WO2021056288A1 - 接收反馈信息传输配置方法、装置、通信设备及存储介质 - Google Patents

接收反馈信息传输配置方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2021056288A1
WO2021056288A1 PCT/CN2019/107959 CN2019107959W WO2021056288A1 WO 2021056288 A1 WO2021056288 A1 WO 2021056288A1 CN 2019107959 W CN2019107959 W CN 2019107959W WO 2021056288 A1 WO2021056288 A1 WO 2021056288A1
Authority
WO
WIPO (PCT)
Prior art keywords
data frame
feedback
transmission
information
frame
Prior art date
Application number
PCT/CN2019/107959
Other languages
English (en)
French (fr)
Inventor
董贤东
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN201980002122.5A priority Critical patent/CN114097283A/zh
Priority to US17/763,620 priority patent/US20220338051A1/en
Priority to PCT/CN2019/107959 priority patent/WO2021056288A1/zh
Publication of WO2021056288A1 publication Critical patent/WO2021056288A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1621Group acknowledgement, i.e. the acknowledgement message defining a range of identifiers, e.g. of sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of wireless communication technology, but is not limited to the field of wireless communication technology, and in particular to a method, device, communication device, and storage medium for receiving feedback information transmission configuration.
  • the Institute of Electrical and Electronics Engineers established a Study Group (SG, Study Group) to study the next-generation mainstream Wi-Fi technology.
  • the research scope is: Wi-Fi transmission with a bandwidth of 320MHz, aggregation and collaboration technologies using multiple frequency bands, etc., proposed Compared with the existing IEEE802.11ax, the vision to increase the speed and throughput by at least four times.
  • the main application scenarios of the new technology are video transmission, augmented reality (AR, Augmented Reality), virtual reality (VR, Virtual Reality), etc.
  • the aggregation and collaboration technology of multiple frequency bands refers to the simultaneous communication between Wi-Fi devices in the 2.4GHz, 5.8GHz and 6-7GHz frequency bands.
  • the embodiments of the present disclosure provide a method, device, communication device, and storage medium for receiving feedback information transmission configuration.
  • a method for receiving feedback information transmission configuration wherein the method includes:
  • the request to send frame includes: feedback resource information, wherein the feedback resource information is used to instruct the data frame receiving end to transmit and receive the transmission resource of the feedback information ;
  • the feedback resource information includes at least one of the following:
  • the feedback frequency band information is used to indicate the feedback transmission frequency band for the data frame receiving end to transmit the received feedback information
  • the feedback time interval information is used to indicate the feedback time interval for the data frame receiving end to transmit the received feedback information.
  • the feedback time interval for transmitting the received feedback information includes: an interval between one point coordination function after the data frame is sent is as long as 100 milliseconds.
  • the method further includes: using the transmission resource indicated by the feedback resource information to receive the reception feedback information sent by the data frame receiving end.
  • the method before sending the request to send frame, the method further includes: determining the feedback transmission frequency band for transmitting the received feedback information according to the load condition of each transmission frequency band.
  • the determining the feedback transmission frequency band for transmitting the received feedback information according to the load condition of each transmission frequency band includes at least one of the following:
  • the method further includes:
  • the duration indicated by the duration field included in the data frame includes: the transmission duration of the data frame and does not include the transmission duration of receiving feedback information.
  • the transmission duration of the data frame includes: the transmission duration of a single unicast data frame;
  • the transmission duration of the data frame includes: the sum of the transmission duration of n sub-data frames included in the continuous data frame and n-1 short inter-frame intervals, where n It is a positive integer equal to or greater than 2, wherein the short inter-frame interval is located between two adjacent sub-data frames.
  • a method for receiving feedback information transmission configuration wherein the method includes:
  • the feedback resource information includes at least one of the following:
  • the feedback frequency band information is used to indicate the feedback transmission frequency band for the data frame receiving end to transmit the received feedback information
  • the feedback time interval information is used to indicate the feedback time interval for the data frame receiving end to transmit the received feedback information.
  • the feedback time interval for transmitting the received feedback information includes: an interval between one point coordination function after the data frame is sent is as long as 100 milliseconds.
  • the method further includes:
  • the duration indicated by the duration field included in the data frame includes: the transmission duration of the data frame and does not include the transmission duration of receiving feedback information.
  • the transmission duration of the data frame includes: the transmission duration of a single unicast data frame;
  • the transmission duration of the data frame includes: the sum of the transmission duration of n sub-data frames included in the continuous data frame and n-1 short inter-frame intervals, where n It is a positive integer equal to or greater than 2, wherein the short inter-frame interval is located between two adjacent sub-data frames.
  • a device for receiving feedback information transmission configuration wherein the device includes: a generating module and a first sending module, wherein,
  • the generating module is configured to generate a request to send frame for transmitting data frames using multiple transmission frequency bands, wherein the request to send frame includes: feedback resource information, wherein the feedback resource information is used to indicate the data frame receiving end Transmission resources for transmitting and receiving feedback information;
  • the first sending module is configured to send the request to send frame.
  • the feedback resource information includes at least one of the following:
  • the feedback frequency band information is used to indicate the feedback transmission frequency band for the data frame receiving end to transmit the received feedback information
  • the feedback time interval information is used to indicate the feedback time interval for the data frame receiving end to transmit the received feedback information.
  • the feedback time interval for transmitting the received feedback information includes: an interval between one point coordination function after the data frame is sent is as long as 100 milliseconds.
  • the device further includes:
  • the first receiving module is configured to use the transmission resource indicated by the feedback resource information to receive the reception feedback information sent by the data frame receiving end.
  • the device further includes: a determining module configured to determine the feedback transmission for transmitting the received feedback information according to the load condition of each transmission frequency band before sending the request to send frame Frequency band.
  • the determining module includes at least one of the following:
  • a first determining sub-module configured to determine the transmission frequency band with the lowest load value as the feedback transmission frequency band
  • the second determining sub-module is configured to determine the transmission frequency band with the least number of wireless stations establishing an association connection as the feedback transmission frequency band.
  • the device further includes:
  • the second sending module is configured to use the multiple transmission frequency bands to transmit the data frame
  • the duration indicated by the duration field included in the data frame includes: the transmission duration of the data frame and does not include the transmission duration of receiving feedback information.
  • the transmission duration of the data frame includes: the transmission duration of a single unicast data frame;
  • the transmission duration of the data frame includes: the sum of the transmission duration of n sub-data frames included in the continuous data frame and n-1 short inter-frame intervals, where n It is a positive integer equal to or greater than 2, wherein the short inter-frame interval is located between two adjacent sub-data frames.
  • a receiving feedback information transmission configuration device wherein the device includes: a second receiving module and a third sending module, wherein,
  • the second receiving module is configured to receive a request to send frame for transmitting data frames using multiple transmission frequency bands, wherein the request to send frame includes: feedback resource information, wherein the feedback resource information is used to indicate the data frame
  • the receiving end transmits and receives the transmission resource of the feedback information
  • the third sending module is configured to send the reception feedback information by using the transmission resource.
  • the feedback resource information includes at least one of the following:
  • the feedback frequency band information is used to indicate the feedback transmission frequency band for the data frame receiving end to transmit the received feedback information
  • the feedback time interval information is used to indicate the feedback time interval for the data frame receiving end to transmit the received feedback information.
  • the feedback time interval for transmitting the received feedback information includes: an interval between one point coordination function after the data frame is sent is as long as 100 milliseconds.
  • the device further includes:
  • the third receiving module is configured to receive the data frame transmitted by using the multiple transmission frequency bands;
  • the duration indicated by the duration field included in the data frame includes: the transmission duration of the data frame and does not include the transmission duration of receiving feedback information.
  • the transmission duration of the data frame includes: the transmission duration of a single unicast data frame;
  • the transmission duration of the data frame includes: the sum of the transmission duration of n sub-data frames included in the continuous data frame and n-1 short inter-frame intervals, where n It is a positive integer equal to or greater than 2, wherein the short inter-frame interval is located between two adjacent sub-data frames.
  • a communication equipment device including a processor, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs the When the program is executed, the steps of the receiving feedback information transmission configuration method described in the first aspect and the second aspect are executed.
  • a storage medium on which an executable program is stored, wherein when the executable program is executed by a processor, the receiving feedback information transmission of the first and second aspects is realized Steps of the configuration method
  • the method, apparatus, communication device, and storage medium for receiving feedback information transmission configuration provided by the embodiments of the present disclosure generate a request to send frame for transmitting data frames using multiple transmission frequency bands, wherein the request to send frame includes: feedback resource information, wherein The feedback resource information is used to instruct the data frame receiving end to transmit and receive the transmission resource of the feedback information, and send the request to send frame.
  • the sender can adjust the transmission resource according to the actual situation by sending the request to send frame, and improve the flexibility of the transmission resource configuration for receiving feedback information.
  • no longer using a fixed time and/or frequency band to send and receive feedback information can reduce the situation that the data frame is not decoded when sending and receiving feedback information, and improve the accuracy of receiving feedback information.
  • Fig. 1 is a schematic flow chart showing a method for receiving feedback information transmission configuration according to an exemplary embodiment
  • Fig. 2 is a schematic diagram showing a data frame transmission mode according to an exemplary embodiment
  • Fig. 3 is a schematic flow chart showing a method for receiving feedback information transmission configuration according to an exemplary embodiment
  • Fig. 4 is a schematic diagram showing data interaction between a sending end and a receiving end of a data frame according to an exemplary embodiment
