects can Data transfer method.
  • the site equipment receives delay parameter information of multiple communication connections, where the delay parameter information is used to reflect the AC access delay situation corresponding to the TSN data type under each communication connection; based on the delay parameter information, The first communication connection that meets the TSN data transmission delay requirement among the multiple communication connections sends the TSN data to be sent. In this way, the transmission delay of the TSN data can be reduced as much as possible, and the low delay requirement of the TSN data transmission can be met.
  • Fig. 1 is a schematic diagram showing the format of a BSS load element according to an exemplary embodiment
  • Fig. 2 is a schematic diagram showing a format of a BSS average access delay element according to an exemplary embodiment
  • Fig. 3 is a schematic diagram showing the format of a BSS access category access delay element according to an exemplary embodiment
  • Fig. 4 is a schematic diagram showing the format of an access type access delay field according to an exemplary embodiment
  • Fig. 5 is a first flow chart showing a data transmission method according to an exemplary embodiment
  • Fig. 6 is a schematic diagram showing the format of a BSS load element under multiple communication connections according to an exemplary embodiment
  • Fig. 7 is a schematic diagram showing the format of a BSS access delay element under multiple communication connections according to an exemplary embodiment
  • Fig. 8 is a schematic diagram showing the format of a BSS access category access delay element under multiple communication connections according to an exemplary embodiment
  • Fig. 9 is a second flowchart of a data transmission method according to an exemplary embodiment
  • Fig. 10 is a first block diagram showing a data transmission device according to an exemplary embodiment
  • Fig. 11 is a second block diagram of a data transmission device according to an exemplary embodiment
  • Fig. 12 is a first block diagram showing a device 800 for implementing data transmission processing according to an exemplary embodiment
  • Fig. 13 is a second block diagram showing a device 900 for implementing data transmission processing according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • the words "if” and “if” as used herein can be interpreted as “when” or “when” or “in response to certainty”.
  • IEEE802.11 established a study group (Study Group, SG) to study the next-generation WLAN standard (IEEE802.11be).
  • the research scope is: 320MHz bandwidth transmission, aggregation and coordination of multiple frequency bands/connections, etc. .
  • the aggregation and coordination of multiple frequency bands/connections means that devices simultaneously communicate in frequency bands/connections such as 2.4GHz, 5.8GHz, and 6-7GHz.
  • 802.11be should support the transmission of time-sensitive data.
  • BSS BSS AC access delay element
  • Figure 1 shows a schematic diagram of the format of the BSS payload element.
  • the format of the BSS payload element includes the following information: element ID, length, station count, channel usage Channel utilization and available admission capacity; among them, the information element identifier, length, and channel utilization rate each account for 1 byte (octet), and the station count and effective admission capacity each account for 2 bytes.
  • FIG. 2 shows the format diagram of the BSS Average Access Delay element (BSS Average Access Delay element). It can be seen from Figure 2 that the format of the BSS Average Access Delay element includes the following information: Element ID (Element ID) , Length (Length) and AP Average Access Delay (AP Average Access Delay), each of the above information occupies 1 byte (octet).
  • Element ID Element ID
  • Length Length
  • AP Average Access Delay AP Average Access Delay
  • FIG. 3 shows the format diagram of the BSS AC Access Delay element (BSS AC Access Delay element). It can be seen from Figure 3 that the format of the BSS access category access delay element includes the following information: Element Identifier (Element ID), length (Length), and access category access delay (Access Category Access Delay), where the access category access delay occupies 4 bytes; the information element identifier and length each occupies 1 byte.
  • Element ID Element ID
  • Length Length
  • Access Category Access Delay access delay
  • Figure 4 shows a schematic diagram of the format of the access category access delay field (Access category access delay subfields).
  • the format of the access category access delay field includes the following information: Maximum effort average access delay (Average access delay for best effort, AC_BE), average access delay for background (AC_BK), average access delay for video (AC_VI), and average access delay for voice (Average access delay for background) for Voice, AC_VO), where AC_BE, AC_BK, AC_VI and AC_VO each occupy 1 byte.
  • the above-mentioned BSS load element is mainly applicable when the site equipment roams from one BSS to another BSS, but it also serves as a reference for the site equipment accessing the BSS.
  • IEEE802.11be the device supports communication under multiple connections. Combined with the definition of IEEE802.11be, it should support low latency. In 802.11be, a similar existing mechanism is also required. To reduce the transmission delay.
  • Fig. 5 is a first flow chart showing a data transmission method according to an exemplary embodiment.
  • the data transmission method is used in an access point (AP) device, and the access point device includes but is not limited to a router device.
  • the data transmission method includes the following steps.
  • step S12 the delay parameter information of multiple communication connections is broadcast, and the delay parameter information is used to reflect the access delay status of the access category (AC) corresponding to the time sensitive network (TSN) data type under each communication connection. ;
  • step S14 on the first communication connection of the plurality of communication connections, the TSN data sent based on the delay parameter information is received.
  • the multiple communication connections include:
  • the delay parameter information includes: AC access delay information.
  • the delay parameter information includes: AC access delay information and BSS load information.
  • the delay parameter information may further include: AC access delay information and BSS access delay information.
  • the delay parameter information may further include: AC access delay information, BSS load information, and BSS access delay information.
  • broadcasting the delay parameter information of multiple communication connections includes:
  • beacon frame eliminates the need to define new message frames or signaling, and can save signaling overhead.
  • the beacon frame includes multiple connection identification fields, where different connection identification fields are used to indicate different communication connections among the multiple communication connections.
  • the different connection identification domains are also used to indicate the communication frequency bands to which the different communication connections belong.
  • the connected identification domain includes:
  • the first field is used to indicate the communication connection identifier
  • the second field is used to indicate the communication frequency band identifier corresponding to the communication connection identifier.
  • the beacon frame includes an AC access delay field
  • the AC access delay field includes:
  • the third field is used to indicate the AC access delay corresponding to the TSN data type.
  • Figure 6 shows a schematic diagram of the format of the BSS load element under multiple communication connections.
  • the format of the BSS load element under multiple communication connections includes element ID, length, and multiple connection identification fields. It also includes the station count of each communication connection (Station count), the channel utilization rate (Channel utilization) and the effective admission capacity (Available admission capacity).
  • FIG. 7 shows a schematic diagram of the format of a BSS Access Delay element (BSS Access Delay element) under multiple communication connections. It can be seen from Figure 7 that the format of the BSS Access Delay element includes: Element ID (Element ID), Length and multiple connection identification fields also include AP Average Access Delay for each communication connection.
  • Element ID Element ID
  • Length Length
  • multiple connection identification fields also include AP Average Access Delay for each communication connection.
  • FIG. 8 shows a schematic diagram of the format of a BSS AC Access Delay element (BSS AC Access Delay element) under multiple communication connections.
  • the format of the BSS Access Delay element includes an element identifier ( Element ID), Length (Length) and multiple connection identification fields, as well as the access category access delay of each communication connection (Access Category Access Delay), where the access category access delay of each communication connection includes TSN data AC access delay corresponding to the type.
  • AC Access delay and BSS Access delay can be consistent with those defined in existing standards, such as:
  • the service cannot access the channel (service unable to access channel);
  • broadcasting the delay parameter information of multiple communication connections includes:
  • the delay parameter information of the multiple communication connections is broadcast.
  • broadcasting the delay parameter information of multiple communication connections includes:
  • the delay parameter information of the multiple communication connections is broadcast.
  • the access point device broadcasts the delay parameter information of multiple communication connections, and the delay parameter information is used to reflect the AC access delay corresponding to the TSN data type under each communication connection
  • the delay parameter information is used to reflect the AC access delay corresponding to the TSN data type under each communication connection
  • receiving TSN data sent based on the delay parameter information On the first communication connection of the plurality of communication connections, receiving TSN data sent based on the delay parameter information; in this way, it is convenient for the site equipment to satisfy the requirements in the plurality of communication connections based on the delay parameter information
  • the TSN data to be sent is sent on the first communication connection required by the TSN data transmission delay. In this way, the transmission delay of the TSN data can be reduced as much as possible, and the low delay requirement of the TSN data transmission can be met.
  • Fig. 9 is a second flowchart of a data transmission method according to an exemplary embodiment.
  • the data transmission method is used for site equipment including but not limited to laptop computers, tablet computers and other user equipment that can be connected to the Internet. As shown in Figure 9, the data transmission method includes the following steps.
  • step S22 receiving delay parameter information of a plurality of communication connections, where the delay parameter information is used to reflect the access delay status of the access category (AC) corresponding to the time sensitive network (TSN) data type under each communication connection ;
  • step S24 based on the delay parameter information, the to-be-sent TSN data is sent on the first communication connection that satisfies the TSN data transmission delay requirement from the plurality of communication connections.
  • the multiple communication connections include:
  • the site equipment supports 2.4GHz, 5.8GHz, and 6GHz
  • the access point equipment supports 2.4GHz, 5.8GHz, and 6GHz.
  • the site equipment currently only works at 2.4GHz. According to the delay parameter information received under 2.4GHz, It is determined that the delay is the lowest at 6GHz, and the TSN data is transmitted at 6GHz.
  • the site equipment selects the first communication connection that meets the TSN data transmission delay requirement from the multiple communication connections according to the received delay parameter information of the multiple communication connections, and transmits on the first communication connection.
  • the TSN data to be transmitted can reduce the time delay of transmitting the TSN data as much as possible, and can ensure the transmission of the TSN data.
  • the delay parameter information includes: AC access delay information corresponding to the TSN data type, and the method further includes:
  • Step S23a From the multiple communication connections, the communication connection with the smallest AC access delay value corresponding to the TSN data type is selected as the first communication connection.
  • the multiple communication connections include the AC access delay d1 of the TSN data type 1 of the communication connection 1, the AC access delay d2 of the TSN data type 1 of the communication connection 2, and the TSN data type of the communication connection 3.
  • the delay parameter information includes: BSS load information and AC access delay information corresponding to the TSN data type; the method further includes:
  • Step S23b From the plurality of communication connections, select the communication connection whose AC access delay value corresponding to the TSN data type is lower than the preset delay threshold and the BSS load value is lower than the preset load threshold as the first One communication connection.
  • the delay parameter information includes: AC access delay d1 of TSN data type 1 of communication connection 1, AC access delay d2 of TSN data type 1 of communication connection 2, and TSN data of communication connection 3.
  • step S23b includes:
  • Step S23b1 Responding that the BSS load values of the at least two communication connections are lower than the preset load threshold and the AC access delay parameter values corresponding to the TSN data types of the at least two communication connections are lower than the preset time delay Threshold, from the at least two communication connections, the communication connection with the smallest AC access delay value corresponding to the TSN data type is selected as the first communication connection.
  • the delay parameter information includes: AC access delay d1 of TSN data type 2 of communication connection 1, AC access delay d2 of TSN data type 2 of communication connection 2, and TSN data of communication connection 3.
  • step S23b includes:
  • Step S23b2 In response to the AC access delay value corresponding to the TSN data type of the at least two communication connections being lower than the preset delay threshold, and the BSS load value is lower than the preset load threshold, from the at least two communication connections The communication connection with the smallest BSS load value is selected as the first communication connection.
  • the delay parameter information includes: AC access delay d1 of TSN data type 2 of communication connection 1, AC access delay d2 of TSN data type 2 of communication connection 2, and TSN data of communication connection 3.
  • step S22 includes:
  • Step S22a Receive the time delay parameter information of the multiple communication connections broadcast by the beacon frame.
  • the beacon frame includes multiple connection identification fields, and the different connection identification fields are used to indicate different communication connections among the multiple communication connections.
  • the different connection identification domains are also used to indicate the communication frequency bands to which the different communication connections belong.
  • the connected identification field includes: a first field, used to indicate a communication connection identification; a second field, used to indicate a communication frequency band identification corresponding to the communication connection identification.
  • the beacon frame includes an AC access delay field
  • the AC access delay field includes:
  • the third field is used to indicate the AC access delay corresponding to the TSN data type.
  • the delay parameter information further includes:
  • the BSS access delay information is used to indicate to monitor the next beacon frame that arrives.
  • the site equipment can clearly understand the time to monitor the next arriving beacon frame after learning the BSS access delay information.
  • the station equipment receives the delay parameter information of multiple communication connections, and the delay parameter information is used to reflect the AC access delay situation corresponding to the TSN data type under each communication connection; According to the delay parameter information, the TSN data to be sent is sent on the first communication connection that meets the TSN data transmission delay requirement from the multiple communication connections. In this way, the delay in transmitting the TSN data can be minimized to meet the Low latency requirements for TSN data transmission.
  • Fig. 10 is a first block diagram showing a data transmission device according to an exemplary embodiment.
  • the data transmission device is applied to site equipment.
  • the device includes a first receiving unit 10 and a first sending unit 20; wherein,
  • the first receiving unit 10 is configured to receive delay parameter information of a plurality of communication connections, and the delay parameter information is used to reflect the access category (AC) corresponding to the time sensitive network (TSN) data type of each communication connection. ) Access delay situation;
  • the first sending unit 20 is configured to send the to-be-sent TSN data on the first communication connection that meets the TSN data transmission delay requirement from the plurality of communication connections based on the delay parameter information.
  • the device further includes:
  • the determining unit 30 is configured to select the first communication connection from the plurality of communication connections.
  • the delay parameter information includes: AC access delay information corresponding to the TSN data type, and the determining unit 30 is configured to:
  • the communication connection with the smallest AC access delay value corresponding to the TSN data type is selected as the first communication connection.
  • the delay parameter information includes: BSS load information and AC access delay information corresponding to the TSN data type; the determining unit 30 is configured to: select from the plurality of communication connections A communication connection in which the AC access delay value corresponding to the TSN data type is lower than the preset delay threshold and the BSS load value is lower than the preset load threshold is regarded as the first communication connection.
  • the determining unit 30 is configured to respond to that the BSS load values of at least two communication connections are lower than the preset load threshold and the TSN data types of the at least two communication connections correspond to The AC access delay parameter value is lower than the preset delay threshold, and the communication connection with the smallest AC access delay value corresponding to the TSN data type is selected from the at least two communication connections as the first communication connection.
  • the determining unit 30 is configured to respond to that the AC access delay value corresponding to the TSN data type of the at least two communication connections is lower than the preset delay threshold, and the BSS load value is lower than the preset delay threshold.
  • a load threshold is set, and the communication connection with the smallest BSS load value is selected from the at least two communication connections as the first communication connection.
  • the first receiving unit 10 is configured to:
  • the beacon frame includes multiple connection identification fields, wherein the different connection identification fields are used to indicate different communication connections among the multiple communication connections.
  • the specific structures of the first receiving unit 10, the first sending unit 20, and the determining unit 30 can be determined by the data transmission device or the central processing unit (CPU, Central Processing Unit) in the site equipment to which the data transmission device belongs.
  • CPU Central Processing Unit
  • Microprocessor MCU, Micro Controller Unit
  • DSP Digital Signal Processor
  • PLC Programmable Logic Device
  • the data transmission device described in this embodiment may be installed on the site equipment side.
  • each processing module in the data transmission device of the embodiment of the present disclosure can be understood by referring to the relevant description of the data transmission method applied to the site equipment side.
  • the processing module may be implemented by an analog circuit that implements the functions described in the embodiments of the present disclosure, or may be implemented by running software that implements the functions described in the embodiments of the present disclosure on a device.
  • the data transmission device described in the embodiment of the present disclosure can minimize the time delay of transmitting TSN data and meet the low time delay requirement of TSN data transmission.
  • Fig. 11 is a second block diagram showing a data transmission device according to an exemplary embodiment.
  • the data transmission device is applied to AP equipment.
  • the device includes a second sending unit 40 and a second receiving unit 50.
  • the second sending unit 40 is configured to broadcast delay parameter information of multiple communication connections, and the delay parameter information is used to reflect the access category (AC) corresponding to the time sensitive network (TSN) data type of each communication connection. ) Access delay situation;
  • the second receiving unit 50 is configured to receive TSN data sent based on the delay parameter information on the first communication connection of the multiple communication connections.
  • the specific structures of the second sending unit 40 and the second receiving unit 50 can be implemented by the CPU, MCU, DSP, or PLC in the data transmission device or the AP device to which the data transmission device belongs.
  • the data transmission device described in this embodiment may be installed on the AP device side.
  • each processing module in the data transmission device in the embodiment of the present disclosure can be understood by referring to the relevant description of the data transmission method applied to the AP device.
  • the module may be realized by an analog circuit that realizes the functions described in the embodiments of the present disclosure, or may be realized by running software that performs the functions described in the embodiments of the present disclosure on the device.
  • the data transmission device described in the embodiment of the present disclosure can minimize the time delay of transmitting TSN data and meet the low time delay requirement of TSN data transmission.
  • Fig. 12 is a block diagram showing a device 800 for implementing information processing according to an exemplary embodiment.
  • the device 800 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the device 800 may include one or more of the following components: a processing component 802, a memory 804, a power component 806, a multimedia component 808, an audio component 810, an input/output (I/O, Input/Output) interface 812, The sensor component 814, and the communication component 816.
  • a processing component 802 a memory 804, a power component 806, a multimedia component 808, an audio component 810, an input/output (I/O, Input/Output) interface 812, The sensor component 814, and the communication component 816.
  • the processing component 802 generally controls the overall operations of the device 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
  • the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
  • the memory 804 is configured to store various types of data to support operations in the device 800. Examples of such data include instructions for any application or method operating on the device 800, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage devices or their combination, such as static random access memory (Static Random-Access Memory, SRAM), electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory). -Erasable Programmable Read Only Memory, EEPROM, Erasable Programmable Read Only Memory (EPROM), Programmable Read-only Memory (PROM), Read Only Memory (Read Only Memory) , ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EPROM Erasable Programmable Read Only Memory
  • PROM Programmable Read-only Memory
  • Read Only Memory Read Only Memory
  • the power component 806 provides power to various components of the device 800.
  • the power component 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the device 800.
  • the multimedia component 808 includes a screen that provides an output interface between the device 800 and the user.
  • the screen may include a liquid crystal display (Liquid Crystal Display, LCD) and a touch panel (Touch Panel, TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor can not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC for short).
  • the microphone When the device 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal may be further stored in the memory 804 or transmitted via the communication component 816.
  • the audio component 810 further includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module.
  • the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 814 includes one or more sensors for providing the device 800 with various aspects of status assessment.
  • the sensor component 814 can detect the open/close state of the device 800 and the relative positioning of the components.
  • the component is the display and the keypad of the device 800.
  • the sensor component 814 can also detect the position change of the device 800 or a component of the device 800. , The presence or absence of contact between the user and the device 800, the orientation or acceleration/deceleration of the device 800, and the temperature change of the device 800.
  • the sensor component 814 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 814 may also include a light sensor, such as a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) or a charge-coupled device (Charge-coupled Device, CCD) image sensor for use in imaging applications.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge-coupled Device
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the device 800 and other devices.
  • the device 800 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 further includes a Near Field Communication (NFC) module to facilitate short-range communication.
  • NFC Near Field Communication
  • the NFC module can be based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (Blue Tooth, BT) technology and Other technologies to achieve.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • the apparatus 800 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (Digital Signal Processor, DSP), and digital signal processing devices (Digital Signal Processing Device, DSPD), programmable logic device (Programmable Logic Device, PLD), Field Programmable Gate Array (Field Programmable Gate Array, FPGA), controller, microcontroller, microprocessor or other electronic components to implement the above Data transmission method.
  • ASIC application specific integrated circuits
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD programmable logic device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components to implement the above Data transmission method.
  • a non-transitory computer storage medium including executable instructions, such as a memory 804 including executable instructions.
  • the executable instructions can be executed by the processor 820 of the device 800 to complete the foregoing method.
  • the non-transitory computer storage medium may be ROM, random access memory (Random Access Memory, RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • Fig. 13 is a block diagram showing a device 900 for information processing according to an exemplary embodiment.
  • the device 900 may be provided as a server. 13
  • the device 900 includes a processing component 922, which further includes one or more processors, and a memory resource represented by a memory 932, for storing instructions that can be executed by the processing component 922, such as application programs.
  • the application program stored in the memory 932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to execute the aforementioned data transmission method applied to the aforementioned.
  • the device 900 may also include a power supply component 926 configured to perform power management of the device 900, a wired or wireless network interface 950 configured to connect the device 900 to a network, and an input output (I/O) interface 958.
  • the device 900 can operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开实施例公开了一种数据传输方法、装置及计算机存储介质,所述方法包括:接收多个通信连接的时延参数信息,所述时延参数信息用于反映每个通信连接下时间敏感网络(TSN)数据类型对应的访问类别(AC)接入时延情况;基于所述时延参数信息,在从所述多个通信连接中满足TSN数据传输时延要求的第一通信连接上,发送待发送的TSN数据。

