WO2023122893A1 - 信息传输方法、装置、通信设备和存储介质 - Google Patents

信息传输方法、装置、通信设备和存储介质 Download PDF

Info

Publication number
WO2023122893A1
WO2023122893A1 PCT/CN2021/141705 CN2021141705W WO2023122893A1 WO 2023122893 A1 WO2023122893 A1 WO 2023122893A1 CN 2021141705 W CN2021141705 W CN 2021141705W WO 2023122893 A1 WO2023122893 A1 WO 2023122893A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
terminal
transmit power
type
superimposed
Prior art date
Application number
PCT/CN2021/141705
Other languages
English (en)
French (fr)
Inventor
张娟
郭胜祥
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/141705 priority Critical patent/WO2023122893A1/zh
Priority to CN202180004755.7A priority patent/CN114424633A/zh
Publication of WO2023122893A1 publication Critical patent/WO2023122893A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the technical field of wireless communication but is not limited to the technical field of wireless communication, and in particular relates to an information transmission method, device, communication device and storage medium.
  • High-power terminals can better solve the problem of limited uplink. Without additional cost investment on the network side, it can greatly alleviate the uplink limitation of high-band cells, effectively expand the coverage radius of uplink services, and significantly improve the service experience of edge users.
  • a high-power terminal In the fourth generation (4G, 4th Generation) cellular mobile communication system, a high-power terminal generally refers to a terminal whose maximum transmission power at the antenna port can reach 26dBm. Compared with ordinary terminals with a maximum transmission power of 23dBm, the maximum transmission power of high-power terminals is increased by 3dB. With the continuous evolution of New Radio (NR, New Radio) technology, the maximum transmission power of a single-band high-power terminal in an NR system at an antenna port can reach 26 dBm or higher, 29 dBm.
  • NR New Radio
  • the embodiments of the present disclosure provide an information transmission method, device, communication device, and storage medium.
  • an information transmission method wherein, executed by a terminal, the method includes:
  • Sending power indication information wherein the power indication information is used to determine the maximum superimposed transmission power of the terminal in N frequency bands in the multi-carrier system, wherein the maximum superimposed transmission power is different from that indicated by the first type of power level Transmit power, where N is a positive integer greater than or equal to 1.
  • an information transmission method wherein, executed by a base station, the method includes:
  • Receive power indication information wherein the power indication information is used to determine the maximum superimposed transmit power of the terminal in N frequency bands in the multi-carrier system, wherein the maximum superimposed transmit power is different from the transmit power indicated by the first type of power level , where N is a positive integer greater than or equal to 1.
  • an information transmission device wherein the device includes:
  • the sending module is configured to send power indication information, wherein the power indication information is used to determine the maximum superimposed transmission power of the terminal in N frequency bands in the multi-carrier system, wherein the maximum superimposed transmission power is different from the first type of power The transmit power indicated by the level, where N is a positive integer greater than or equal to 1.
  • an information transmission device wherein the device includes:
  • the receiving module is configured to receive power indication information, wherein the power indication information is used to determine the maximum superimposed transmission power of the terminal in N frequency bands in the multi-carrier system, wherein the maximum superimposed transmission power is different from the first type of power The transmit power indicated by the level, where N is a positive integer greater than or equal to 1.
  • a communication device including a processor, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs the executable program
  • the steps of the information transmission method described in the first aspect or the second aspect are executed when the program is executed.
  • a storage medium on which an executable program is stored, wherein, when the executable program is executed by a processor, the information transmission method as described in the first aspect or the second aspect is implemented.
  • the information transmission method, device, communication device and storage medium provided by the embodiments of the present disclosure.
  • the terminal sends power indication information, wherein the power indication information is used to determine the maximum superimposed transmission power of the terminal in N frequency bands in the multi-carrier system, wherein the maximum superimposed transmission power is different from the first type of power level indication
  • the transmit power of where N is a positive integer greater than or equal to 1.
  • N is a positive integer greater than or equal to 1.
  • the base station configures the terminal based on the maximum superimposed transmission power determined through the power indication information, thereby improving the accuracy of base station configuration.
  • Fig. 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment
  • Fig. 2 is a schematic flowchart of an information transmission method according to an exemplary embodiment
  • Fig. 3 is a schematic diagram of carrier aggregation according to an exemplary embodiment
  • Fig. 4 is a schematic flowchart of another information transmission method according to an exemplary embodiment
  • Fig. 5 is a schematic flowchart of another information transmission method according to an exemplary embodiment
  • Fig. 6 is a block diagram of an information transmission device according to an exemplary embodiment
  • Fig. 7 is a block diagram of another information transmission device according to an exemplary embodiment
  • Fig. 8 is a block diagram of an apparatus for information transmission according to an exemplary embodiment.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several terminals 11 and several base stations 12 .