  • Fig. 5 is a block diagram showing a device for receiving feedback information transmission configuration according to an exemplary embodiment
  • Fig. 6 is a block diagram showing another device for receiving feedback information transmission configuration according to an exemplary embodiment
  • Fig. 7 is a block diagram showing a device for receiving feedback information transmission configuration according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • word “if” as used herein can be interpreted as "when” or "when” or "in response to determination”.
  • the executive bodies involved in the embodiments of the present disclosure include but are not limited to: wireless communication networks, especially Wi-Fi networks, such as under the IEEE802.11a/b/g/n/ac standard, and under the IEEE802.11be standard in the next-generation Wi-Fi network Network equipment, including but not limited to: Wi-Fi routers and other wireless (AP, Access Point) access point equipment, wireless stations (STA, Station), user terminals, user nodes, mobile terminals or tablet computers, etc. .
  • Wi-Fi routers and other wireless (AP, Access Point) access point equipment wireless stations (STA, Station), user terminals, user nodes, mobile terminals or tablet computers, etc.
  • An application scenario of the embodiments of the present disclosure is that in the existing IEEE802.11 standard, the shortest time period for a device to receive ACK is a short inter-frame space (SIFS, short inter-frame space), which is 10us for SIFS under 2.4 GHz. SIFS is 16us in the 5GHz frequency band. Due to the processing speed of the data frame receiving end, the data frame receiving end may not be able to complete the data frame decoding within 10 us or 16 us, and send the receiving feedback information of the data frame to the data frame sending end.
  • SIFS short inter-frame space
  • SIFS 16us in the 5GHz frequency band. Due to the processing speed of the data frame receiving end, the data frame receiving end may not be able to complete the data frame decoding within 10 us or 16 us, and send the receiving feedback information of the data frame to the data frame sending end.
  • this exemplary embodiment provides a method for transmitting and configuring receiving feedback information.
  • the method for transmitting and configuring receiving feedback information can be applied to a data frame transmitter of wireless communication.
  • the method includes:
  • Step 101 Generate a request to send frame for the transmission of data frames using multiple transmission frequency bands, where the request to send frame includes: feedback resource information, where the feedback resource information is used to instruct the data frame receiving end to transmit and receive feedback information Transmission resources;
  • Step 102 Send the request to send frame.
  • the wireless communication may be Wi-Fi communication using standards such as IEEE802.11be; the data frame sending end and the data frame receiving end may be wireless stations (STA, Station) in Wi-Fi communication, etc.
  • the data frame may be a data frame that is respectively transmitted in each of the multiple transmission frequency bands.
  • the data frame may be a media access control protocol data frame (MPDU, Media Access Control Protocol Data Unit) or an aggregated media access control protocol data frame (A-MPDU, Aggregation Media Access Control Protocol Data Unit), etc.
  • MPDU media access control protocol data frame
  • A-MPDU Aggregation Media Access Control Protocol Data Unit
  • the multiple transmission frequency bands can be multiple Wi-Fi operating frequency bands, such as 2.4GHz, 5.8GHz and 6-7GHz, etc.; it can also be the frequency range of the bandwidth occupied by the transmission frequency band. Among them, the frequency range of the bandwidth occupied by each transmission frequency band may belong to the same Wi-Fi working frequency band, or may belong to different Wi-Fi working frequency bands.
  • the data frame is sent by the data frame sending end using multiple transmission frequency bands, and is received by the data frame receiving end.
  • the data frame receiving end may be a wireless station in Wi-Fi communication, etc.
  • the frequency coverage of multiple transmission frequency bands is different, and multiple transmission frequency bands can transmit data frames at the same time, thereby increasing the transmission rate of the data frame and improving the transmission efficiency of the data frame.
  • the reception feedback information may be acknowledgment (ACK) or non-acknowledgement (NACK) used to feed back the receiving status of the data frame, or block acknowledgment (ACK) information used to feed back the receiving status of the continuous data frame.
  • ACK acknowledgment
  • NACK non-acknowledgement
  • ACK block acknowledgment
  • the handshake process can include: the data frame sender sends a request to send frame (RTS, Request To Send), indicating the data frame sender To send a data frame to the receiving end of the data frame.
  • RTS request to send frame
  • CTS clear To send frame
  • the feedback resource information may be carried in the sending request frame, which is used to indicate the transmission resource for transmitting and receiving the feedback information to the receiving end of the data frame.
  • the transmission resource may be a time domain resource and/or a frequency domain resource used for transmitting and receiving feedback information
  • the transmission resource information may also be a time domain resource and/or a time-frequency resource in a frequency band in the frequency band for sending a data frame.
  • the time domain resource indicated by the feedback resource information may be a time period after the data frame receiving end receives the data frame and completes processing such as demodulation and decoding. In this way, it is possible to reduce the situation that the data frame receiving end does not complete the data frame decoding when sending and receiving feedback information.
  • the data frame receiving end receives the data frame after receiving the feedback resource information carried in the request to send frame, and performs processing such as demodulation and decoding on the data frame. Determine the receiving status of the data frame, and use the transmission resource indicated by the feedback resource information to send and receive feedback information to the data frame sender.
  • the feedback resource information is used to indicate the transmission resource for transmitting and receiving the feedback information.
  • the sender can adjust the transmission resource according to the actual situation by sending the request transmission frame, and improve the flexibility of the transmission resource configuration for receiving the feedback information.
  • no longer using a fixed time and/or frequency band to send and receive feedback information can reduce the situation that the data frame is not decoded when sending and receiving feedback information, and improve the accuracy of receiving feedback information.
  • the feedback resource information includes at least one of the following: feedback frequency band information, used to indicate the feedback transmission frequency band for the data frame receiving end to transmit the received feedback information; feedback time interval information, used to indicate the The data frame receiving end transmits the feedback time interval for receiving the feedback information.
  • the feedback transmission frequency band may be one frequency band among multiple transmission frequency bands.
  • the feedback transmission frequency band can be used to transmit and receive feedback information after the data frame is transmitted.
  • the feedback transmission frequency band may be one frequency band among multiple transmission frequency bands.
  • the feedback transmission frequency band can be used to transmit and receive feedback information after the data frame is transmitted.
  • the feedback time interval may be a time period after the data frame is decoded at the data frame receiving end. In this way, it is possible to send and receive feedback information after the data frame reception status is determined, reducing the probability of errors in receiving the feedback information.
  • the feedback time interval for transmitting the received feedback information includes: 1 point coordination function Inter Frame Space (PIFS, Point coordination function Inter Frame Space) after the data frame is sent to 100 milliseconds .
  • PIFS point coordination function Inter Frame Space
  • Data frames may include unicast data frames and continuous data frames.
  • the interval between one point coordination function and 100 milliseconds after the data frame is sent can be as long as the interval between one point coordination function and the last sub-data frame after the transmission of the last sub-data frame of the continuous data frame. 100 milliseconds.
  • the short inter-frame space (SIFS, Short Inter-Frame space) is used to space each frame in a data transmission, such as an interval data frame, an ACK frame, and so on.
  • SIFS Short Inter-Frame space
  • Wi-Fi communication also includes the point coordination function interframe interval.
  • the point coordination function interframe interval is usually used for wireless access nodes (AP) with the point coordination function (PCF), with PCF
  • the AP usually accesses the channel at intervals of a point coordination function inter-frame interval. .
  • the PIFS duration is the SIFS duration plus one slot time (Slot Time).
  • SIFS duration is the SIFS duration plus one slot time (Slot Time).
  • slot Time the time for the data frame receiving end to perform decoding and other processing, so that the data frame receiving end can send and reflect the true reception status of the data frame To receive feedback. Therefore, sending and receiving feedback information within a time period when the inter-frame interval of the coordination function is as long as 100 milliseconds after the data frame is sent can reduce the probability that the data frame has not been decoded and the received feedback information is wrong.
  • the maximum time limit of 100 milliseconds can provide an upper limit for the feedback time and improve the efficiency of receiving feedback information feedback.
  • the method further includes: receiving the reception feedback information sent by the receiving end of the data frame according to the feedback resource information.
  • the receiving, according to the feedback resource information, the receiving feedback information sent by the receiving end of the data frame includes:
  • the feedback transmission resource indicated by the feedback resource information is used to receive the reception feedback information sent by the receiving end of the data frame.
  • the data frame receiving end After receiving the feedback resource information carried in the request to send frame, the data frame receiving end receives the data frame, and performs processing such as demodulation and decoding on the data frame. Determine the receiving status of the data frame, and use the transmission resource indicated by the feedback resource information to send and receive feedback information to the data frame sender.
  • the method before sending the request to send frame, the method further includes: determining the feedback transmission frequency band for transmitting the received feedback information according to the load condition of each transmission frequency band.
  • the load of each transmission frequency band may be different.
  • the feedback information can be received through transmission with a small load.
  • the transmission of the data frame can be divided into synchronous transmission and asynchronous transmission.
  • the synchronous transmission is shown in Fig. 2a, and the sending time and the time of arriving at the receiving end of the data frame of each transmission frequency band are the same.
  • Asynchronous transmission is shown in Figure 2b to Figure 2d. There are three cases of asynchronous transmission:
  • the first type As shown in Figure 2b, the transmission time of the data frames in each transmission frequency band is the same, but the time to reach the receiving end is different.
  • the second type As shown in Figure 2c, the transmission time of the data frames in each transmission frequency band is different, and the time to reach the receiving end is also different.
  • the third type As shown in Figure 2d, the sending time of the data frames in each transmission frequency band is different, and the time to reach the receiving end is the same.
  • the time when the data frame arrives at the receiving end can be determined by the sending end according to the sending time of the data frame and the length of the data frame.
  • the determining the feedback transmission frequency band for transmitting the received feedback information according to the load condition of each transmission frequency band includes at least one of the following:
  • Each transmission frequency band has a load (Load) value, and the load condition of the transmission frequency band can be determined by reading the load value. Since certain resources are required to transmit and receive feedback information, the feedback information can be transmitted and received in the transmission frequency band with the lowest load. In this way, the low-load transmission frequency band can be fully utilized. Compared with the high-load transmission frequency band to send data, on the one hand, it can It can transmit in time without queuing the load; on the other hand, the transmission frequency with lower load allows a lower code rate, and the transmission quality can be ensured through a low code rate.
  • Load load
  • the more wireless stations that are associated with the transmission frequency band the greater the probability of higher load in the transmission frequency band; the fewer the number of wireless stations that are associated with the transmission frequency band, the lower the probability of higher load in the transmission frequency band; Therefore, it is possible to transmit and receive feedback information in the transmission frequency band with the least number of associated wireless stations, increase the probability of receiving feedback information transmission in the low-load transmission frequency band, and improve the utilization efficiency of the transmission frequency band.
  • the method further includes: transmitting the data frame using the multiple transmission frequency bands; the duration indicated by the duration field included in the data frame includes: the transmission duration of the data frame and does not include The transmission time for receiving feedback information.
  • the data frame sending end may use multiple transmission frequency bands to send the data frame.
  • the data frame receiving end can receive data frames in multiple transmission frequency bands. Because the feedback information is received, the feedback resource specified in the request transmission frame is used for transmission. Therefore, the duration field (Duration) of the data frame may not include the transmission time for receiving the feedback information.
  • the transmission duration of the data frame includes: the transmission duration of a single unicast data frame;
  • the transmission duration of the data frame includes: the sum of the transmission duration of n sub-data frames included in the continuous data frame and n-1 short inter-frame intervals, where n It is a positive integer equal to or greater than 2, wherein the short inter-frame interval is located between two adjacent sub-data frames.
  • Data frames may include unicast data frames and continuous data frames.
  • unicast data frame transmission refers to a form of encapsulating data in a data frame for transmission, and a unicast data frame has one reception feedback information.
  • Continuous data frame transmission refers to the form of encapsulating data in multiple sub-data frames and transmitting them in sequence. Continuous data frames can be received and fed back in the form of Block ACK, and block received feedback information can include multiple Feedback information. Each feedback information is used to indicate the receiving status of each sub-data frame.
  • the data frame transmission duration indicated by the duration field may be the transmission duration of the unicast data frame.
  • the data frame transmission duration indicated by the duration field may be the sum of the transmission duration of each sub-data frame in the continuous data frame and the short inter-frame interval between the sub-data frames.
  • the block reception feedback information can be used to feed back the reception of the continuous data frame.
  • this exemplary embodiment provides a method for transmitting and configuring receiving feedback information.
  • the method for transmitting and configuring receiving feedback information can be applied to a data frame receiving end of wireless communication.
  • the method includes:
  • Step 301 Receive a request to send frame for transmitting data frames using multiple transmission frequency bands, where the request to send frame includes: feedback resource information, where the feedback resource information is used to instruct the data frame receiving end to transmit and receive feedback information Transmission resources;
  • Step 302 Use the transmission resource to send the reception feedback information.
  • the wireless communication may be Wi-Fi communication using standards such as IEEE802.11be; the data frame sending end and the data frame receiving end may be STAs in Wi-Fi communication, etc.
  • the data frame may be a data frame that is respectively transmitted in each of the multiple transmission frequency bands.
  • the data frame can be MPDU or AMPDU, etc.
  • the multiple transmission frequency bands can be multiple Wi-Fi operating frequency bands, such as 2.4GHz, 5.8GHz and 6-7GHz, etc.; it can also be the frequency range of the bandwidth occupied by the transmission frequency band. Among them, the frequency range of the bandwidth occupied by each transmission frequency band may belong to the same Wi-Fi working frequency band, or may belong to different Wi-Fi working frequency bands.
  • the data frame is sent by the data frame sending end using multiple transmission frequency bands, and is received by the data frame receiving end.
  • the data frame receiving end may be a wireless station in Wi-Fi communication, etc.
  • the frequency coverage of multiple transmission frequency bands is different, and multiple transmission frequency bands can transmit data frames at the same time, thereby increasing the transmission rate of the data frame and improving the transmission efficiency of the data frame.
  • the receiving feedback information may be ACK or NACK used to feed back the receiving status of the data frame, or Block ACK information used to feed back the receiving status of the continuous data frame, and so on.
  • the handshake process can include: the data frame sender sends a request to send frame (RTS, Request To Send), indicating the data frame sender To send a data frame to the receiving end of the data frame.
  • RTS request to send frame
  • CTS clear To send frame
  • the feedback resource information may be carried in the sending request frame, which is used to indicate the transmission resource for transmitting and receiving the feedback information to the receiving end of the data frame.
  • the transmission resource may be a time domain resource and/or a frequency domain resource used for transmitting and receiving feedback information.
  • the time domain resource indicated by the feedback resource information may be a time period after the data frame receiving end receives the data frame and completes processing such as demodulation and decoding. In this way, it is possible to reduce the situation that the data frame receiving end does not complete the data frame decoding when sending and receiving feedback information.
  • the data frame receiving end receives the data frame after receiving the feedback resource information carried in the request to send frame, and performs processing such as demodulation and decoding on the data frame. Determine the receiving status of the data frame, and use the transmission resource indicated by the feedback resource information to send and receive feedback information to the data frame sender.
  • the feedback resource information is used to indicate the transmission resource for transmitting and receiving the feedback information.
  • the sender can adjust the transmission resource according to the actual situation by sending the request transmission frame, and improve the flexibility of the transmission resource configuration for receiving the feedback information.
  • no longer using a fixed time and/or frequency band to send and receive feedback information can reduce the situation that the data frame is not decoded when sending and receiving feedback information, and improve the accuracy of receiving feedback information.
  • the feedback resource information includes at least one of the following: feedback frequency band information, used to indicate the feedback transmission frequency band for the data frame receiving end to transmit the received feedback information; feedback time interval information, used to indicate the The data frame receiving end transmits the feedback time interval for receiving the feedback information.
  • the feedback transmission frequency band may be one frequency band among multiple transmission frequency bands.
  • the feedback transmission frequency band can be used to transmit and receive feedback information after the data frame is transmitted.
  • the feedback transmission frequency band may be one frequency band among multiple transmission frequency bands.
  • the feedback transmission frequency band can be used to transmit and receive feedback information after the data frame is transmitted.
  • the feedback time interval may be a time period after the data frame is decoded at the data frame receiving end. In this way, it is possible to send and receive feedback information after the data frame reception status is determined, reducing the probability of errors in receiving the feedback information.
  • the feedback time interval for transmitting the received feedback information includes: an interval between one point coordination function after the data frame is sent is as long as 100 milliseconds.
  • Data frames may include unicast data frames and continuous data frames.
  • the interval between one point coordination function after the data frame is sent is as long as 100 milliseconds, which can be as long as the interval between one point coordination function after the last sub-data frame of the continuous data frame is sent 100 milliseconds.
  • the short inter-frame space (SIFS, Short Inter-Frame space) is used to space each frame in a data transmission, such as an interval data frame, an ACK frame, and so on.
  • SIFS Short Inter-Frame space
  • Wi-Fi communication also includes the point coordination function interframe interval.
  • the point coordination function interframe interval is usually used for wireless access nodes (AP) with the point coordination function (PCF), with PCF
  • the AP usually accesses the channel at intervals of a point coordination function inter-frame interval. .
  • the PIFS duration is the SIFS duration plus one slot time (Slot Time).
  • SIFS duration is the SIFS duration plus one slot time (Slot Time).
  • slot Time the time for the data frame receiving end to perform decoding and other processing, so that the data frame receiving end can send and reflect the true reception status of the data frame To receive feedback. Therefore, sending and receiving feedback information within a time period when the inter-frame interval of the coordination function is as long as 100 milliseconds after the data frame is sent can reduce the probability of errors in the received feedback information if the data frame is not decoded.
  • the maximum time limit of 100 milliseconds can provide an upper limit for the feedback time and improve the efficiency of receiving feedback information feedback.
  • the method further includes: receiving the data frame transmitted using the multiple transmission frequency bands; the duration indicated by the duration field included in the data frame includes: the transmission duration of the data frame and Does not include the transmission time for receiving feedback information.
  • the data frame sending end may use multiple transmission frequency bands to send the data frame.
  • the data frame receiving end can receive data frames in multiple transmission frequency bands. Because the feedback information is received, the feedback resource specified in the request transmission frame is used for transmission. Therefore, the duration field (Duration) of the data frame may not include the transmission time for receiving the feedback information.
  • the transmission duration of the data frame includes: the transmission duration of a single unicast data frame;
  • the transmission duration of the data frame includes: the sum of the transmission duration of n sub-data frames included in the continuous data frame and n-1 short inter-frame intervals, where n It is a positive integer equal to or greater than 2, wherein the short inter-frame interval is located between two adjacent sub-data frames.
  • the transmission duration of the data frame includes: the sum of the transmission duration of n sub-data frames included in the continuous data frame and n-1 short inter-frame intervals, where n It is a positive integer equal to or greater than 2, wherein the short inter-frame interval is located between two adjacent sub-data frames.
  • Data frames may include unicast data frames and continuous data frames.
  • unicast data frame transmission refers to a form of encapsulating data in a data frame for transmission, and a unicast data frame has one reception feedback information.
  • Continuous data frame transmission refers to the form of encapsulating data in multiple sub-data frames and transmitting them in sequence. Continuous data frames can be received and fed back in the form of Block ACK, and block received feedback information can include multiple Feedback information. Each feedback information is used to indicate the receiving status of each sub-data frame.
  • the data frame transmission duration indicated by the duration field may be the transmission duration of the unicast data frame.