Description

数据传输方法、装置及计算机存储介质 技术领域
本公开涉及通信技术,尤其涉及一种数据传输方法、装置及计算机存储介质。
背景技术
相关技术中,无线网络标准(IEEE802.11)成立了研究组阶段(Study Group,SG)研究下一代WLAN标准(IEEE802.11be),所研究的范围为:320MHz的带宽传输,多个频段/连接的聚合及协同等。其中,多个频段/连接的聚合及协同是指设备间同时在2.4GHz、5.8GHz及6-7GHz等频段/连接下进行通信。
随着高吞吐量、低延迟应用的大量涌现,保证低延迟尤为重要。然而,在相关技术中,尚无支持多连接下低时延需求的解决方案。
发明内容
本公开提供一种数据传输方法、装置及计算机存储介质。
根据本公开实施例的第一方面,提供一种数据传输方法,包括:
接收多个通信连接的时延参数信息,所述时延参数信息用于反映每个通信连接下时间敏感网络(Time Sensitive Network,TSN)数据类型对应的访问类别(Access Category,AC)接入时延情况;
基于所述时延参数信息,在从所述多个通信连接中满足TSN数据传输时延要求的第一通信连接上,发送待发送的TSN数据。
上述方案中,所述时延参数信息包括:TSN数据类型对应的AC接入时延信息,所述方法还包括:
从所述多个通信连接中,选择所述TSN数据类型对应的AC接入时延 值最小的通信连接,作为所述第一通信连接。
上述方案中,所述时延参数信息包括:基本服务集(Basic Service Set,BSS)负载信息和TSN数据类型对应的AC接入时延信息;
所述方法还包括:
从所述多个通信连接中,选择TSN数据类型对应的AC接入时延值低于预设时延阈值、且BSS负载值低于预设负载阈值的通信连接,作为所述第一通信连接。
上述方案中,所述选择TSN数据类型对应的AC接入时延值低于预设时延阈值、且BSS负载值低于预设负载阈值的通信连接,作为所述第一通信连接,包括:
响应于至少两个通信连接的BSS负载值均低于所述预设负载阈值且所述至少两个通信连接的TSN数据类型对应的AC接入时延参数值低于预设时延阈值,从所述至少两个通信连接中选择TSN数据类型对应的AC接入时延值最小的通信连接,作为所述第一通信连接。
上述方案中,所述选择TSN数据类型对应的AC接入时延参数值低于预设时延阈值、且BSS负载值低于预设负载阈值的通信连接,作为第一通信连接,包括:
响应于至少两个通信连接的TSN数据类型对应的AC接入时延值低于预设时延阈值,且BSS负载值低于预设负载阈值,从所述至少两个通信连接中选择BSS负载值最小的通信连接,作为第一通信连接。
上述方案中,所述接收多个通信连接的时延参数信息,包括:
接收通过信标帧广播的所述多个通信连接的时延参数信息;
所述信标帧中包含有多个连接标识域,其中,不同所述连接标识域,用于指示所述多个通信连接中的不同通信连接。
上述方案中,不同所述连接标识域,还用于指示不同所述通信连接所属的通信频段。
上述方案中,所连接标识域,包括:
第一字段,用于指示通信连接标识;
第二字段,用于指示所述通信连接标识对应的通信频段标识。
上述方案中,所述信标帧中包含有AC接入时延域,所述AC接入时延域,包括:
第三字段,用于指示所述TSN数据类型对应的AC接入时延。
上述方案中,所述时延参数信息,还包括:
BSS接入时延信息,用于指示监听下一次到达的信标帧。
根据本公开实施例的第二方面,提供一种数据传输方法,其中,包括:
广播多个通信连接的时延参数信息,所述时延参数信息用于反映每个通信连接下时间敏感网络(TSN)数据类型对应的访问类别(AC)接入时延情况;
在所述多个通信连接的第一通信连接上,接收基于所述时延参数信息发送的TSN数据。
上述方案中,所述时延参数信息包括:
AC接入时延信息;
或者,
所述时延参数信息包括:基本服务集(BSS)负载信息和AC接入时延信息。
上述方案中,所述时延参数信息还包括:BSS接入时延信息。
上述方案中,所述广播多个通信连接的时延参数信息,包括:
通过信标帧广播所述多个通信连接的时延参数信息。
上述方案中,所述信标帧中包含有多个连接标识域,其中,不同所述连接标识域,用于指示所述多个通信连接中的不同通信连接。
上述方案中,不同所述连接标识域,还用于指示不同所述通信连接所属的通信频段。
上述方案中,所连接标识域,包括:
第一字段,用于指示通信连接标识;
第二字段,用于指示所述通信连接标识对应的通信频段标识。
上述方案中,所述信标帧中包含有AC接入时延域,所述AC接入时延域,包括:
第三字段,用于指示所述TSN数据类型对应的AC接入时延。
上述方案中,所述多个通信连接,包括:
相同通信频段的多个通信连接;
和/或
不同通信频段的多个通信连接。
上述方案中,所述广播多个通信连接的时延参数信息,包括:
在与站点设备建立的每个通信连接中,广播所述多个通信连接的时延参数信息。
上述方案中,所述广播多个通信连接的时延参数信息,包括:
当与站点设备建立至少一个通信连接时,在与所述站点设备建立的一个通信连接中,广播所述多个通信连接的时延参数信息。
根据本公开实施例的第三方面,提供一种数据传输装置,其中,包括:
第一接收单元,被配置为接收多个通信连接的时延参数信息,所述时延参数信息用于反映每个通信连接下时间敏感网络(TSN)数据类型对应的访问类别(AC)接入时延情况;
第一发送单元,被配置为基于所述时延参数信息,在从所述多个通信连接中满足TSN数据传输时延要求的第一通信连接上,发送待发送的TSN数据。
根据本公开实施例的第四方面,提供一种数据传输装置,其中,包括:
第二发送单元,被配置为广播多个通信连接的时延参数信息,所述时延参数信息用于反映每个通信连接下时间敏感网络(TSN)数据类型对应的 访问类别(AC)接入时延情况;
第二接收单元,被配置为在所述多个通信连接的第一通信连接上,接收基于所述时延参数信息发送的TSN数据。
根据本公开实施例的第五方面,提供一种数据传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为通过执行所述可执行指令,实现前述任意一个第一方面所述的数据传输方法。
根据本公开实施例的第六方面,提供一种数据传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为通过执行所述可执行指令,实现前述任意一个第二方面所述的数据传输方法。
根据本公开实施例的第七方面,提供一种计算机存储介质,所述计算机存储介质中存储有可执行指令,所述可执行指令被处理器执行之后,能够实现前述任意一个第一方面所述的数据传输方法。
根据本公开实施例的第八方面,提供一种计算机存储介质,所述计算机存储介质中存储有可执行指令,所述可执行指令被处理器执行之后,能够实现前述任意一个第二方面所述的数据传输方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
站点设备接收多个通信连接的时延参数信息,所述时延参数信息用于反映每个通信连接下TSN数据类型对应的AC接入时延情况;基于所述时延参数信息,在从所述多个通信连接中满足TSN数据传输时延要求的第一通信连接上,发送待发送的TSN数据,如此,能尽量减小传输TSN数据的时延,满足TSN数据传输的低时延要求。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释 性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的BSS负载元素的格式示意图;
图2是根据一示例性实施例示出的BSS平均接入时延元素格式示意图;
图3是根据一示例性实施例示出的BSS访问类别接入延时时延元素的格式示意图;
图4是根据一示例性实施例示出的访问类别接入时延字段的格式示意图;
图5是根据一示例性实施例示出的一种数据传输方法的流程图一;
图6是根据一示例性实施例示出的多通信连接下BSS负载元素的格式示意图;
图7是根据一示例性实施例示出的多通信连接下BSS接入时延元素的格式示意图;
图8是根据一示例性实施例示出的多通信连接下BSS访问类别接入时延元素的格式示意图;
图9是根据一示例性实施例示出的一种数据传输方法的流程图二;
图10是根据一示例性实施例示出的一种数据传输装置的框图一;
图11是根据一示例性实施例示出的一种数据传输装置的框图二;
图12是根据一示例性实施例示出的一种用于实现数据传输处理的装置800的框图一;