  • the terminal 11 may be a device that provides voice and/or data connectivity to the user.
  • the terminal 11 can communicate with one or more core networks via a radio access network (Radio Access Network, RAN), and the terminal 11 can be an Internet of Things terminal, such as a sensor device, a mobile phone (or called a "cellular" phone) and a
  • the computer of the IoT terminal for example, may be a fixed, portable, pocket, hand-held, built-in computer or vehicle-mounted device.
  • Station For example, Station (Station, STA), subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point, remote terminal ( remote terminal), an access terminal (access terminal), a user device (user terminal), a user agent (user agent), a user device (user device), or a user terminal (user equipment, UE).
  • the terminal 11 may also be a device of an unmanned aerial vehicle.
  • the terminal 11 can also be a vehicle-mounted device, such as a trip computer with a wireless communication function, or a wireless communication device connected externally to the trip computer.
  • the terminal 11 may also be a roadside device, for example, it may be a street lamp, a signal lamp, or other roadside devices with a wireless communication function.
  • the base station 12 may be a network side device in a wireless communication system.
  • the wireless communication system may be a fourth generation mobile communication technology (the 4th generation mobile communication, 4G) system, also known as a Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system, Also known as new radio (NR) system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, New Generation Radio Access Network).
  • the MTC system the MTC system.
  • the base station 12 may be an evolved base station (eNB) adopted in a 4G system.
  • the base station 12 may also be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it generally includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, radio link layer control protocol (Radio Link Control, RLC) layer, media access control (Media Access Control, MAC) layer protocol stack;
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • a physical (Physical, PHY) layer protocol stack is set in the unit, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 12 .
  • a wireless connection can be established between the base station 12 and the terminal 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a technical standard of a next-generation mobile communication network based on 5G.
  • an E2E (End to End, end-to-end) connection can also be established between the terminals 11.
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to pedestrian, vehicle-to-person communication in vehicle to everything (V2X) communication Wait for the scene.
  • the above wireless communication system may further include a network management device 13 .
  • the network management device 13 may be a core network device in the wireless communication system, for example, the network management device 13 may be a mobility management entity (Mobility Management Entity, MME).
  • MME Mobility Management Entity
  • the network management device can also be other core network devices, such as Serving GateWay (SGW), Public Data Network Gateway (Public Data Network GateWay, PGW), policy and charging rule functional unit (Policy and Charging Rules Function, PCRF) or Home Subscriber Server (Home Subscriber Server, HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network Gateway
  • PCRF Policy and Charging Rules Function
  • HSS Home Subscriber Server
  • Executors involved in the embodiments of the present disclosure include, but are not limited to: mobile phone terminals in a cellular mobile communication system, and network-side devices, such as access network devices such as base stations, and core networks.
  • the power class (PC, Power Class) can be used to indicate the maximum transmission power.
  • the power classes in the NR single carrier system include: PC5 (20dBm), PC3 (23dBm), PC2 (26dBm), PC1.5 (29dBm) and PC1 (31dBm).
  • SAR Specific Absorption Rate
  • P-MPR Power Management Maximum Power Reduction
  • duty cycle high-power terminals are also applied to multi-carrier system.
  • the transmit power in a multi-carrier system can be obtained by superimposing the transmit power of a single carrier in different frequency bands.
  • the high power (PC2) in the multi-carrier system includes: PC3 plus PC3, PC3 plus PC2, PC2 plus PC3, PC2 plus PC3, PC2 plus PC2 corresponding frequency band combination, higher power can pass through PC3, PC2 and PC1.5
  • Different combinations are obtained, for example, may include combinations of corresponding frequency bands such as PC3 plus PC1.5, PC2 plus PC1.5, and PC1.5 plus PC1.5.
  • Evolved Terrestrial Radio Access and New Air Interface Dual Connectivity (EN-DC, Evolved terrestrial radio access New radio–Dual Connectivity) system terminals can report aggregated power levels (EN-DC power levels), and Report the power level of LTE and NR in dual connectivity, and the power level of NR single carrier. As shown in Table 1. Table 1 also shows the information elements used by each power level.
  • the terminal In the NR multi-carrier system, the terminal only reports the power level of carrier aggregation (CA, Carrier Aggregation), that is, the maximum superimposed transmit power, and does not report the power level of each frequency band in carrier aggregation.
  • CA Carrier Aggregation
  • the power level of carrier aggregation and the power level of each frequency band can be shown in Table 2.
  • the power level of the maximum superimposed transmit power is specified, that is, the maximum superimposed transmit power is not all obtained by superimposing transmit powers in each frequency band in the carrier aggregation working mode.