  • the data frame transmission duration indicated by the duration field may be the sum of the transmission duration of each sub-data frame in the continuous data frame and the short inter-frame interval between the sub-data frames.
  • the block reception feedback information can be used to feed back the reception of the continuous data frame.
  • the transmission of the data frame can be divided into synchronous transmission and asynchronous transmission.
  • the synchronous transmission may be as shown in FIG. 2a, and the sending time and the arrival time of the data frame of each transmission connection are the same.
  • Asynchronous transmission can be shown in Figure 2b to Figure 2d. There are three cases of asynchronous transmission:
  • the first type As shown in Figure 2b, the transmission time of each transmission connection data frame is the same, but the time to reach the receiving end is different.
  • the second type As shown in Figure 2c, the transmission time of each transmission connection data frame is different, and the time to reach the receiving end is also different.
  • the third type As shown in Figure 2d, the transmission time of the data frame of each transmission connection is different, and the time to reach the receiving end is the same.
  • the duration field of a data frame only contains its own transmission duration, not the duration of receiving an ACK frame: 1.
  • the duration is set to: the length of the data frame; 2.
  • the duration is set to: n*sub-data frame length+(n-1)*SIFS; where n is the number of sub-data frames in the continuous data frame.
  • ACK frame frequency band and receiving interval are determined.
  • the data frame sending end sends a multi-link (ML, Multi-Link) RTS frame to the data frame receiving end, and the ML-RTS carries the reception feedback Information/block receiving feedback information ACK/BA frequency band and listening interval.
  • the specific listening interval is 1ms-100ms after the transmission of the media access control protocol data frame/aggregated media access control protocol data frame (MPDU/A-MPDU).
  • MPDU/A-MPDU media access control protocol data frame
  • the data frame receiving end returns CTS to agree to receive the data frame.
  • the data frame sending end sends the data frame to the data frame receiving end.
  • the data frame receiving end sends and receives feedback information to the data frame sending end in the frequency band and listening interval indicated by the ML-RTS.
  • the data frame sender can determine the frequency band to receive the ACK frame according to the busyness of the frequency band communication it receives
  • the embodiment of the present invention also provides a receiving feedback information transmission configuration device, which is applied to the data frame transmitting end of wireless communication.
  • the receiving feedback information transmission configuration device 100 includes: a generating module 110 and a first sending device. Module 120, of which,
  • the generating module 110 is configured to generate a request to send frame for transmitting data frames using multiple transmission frequency bands, where the request to send frame includes: feedback resource information, wherein the feedback resource information is used to indicate the data frame reception End transmission and receiving of the transmission resources of feedback information;
  • the first sending module 120 is configured to send the request to send frame.
  • the feedback resource information includes at least one of the following:
  • the feedback frequency band information is used to indicate the feedback transmission frequency band for the data frame receiving end to transmit the received feedback information
  • the feedback time interval information is used to indicate the feedback time interval for the data frame receiving end to transmit the received feedback information.
  • the feedback time interval for transmitting the received feedback information includes: an interval between one point coordination function after the data frame is sent is as long as 100 milliseconds.
  • the device 100 further includes:
  • the first receiving module 130 is configured to use the transmission resource indicated by the feedback resource information to receive the reception feedback information sent by the data frame receiving end.
  • the device 100 further includes:
  • the determining module 140 is configured to determine the feedback transmission frequency band for transmitting the received feedback information according to the load condition of each transmission frequency band before sending the request to send frame.
  • the determining module 140 includes at least one of the following:
  • the first determining sub-module 141 is configured to determine the transmission frequency band with the lowest load value as the feedback transmission frequency band;
  • the second determining sub-module 142 is configured to determine the transmission frequency band with the least number of wireless stations establishing an association connection as the feedback transmission frequency band.
  • the device 100 further includes:
  • the second sending module 150 is configured to use the multiple transmission frequency bands to transmit the data frame
  • the duration indicated by the duration field included in the data frame includes: the transmission duration of the data frame and does not include the transmission duration of receiving feedback information.
  • the transmission duration of the data frame includes: the transmission duration of a single unicast data frame;
  • the transmission duration of the data frame includes: the sum of the transmission duration of n sub-data frames included in the continuous data frame and n-1 short inter-frame intervals, where n It is a positive integer equal to or greater than 2, wherein the short inter-frame interval is located between two adjacent sub-data frames.
  • the embodiment of the present invention also provides a receiving feedback information transmission configuration device, which is applied to the data frame sending end of wireless communication.
  • the device 200 includes a second receiving module 210 and a third sending module 220, among them,
  • the second receiving module 210 is configured to receive a request to send frame for transmitting data frames using multiple transmission frequency bands, where the request to send frame includes: feedback resource information, wherein the feedback resource information is used to indicate data
  • the frame receiving end transmits and receives the transmission resource of the feedback information
  • the third sending module 220 is configured to use the transmission resource to send the reception feedback information.
  • the feedback resource information includes at least one of the following:
  • the feedback frequency band information is used to indicate the feedback transmission frequency band for the data frame receiving end to transmit the received feedback information
  • the feedback time interval information is used to indicate the feedback time interval for the data frame receiving end to transmit the received feedback information.
  • the feedback time interval for transmitting the received feedback information includes: an interval between one point coordination function after the data frame is sent is as long as 100 milliseconds.
  • the device 200 further includes:
  • the third receiving module 230 is configured to receive the data frame transmitted by using the multiple transmission frequency bands;
  • the duration indicated by the duration field included in the data frame includes: the transmission duration of the data frame and does not include the transmission duration of receiving feedback information.
  • the transmission duration of the data frame includes: the transmission duration of a single unicast data frame;
  • the transmission duration of the data frame includes: the sum of the transmission duration of n sub-data frames included in the continuous data frame and n-1 short inter-frame intervals, where n It is a positive integer equal to or greater than 2, wherein the short inter-frame interval is located between two adjacent sub-data frames.
  • the generating module 110, the first sending module 120, the first receiving module 130, the determining module 140, the second sending module 150, the second receiving module 210, the third sending module 220, and the third receiving module 230 It can be used by one or more central processing unit (CPU, Central Processing Unit), graphics processing unit (GPU, Graphics Processing Unit), baseband processor (BP, baseband processor), application specific integrated circuit (ASIC, Application Specific Integrated Circuit).
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • BP baseband processor
  • ASIC Application Specific Integrated Circuit
  • DSP Programmable Logic Device
  • PLD Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • general-purpose processor control It is implemented by a device, a microcontroller (MCU, Micro Controller Unit), a microprocessor (Microprocessor), or other electronic components, and is used to execute the foregoing method.
  • MCU Micro Controller Unit
  • Microprocessor Microprocessor
  • Fig. 7 is a block diagram showing a device 3000 for receiving feedback information transmission configuration according to an exemplary embodiment.
  • the device 3000 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the device 3000 may include one or more of the following components: a processing component 3002, a memory 3004, a power supply component 3006, a multimedia component 3008, an audio component 3010, an input/output (I/O) interface 3012, a sensor component 3014, And the communication component 3016.
  • a processing component 3002 a memory 3004, a power supply component 3006, a multimedia component 3008, an audio component 3010, an input/output (I/O) interface 3012, a sensor component 3014, And the communication component 3016.
  • the processing component 3002 generally controls the overall operations of the device 3000, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 3002 may include one or more processors 3020 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 3002 may include one or more modules to facilitate the interaction between the processing component 3002 and other components.
  • the processing component 3002 may include a multimedia module to facilitate the interaction between the multimedia component 3008 and the processing component 3002.
  • the memory 3004 is configured to store various types of data to support the operation of the device 3000. Examples of these data include instructions for any application or method operating on the device 3000, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 3004 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power supply component 3006 provides power for various components of the device 3000.
  • the power supply component 3006 may include a power management system, one or more power supplies, and other components associated with the generation, management, and distribution of power to the device 3000.
  • the multimedia component 3008 includes a screen that provides an output interface between the device 3000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor can not only sense the boundary of the touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 3008 includes a front camera and/or a rear camera. When the device 3000 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 3010 is configured to output and/or input audio signals.
  • the audio component 3010 includes a microphone (MIC), and when the device 3000 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 3004 or transmitted via the communication component 3016.
  • the audio component 3010 further includes a speaker for outputting audio signals.
  • the I/O interface 3012 provides an interface between the processing component 3002 and a peripheral interface module.
  • the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor assembly 3014 includes one or more sensors for providing the device 3000 with various aspects of status assessment.
  • the sensor component 3014 can detect the open/close status of the device 3000 and the relative positioning of components, such as the display and keypad of the device 3000.
  • the sensor component 3014 can also detect the position change of the device 3000 or a component of the device 3000. The presence or absence of contact with the device 3000, the orientation or acceleration/deceleration of the device 3000, and the temperature change of the device 3000.
  • the sensor assembly 3014 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 3014 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 3014 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 3016 is configured to facilitate wired or wireless communication between the device 3000 and other devices.
  • the device 3000 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 3016 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 3016 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the device 3000 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • non-transitory computer-readable storage medium including instructions, such as the memory 3004 including instructions, and the foregoing instructions may be executed by the processor 3020 of the device 3000 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and so on.