图13是根据一示例性实施例示出的一种用于实现数据传输处理的装置900的框图二。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“一个”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
相关技术中,IEEE802.11成立了研究组阶段(Study Group,SG)研究下一代WLAN标准(IEEE802.11be),所研究的范围为:320MHz的带宽传输,多个频段/连接的聚合及协同等。其中,多个频段/连接的聚合及协同是指设备间同时在2.4GHz、5.8GHz及6-7GHz等频段/连接下进行通信。
在IEEE802.11be的范围(scope)中,802.11be应该支持时间敏感性较高数据的传输。
在现有标准中,为了保证站点设备能够快速的接入网络,引入了BSS负载元素(BSS load element)、BSS接入时延元素(BSS Access delay element) 及BSS AC接入时延元素(BSS AC Access delay element)。
图1示出了BSS负载元素的格式示意图,从图1可以看出,该BSS负载元素的格式包括以下信息:元素标识(Element ID),长度(Length),站点计数(Station count)、信道使用率(Channel utilization)和有效接纳能力(Available admission capacity);其中,信息元素标识、长度和信道使用率各占1字节(octet),站点计数和有效接纳能力各占2字节。
图2示出了BSS平均接入时延元素(BSS Average Access Delay element)的格式示意图,从图2可以看出,该BSS平均接入时延元素的格式包括以下信息:元素标识(Element ID),长度(Length)和接入点平均接入时延(AP Average Access Delay),上述各个信息各占1字节(octet)。
图3示出了BSS访问类别接入时延元素(BSS AC Access Delay element)的格式示意图,从图3可以看出,该BSS访问类别接入时延元素的格式包括以下信息:元素标识(Element ID),长度(Length)和访问类别接入时延(Access Category Access Delay),其中,访问类别接入时延占4字节;信息元素标识和长度各占1字节。
图4示出了访问类别接入时延字段(Access category access delay subfields)的格式示意图,从图4可以看出,该访问类别接入时延字段的格式包括以下信息:最大努力的平均访问延迟(Average access delay for best effort,简称AC_BE)、后台平均访问延迟(Average access delay for background,简称AC_BK)、视频平均访问延迟(Average Access delay for video,AC_VI)和话音平均接入延迟(Average access delay for Voice,AC_VO),其中,AC_BE、AC_BK、AC_VI和AC_VO各占1字节。
上述中BSS负载元素主要适用于当站点设备从一个BSS漫游到另一个BSS中用,但对接入BSS的站点设备也起到参考作用。
上述中的信息元素都是应用到一个连接下,但IEEE802.11be中设备支持在多个连接下进行通信,结合IEEE802.11be定义的应该支持低时延,在 802.11be中也需要类似现有机制来减小传输时延。
基于上述无线通信系统,如何在多连接下减小数据传输时延,提出本公开方法各个实施例。
图5是根据一示例性实施例示出的一种数据传输方法的流程图一,该数据传输方法用于接入点(Access Point,AP)设备,该接入点设备包括但不限于路由器设备。如图5所示,该数据传输方法包括以下步骤。
在步骤S12中,广播多个通信连接的时延参数信息,所述时延参数信息用于反映每个通信连接下时间敏感网络(TSN)数据类型对应的访问类别(AC)接入时延情况;
在步骤S14中,在所述多个通信连接的第一通信连接上,接收基于所述时延参数信息发送的TSN数据。
其中,所述多个通信连接,包括:
相同通信频段的多个通信连接;
和/或
不同通信频段的多个通信连接。
比如,在2.4GHz下细分有3个带宽,建立3个通信连接,记为link1、link2和link3;在5.8GHz下细分有5个带宽,建立5个通信连接,记为link4、link5、link6、link7和link8。
在一些实施例中,所述时延参数信息包括:AC接入时延信息。
在一些实施例中,所述时延参数信息包括:AC接入时延信息和BSS负载信息。
在一些实施例中,所述时延参数信息还可包括:AC接入时延信息和BSS接入时延信息。
在一些实施例中,所述时延参数信息还可包括:AC接入时延信息、BSS负载信息和BSS接入时延信息。
在一些实施例中,广播多个通信连接的时延参数信息,包括:
通过信标(beacon)帧广播所述多个通信连接的时延参数信息。
如此,通过信标帧广播该多个通信连接的实验参数信息,无需定义新的消息帧或信令,且能节省信令开销。
在一些实施例中,所述信标帧中包含有多个连接标识域,其中,不同所述连接标识域,用于指示所述多个通信连接中的不同通信连接。
在一些实施例中,不同所述连接标识域,还用于指示不同所述通信连接所属的通信频段。
在一些实施例中,所连接标识域,包括:
第一字段,用于指示通信连接标识;
第二字段,用于指示所述通信连接标识对应的通信频段标识。
例如,用三个比特位标识通信频段,“000”表示2.4GHz,“001”表示3.6GHz,“010”表示4.9及5GHz,“011”表示6-7GHz,“100”表示60GHz等等。
在一些实施例中,所述信标帧中包含有AC接入时延域,所述AC接入时延域,包括:
第三字段,用于指示所述TSN数据类型对应的AC接入时延。
图6示出了多通信连接下BSS负载元素的格式示意图,如图6所示,多通信连接下BSS负载元素的格式包括元素标识(Element ID),长度(Length)和多个连接标识域,还包括每个通信连接的站点计数(Station count)、信道使用率(Channel utilization)和有效接纳能力(Available admission capacity)。
图7示出了多通信连接下BSS接入时延元素(BSS Access Delay element)的格式示意图,从图7可以看出,该BSS接入时延元素的格式包括:元素标识(Element ID),长度(Length)和多个连接标识域,还包括每个通信连接的接入点平均接入时延(AP Average Access Delay)。
图8示出了多通信连接下BSS访问类别接入时延元素(BSS AC Access  Delay element)的格式示意图,从图8可以看出,该BSS访问类别接入时延元素的格式包括元素标识(Element ID),长度(Length)和多个连接标识域,以及每个通信连接的访问类别接入时延(Access Category Access Delay),其中,每个通信连接的访问类别接入时延包括TSN数据类型对应的AC接入时延。
为了保证公平性,AC Access delay及BSS Access delay所采用的参数,可以与现有标准中定义的参数一致,譬如:
0:Access Delay<8μs
1:8μs≤Access Delay<16μs
2≤n≤14:n×8μs≤Access Delay<(n+1)8μs
15:120μs≤Access Delay<128μs
16:128μs≤Access Delay<144μs
17≤n≤106:(n×16)-128μs≤Access Delay<((n+1)×16)-128μs
107:1584μs≤Access Delay<1600μs
108:1600μs≤Access Delay<1632μs
109≤n≤246:(n×32)-1856μs≤Access Delay<((n+1)×32)-1856μs
247:6048μs≤Access Delay<6080μs
248:6080μs≤Access Delay<8192μs
249:8192μs≤Access Delay<12288μs
250:12288μs≤Access Delay<16384μs
251:16384μs≤Access Delay<20480μs
252:20480μs≤Access Delay<24576μs