  • the inconsistency between the power level of the terminal in certain frequency bands in the carrier aggregation mode and the single carrier mode is caused by the application of uplink transmit diversity.
  • the power level of a certain frequency band is 26dBm (PC2), which is realized through transmit diversity (TxD, Transport Diversity).
  • Tx transmit diversity
  • TxD Transport Diversity
  • the radio frequency implements two transmissions (Tx)
  • TxD Transport Diversity
  • this frequency band can only work at the power level of 23dBm (PC3), but in the carrier aggregation system, the power level of each frequency band in the carrier aggregation working mode will not be reported separately. Therefore, in the working mode of carrier aggregation, the base station cannot distinguish whether the increase of the power level on certain frequency bands is caused by uplink diversity.
  • the maximum superimposed transmit power is further increased, and the achievable maximum superimposed transmit power is shown in Table 3. Existing power levels cannot accurately indicate the actual maximum superimposed transmit power.
  • this exemplary embodiment provides an information transmission method that can be executed by a terminal in a cellular mobile communication system, including:
  • Step 201 Send power indication information, wherein the power indication information is used to determine the maximum superimposed transmit power of the terminal in N frequency bands in a multi-carrier system.
  • N is a positive integer greater than or equal to 1.
  • the multi-carrier system includes but is not limited to a cellular mobile communication system that communicates through multiple carrier aggregation of NR, and may include: a carrier aggregation technology system, a dual link technology (DC, Dual connectivity) system, and a dual link of a multiple access system.
  • a carrier aggregation technology system such as a carrier aggregation technology system
  • DC dual link technology
  • MRDC Muti-RAT dual connectivity
  • Carrier aggregation technology can aggregate multiple carriers together to achieve greater transmission bandwidth and effectively improve the uplink and downlink transmission rates. As shown in FIG. 3 , the bandwidth of one carrier is 20 MHz, and the transmission bandwidth of 100 MHz can be achieved by aggregating 5 carriers. The terminal can determine the maximum number of carriers that can be used simultaneously according to its own capabilities.
  • Multiple carrier aggregation can be multiple carrier aggregation in different frequency bands, or multiple carrier aggregation in a single frequency band.
  • multiple carrier aggregation may be multiple carrier aggregation in two frequency bands of frequency band A and frequency band B.
  • the maximum superimposed transmit power may be a superimposed value of transmit power of multiple carriers when the terminal transmits signals in the carrier aggregation working mode in a multi-carrier system.
  • the maximum superimposed transmit power may be a superimposed value of transmit power of multiple carriers in multiple frequency bands, or a superimposed value of transmit power of multiple carriers in a single frequency band.
  • the maximum superimposed transmission power may be different from the transmission power indicated by the first type of power level.
  • the first type of power level may be the power level in the related art.
  • the first type of power level and its indicated power are shown in Table 4.
  • the transmit power indicated by the power indication information may be any superimposed transmit power value other than the maximum superimposed transmit power described in Table 4.
  • the transmit power of the terminal in the single-carrier working mode reaches the power level shown in Table 5, in a multi-carrier system, that is, the terminal in the carrier aggregation working mode, the maximum superimposed transmit power that can be achieved is shown in Table 5.
  • the transmit power in the single carrier working mode used for superposition may be the non-diversity transmit power.
  • the terminal can send power indication information to the base station, and the power indication information can be used for the base station to determine the maximum superimposed transmit power that PC1, PC1.5, PC2, PC3, and PC5 cannot indicate any of, such as 27.8dBm, 30dBm, 30.8dBm, 32dBm etc.
  • the power indication information may directly indicate the maximum superimposed transmit power, or provide associated information for determining the maximum superimposed transmit power to the base station, such as the power level of the transmit power of the terminal in the single-carrier working mode, etc., and the base station determines the actual Maximum superimposed transmit power.
  • the maximum superimposed transmission power that cannot be indicated by the first type of power level is determined through the power indication information, which improves the accuracy of the maximum superimposed transmission power indication.
  • the base station configures the terminal based on the maximum superimposed transmission power determined through the power indication information, thereby improving the accuracy of base station configuration.
  • the maximum superimposed transmission power determined by the power indication information includes: the terminal is obtained by linearly superimposing the transmission power of each frequency band in the carrier aggregation working mode.
  • the maximum superimposed transmit power determined through the power indication information may be a specified transmit power, or may be the actual power of linearly superimposed transmit power of the terminal in each frequency band in the carrier aggregation working mode. That is, the maximum superimposed transmit power may be a result of summing up the transmit power of the terminal in each frequency band in the carrier aggregation working mode.