Abstract

本公开实施例是关于接收反馈信息传输配置方法、装置及存储介质,生成针对采用多个传输频段传输数据帧的请求发送帧,其中,所述请求发送帧包括:反馈资源信息,其中,所述反馈资源信息,用于指示数据帧接收端传输接收反馈信息的传输资源,发送所述请求发送帧。

Description

接收反馈信息传输配置方法、装置、通信设备及存储介质 技术领域
本申请涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及接收反馈信息传输配置方法、装置、通信设备及存储介质。
背景技术
电气和电子工程师协会成立了学习组(SG,Study Group)来研究下一代主流Wi-Fi技术,研究的范围为:320MHz带宽的Wi-Fi传输、采用多个频段的聚合及协同技术等,提出的愿景相对于现有的IEEE802.11ax提高至少四倍的速率以及吞吐量。新技术的主要应用场景为视频传输,增强现实(AR,Augmented Reality)、虚拟现实(VR,Virtual Reality)等。其中,多个频段的聚合及协同技术是指Wi-Fi设备间同时在2.4GHz、5.8GHz及6-7GHz的频段下进行通信。
发明内容
有鉴于此,本公开实施例提供了一种接收反馈信息传输配置方法、装置、通信设备及存储介质。
根据本公开实施例的第一方面,提供一种接收反馈信息传输配置方法,其中,所述方法包括:
生成针对采用多个传输频段传输数据帧的请求发送帧,其中,所述请求发送帧包括:反馈资源信息,其中,所述反馈资源信息,用于指示数据帧接收端传输接收反馈信息的传输资源;
发送所述请求发送帧。
在一个实施例中,所述反馈资源信息,包括以下至少之一:
反馈频段信息,用于指示数据帧接收端传输所述接收反馈信息的反馈传输频段;
反馈时间区间信息,用于指示所述数据帧接收端传输所述接收反馈信息的反馈时间区间。
在一个实施例中,所述传输所述接收反馈信息的反馈时间区间,包括:所述数据帧发送后的1个点协调功能帧间间隔时长至100毫秒。
在一个实施例中,所述方法还包括:利用所述反馈资源信息指示的传输资源,接收数据帧接收端发送的所述接收反馈信息。
在一个实施例中,在发送所述请求发送帧之前,所述方法还包括:根据每个所述传输频段的负载情况,确定传输所述接收反馈信息的所述反馈传输频段。
在一个实施例中,所述根据每个所述传输频段的负载情况,确定传输所述接收反馈信息的所述反馈传输频段,包括以下至少之一:
将负载值最低的所述传输频段,确定为所述反馈传输频段;
将建立连接的无线站点数量最少的所述传输频段,确定为所述反馈传输频段。
在一个实施例中,所述方法还包括:
利用所述多个传输频段传输所述数据帧;
所述数据帧包含的持续时间域指示的持续时间包括:所述数据帧的传输时长且不包括接收反馈信息的传输时长。
在一个实施例中,当所述数据帧为单播数据帧时,所述数据帧的传输时长包括:单个所述单播数据帧的传输时长;
当所述数据帧为连续数据帧时,所述数据帧的传输时长包括:所述连续数据帧所包含的n个子数据帧的传输时长与n-1个短帧间间隔之和,其中,n为等于或大于2的正整数,其中,所述短帧间间隔位于相邻两个所述子数 据帧之间。
根据本公开实施例的第二方面,提供一种接收反馈信息传输配置方法,其中,所述方法包括:
接收针对采用多个传输频段传输数据帧的请求发送帧,其中,所述请求发送帧包括:反馈资源信息,其中,所述反馈资源信息,用于指示数据帧接收端传输接收反馈信息的传输资源;
利用所述传输资源发送所述接收反馈信息。
在一个实施例中,所述反馈资源信息,包括以下至少之一:
反馈频段信息,用于指示数据帧接收端传输所述接收反馈信息的反馈传输频段;
反馈时间区间信息,用于指示所述数据帧接收端传输所述接收反馈信息的反馈时间区间。
在一个实施例中,所述传输所述接收反馈信息的反馈时间区间,包括:所述数据帧发送后的1个点协调功能帧间间隔时长至100毫秒。
在一个实施例中,所述方法还包括:
接收利用所述多个传输频段传输的所述数据帧;
所述数据帧包含的持续时间域指示的持续时间包括:所述数据帧的传输时长且不包括接收反馈信息的传输时长。
在一个实施例中,当所述数据帧为单播数据帧时,所述数据帧的传输时长包括:单个所述单播数据帧的传输时长;
当所述数据帧为连续数据帧时,所述数据帧的传输时长包括:所述连续数据帧所包含的n个子数据帧的传输时长与n-1个短帧间间隔之和,其中,n为等于或大于2的正整数,其中,所述短帧间间隔位于相邻两个所述子数据帧之间。
根据本公开实施例的第三方面,提供一种接收反馈信息传输配置装置, 其中,所述装置包括:生成模块和第一发送模块,其中,
所述生成模块,配置为生成针对采用多个传输频段传输数据帧的请求发送帧,其中,所述请求发送帧包括:反馈资源信息,其中,所述反馈资源信息,用于指示数据帧接收端传输接收反馈信息的传输资源;
所述第一发送模块,配置为发送所述请求发送帧。
在一个实施例中,所述反馈资源信息,包括以下至少之一:
反馈频段信息,用于指示数据帧接收端传输所述接收反馈信息的反馈传输频段;
反馈时间区间信息,用于指示所述数据帧接收端传输所述接收反馈信息的反馈时间区间。
在一个实施例中,所述传输所述接收反馈信息的反馈时间区间,包括:所述数据帧发送后的1个点协调功能帧间间隔时长至100毫秒。
在一个实施例中,所述装置还包括:
第一接收模块,配置为利用所述反馈资源信息指示的传输资源,接收数据帧接收端发送的所述接收反馈信息。
在一个实施例中,所述装置还包括:确定模块,配置为,在发送所述请求发送帧之前,根据每个所述传输频段的负载情况,确定传输所述接收反馈信息的所述反馈传输频段。
在一个实施例中,确定模块,包括以下至少之一:
第一确定子模块,配置为将负载值最低的所述传输频段,确定为所述反馈传输频段;
第二确定子模块,配置为将建立关联连接的无线站点数量最少的所述传输频段,确定为所述反馈传输频段。
在一个实施例中,所述装置还包括:
第二发送模块,配置为利用所述多个传输频段传输所述数据帧;
所述数据帧包含的持续时间域指示的持续时间包括:所述数据帧的传输时长且不包括接收反馈信息的传输时长。
在一个实施例中,当所述数据帧为单播数据帧时,所述数据帧的传输时长包括:单个所述单播数据帧的传输时长;
当所述数据帧为连续数据帧时,所述数据帧的传输时长包括:所述连续数据帧所包含的n个子数据帧的传输时长与n-1个短帧间间隔之和,其中,n为等于或大于2的正整数,其中,所述短帧间间隔位于相邻两个所述子数据帧之间。
根据本公开实施例的第四方面,提供一种接收反馈信息传输配置装置,其中,所述装置包括:第二接收模块和第三发送模块,其中,
所述第二接收模块,配置为接收针对采用多个传输频段传输数据帧的请求发送帧,其中,所述请求发送帧包括:反馈资源信息,其中,所述反馈资源信息,用于指示数据帧接收端传输接收反馈信息的传输资源;
所述第三发送模块,配置为利用所述传输资源发送所述接收反馈信息。
在一个实施例中,所述反馈资源信息,包括以下至少之一:
反馈频段信息,用于指示数据帧接收端传输所述接收反馈信息的反馈传输频段;
反馈时间区间信息,用于指示所述数据帧接收端传输所述接收反馈信息的反馈时间区间。
在一个实施例中,所述传输所述接收反馈信息的反馈时间区间,包括:所述数据帧发送后的1个点协调功能帧间间隔时长至100毫秒。
在一个实施例中,所述装置还包括:
第三接收模块,配置为接收利用所述多个传输频段传输的所述数据帧;
所述数据帧包含的持续时间域指示的持续时间包括:所述数据帧的传输时长且不包括接收反馈信息的传输时长。
在一个实施例中,当所述数据帧为单播数据帧时,所述数据帧的传输时长包括:单个所述单播数据帧的传输时长;
当所述数据帧为连续数据帧时,所述数据帧的传输时长包括:所述连续数据帧所包含的n个子数据帧的传输时长与n-1个短帧间间隔之和,其中,n为等于或大于2的正整数,其中,所述短帧间间隔位于相邻两个所述子数据帧之间。
根据本公开实施例的第五方面,提供一种通信设备装置,包括处理器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行第一方面和第二方面所述接收反馈信息传输配置方法的步骤。
根据本公开实施例的第六方面,提供一种存储介质,其上存储由可执行程序,其中,所述可执行程序被处理器执行时实现第一方面和第二方面所述接收反馈信息传输配置方法的步骤
本公开实施例提供的接收反馈信息传输配置方法、装置、通信设备和存储介质,生成针对采用多个传输频段传输数据帧的请求发送帧,其中,所述请求发送帧包括:反馈资源信息,其中,所述反馈资源信息,用于指示数据帧接收端传输接收反馈信息的传输资源,发送所述请求发送帧。如此,一方面,发送方通过所述请求发送帧的发送实现根据实际情况调整传输资源,提高接收反馈信息传输资源配置的灵活性。另一方面,不再采用固定的时间和/或频段发送接收反馈信息,可以减少发送接收反馈信息时,数据帧没有完成解码的情况,提高接收反馈信息的准确性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本 发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种接收反馈信息传输配置方法的流程示意图;
图2是根据一示例性实施例示出的数据帧传输方式示意图;
图3是根据一示例性实施例示出的一种接收反馈信息传输配置方法的流程示意图;
图4是根据一示例性实施例示出的数据帧发送端和接收端数据交互示意图;
图5是根据一示例性实施例示出的一种接收反馈信息传输配置装置的框图;
图6是根据一示例性实施例示出的另一种接收反馈信息传输配置装置的框图;
图7是根据一示例性实施例示出的一种用于接收反馈信息传输配置的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
本公开实施例涉及的执行主体包括但不限于:无线通信网络尤其是Wi-Fi网络如IEEE802.11a/b/g/n/ac标准下,以及下一代Wi-Fi网络中IEEE802.11be标准下的网络设备,其中,网络设备包括但不限于:Wi-Fi路由器等无线(AP,Access Point)接入点设备、无线站点(STA,Station)、用户终端、用户节点、移动终端或平板电脑等。
本公开实施例的一个应用场景为,现有的IEEE802.11标准中,设备接收ACK的最短时长为一个短帧间间隔(SIFS,short inter-frame space),在2.4GHz下为SIFS为10us,在5GHz频段下SIFS为16us。由于数据帧接收端处理速度的原因,数据帧接收端可能无法在10us或16us之内完成数据帧解码,并将数据帧的接收反馈信息发送给数据帧发送端。
如图1所示,本示例性实施例提供一种接收反馈信息传输配置方法,接收反馈信息传输配置方法可以应用于无线通信的数据帧发送端,所述方法包括:
步骤101:生成针对采用多个传输频段传输数据帧的请求发送帧,其中,所述请求发送帧包括:反馈资源信息,其中,所述反馈资源信息,用于指示数据帧接收端传输接收反馈信息的传输资源;
步骤102:发送所述请求发送帧。
这里,无线通信可以是采用IEEE802.11be等标准的Wi-Fi通信;数据帧发送端和数据帧接收端可以是Wi-Fi通信中的无线站点(STA,Station) 等。数据帧可以是在多个传输频段中的各传输频段中分别进行传输的数据帧。数据帧可以是媒体存取控制协议数据帧(MPDU,Media Access Control Protocol Data Unit)或聚合媒体存取控制协议数据帧(A-MPDU,Aggregation Media Access Control Protocol Data Unit)等。
多个传输频段可以是多个Wi-Fi工作频段,如2.4GHz、5.8GHz及6-7GHz等;也可以是传输频段占用的带宽的频率范围。其中,各传输频段占用的带宽的频率范围可以属于同一个Wi-Fi工作频段,也可以属于不同Wi-Fi工作频段。
数据帧由数据帧发送端利用多个传输频段进行发送,并由数据帧接收端进行接收。数据帧接收端可以是Wi-Fi通信中的无线站点等。这里,多个传输频段的频率覆盖范围不同,多个传输频段可以同时进行数据帧的传输,进而提高数据帧的传输速率,提高数据帧传输效率。
接收反馈信息可以是用于反馈数据帧接收状况的确认(ACK)或非确认(NACK),也可以是用于反馈连续数据帧接收状况的块确认(Block ACK)信息等。