253:24576μs≤Access Delay
254:服务无法访问通道(service unable to access channel);
当AC Access delay域为8个比特位,当置为“00000000”,标识n=0; 当置为“00000001”,标识n=1。
在一些实施例中,广播多个通信连接的时延参数信息,包括:
在与站点设备建立的每个通信连接中,广播所述多个通信连接的时延参数信息。
如此,通过向每个通信连接广播该多个通信连接的时延参数信息,能提高站点设备获知该多个通信连接的时延参数信息的机率。
在一些实施例中,广播多个通信连接的时延参数信息,包括:
当与站点设备建立至少一个通信连接时,在与所述站点设备建立的一个通信连接中,广播所述多个通信连接的时延参数信息。
如此,能够节省传输资源。
本公开实施例所述的技术方案,接入点设备广播多个通信连接的时延参数信息,所述时延参数信息用于反映每个通信连接下TSN数据类型对应的AC接入时延情况;在所述多个通信连接的第一通信连接上,接收基于所述时延参数信息发送的TSN数据;如此,便于站点设备基于所述时延参数信息,在所述多个通信连接中满足TSN数据传输时延要求的第一通信连接上,发送待发送的TSN数据,如此,能尽量减小传输TSN数据的时延,满足TSN数据传输的低时延要求。
图9是根据一示例性实施例示出的一种数据传输方法的流程图二,该数据传输方法用于站点设备,该站点设备包括但不限于笔记本电脑、平板电脑及其它可以联网的用户设备。如图9所示,该数据传输方法包括以下步骤。
在步骤S22中,接收多个通信连接的时延参数信息,所述时延参数信息用于反映每个通信连接下时间敏感网络(TSN)数据类型对应的访问类别(AC)接入时延情况;
在步骤S24中,基于所述时延参数信息,在从所述多个通信连接中满 足TSN数据传输时延要求的第一通信连接上,发送待发送的TSN数据。
本公开实施例中,所述多个通信连接包括:
相同通信频段的多个通信连接;
和/或
不同通信频段的多个通信连接。
示例性地,站点设备支持2.4GHz、5.8GHz和6GHz,接入点设备支持2.4GHz、5.8GHz和6GHz,站点设备当前只工作在2.4GHz,根据在2.4GHz下接收到的时延参数信息,确定在6GHz下时延最低,则选择在6GHz下传输TSN数据。
如此,站点设备根据接收到的多个通信连接的时延参数信息,从所述多个通信连接中选择出满足TSN数据传输时延要求的第一通信连接,在所述第一通信连接上传输待传输的TSN数据,相对于盲目选择任意一个通信连接作为第一通信连接而言,能够尽量减小传输TSN数据的时延,且能保证TSN数据的传输。
在一些实施例中,所述时延参数信息包括:TSN数据类型对应的AC接入时延信息,所述方法还包括:
步骤S23a:从所述多个通信连接中,选择所述TSN数据类型对应的AC接入时延值最小的通信连接,作为所述第一通信连接。
示例性地,所述多个通信连接包括通信连接1的TSN数据类型1的AC接入时延d1、通信连接2的TSN数据类型1的AC接入时延d2和通信连接3的TSN数据类型1的AC接入时延d3,若d1>d2>d3,则确定通信连接3作为第一通信连接。
在一些实施例中,所述时延参数信息包括:BSS负载信息和TSN数据类型对应的AC接入时延信息;所述方法还包括:
步骤S23b:从所述多个通信连接中,选择TSN数据类型对应的AC接入时延值低于预设时延阈值、且BSS负载值低于预设负载阈值的通信连接, 作为所述第一通信连接。
示例性地,所述时延参数信息包括:通信连接1的TSN数据类型1的AC接入时延d1、通信连接2的TSN数据类型1的AC接入时延d2,通信连接3的TSN数据类型1的AC接入时延d3,其中,d1>d2>d3;通信连接1的BSS负载值r1、通信连接2的BSS负载值r2,通信连接3的BSS负载值r3,若r1<r2<r3;若通信连接2、通信连接3的接入时延满足TSN数据类型1的时延要求,即低于预设时延阈值,通信连接2的负载值r2低于预设负载阈值,通信连接3的负载值r3高于预设负载阈值,那么,选择通信连接2作为第一通信连接。
在一些实施例中,步骤S23b,包括:
步骤S23b1:响应于至少两个通信连接的BSS负载值均低于所述预设负载阈值且所述至少两个通信连接的TSN数据类型对应的AC接入时延参数值低于预设时延阈值,从所述至少两个通信连接中选择TSN数据类型对应的AC接入时延值最小的通信连接,作为所述第一通信连接。
示例性地,所述时延参数信息包括:通信连接1的TSN数据类型2的AC接入时延d1、通信连接2的TSN数据类型2的AC接入时延d2,通信连接3的TSN数据类型2的AC接入时延d3,其中,d1>d2>d3;通信连接1的BSS负载值r1、通信连接2的BSS负载值r2,通信连接3的BSS负载值r3,若r1<r2<r3;若通信连接2、通信连接3的接入时延满足TSN数据类型2的时延要求,即低于预设时延阈值,通信连接2的负载值r2、通信连接3的负载值r3低于预设负载阈值,那么,从通信连接2和通信连接3中,选择TSN数据类型2对应的AC接入时延值最小的通信连接3,作为第一通信连接。
在一些实施例中,步骤S23b,包括:
步骤S23b2:响应于至少两个通信连接的TSN数据类型对应的AC接入时延值低于预设时延阈值,且BSS负载值低于预设负载阈值,从所述至 少两个通信连接中选择BSS负载值最小的通信连接,作为第一通信连接。
示例性地,所述时延参数信息包括:通信连接1的TSN数据类型2的AC接入时延d1、通信连接2的TSN数据类型2的AC接入时延d2,通信连接3的TSN数据类型2的AC接入时延d3,其中,d1>d2>d3;通信连接1的BSS负载值r1、通信连接2的BSS负载值r2,通信连接3的BSS负载值r3,若r1<r2<r3;若通信连接2、通信连接3的接入时延满足TSN数据类型2的时延要求,即低于预设时延阈值,通信连接2的负载值r2、通信连接3的负载值r3低于预设负载阈值,那么,从通信连接2和通信连接3中,选择BSS负载值最小的通信连接2,作为第一通信连接。
在一些实施例中,步骤S22,包括:
步骤S22a:接收通过信标帧广播的所述多个通信连接的时延参数信息。
其中,所述信标帧中包含有多个连接标识域,其中,不同所述连接标识域,用于指示所述多个通信连接中的不同通信连接。
在一些实施例中,不同所述连接标识域,还用于指示不同所述通信连接所属的通信频段。所连接标识域,包括:第一字段,用于指示通信连接标识;第二字段,用于指示所述通信连接标识对应的通信频段标识。
在一些实施例中,所述信标帧中包含有AC接入时延域,所述AC接入时延域,包括:
第三字段,用于指示所述TSN数据类型对应的AC接入时延。
在一些实施例中,所述时延参数信息,还包括:
BSS接入时延信息,用于指示监听下一次到达的信标帧。
如此,由于该时延参数信息中还携带有BSS接入时延信息,以便站点设备获知该BSS接入时延信息后,可以很清晰的了解监听下一次到达的信标帧的时间。
本公开实施例所述技术方案,站点设备接收多个通信连接的时延参数信息,所述时延参数信息用于反映每个通信连接下TSN数据类型对应的AC 接入时延情况;基于所述时延参数信息,在从所述多个通信连接中满足TSN数据传输时延要求的第一通信连接上,发送待发送的TSN数据,如此,能尽量减小传输TSN数据的时延,满足TSN数据传输的低时延要求。
图10是根据一示例性实施例示出的一种数据传输装置框图一。所述数据传输装置应用于站点设备,参照图10,所述装置包括第一接收单元10和第一发送单元20;其中,
所述第一接收单元10,被配置为接收多个通信连接的时延参数信息,所述时延参数信息用于反映每个通信连接下时间敏感网络(TSN)数据类型对应的访问类别(AC)接入时延情况;
所述第一发送单元20,被配置为基于所述时延参数信息,在从所述多个通信连接中满足TSN数据传输时延要求的第一通信连接上,发送待发送的TSN数据。
在一些实施例中,所述装置还包括:
确定单元30,被配置为:从所述多个通信连接中选择第一通信连接。
在一些实施例中,所述时延参数信息包括:TSN数据类型对应的AC接入时延信息,所述确定单元30,被配置为:
从所述多个通信连接中,选择所述TSN数据类型对应的AC接入时延值最小的通信连接,作为所述第一通信连接。
在一些实施例中,所述时延参数信息包括:BSS负载信息和TSN数据类型对应的AC接入时延信息;所述确定单元30,被配置为:从所述多个通信连接中,选择TSN数据类型对应的AC接入时延值低于预设时延阈值、且BSS负载值低于预设负载阈值的通信连接,作为所述第一通信连接。