  • the power level of the maximum superimposed transmit power is specified, that is, the maximum superimposed transmit power is not all transmitted on each frequency band in the carrier aggregation mode The power is obtained by superposition.
  • linear superposition means that in a multi-carrier system, the maximum superimposed transmit power is obtained by accumulating the transmit power of the terminal on each frequency band in the carrier aggregation mode, not based on the transmit power of the terminal in each frequency band in the carrier aggregation mode or The transmit power on each frequency band in single carrier mode is specified.
  • the maximum superimposed transmit power corresponding to the specified power level is not necessarily equal to the superimposed value of the transmit power on each frequency band of the terminal in the carrier aggregation working mode.
  • the maximum superimposed transmission power determined by the power indication information truly reflects the actual transmission power of the terminal in the multi-carrier system, that is, the actual transmission power of the terminal in the carrier aggregation mode, which improves the accuracy of the maximum superimposed transmission power indication.
  • the base station configures the terminal based on the maximum superimposed transmission power determined through the power indication information, thereby improving the accuracy of base station configuration.
  • the power indication information includes:
  • the first indication indicates a second type of power level of the maximum superimposed transmit power, wherein the second type of power level is different from the first type of power level.
  • the second type of power level may be defined according to the maximum superimposed transmission power obtained by superimposing the transmission power of the terminal on each frequency band in the carrier aggregation working mode.
  • the second type of power level can be used to indicate the transmission power that cannot be indicated by the first type of power level.
  • IE:powerClass-v1xxx may be used to bear the second type of power class.
  • the second category of power classes can be: ⁇ PCv, PCz, PCy, PCx, ... ⁇ ,
  • PCv, PCz, PCy and PCx are respectively used to indicate different transmission powers.
  • PCv, PCz, PCy, and PCx can be used to indicate the maximum superimposed transmit power as shown in Table 6, respectively.
  • the maximum superimposed transmit power indicated by the second type of power level may be the transmit power of linearly superimposed terminals on each frequency band in the carrier aggregation working mode. If the maximum superimposed transmit power is determined based on the power level reported by the terminal in the single-carrier working mode, and the terminal reports support for transmit diversity on a certain frequency band at the same time, then the power level of the terminal in the single-carrier working mode on this frequency band should be reduced by 3dB to obtain In the carrier aggregation mode, the transmit power on the frequency band is superimposed.
  • the IE:ue-PowerClass can be used to carry the power class of the terminal in the single carrier working mode. If Band A reports IE: ue-PowerClass PC2, and Band A supports transmit diversity, and Band B reports IE: ue-PowerClass PC2, then the power level of the terminal in Band A carrier aggregation mode is PC3, and the terminal is in Band B carrier The power level in the aggregation mode is PC2, and the superimposed power of the two is 27.8dBm. According to the corresponding relationship in Table 6, the terminal should report PCx through IE:powerClass-v1xxx at this time.
  • the actual maximum superimposed transmission power is indicated through the second type of power level, which improves the accuracy of the indication of the maximum superimposed transmission power.
  • the base station configures the terminal based on the maximum superimposed transmit power determined through the power indication information, thereby improving the accuracy of base station configuration.
  • the power indication information includes:
  • the second indication indicates that the maximum superimposed transmit power is equal to the linear superimposed value of the transmit power on the N frequency bands supported by the terminal;
  • the second indication may be used to generally refer to the maximum superimposed transmission power, for example, PC0 may be used to generally refer to the maximum superimposed transmission power, and PC0 does not represent a specific power value.
  • the maximum superimposed transmit power indicated by the second indication may be obtained by linearly superimposing the transmit power of the terminal on each frequency band in the carrier aggregation working mode.
  • linear superposition means that the transmission power is accumulated to obtain the maximum superimposed transmission power, instead of specifying a power level based on the transmission power of the terminal on each frequency band in the carrier aggregation mode, and the power corresponding to the specified power level is not necessarily equal to the terminal
  • the superimposed value of transmit power on each frequency band in carrier aggregation mode For example, the transmit power of the terminal on the two frequency bands in the carrier aggregation mode is PC3: 23dBm and PC2: 26dBm respectively, then the maximum superimposed transmit power after linear superposition is 27.8dBm; and in related technologies, the specified maximum superimposed transmit power Can be PC2 or PC3 etc.
  • the IE: powerClass-v1xxx may be used to carry the second indication, and the carrying power class of the second type may be: ⁇ pc0 ⁇ , and PC0 does not represent a specific power value.
  • PC0 may be used to generally refer to the maximum superimposed transmit power obtained by the linear superposition of the transmit power of the terminal on each frequency band in the carrier aggregation working mode shown in Table 7.