在进行数据传输前,数据帧发送端和数据帧接收端首先会根据传输协议进行握手,握手流程可包括:由数据帧发送端发送请求发送帧(RTS,Request To Send),表明数据帧发送端要向数据帧接收端发送数据帧。数据帧接收端接收到请求发送帧后向数据帧发送端发送允许发送帧(CTS,Clear To Send)。
这里,可以在请求发送帧中携带反馈资源信息,用于向数据帧接收端指示传输接收反馈信息的传输资源。其中,传输资源可以是用于传输接收反馈信息的时域资源和/或频域资源,传输资源信息也可以是发送数据帧频段中的一个频段中的时域资源和/或时频资源。示例性的,反馈资源信息指示的时域资源可以是数据帧接收端接收数据帧并且完成解调及解码等处理 后的时间段。如此,可以减少发送接收反馈信息时,数据帧接收端没有完成数据帧解码的情况。
数据帧接收端在接收到请求发送帧中携带的反馈资源信息后,接收数据帧,对数据帧进行解调及解码等处理。确定数据帧的接收状况,并利用反馈资源信息指示的传输资源向数据帧发送端发送接收反馈信息。
如此,采用反馈资源信息指示传输接收反馈信息的传输资源,一方面,发送方通过所述请求发送帧的发送实现根据实际情况调整传输资源,提高接收反馈信息传输资源配置的灵活性。另一方面,不再采用固定的时间和/或频段发送接收反馈信息,可以减少发送接收反馈信息时,数据帧没有完成解码的情况,提高接收反馈信息的准确性。
在一个实施例中,所述反馈资源信息,包括以下至少之一:反馈频段信息,用于指示数据帧接收端传输所述接收反馈信息的反馈传输频段;反馈时间区间信息,用于指示所述数据帧接收端传输所述接收反馈信息的反馈时间区间。
这里,反馈传输频段可以是多个传输频段中的一个频段。反馈传输频段可以在传输完数据帧后用于传输接收反馈信息。反馈传输频段可以是多个传输频段中的一个频段。反馈传输频段可以在传输完数据帧后,用于传输接收反馈信息。
反馈时间区间可以是在数据帧接收端完成数据帧解码后的时间段。如此,可以在确定数据帧接收状况后再发送接收反馈信息,减少接收反馈信息出现错误的几率。
在一个实施例中,所述传输所述接收反馈信息的反馈时间区间,包括:所述数据帧发送后的1个点协调功能帧间间隔时长(PIFS,Point coordination function Inter Frame Space)至100毫秒。
数据帧可以包括单播数据帧和连续数据帧。当数据帧为连续数据帧时, 数据帧发送后的1个点协调功能帧间间隔时长至100毫秒可以是连续数据帧的最后一个子数据帧发送后的1个点协调功能帧间间隔时长至100毫秒。
短帧间间隔(SIFS,Short Inter-Frame space)用于间隔一次数据传输中各个帧,如间隔数据帧,ACK帧等。相关技术在数据帧和接收反馈信息之间仅间隔一个SIFC,数据帧接收端没有足够的时间完成数据帧的解析,从而无法发送可以反应数据帧真实接收状况的接收反馈信息。相对于短帧间间隔,Wi-Fi通信中还包括点协调功能帧间间隔,点协调功能帧间间隔通常用于具有点协调功能(PCF Point coordination function)的无线访问节点(AP),具有PCF的AP通常间隔一个点协调功能帧间间隔时长访问信道。。PIFS时长的是SIFS时长加一个时隙时间(Slot Time)。这里,在数据帧后间隔1个点协调功能帧间间隔再发送接收反馈信息,可以为数据帧接收端提供较为充足的时间进行解码等处理,从而数据帧接收端可以发送反应数据帧真实接收状况的接收反馈信息。因此,在数据帧发送后的1个点协调功能帧间间隔时长至100毫秒这个时间段内发送接收反馈信息,可以减少数据帧没有完成解码,从而接收反馈信息出现错误的几率。100毫秒的最长时间限制,可以提供反馈时间上限,提高接收反馈信息反馈的效率。
在一个实施例中,所述方法还包括:根据反馈资源信息,接收数据帧接收端发送的所述接收反馈信息。
所述根据反馈资源信息,接收数据帧接收端发送的所述接收反馈信息,包括:
利用所述反馈资源信息指示的反馈传输资源,接收数据帧接收端发送的所述接收反馈信息。
数据帧接收端在接收到请求发送帧中携带的反馈资源信息后,接收数据帧,对数据帧进行解调、解码等处理。确定数据帧的接收状况,并利用反馈资源信息指示的传输资源向数据帧发送端发送接收反馈信息。
在一个实施例中,在发送所述请求发送帧之前,所述方法还包括:根据每个所述传输频段的负载情况,确定传输所述接收反馈信息的所述反馈传输频段。
在利用多个传输频段传输数据帧时,各个传输频段的负载可能不相同。示例性的,可以采用负载较小的传输接收反馈信息。
根据每个所述传输频段传输所述数据帧的收发时间划分,数据帧的传输可以分为同步传输和异步传输。示例性的,同步传输如图2a所示,各传输频段的数据帧的发送时间和到达接收端的时间均相同。异步传输如图2b至图2d所示,异步传输有三种情况:
第一种:如图2b所示,各传输频段数据帧的发送时间相同,到达接收端的时间不相同。
第二种:如图2c所示,各传输频段数据帧的发送时间不相同,到达接收端的时间也不相同。
第三种:如图2d所示,各传输频段数据帧的发送时间不相同,到达接收端的时间相同。数据帧到达接收端的时间可以由发送端根据数据帧的发送时间和数据帧长度等确定。
在一个实施例中,所述根据每个所述传输频段的负载情况,确定传输所述接收反馈信息的所述反馈传输频段,包括以下至少之一:
将负载值最低的所述传输频段,确定为所述反馈传输频段;
将建立连接的无线站点数量最少的所述传输频段,确定为所述反馈传输频段。
每个传输频段都有一个负载(Load)值,可以通过读取负载值等方式确定传输频段的负载情况。由于传输接收反馈信息需要占用一定的资源,因此,可以在负载最低的传输频段传输接收反馈信息,如此,可以充分利用低负载的传输频段,相对于采用负载高的传输频段发送数据,一方面能 够不用进行负载排队,能够及时传输;另一方面,负载较低的传输频率允许较低的码率,能够通过低码率确保传输质量。
与传输频段建立关联连接的无线站点数量越多,则传输频段出现较高负载的概率越大;与传输频段建立关联的无线站点数量越少,则传输频段出现较高负载的概率相对较小;因此,可以在建立关联的无线站点数量最少的传输频段传输接收反馈信息,提高在低负载传输频段进行接收反馈信息传输的概率,提高传输频段的利用效率。
在一个实施例中,所述方法还包括:利用所述多个传输频段传输所述数据帧;所述数据帧包含的持续时间域指示的持续时间包括:所述数据帧的传输时长且不包括接收反馈信息的传输时长。
这里,数据帧发送端可以采用多个传输频段发送数据帧。数据帧接收端可以在多个传输频段接收数据帧。由于接收反馈信息利用请求发送帧中指定的反馈资源进行传输。因此,数据帧的持续时间域(Duration)可以不包括接收反馈信息的传输时长。
在一个实施例中,当所述数据帧为单播数据帧时,所述数据帧的传输时长包括:单个所述单播数据帧的传输时长;
当所述数据帧为连续数据帧时,所述数据帧的传输时长包括:所述连续数据帧所包含的n个子数据帧的传输时长与n-1个短帧间间隔之和,其中,n为等于或大于2的正整数,其中,所述短帧间间隔位于相邻两个所述子数据帧之间。
数据帧可以包括单播数据帧和连续数据帧。这里,单播数据帧传输是指将数据封装在一个数据帧中传输的形式,一个单播数据帧具有一个接收反馈信息。连续数据帧传输是指将数据封装在多个子数据帧中并按序传输的形式,连续数据帧可以采用块接收反馈信息(Block ACK)的形式进行接收反馈,块接收反馈信息可以采用包括多个反馈信息,每个反馈信息分别 用于指示每个子数据帧的接收状况。
当数据帧为单播数据帧时,持续时间域指示的数据帧传输时长可以是单播数据帧的传输时长。当数据帧为连续数据帧时,持续时间域指示的数据帧传输时长可以是连续数据帧中每个子数据帧的传输时长与各子数据帧之间短帧间间隔之和。
当数据帧为连续数据帧时,可以采用块接收反馈信息对连续数据帧的接收情况进行反馈。
如图3所示,本示例性实施例提供一种接收反馈信息传输配置方法,接收反馈信息传输配置方法可以应用于无线通信的数据帧接收端,所述方法包括:
步骤301:接收针对采用多个传输频段传输数据帧的请求发送帧,其中,所述请求发送帧包括:反馈资源信息,其中,所述反馈资源信息,用于指示数据帧接收端传输接收反馈信息的传输资源;
步骤302:利用所述传输资源发送所述接收反馈信息。
这里,无线通信可以是采用IEEE802.11be等标准的Wi-Fi通信;数据帧发送端和数据帧接收端可以是Wi-Fi通信中的STA等。数据帧可以是在多个传输频段中的各传输频段中分别进行传输的数据帧。数据帧可以是MPDU或AMPDU等。
多个传输频段可以是多个Wi-Fi工作频段,如2.4GHz、5.8GHz及6-7GHz等;也可以是传输频段占用的带宽的频率范围。其中,各传输频段占用的带宽的频率范围可以属于同一个Wi-Fi工作频段,也可以属于不同Wi-Fi工作频段。
数据帧由数据帧发送端利用多个传输频段进行发送,并由数据帧接收端进行接收。数据帧接收端可以是Wi-Fi通信中的无线站点等。这里,多个传输频段的频率覆盖范围不同,多个传输频段可以同时进行数据帧的传输, 进而提高数据帧的传输速率,提高数据帧传输效率。
接收反馈信息可以是用于反馈数据帧接收状况的ACK或NACK,也可以是用于反馈连续数据帧接收状况的Block ACK信息等。
在进行数据传输前,数据帧发送端和数据帧接收端首先会根据传输协议进行握手,握手流程可包括:由数据帧发送端发送请求发送帧(RTS,Request To Send),表明数据帧发送端要向数据帧接收端发送数据帧。数据帧接收端接收到请求发送帧后向数据帧发送端发送允许发送帧(CTS,Clear To Send)。
这里,可以在请求发送帧中携带反馈资源信息,用于向数据帧接收端指示传输接收反馈信息的传输资源。其中,传输资源可以是用于传输接收反馈信息的时域资源和/或频域资源。示例性的,反馈资源信息指示的时域资源可以是数据帧接收端接收数据帧并且完成解调及解码等处理后的时间段。如此,可以减少发送接收反馈信息时,数据帧接收端没有完成数据帧解码的情况。
数据帧接收端在接收到请求发送帧中携带的反馈资源信息后,接收数据帧,对数据帧进行解调及解码等处理。确定数据帧的接收状况,并利用反馈资源信息指示的传输资源向数据帧发送端发送接收反馈信息。
如此,采用反馈资源信息指示传输接收反馈信息的传输资源,一方面,发送方通过所述请求发送帧的发送实现根据实际情况调整传输资源,提高接收反馈信息传输资源配置的灵活性。另一方面,不再采用固定的时间和/或频段发送接收反馈信息,可以减少发送接收反馈信息时,数据帧没有完成解码的情况,提高接收反馈信息的准确性。
在一个实施例中,所述反馈资源信息,包括以下至少之一:反馈频段信息,用于指示数据帧接收端传输所述接收反馈信息的反馈传输频段;反馈时间区间信息,用于指示所述数据帧接收端传输所述接收反馈信息的反 馈时间区间。
这里,反馈传输频段可以是多个传输频段中的一个频段。反馈传输频段可以在传输完数据帧后用于传输接收反馈信息。反馈传输频段可以是多个传输频段中的一个频段。反馈传输频段可以在传输完数据帧后用于传输接收反馈信息。
反馈时间区间可以是在数据帧接收端完成数据帧解码后的时间段。如此,可以在确定数据帧接收状况后再发送接收反馈信息,减少接收反馈信息出现错误的几率。
在一个实施例中,所述传输所述接收反馈信息的反馈时间区间,包括:所述数据帧发送后的1个点协调功能帧间间隔时长至100毫秒。
数据帧可以包括单播数据帧和连续数据帧。当数据帧为连续数据帧时,数据帧发送后的1个点协调功能帧间间隔时长至100毫秒可以是连续数据帧的最后一个子数据帧发送后的1个点协调功能帧间间隔时长至100毫秒。
短帧间间隔(SIFS,Short Inter-Frame space)用于间隔一次数据传输中各个帧,如间隔数据帧,ACK帧等。相关技术在数据帧和接收反馈信息之间仅间隔一个SIFC,数据帧接收端没有足够的时间完成数据帧的解析,从而无法发送可以反应数据帧真实接收状况的接收反馈信息。相对于短帧间间隔,Wi-Fi通信中还包括点协调功能帧间间隔,点协调功能帧间间隔通常用于具有点协调功能(PCF Point coordination function)的无线访问节点(AP),具有PCF的AP通常间隔一个点协调功能帧间间隔时长访问信道。。PIFS时长的是SIFS时长加一个时隙时间(Slot Time)。这里,在数据帧后间隔1个点协调功能帧间间隔再发送接收反馈信息,可以为数据帧接收端提供较为充足的时间进行解码等处理,从而数据帧接收端可以发送反应数据帧真实接收状况的接收反馈信息。因此,在数据帧发送后的1个点协调功能帧间间隔时长至100毫秒这个时间段内发送接收反馈信息,可以减少 数据帧没有完成解码,从而接收反馈信息出现错误的几率。100毫秒的最长时间限制,可以提供反馈时间上限,提高接收反馈信息反馈的效率。