在一些实施例中,所述确定单元30,被配置为:响应于至少两个通信连接的BSS负载值均低于所述预设负载阈值且所述至少两个通信连接的TSN数据类型对应的AC接入时延参数值低于预设时延阈值,从所述至少 两个通信连接中选择TSN数据类型对应的AC接入时延值最小的通信连接,作为所述第一通信连接。
在一些实施例中,所述确定单元30,被配置为:响应于至少两个通信连接的TSN数据类型对应的AC接入时延值低于预设时延阈值,且BSS负载值低于预设负载阈值,从所述至少两个通信连接中选择BSS负载值最小的通信连接,作为第一通信连接。
在一些实施例中,所述第一接收单元10,被配置为:
接收通过信标帧广播的所述多个通信连接的时延参数信息;
所述信标帧中包含有多个连接标识域,其中,不同所述连接标识域,用于指示所述多个通信连接中的不同通信连接。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
实际应用中,上述第一接收单元10、第一发送单元20和确定单元30的具体结构均可由该数据传输装置或该数据传输装置所属站点设备中的中央处理器(CPU,Central Processing Unit)、微处理器(MCU,Micro Controller Unit)、数字信号处理器(DSP,Digital Signal Processing)或可编程逻辑器件(PLC,Programmable Logic Controller)等实现。
本实施例所述的数据传输装置可设置于站点设备侧。
本领域技术人员应当理解,本公开实施例的数据传输装置中各处理模块的功能,可参照前述应用于站点设备侧的数据传输方法的相关描述而理解,本公开实施例的数据传输装置中各处理模块,可通过实现本公开实施例所述的功能的模拟电路而实现,也可以通过执行本公开实施例所述的功能的软件在设备上的运行而实现。
本公开实施例所述的数据传输装置,能尽量减小传输TSN数据的时延,满足TSN数据传输的低时延要求。
图11是根据一示例性实施例示出的一种数据传输装置框图二。所述数 据传输装置应用于AP设备,参照图11,所述装置包括第二发送单元40和第二接收单元50。
所述第二发送单元40,被配置为广播多个通信连接的时延参数信息,所述时延参数信息用于反映每个通信连接下时间敏感网络(TSN)数据类型对应的访问类别(AC)接入时延情况;
所述第二接收单元50,被配置为在所述多个通信连接的第一通信连接上,接收基于所述时延参数信息发送的TSN数据。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关所述方法的实施例中进行了详细描述,此处将不做详细阐述说明。
实际应用中,上述第二发送单元40和第二接收单元50的具体结构均可由所述数据传输装置或所述数据传输装置所属AP设备中的CPU、MCU、DSP或PLC等实现。
本实施例所述的数据传输装置可设置于AP设备侧。
本领域技术人员应当理解,本公开实施例的数据传输装置中各处理模块的功能,可参照前述应用于AP设备的数据传输方法的相关描述而理解,本公开实施例的数据传输装置中各处理模块,可通过实现本公开实施例所述的功能的模拟电路而实现,也可以通过执行本公开实施例所述的功能的软件在设备上的运行而实现。
本公开实施例所述的数据传输装置,能尽量减小传输TSN数据的时延,满足TSN数据传输的低时延要求。
图12是根据一示例性实施例示出的一种用于实现信息处理的装置800的框图。例如,装置800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图12,装置800可以包括以下一个或多个组件:处理组件802,存储器804,电力组件806,多媒体组件808,音频组件810,输入/输出(I/O, Input/Output)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在装置800的操作。这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(Static Random-Access Memory,SRAM),电可擦除可编程只读存储器(Electrically-Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),可编程只读存储器(Programmable read-only memory,PROM),只读存储器(Read Only Memory,ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件806为装置800的各种组件提供电力。电力组件806可以包括电源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(Liquid Crystal Display,LCD)和触摸面板(Touch Panel,TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关 的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当装置800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(microphone,简称MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到装置800的打开/关闭状态,组件的相对定位,例如所述组件为装置800的显示器和小键盘,传感器组件814还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)或电荷耦合元件(Charge-coupled Device,CCD)图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式 的通信。装置800可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(Near Field Communication,NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(Radio Frequency Identification,RFID)技术,红外数据协会(Infrared Data Association,IrDA)技术,超宽带(Ultra Wide Band,UWB)技术,蓝牙(Blue Tooth,BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(Application Specific Integrated Circuit,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(Digital Signal Processing Device,DSPD)、可编程逻辑器件(Programmable Logic Device,PLD)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述的数据传输方法。
在示例性实施例中,还提供了一种包括可执行指令的非临时性的计算机存储介质,例如包括可执行指令的存储器804,上述可执行指令可由装置800的处理器820执行以完成上述方法。例如,所述非临时性的计算机存储介质可以是ROM、随机存取存储器(Random Access Memory,RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图13是根据一示例性实施例示出的一种用于信息处理的装置900的框图。例如,装置900可以被提供为一服务器。参照图13,装置900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述应用于上述的数据传输方法。
装置900还可以包括一个电源组件926被配置为执行装置900的电源管理,一个有线或无线网络接口950被配置为将装置900连接到网络,和一个输入输出(I/O)接口958。装置900可以操作基于存储在存储器932的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本公开实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (27)