  • the IE:ue-PowerClass can be used to carry the power class in the single carrier working mode. If Band A reports IE: ue-PowerClass PC2, and Band A supports transmit diversity, and Band B reports IE: ue-PowerClass PC2, then the power level of the terminal in Band A carrier aggregation mode is PC3, and the terminal is in Band B carrier The power level in the aggregation mode is PC2, and the superimposed power of the two is 27.8dBm. According to the corresponding relationship in Table 7, the terminal should report PC0 through IE:powerClass-v1xxx at this time.
  • the base station may determine the maximum superimposed transmit power obtained by linearly superimposing the transmit powers of the terminal on each frequency band in the carrier aggregation working mode.
  • determining the maximum superimposed transmit power based on the second indication improves the accuracy of determining the maximum superimposed transmit power indication.
  • the base station configures the terminal based on the maximum superimposed transmission power determined through the power indication information, thereby improving the accuracy of base station configuration.
  • the power indication information includes:
  • the third indication indicates whether the terminal supports linear superposition of transmit power on N frequency bands.
  • IE sumPowerUL-CA-r17 or fullPowerUL-CA-r17 may be used to carry the third indication.
  • the third indication is used to indicate the superposition capability of the terminal's transmit power on each frequency band in the carrier aggregation working mode. If the third indication indicates that the terminal has the ability to superimpose the transmit power of each frequency band in the carrier aggregation mode, then the maximum superimposed transmit power can be obtained by superimposing the transmit power of the terminal in each frequency band in the carrier aggregation mode. Otherwise, the power level specified in the relevant technology can be used to determine the maximum superimposed transmit power.
  • ⁇ supported ⁇ may be used to indicate that the terminal supports linear superposition of transmit power on N frequency bands in the third indication. If the third indication is the default value, then it can be determined that the terminal does not support the transmission power on N frequency bands.
  • the network determines the maximum superimposed transmit power according to IE: powerClass-v1530 or powerClass-v1610 in related technologies, and configures the corresponding If the terminal reports IE: sumPowerUL-CA-r17 or fullPowerUL-CA-r17 is supported, the network will obtain the maximum superimposed transmit power obtained by superimposing the transmit power of each frequency band in the single-carrier working mode of the terminal. power. If the terminal simultaneously reports support for transmit diversity in the single-carrier working mode on a certain frequency band, then the transmit power of the terminal on this frequency band needs to be reduced by 3dB before superposition.
  • the IE:ue-PowerClass can be used to carry the power class in the single carrier working mode. If Band A reports IE: ue-PowerClass PC2, and Band A supports transmit diversity, and Band B reports IE: ue-PowerClass PC2, then the power level of the terminal in Band A carrier aggregation mode is PC3, and the terminal is in Band B carrier The power level in the aggregation mode is PC2, and the superimposed power of the two is 27.8dBm.
  • the method further includes: in response to the power indication information including the second indication or the third indication, the base station linearly superimposes the transmit power on the N frequency bands supported by the terminal to obtain the maximum Superimposed transmit power.
  • the transmit power on the N frequency bands may be the transmit power on each frequency band of the terminal in the carrier aggregation mode.
  • the second indication or the third indication does not indicate the maximum superimposed transmit power or the power level of the maximum superimposed transmit power, it only directly or indirectly indicates that the maximum superimposed transmit power can be linearly superimposed by the transmit power of the terminal on each frequency band in the carrier aggregation mode get. Therefore, the base station can linearly superimpose the transmit power of the terminal in each frequency band in the carrier aggregation mode to determine the maximum superimposed transmit power.
  • the base station may also determine a power level corresponding to the maximum superimposed transmission power based on the determined maximum superimposed transmission power.
  • the power level corresponding to the maximum superimposed transmit power may be the first type power level or the second type power level.
  • determining the maximum superimposed transmit power based on the second indication or the third indication improves the accuracy of determining the maximum superimposed transmit power indication.
  • the base station configures the terminal based on the maximum superimposed transmit power determined through the power indication information, thereby improving the accuracy of base station configuration.
  • the power indication information is also used to indicate the transmit power of each frequency band supported by the terminal in the multi-carrier system.
  • the transmit power of each frequency band supported by the terminal in the multi-carrier system may be the transmit power of each frequency band in the carrier aggregation working mode of the terminal.
  • the terminal may report the power level of the transmit power in the single carrier working mode.
  • the terminal In the single-carrier working mode, the terminal can transmit in a transmit diversity manner.
  • the terminal has two transmits (TX), and the transmit power is PC2 (26dBm) when transmit diversity is adopted.
  • TX transmits
  • PC2 26dBm
  • the transmit power in each frequency band needs to be reduced by 3dB in the carrier aggregation working mode.