在一个实施例中,所述方法还包括:接收利用所述多个传输频段传输的所述数据帧;所述数据帧包含的持续时间域指示的持续时间包括:所述数据帧的传输时长且不包括接收反馈信息的传输时长。
这里,数据帧发送端可以采用多个传输频段发送数据帧。数据帧接收端可以在多个传输频段接收数据帧。由于接收反馈信息利用请求发送帧中指定的反馈资源进行传输。因此,数据帧的持续时间域(Duration)可以不包括接收反馈信息的传输时长。
在一个实施例中,当所述数据帧为单播数据帧时,所述数据帧的传输时长包括:单个所述单播数据帧的传输时长;
当所述数据帧为连续数据帧时,所述数据帧的传输时长包括:所述连续数据帧所包含的n个子数据帧的传输时长与n-1个短帧间间隔之和,其中,n为等于或大于2的正整数,其中,所述短帧间间隔位于相邻两个所述子数据帧之间。
当所述数据帧为连续数据帧时,所述数据帧的传输时长包括:所述连续数据帧所包含的n个子数据帧的传输时长与n-1个短帧间间隔之和,其中,n为等于或大于2的正整数,其中,所述短帧间间隔位于相邻两个所述子数据帧之间。
数据帧可以包括单播数据帧和连续数据帧。这里,单播数据帧传输是指将数据封装在一个数据帧中传输的形式,一个单播数据帧具有一个接收反馈信息。连续数据帧传输是指将数据封装在多个子数据帧中并按序传输的形式,连续数据帧可以采用块接收反馈信息(Block ACK)的形式进行接收反馈,块接收反馈信息可以采用包括多个反馈信息,每个反馈信息分别用于指示每个子数据帧的接收状况。
当数据帧为单播数据帧时,持续时间域指示的数据帧传输时长可以是单播数据帧的传输时长。当数据帧为连续数据帧时,持续时间域指示的数据帧传输时长可以是连续数据帧中每个子数据帧的传输时长与各子数据帧之间短帧间间隔之和。
当数据帧为连续数据帧时,可以采用块接收反馈信息对连续数据帧的接收情况进行反馈。
以下结合上述任意实施例提供一个具体示例:
1、数据帧持续时间(duration)域的设置,
根据每个所述传输连接传输所述数据帧的收发时间划分,数据帧的传输可以分为同步传输和异步传输。
示例性的,同步传输可以如图2a所示,各传输连接的数据帧的发送时间和到达接收端的时间均相同。
异步传输可以如图2b至图2d所示,异步传输有三种情况:
第一种:如图2b所示,各传输连接数据帧的发送时间相同,到达接收端的时间不相同。
第二种:如图2c所示,各传输连接数据帧的发送时间不相同,到达接收端的时间也不相同。
第三种:如图2d所示,各传输连接数据帧的发送时间不相同,到达接收端的时间相同。
不管是同步还是异步,数据帧的持续时间(duration)域只包含它本身的传输时长,而不包含接收到ACK帧的时长:一、对于单播数据帧,持续时长设置为:数据帧长度;二、对于连续数据帧,持续时长设置为:n*子数据帧长度+(n-1)*SIFS;其中n为连续数据帧中子数据帧的数量。
2、ACK帧频段及接收区间确定。
如图4所述的数据帧发送端和数据帧接收端交互示意图所示,数据帧 发送端发送多连接(ML,Multi-Link)RTS帧给数据帧接收端,在ML-RTS中携带接收反馈信息/块接收反馈信息ACK/BA的频段及侦听区间。具体的侦听区间为媒体存取控制协议数据帧/聚合媒体存取控制协议数据帧(MPDU/A-MPDU)发送完之后的1ms-100ms。数据帧接收端返回CTS同意接收数据帧。数据帧发送端向数据帧接收端发送数据帧。数据帧接收端在ML-RTS指示的频段和侦听区间向数据帧发送端发送接收反馈信息。
数据帧发送端可以根据其接收到的频段通信的繁忙程度来决定接收ACK帧的频段
本发明实施例还提供了一种接收反馈信息传输配置装置,应用于无线通信的数据帧发送端,如图5所示,所述接收反馈信息传输配置装置100包括:生成模块110和第一发送模块120,其中,
所述生成模块110,配置为生成针对采用多个传输频段传输数据帧的请求发送帧,其中,所述请求发送帧包括:反馈资源信息,其中,所述反馈资源信息,用于指示数据帧接收端传输接收反馈信息的传输资源;
所述第一发送模块120,配置为发送所述请求发送帧。
在一个实施例中,所述反馈资源信息,包括以下至少之一:
反馈频段信息,用于指示数据帧接收端传输所述接收反馈信息的反馈传输频段;
反馈时间区间信息,用于指示所述数据帧接收端传输所述接收反馈信息的反馈时间区间。
在一个实施例中,所述传输所述接收反馈信息的反馈时间区间,包括:所述数据帧发送后的1个点协调功能帧间间隔时长至100毫秒。
在一个实施例中,所述装置100还包括:
第一接收模块130,配置为利用所述反馈资源信息指示的传输资源,接收数据帧接收端发送的所述接收反馈信息。
在一个实施例中,所述装置100还包括:
确定模块140,配置为在发送所述请求发送帧之前,根据每个所述传输频段的负载情况,确定传输所述接收反馈信息的所述反馈传输频段。
在一个实施例中,确定模块140,包括以下至少之一:
第一确定子模块141,配置为将负载值最低的所述传输频段,确定为所述反馈传输频段;
第二确定子模块142,配置为将建立关联连接的无线站点数量最少的所述传输频段,确定为所述反馈传输频段。
在一个实施例中,所述装置100还包括:
第二发送模块150,配置为利用所述多个传输频段传输所述数据帧;
所述数据帧包含的持续时间域指示的持续时间包括:所述数据帧的传输时长且不包括接收反馈信息的传输时长。
在一个实施例中,当所述数据帧为单播数据帧时,所述数据帧的传输时长包括:单个所述单播数据帧的传输时长;
当所述数据帧为连续数据帧时,所述数据帧的传输时长包括:所述连续数据帧所包含的n个子数据帧的传输时长与n-1个短帧间间隔之和,其中,n为等于或大于2的正整数,其中,所述短帧间间隔位于相邻两个所述子数据帧之间。
本发明实施例还提供了一种接收反馈信息传输配置装置,应用于无线通信的数据帧发送端,如图6所示,所述装置200包括:第二接收模块210和第三发送模块220,其中,
所述第二接收模块210,配置为接收针对采用多个传输频段传输数据帧的请求发送帧,其中,所述请求发送帧包括:反馈资源信息,其中,所述反馈资源信息,用于指示数据帧接收端传输接收反馈信息的传输资源;
所述第三发送模块220,配置为利用所述传输资源发送所述接收反馈信 息。
在一个实施例中,所述反馈资源信息,包括以下至少之一:
反馈频段信息,用于指示数据帧接收端传输所述接收反馈信息的反馈传输频段;
反馈时间区间信息,用于指示所述数据帧接收端传输所述接收反馈信息的反馈时间区间。
在一个实施例中,所述传输所述接收反馈信息的反馈时间区间,包括:所述数据帧发送后的1个点协调功能帧间间隔时长至100毫秒。
在一个实施例中,所述装置200还包括:
第三接收模块230,配置为接收利用所述多个传输频段传输的所述数据帧;
所述数据帧包含的持续时间域指示的持续时间包括:所述数据帧的传输时长且不包括接收反馈信息的传输时长。
在一个实施例中,当所述数据帧为单播数据帧时,所述数据帧的传输时长包括:单个所述单播数据帧的传输时长;
当所述数据帧为连续数据帧时,所述数据帧的传输时长包括:所述连续数据帧所包含的n个子数据帧的传输时长与n-1个短帧间间隔之和,其中,n为等于或大于2的正整数,其中,所述短帧间间隔位于相邻两个所述子数据帧之间。
在示例性实施例中,生成模块110、第一发送模块120、第一接收模块130、确定模块140、第二发送模块150、第二接收模块210、第三发送模块220和第三接收模块230等可以被一个或多个中央处理器(CPU,Central Processing Unit)、图形处理器(GPU,Graphics Processing Unit)、基带处理器(BP,baseband processor)、应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic  Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
图7是根据一示例性实施例示出的一种用于接收反馈信息传输配置的装置3000的框图。例如,装置3000可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图7,装置3000可以包括以下一个或多个组件:处理组件3002,存储器3004,电源组件3006,多媒体组件3008,音频组件3010,输入/输出(I/O)的接口3012,传感器组件3014,以及通信组件3016。
处理组件3002通常控制装置3000的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件3002可以包括一个或多个处理器3020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件3002可以包括一个或多个模块,便于处理组件3002和其他组件之间的交互。例如,处理组件3002可以包括多媒体模块,以方便多媒体组件3008和处理组件3002之间的交互。
存储器3004被配置为存储各种类型的数据以支持在装置3000的操作。这些数据的示例包括用于在装置3000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器3004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件3006为装置3000的各种组件提供电力。电源组件3006可以 包括电源管理系统,一个或多个电源,及其他与为装置3000生成、管理和分配电力相关联的组件。
多媒体组件3008包括在装置3000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件3008包括一个前置摄像头和/或后置摄像头。当装置3000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件3010被配置为输出和/或输入音频信号。例如,音频组件3010包括一个麦克风(MIC),当装置3000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器3004或经由通信组件3016发送。在一些实施例中,音频组件3010还包括一个扬声器,用于输出音频信号。
I/O接口3012为处理组件3002和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件3014包括一个或多个传感器,用于为装置3000提供各个方面的状态评估。例如,传感器组件3014可以检测到装置3000的打开/关闭状态,组件的相对定位,例如组件为装置3000的显示器和小键盘,传感器组件3014还可以检测装置3000或装置3000一个组件的位置改变,用户与装置3000接触的存在或不存在,装置3000方位或加速/减速和装置3000 的温度变化。传感器组件3014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件3014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件3014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件3016被配置为便于装置3000和其他设备之间有线或无线方式的通信。装置3000可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件3016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件3016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置3000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器3004,上述指令可由装置3000的处理器3020执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明实施例的其它实施方案。本申请旨在涵盖本发明实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明实施例的一般性原理并包括本公开实施例未公开的本技术领域中的公知常识或惯 用技术手段。说明书和实施例仅被视为示例性的,本发明实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明实施例的范围仅由所附的权利要求来限制。