  1. 一种数据传输方法,其中,包括:
    接收多个通信连接的时延参数信息,所述时延参数信息用于反映每个通信连接下时间敏感网络TSN数据类型对应的访问类别AC接入时延情况;
    基于所述时延参数信息,在从所述多个通信连接中满足TSN数据传输时延要求的第一通信连接上,发送待发送的TSN数据。
  2. 根据权利要求1所述的方法,其中,所述时延参数信息包括:TSN数据类型对应的AC接入时延信息,所述方法还包括:
    从所述多个通信连接中,选择所述TSN数据类型对应的AC接入时延值最小的通信连接,作为所述第一通信连接。
  3. 根据权利要求1所述的方法,其中,所述时延参数信息包括:基本服务集BSS负载信息和TSN数据类型对应的AC接入时延信息;
    所述方法还包括:
    从所述多个通信连接中,选择TSN数据类型对应的AC接入时延值低于预设时延阈值、且BSS负载值低于预设负载阈值的通信连接,作为所述第一通信连接。
  4. 根据权利要求3所述的方法,其中,所述选择TSN数据类型对应的AC接入时延值低于预设时延阈值、且BSS负载值低于预设负载阈值的通信连接,作为所述第一通信连接,包括:
    响应于至少两个通信连接的BSS负载值均低于所述预设负载阈值且所述至少两个通信连接的TSN数据类型对应的AC接入时延参数值低于预设时延阈值,从所述至少两个通信连接中选择TSN数据类型对应的AC接入时延值最小的通信连接,作为所述第一通信连接。
  5. 根据权利要求3所述的方法,其中,所述选择TSN数据类型对应的AC接入时延参数值低于预设时延阈值、且BSS负载值低于预设负载阈值 的通信连接,作为第一通信连接,包括:
    响应于至少两个通信连接的TSN数据类型对应的AC接入时延值低于预设时延阈值,且BSS负载值低于预设负载阈值,从所述至少两个通信连接中选择BSS负载值最小的通信连接,作为第一通信连接。
  6. 根据权利要求1所述的方法,其中,所述接收多个通信连接的时延参数信息,包括:
    接收通过信标帧广播的所述多个通信连接的时延参数信息;
    所述信标帧中包含有多个连接标识域,其中,不同所述连接标识域,用于指示所述多个通信连接中的不同通信连接。
  7. 根据权利要6所述的方法,其中,不同所述连接标识域,还用于指示不同所述通信连接所属的通信频段。
  8. 根据权利要求7所述的方法,其中,所连接标识域,包括:
    第一字段,用于指示通信连接标识;
    第二字段,用于指示所述通信连接标识对应的通信频段标识。
  9. 根据权利要求6所述的方法,其中,所述信标帧中包含有AC接入时延域,所述AC接入时延域,包括:
    第三字段,用于指示所述TSN数据类型对应的AC接入时延。
  10. 根据权利要2或3所述的方法,其中,所述时延参数信息,还包括:
    BSS接入时延信息,用于指示监听下一次到达的信标帧。
  11. 一种数据传输方法,其中,包括:
    广播多个通信连接的时延参数信息,所述时延参数信息用于反映每个通信连接下时间敏感网络TSN数据类型对应的访问类别AC接入时延情况;
    在所述多个通信连接的第一通信连接上,接收基于所述时延参数信息发送的TSN数据。
  12. 根据权利要求11所述的方法,其中,所述时延参数信息包括:
    AC接入时延信息;
    或者,
    所述时延参数信息包括:基本服务集BSS负载信息和AC接入时延信息。
  13. 根据权利要求12所述的方法,其中,所述时延参数信息还包括:BSS接入时延信息。
  14. 根据权利要求11所述的方法,其中,所述广播多个通信连接的时延参数信息,包括:
    通过信标帧广播所述多个通信连接的时延参数信息。
  15. 根据权利要求14所述的方法,其中,所述信标帧中包含有多个连接标识域,其中,不同所述连接标识域,用于指示所述多个通信连接中的不同通信连接。
  16. 根据权利要15所述的方法,其中,不同所述连接标识域,还用于指示不同所述通信连接所属的通信频段。
  17. 根据权利要求16所述的方法,其中,所连接标识域,包括:
    第一字段,用于指示通信连接标识;
    第二字段,用于指示所述通信连接标识对应的通信频段标识。
  18. 根据权利要求15所述的方法,其中,所述信标帧中包含有AC接入时延域,所述AC接入时延域,包括:
    第三字段,用于指示所述TSN数据类型对应的AC接入时延。
  19. 根据权利要求11所述的方法,其中,所述多个通信连接,包括:
    相同通信频段的多个通信连接;
    和/或
    不同通信频段的多个通信连接。
  20. 根据权利要求11所述的方法,其中,所述广播多个通信连接的时延参数信息,包括:
    在与站点设备建立的每个通信连接中,广播所述多个通信连接的时延参数信息。
  21. 根据权利要求11所述的方法,其中,所述广播多个通信连接的时延参数信息,包括:
    当与站点设备建立至少一个通信连接时,在与所述站点设备建立的一个通信连接中,广播所述多个通信连接的时延参数信息。
  22. 一种数据传输装置,其中,包括:
    第一接收单元,被配置为接收多个通信连接的时延参数信息,所述时延参数信息用于反映每个通信连接下时间敏感网络TSN数据类型对应的访问类别AC接入时延情况;
    第一发送单元,被配置为基于所述时延参数信息,在从所述多个通信连接中满足TSN数据传输时延要求的第一通信连接上,发送待发送的TSN数据。
  23. 一种数据传输装置,其中,包括:
    第二发送单元,被配置为广播多个通信连接的时延参数信息,所述时延参数信息用于反映每个通信连接下时间敏感网络TSN数据类型对应的访问类别AC接入时延情况;
    第二接收单元,被配置为在所述多个通信连接的第一通信连接上,接收基于所述时延参数信息发送的TSN数据。
  24. 一种数据传输装置,其中,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行所述可执行指令时实现权利要求1至10任一项所述的数据传输方法。
  25. 一种数据传输装置,其中,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行所述可执行指令时实现权利要求11至21任一项所述的数据传输方法。
  26. 一种计算机存储介质,其中,所述计算机存储介质中存储有可执行指令,所述可执行指令被处理器执行时,使得所述处理器执行权利要求1至10任一项所述的数据传输方法。
  27. 一种计算机存储介质,其中,所述计算机存储介质中存储有可执行指令,所述可执行指令被处理器执行时,使得所述处理器执行权利要求11至21任一项所述的数据传输方法。
PCT/CN2020/079559 2020-03-17 2020-03-17 数据传输方法、装置及计算机存储介质 WO2021184173A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2022555881A JP7498790B2 (ja) 2020-03-17 2020-03-17 データ伝送方法、装置及びコンピュータ記憶媒体
EP20925920.9A EP4123981A4 (en) 2020-03-17 2020-03-17 DATA TRANSMISSION METHOD AND DEVICE AND COMPUTER STORAGE MEDIUM
CN202080000550.7A CN113692726A (zh) 2020-03-17 2020-03-17 数据传输方法、装置及计算机存储介质
BR112022018474A BR112022018474A2 (pt) 2020-03-17 2020-03-17 Métodos para transmitir dados e receber dados, dispositivo para transmitir dados, e, meio de armazenamento de memória
US17/910,788 US20230113756A1 (en) 2020-03-17 2020-03-17 Method and device for transmitting/receiving data, and computer storage medium
KR1020227035530A KR20220153627A (ko) 2020-03-17 2020-03-17 데이터 전송 방법, 장치 및 컴퓨터 저장 매체
PCT/CN2020/079559 WO2021184173A1 (zh) 2020-03-17 2020-03-17 数据传输方法、装置及计算机存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079559 WO2021184173A1 (zh) 2020-03-17 2020-03-17 数据传输方法、装置及计算机存储介质