  • the base station receives the transmit power reported by the terminal in the single-carrier working mode and the transmit power in each frequency band in the carrier aggregation working mode, and can determine whether the terminal adopts transmit diversity in the single-carrier working mode.
  • the power level of the transmission power reported by the terminal in the single-carrier working mode is PC2, that is, 26dBm, and the transmission power of a certain frequency band supported by the multi-carrier system reported by the terminal is 23dBm, which can be determined in Transmit diversity is employed in the single carrier mode of operation.
  • the terminal can distinguish the power increase brought about by uplink transmit diversity.
  • the power indication information is used to indicate the first type of power level or the second type of power level of the transmission power of each frequency band supported by the terminal in the multi-carrier system.
  • the transmit power of each frequency band supported by the terminal in the multi-carrier system indicated by the power indication information may be a power level.
  • the transmission power of each frequency band may be a power level and may be a first-type power level or a second-type power level.
  • IE: ue-PowerClass-CA-r17 may be used to carry the power class of the transmit power of each frequency band supported in the multi-carrier system.
  • the power levels carried can be ⁇ pc1, pc1.5, pc2, pc3, pc4, pc5... ⁇ .
  • IE: powerClass-v1xxx is used to carry the second type of power class
  • IE: ue-PowerClass-CA-r17 is used to carry multiple carriers
  • the content indicated by the power indication information may be as shown in Table 9.
  • the combined use of the second indication generally refers to the maximum superimposed transmission power, that is, the use of IE:powerClass-v1xxx to carry the second indication, and the use of IE:ue-PowerClass-CA-r17 to carry the information of each frequency band supported in the multi-carrier system
  • the power level of the transmit power may be as shown in Table 10.
  • IE: sumPowerUL-CA-r17 or fullPowerUL-CA-r17 is used to carry the third indication
  • IE : ue-PowerClass-CA-r17 carries the power class of the transmit power of each frequency band supported in the multi-carrier system.
  • the content indicated by the power indication information may be as shown in Table 11.
  • this exemplary embodiment provides an information transmission method that can be executed by a base station of a cellular mobile communication system, including:
  • Step 401 Receive power indication information, wherein the power indication information is used to determine the maximum superimposed transmission power of N frequency bands of the terminal in the multi-carrier system.
  • N is a positive integer greater than or equal to 1.
  • the multi-carrier system includes but is not limited to a cellular mobile communication system that communicates through multiple carrier aggregation of NR, and may include: a carrier aggregation technology system, a dual link technology (DC, Dual connectivity) system, and a dual link of a multiple access system.
  • a carrier aggregation technology system such as a carrier aggregation technology system
  • DC dual link technology
  • MRDC Muti-RAT dual connectivity
  • Carrier aggregation technology can aggregate multiple carriers together to achieve greater transmission bandwidth and effectively improve the uplink and downlink transmission rates. As shown in FIG. 3 , the bandwidth of one carrier is 20 MHz, and the transmission bandwidth of 100 MHz can be achieved by aggregating 5 carriers. The terminal can determine the maximum number of carriers that can be used simultaneously according to its own capabilities.
  • Multiple carrier aggregation can be multiple carrier aggregation in different frequency bands, or multiple carrier aggregation in a single frequency band.
  • multiple carrier aggregation may be multiple carrier aggregation in two frequency bands of frequency band A and frequency band B.
  • the maximum superimposed transmit power may be a superimposed value of transmit power of multiple carriers when the terminal transmits signals in the carrier aggregation working mode in a multi-carrier system.
  • the maximum superimposed transmit power may be a superimposed value of transmit power of multiple carriers in multiple frequency bands, or a superimposed value of transmit power of multiple carriers in a single frequency band.
  • the maximum superimposed transmission power may be different from the transmission power indicated by the first type of power level.
  • the first type of power level may be the power level in the related art.
  • the first type of power level and its indicated power are shown in Table 4.
  • the transmit power indicated by the power indication information may be any superimposed transmit power value other than the maximum superimposed transmit power described in Table 4.
  • the transmit power of the terminal in the single-carrier working mode reaches the power level shown in Table 5, in a multi-carrier system, that is, the terminal in the carrier aggregation working mode, the maximum superimposed transmit power that can be achieved is shown in Table 5.
  • the transmit power in the single carrier working mode used for superposition may be the non-diversity transmit power.
  • the terminal can send power indication information to the base station, and the power indication information can be used for the base station to determine the maximum superimposed transmit power that PC1, PC1.5, PC2, PC3, and PC5 cannot indicate any of, such as 27.8dBm, 30dBm, 30.8dBm, 32dBm etc.