Claims (28)

  1. 一种接收反馈信息传输配置方法,其中,所述方法包括:
    生成针对采用多个传输频段传输数据帧的请求发送帧,其中,所述请求发送帧包括:反馈资源信息,其中,所述反馈资源信息,用于指示数据帧接收端传输接收反馈信息的传输资源;
    发送所述请求发送帧。
  2. 根据权利要求1所述的方法,其中,所述反馈资源信息,包括以下至少之一:
    反馈频段信息,用于指示数据帧接收端传输所述接收反馈信息的反馈传输频段;
    反馈时间区间信息,用于指示所述数据帧接收端传输所述接收反馈信息的反馈时间区间。
  3. 根据权利要求2所述的方法,其中,所述传输所述接收反馈信息的反馈时间区间,包括:所述数据帧发送后的1个点协调功能帧间间隔时长至100毫秒。
  4. 根据权利要求1至3任一项所述的方法,其中,所述方法还包括:利用所述反馈资源信息指示的传输资源,接收数据帧接收端发送的所述接收反馈信息。
  5. 根据权利要求1至3任一项所述的方法,其中,在发送所述请求发送帧之前,所述方法还包括:根据每个所述传输频段的负载情况,确定传输所述接收反馈信息的所述反馈传输频段。
  6. 根据权利要求5所述的方法,其中,所述根据每个所述传输频段的负载情况,确定传输所述接收反馈信息的所述反馈传输频段,包括以下至少之一:
    将负载值最低的所述传输频段,确定为所述反馈传输频段;
    将建立连接的无线站点数量最少的所述传输频段,确定为所述反馈传输频段。
  7. 根据权利要求1至3任一项所述的方法,其中,所述方法还包括:
    利用所述多个传输频段传输所述数据帧;
    所述数据帧包含的持续时间域指示的持续时间包括:所述数据帧的传输时长且不包括接收反馈信息的传输时长。
  8. 根据权利要求7所述的方法,其中,
    当所述数据帧为单播数据帧时,所述数据帧的传输时长包括:单个所述单播数据帧的传输时长;
    当所述数据帧为连续数据帧时,所述数据帧的传输时长包括:所述连续数据帧所包含的n个子数据帧的传输时长与n-1个短帧间间隔之和,其中,n为等于或大于2的正整数,其中,所述短帧间间隔位于相邻两个所述子数据帧之间。
  9. 一种接收反馈信息传输配置方法,其中,所述方法包括:
    接收针对采用多个传输频段传输数据帧的请求发送帧,其中,所述请求发送帧包括:反馈资源信息,其中,所述反馈资源信息,用于指示数据帧接收端传输接收反馈信息的传输资源;
    利用所述传输资源发送所述接收反馈信息。
  10. 根据权利要求9所述的方法,其中,所述反馈资源信息,包括以下至少之一:
    反馈频段信息,用于指示数据帧接收端传输所述接收反馈信息的反馈传输频段;
    反馈时间区间信息,用于指示所述数据帧接收端传输所述接收反馈信息的反馈时间区间。
  11. 根据权利要求10所述的方法,其中,所述传输所述接收反馈信息 的反馈时间区间,包括:所述数据帧发送后的1个点协调功能帧间间隔时长至100毫秒。
  12. 根据权利要求9至11任一项所述的方法,其中,所述方法还包括:
    接收利用所述多个传输频段传输的所述数据帧;
    所述数据帧包含的持续时间域指示的持续时间包括:所述数据帧的传输时长且不包括接收反馈信息的传输时长。
  13. 根据权利要求12所述的方法,其中,
    当所述数据帧为单播数据帧时,所述数据帧的传输时长包括:单个所述单播数据帧的传输时长;
    当所述数据帧为连续数据帧时,所述数据帧的传输时长包括:所述连续数据帧所包含的n个子数据帧的传输时长与n-1个短帧间间隔之和,其中,n为等于或大于2的正整数,其中,所述短帧间间隔位于相邻两个所述子数据帧之间。
  14. 一种接收反馈信息传输配置装置,其中,所述装置包括:生成模块和第一发送模块,其中,
    所述生成模块,配置为生成针对采用多个传输频段传输数据帧的请求发送帧,其中,所述请求发送帧包括:反馈资源信息,其中,所述反馈资源信息,用于指示数据帧接收端传输接收反馈信息的传输资源;
    所述第一发送模块,配置为发送所述请求发送帧。
  15. 根据权利要求14所述的装置,其中,所述反馈资源信息,包括以下至少之一:
    反馈频段信息,用于指示数据帧接收端传输所述接收反馈信息的反馈传输频段;
    反馈时间区间信息,用于指示所述数据帧接收端传输所述接收反馈信息的反馈时间区间。
  16. 根据权利要求15所述的装置,其中,所述传输所述接收反馈信息的反馈时间区间,包括:所述数据帧发送后的1个点协调功能帧间间隔时长至100毫秒。
  17. 根据权利要求14至16任一项所述的装置,其中,所述装置还包括:
    第一接收模块,配置为利用所述反馈资源信息指示的传输资源,接收数据帧接收端发送的所述接收反馈信息。
  18. 根据权利要求14至16任一项所述的装置,其中,所述装置还包括:确定模块,配置为,在发送所述请求发送帧之前,根据每个所述传输频段的负载情况,确定传输所述接收反馈信息的所述反馈传输频段。
  19. 根据权利要求18所述的装置,其中,确定模块,包括以下至少之一:
    第一确定子模块,配置为将负载值最低的所述传输频段,确定为所述反馈传输频段;
    第二确定子模块,配置为将建立关联连接的无线站点数量最少的所述传输频段,确定为所述反馈传输频段。
  20. 根据权利要求14至16任一项所述的装置,其中,所述装置还包括:
    第二发送模块,配置为利用所述多个传输频段传输所述数据帧;
    所述数据帧包含的持续时间域指示的持续时间包括:所述数据帧的传输时长且不包括接收反馈信息的传输时长。
  21. 根据权利要求20所述的装置,其中,
    当所述数据帧为单播数据帧时,所述数据帧的传输时长包括:单个所述单播数据帧的传输时长;
    当所述数据帧为连续数据帧时,所述数据帧的传输时长包括:所述连 续数据帧所包含的n个子数据帧的传输时长与n-1个短帧间间隔之和,其中,n为等于或大于2的正整数,其中,所述短帧间间隔位于相邻两个所述子数据帧之间。
  22. 一种接收反馈信息传输配置装置,其中,所述装置包括:第二接收模块和第三发送模块,其中,
    所述第二接收模块,配置为接收针对采用多个传输频段传输数据帧的请求发送帧,其中,所述请求发送帧包括:反馈资源信息,其中,所述反馈资源信息,用于指示数据帧接收端传输接收反馈信息的传输资源;
    所述第三发送模块,配置为利用所述传输资源发送所述接收反馈信息。
  23. 根据权利要求22所述的装置,其中,所述反馈资源信息,包括以下至少之一:
    反馈频段信息,用于指示数据帧接收端传输所述接收反馈信息的反馈传输频段;
    反馈时间区间信息,用于指示所述数据帧接收端传输所述接收反馈信息的反馈时间区间。
  24. 根据权利要求23所述的装置,其中,所述传输所述接收反馈信息的反馈时间区间,包括:所述数据帧发送后的1个点协调功能帧间间隔时长至100毫秒。
  25. 根据权利要求22至24任一项所述的装置,其中,所述装置还包括:
    第三接收模块,配置为接收利用所述多个传输频段传输的所述数据帧;
    所述数据帧包含的持续时间域指示的持续时间包括:所述数据帧的传输时长且不包括接收反馈信息的传输时长。
  26. 根据权利要求25所述的装置,其中,
    当所述数据帧为单播数据帧时,所述数据帧的传输时长包括:单个所 述单播数据帧的传输时长;
    当所述数据帧为连续数据帧时,所述数据帧的传输时长包括:所述连续数据帧所包含的n个子数据帧的传输时长与n-1个短帧间间隔之和,其中,n为等于或大于2的正整数,其中,所述短帧间间隔位于相邻两个所述子数据帧之间。
  27. 一种通信设备装置,包括处理器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至8或9至13任一项所述接收反馈信息传输配置方法的步骤。
  28. 一种存储介质,其上存储由可执行程序,其中,所述可执行程序被处理器执行时实现如权利要求1至8或9至13任一项所述接收反馈信息传输配置方法的步骤。
PCT/CN2019/107959 2019-09-25 2019-09-25 接收反馈信息传输配置方法、装置、通信设备及存储介质 WO2021056288A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980002122.5A CN114097283A (zh) 2019-09-25 2019-09-25 接收反馈信息传输配置方法、装置、通信设备及存储介质
US17/763,620 US20220338051A1 (en) 2019-09-25 2019-09-25 Method, apparatus, communication device and storage medium for configuring transmission of receipt feedback information
PCT/CN2019/107959 WO2021056288A1 (zh) 2019-09-25 2019-09-25 接收反馈信息传输配置方法、装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107959 WO2021056288A1 (zh) 2019-09-25 2019-09-25 接收反馈信息传输配置方法、装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021056288A1 true WO2021056288A1 (zh) 2021-04-01

Family

ID=75165013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107959 WO2021056288A1 (zh) 2019-09-25 2019-09-25 接收反馈信息传输配置方法、装置、通信设备及存储介质

Country Status (3)

Country Link
US (1) US20220338051A1 (zh)
CN (1) CN114097283A (zh)
WO (1) WO2021056288A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160302229A1 (en) * 2015-04-07 2016-10-13 Newracom, Inc. Multi-user aggregation methods and systems for data and control frames
CN106464354A (zh) * 2014-06-19 2017-02-22 Lg电子株式会社 用于发送帧的方法和设备
CN107104769A (zh) * 2010-11-12 2017-08-29 交互数字专利控股公司 用于节点执行信道聚合的方法和网络节点
CN107113885A (zh) * 2015-01-29 2017-08-29 英特尔Ip公司 无线通信网络中对未许可频谱的预留
CN107734669A (zh) * 2016-08-12 2018-02-23 珠海市魅族科技有限公司 无线局域网的通信方法、通信装置、接入点和站点

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8233462B2 (en) * 2003-10-15 2012-07-31 Qualcomm Incorporated High speed media access control and direct link protocol
KR101341192B1 (ko) * 2010-02-09 2013-12-12 엘지전자 주식회사 무선 랜에서 채널 접근 방법 및 장치
US9825678B2 (en) * 2013-11-26 2017-11-21 Marvell World Trade Ltd. Uplink multi-user multiple input multiple output for wireless local area network
CN105657849B (zh) * 2014-09-24 2020-06-12 阿尔卡特朗讯 在通信网络中调度允许发送信令的方法和装置
US20170019230A1 (en) * 2015-07-13 2017-01-19 Qualcomm Incorporated Communicating a Data Payload and an Acknowledgment of the Data Payload on Different Channels
US10075149B2 (en) * 2016-10-25 2018-09-11 Qualcomm Incorporated Methods and apparatus supporting controlled transmission and reception of messages
US10405348B2 (en) * 2016-10-25 2019-09-03 Qualcomm Incorporated Slotted transmission and directional reception of RTS
ES2745018T3 (es) * 2016-12-12 2020-02-27 Kyynel Oy Procedimiento versátil de selección de canal para red inalámbrica
CN110547026B (zh) * 2017-04-21 2023-01-10 佳能株式会社 802.11ax网络中的非关联站点和分组多用户传输所用的资源单元
US10771103B2 (en) * 2018-03-09 2020-09-08 Huawei Technologies Co., Ltd. Methods and systems for full duplex communications
WO2020032664A1 (ko) * 2018-08-10 2020-02-13 엘지전자 주식회사 복수의 링크를 지원하는 무선랜 시스템에서 복수의 링크를 제어하는 방법 및 장치
US11451966B2 (en) * 2019-03-04 2022-09-20 Apple Inc. Wireless access protocol with collaborative spectrum monitoring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107104769A (zh) * 2010-11-12 2017-08-29 交互数字专利控股公司 用于节点执行信道聚合的方法和网络节点
CN106464354A (zh) * 2014-06-19 2017-02-22 Lg电子株式会社 用于发送帧的方法和设备
CN107113885A (zh) * 2015-01-29 2017-08-29 英特尔Ip公司 无线通信网络中对未许可频谱的预留
US20160302229A1 (en) * 2015-04-07 2016-10-13 Newracom, Inc. Multi-user aggregation methods and systems for data and control frames
CN107734669A (zh) * 2016-08-12 2018-02-23 珠海市魅族科技有限公司 无线局域网的通信方法、通信装置、接入点和站点

Also Published As

Publication number Publication date
CN114097283A (zh) 2022-02-25
US20220338051A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
WO2020019351A1 (zh) 传输配置指示的配置方法及装置
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
WO2021114168A1 (zh) 块确认反馈控制方法、装置、通信设备及存储介质
CN112534914B (zh) 资源分配方法及装置、消息帧处理方法及装置、存储介质
WO2021031088A1 (zh) 确定资源复用方法及装置、信息解调方法及装置、介质
US20220158764A1 (en) Methods and apparatuses for data transmission
WO2022006757A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2021184272A1 (zh) 数据传输方法、装置、通信设备及存储介质
WO2021056288A1 (zh) 接收反馈信息传输配置方法、装置、通信设备及存储介质
CN113261324B (zh) 传输测量方法、传输测量装置及存储介质
WO2022073238A1 (zh) Pucch资源确定方法及装置
WO2021087674A1 (zh) 数据传输方法、装置和通信设备
CN113169825B (zh) 数据包传输方法及装置
WO2021031209A1 (zh) 多频段通信方法及装置
WO2021007791A1 (zh) 资源配置的方法及装置、通信设备及存储介质
WO2021046729A1 (zh) 数据传输方法、装置及存储介质
WO2021217486A1 (zh) 数据传输方法、装置、通信设备和存储介质
WO2021120182A1 (zh) 数据传输方法、装置及通信设备
WO2021184173A1 (zh) 数据传输方法、装置及计算机存储介质
RU2799998C1 (ru) Способ и устройство для передачи данных и устройство связи
WO2021138909A1 (zh) 数据帧传输方法、数据帧传输装置及存储介质
WO2021114149A1 (zh) 重关联指示方法、装置及通信设备
WO2022126527A1 (zh) 传输pucch的方法、装置、通信设备及存储介质
WO2021068213A1 (zh) 数据传输方法及数据传输装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947414

Country of ref document: EP

Kind code of ref document: A1