Publications (1)

Publication Number Publication Date
WO2021184173A1 true WO2021184173A1 (zh) 2021-09-23

Family

ID=77768007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079559 WO2021184173A1 (zh) 2020-03-17 2020-03-17 数据传输方法、装置及计算机存储介质

Country Status (7)

Country Link
US (1) US20230113756A1 (zh)
EP (1) EP4123981A4 (zh)
JP (1) JP7498790B2 (zh)
KR (1) KR20220153627A (zh)
CN (1) CN113692726A (zh)
BR (1) BR112022018474A2 (zh)
WO (1) WO2021184173A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106488407A (zh) * 2015-08-25 2017-03-08 中国移动通信集团公司 一种小区选择的方法及装置
CN108886744A (zh) * 2016-04-07 2018-11-23 高通股份有限公司 用于选择用于中继消息的空中接口的方法和装置
CN109891927A (zh) * 2016-11-04 2019-06-14 瑞典爱立信有限公司 用于空口延迟调节的机制
US20190254057A1 (en) * 2018-02-14 2019-08-15 Qualcomm Incorporated Receiver-side buffering for time-aware scheduling across cellular link

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2734895C2 (ru) * 2016-07-19 2020-10-26 Шнейдер Электрик Эндюстри Сас Чувствительная ко времени программно-определяемая сеть
US20180132234A1 (en) * 2016-11-09 2018-05-10 Dave Cavalcanti Enhanced wireless networks for time sensitive applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106488407A (zh) * 2015-08-25 2017-03-08 中国移动通信集团公司 一种小区选择的方法及装置
CN108886744A (zh) * 2016-04-07 2018-11-23 高通股份有限公司 用于选择用于中继消息的空中接口的方法和装置
CN109891927A (zh) * 2016-11-04 2019-06-14 瑞典爱立信有限公司 用于空口延迟调节的机制
US20190254057A1 (en) * 2018-02-14 2019-08-15 Qualcomm Incorporated Receiver-side buffering for time-aware scheduling across cellular link

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CMCC: "Enhancement for Time-Sensitive Networking", 3GPP DRAFT; R2-1815270, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Chengdu, China; 20181008 - 20181012, 28 September 2018 (2018-09-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051524625 *
See also references of EP4123981A4 *

Also Published As

Publication number Publication date
EP4123981A1 (en) 2023-01-25
CN113692726A (zh) 2021-11-23
EP4123981A4 (en) 2023-11-29
KR20220153627A (ko) 2022-11-18
JP7498790B2 (ja) 2024-06-12
JP2023518389A (ja) 2023-05-01
US20230113756A1 (en) 2023-04-13
BR112022018474A2 (pt) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2021159492A1 (zh) 接入控制方法、装置、通信设备及存储介质
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
WO2020215289A1 (zh) 寻呼响应方法和装置,寻呼方法和装置
WO2021196214A1 (zh) 传输方法、装置及计算机存储介质
WO2021142796A1 (zh) 通信处理方法、装置及计算机存储介质
WO2021159516A1 (zh) 初始接入方法、初始接入装置及存储介质
WO2021164011A1 (zh) 通信处理方法、装置及计算机存储介质
WO2021012131A1 (zh) 资源分配方法及装置、消息帧处理方法及装置、存储介质
US20220346083A1 (en) Methods and apparatuses for determining network allocation vector, and storage media
WO2021003675A1 (zh) 信息处理方法、装置及计算机存储介质
WO2021016771A1 (zh) 信道检测方式切换方法、装置及存储介质
WO2021184173A1 (zh) 数据传输方法、装置及计算机存储介质
WO2023123123A1 (zh) 一种频域资源确定方法、装置及存储介质
WO2021056362A1 (zh) 控制资源集合的处理方法、装置及计算机存储介质
RU2791471C1 (ru) Способ и устройство для передачи/приема данных и машиночитаемый носитель
WO2021068204A1 (zh) 基本服务集标识符的处理方法、装置及计算机存储介质
WO2021217486A1 (zh) 数据传输方法、装置、通信设备和存储介质
WO2022021190A1 (zh) 信息传输方法、装置、通信设备和存储介质
US20230396399A1 (en) Information transmission method, communication device and storage medium
WO2022267039A1 (zh) Bwp指示方法、装置、通信设备及存储介质
WO2021046729A1 (zh) 数据传输方法、装置及存储介质
WO2021056288A1 (zh) 接收反馈信息传输配置方法、装置、通信设备及存储介质
WO2021179264A1 (zh) 控制信道检测、信息传输方法及装置、设备及存储介质
WO2021114149A1 (zh) 重关联指示方法、装置及通信设备
WO2023226032A1 (zh) 资源确定、多载波调度方法及装置、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925920

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555881

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022018474

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227035530

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020925920

Country of ref document: EP

Effective date: 20221017

ENP Entry into the national phase

Ref document number: 112022018474

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220915