  • the power indication information may directly indicate the maximum superimposed transmit power, or provide associated information for determining the maximum superimposed transmit power to the base station, such as the power level of the transmit power of the terminal in the single-carrier working mode, etc., and the base station determines the actual Maximum superimposed transmit power.
  • the maximum superimposed transmission power that cannot be indicated by the first type of power level is determined through the power indication information, which improves the accuracy of the maximum superimposed transmission power indication.
  • the base station configures the terminal based on the maximum superimposed transmit power determined through the power indication information, thereby improving the accuracy of base station configuration.
  • the maximum superimposed transmission power determined by the power indication information includes: the terminal is obtained by linearly superimposing the transmission power of each frequency band in the carrier aggregation working mode.
  • the maximum superimposed transmit power determined through the power indication information may be a specified transmit power, or may be the actual power of linearly superimposed transmit power of the terminal in each frequency band in the carrier aggregation working mode.
  • the power level of the maximum superimposed transmit power is specified, that is, the maximum superimposed transmit power is not all transmitted on each frequency band in the carrier aggregation mode The power is obtained by superposition.
  • linear superposition means that in a multi-carrier system, the maximum superimposed transmit power is obtained by accumulating the transmit power of the terminal on each frequency band in the carrier aggregation mode, not based on the transmit power of the terminal in each frequency band in the carrier aggregation mode or The transmit power on each frequency band in single carrier mode is specified.
  • the maximum superimposed transmit power corresponding to the specified power level is not necessarily equal to the superimposed value of the transmit power on each frequency band of the terminal in the carrier aggregation working mode.
  • the maximum superimposed transmission power determined by the power indication information truly reflects the actual transmission power of the terminal in the multi-carrier system, that is, the terminal's actual transmission power in the carrier aggregation mode, which improves the accuracy of the maximum superimposed transmission power indication.
  • the base station configures the terminal based on the maximum superimposed transmission power determined through the power indication information, thereby improving the accuracy of base station configuration.
  • the power indication information includes:
  • the first indication indicates a second type of power level of the maximum superimposed transmission power, wherein the second type of power level is different from the first type of power level.
  • the second type of power level may be defined according to the maximum superimposed transmission power obtained by superimposing the transmission power of the terminal on each frequency band in the carrier aggregation working mode.
  • the second type of power level can be used to indicate the transmission power that cannot be indicated by the first type of power level.
  • IE:powerClass-v1xxx may be used to bear the second type of power class.
  • the second type of power class can be: ⁇ PCv, PCz, PCy, PCx, ... ⁇ ,
  • PCv, PCz, PCy and PCx are respectively used to indicate different transmission powers.
  • PCv, PCz, PCy, and PCx can be used to indicate the maximum superimposed transmit power as shown in Table 6, respectively.
  • the maximum superimposed transmit power indicated by the second type of power level can be linearly superimposed on the terminal's transmit power on each frequency band in the carrier aggregation working mode. If the maximum superimposed transmit power is determined based on the power level reported by the terminal in the single-carrier working mode, and the terminal reports support for transmit diversity on a certain frequency band at the same time, then the power level of the terminal in the single-carrier working mode on this frequency band should be reduced by 3dB to obtain In the carrier aggregation mode, the transmit power on the frequency band is superimposed.
  • the IE:ue-PowerClass can be used to carry the power class of the terminal in the single carrier working mode. If Band A reports IE: ue-PowerClass PC2, and Band A supports transmit diversity, and Band B reports IE: ue-PowerClass PC2, then the power level of the terminal in Band A carrier aggregation mode is PC3, and the terminal is in Band B carrier The power level in the aggregation mode is PC2, and the superimposed power of the two is 27.8dBm. According to the corresponding relationship in Table 6, the terminal should report PCx through IE:powerClass-v1xxx at this time.
  • the actual maximum superimposed transmission power is indicated through the second type of power level, which improves the accuracy of the indication of the maximum superimposed transmission power.
  • the base station configures the terminal based on the maximum superimposed transmit power determined through the power indication information, thereby improving the accuracy of base station configuration.
  • the power indication information includes:
  • the second indication indicates that the maximum superimposed transmit power is equal to a linear superimposed value of transmit power on N frequency bands supported by the terminal.
  • the second indication may be used to generally refer to the maximum superimposed transmission power, for example, PC0 may be used to generally refer to the maximum superimposed transmission power, and PC0 does not represent a specific power value.
  • the maximum superimposed transmit power indicated by the second indication may be obtained by linearly superimposing the transmit power of the terminal on each frequency band in the carrier aggregation working mode.
  • linear superposition means that the transmission power is accumulated to obtain the maximum superimposed transmission power, instead of specifying a power level based on the transmission power of the terminal on each frequency band in the carrier aggregation mode, and the power corresponding to the specified power level is not necessarily equal to the terminal
  • the superimposed value of transmit power on each frequency band in carrier aggregation mode For example, the transmit power of the terminal on the two frequency bands in the carrier aggregation mode is PC3: 23dBm and PC2: 26dBm respectively, then the maximum superimposed transmit power after linear superposition is 27.8dBm; and in related technologies, the specified maximum superimposed transmit power Can be PC2 or PC3 etc.
  • the IE: powerClass-v1xxx may be used to carry the second indication, and the carrying power class of the second type may be: ⁇ pc0 ⁇ , and PC0 does not represent a specific power value.
  • PC0 may be used to generally refer to the maximum superimposed transmit power obtained by the linear superposition of the transmit power of the terminal on each frequency band in the carrier aggregation working mode shown in Table 7.
  • the IE:ue-PowerClass can be used to carry the power class in the single carrier working mode. If Band A reports IE: ue-PowerClass PC2, and Band A supports transmit diversity, and Band B reports IE: ue-PowerClass PC2, then the power level of the terminal in Band A carrier aggregation mode is PC3, and the terminal is in Band B carrier The power level in the aggregation mode is PC2, and the superimposed power of the two is 27.8dBm. According to the corresponding relationship in Table 7, the terminal should report PC0 through IE:powerClass-v1xxx at this time.
  • the base station may determine the maximum superimposed transmit power obtained by linearly superimposing the transmit powers of the terminal on each frequency band in the carrier aggregation working mode.
  • determining the maximum superimposed transmit power based on the second indication improves the accuracy of determining the maximum superimposed transmit power indication.
  • the base station configures the terminal based on the maximum superimposed transmission power determined through the power indication information, thereby improving the accuracy of base station configuration.
  • the power indication information includes:
  • the third indication indicates whether the terminal supports linear superposition of transmit power on N frequency bands.
  • IE sumPowerUL-CA-r17 or fullPowerUL-CA-r17 may be used to carry the third indication.
  • the third indication is used to indicate the superposition capability of the terminal's transmit power on each frequency band in the carrier aggregation working mode. If the third indication indicates that the terminal has the ability to superimpose the transmit power of each frequency band in the carrier aggregation mode, then the maximum superimposed transmit power can be obtained by superimposing the transmit power of the terminal in each frequency band in the carrier aggregation mode. Otherwise, the maximum superimposed transmission power can be determined using the power level specified in the related art.
  • ⁇ supported ⁇ may be used to indicate that the terminal supports linear superposition of transmit power on N frequency bands in the third indication. If the third indication is the default value, then it can be determined that the terminal does not support the transmission power on N frequency bands.
  • the network determines the maximum superimposed transmit power according to IE: powerClass-v1530 or powerClass-v1610 in related technologies, and configures the corresponding If the terminal reports IE: sumPowerUL-CA-r17 or fullPowerUL-CA-r17 is supported, the network will obtain the maximum superimposed transmit power obtained by superimposing the transmit power of each frequency band in the single-carrier working mode of the terminal. power. If the terminal simultaneously reports support for transmit diversity in the single-carrier working mode on a certain frequency band, then the transmit power of the terminal on this frequency band needs to be reduced by 3dB before superposition.
  • the IE:ue-PowerClass can be used to carry the power class in the single carrier working mode. If Band A reports IE: ue-PowerClass PC2, and Band A supports transmit diversity, and Band B reports IE: ue-PowerClass PC2, then the power level of the terminal in Band A carrier aggregation mode is PC3, and the terminal is in Band B carrier The power level in the aggregation mode is PC2, and the superimposed power of the two is 27.8dBm.
  • the method further includes: in response to the power indication information including the second indication or the third indication, the base station linearly superimposes the transmit power on the N frequency bands supported by the terminal to obtain the maximum Superimposed transmit power.
  • the transmit power on the N frequency bands may be the transmit power on each frequency band of the terminal in the carrier aggregation mode.
  • the second indication or the third indication does not indicate the maximum superimposed transmit power or the power level of the maximum superimposed transmit power, it only directly or indirectly indicates that the maximum superimposed transmit power can be linearly superimposed by the transmit power of the terminal on each frequency band in the carrier aggregation mode get. Therefore, the base station can linearly superpose the transmit power of the terminal in each frequency band in the carrier aggregation working mode to determine the maximum superimposed transmit power.
  • the base station may also determine a power level corresponding to the maximum superimposed transmission power based on the determined maximum superimposed transmission power.
  • the power level corresponding to the maximum superimposed transmit power may be the first type power level or the second type power level.
  • determining the maximum superimposed transmit power based on the second indication or the third indication improves the accuracy of determining the maximum superimposed transmit power indication.
  • the base station configures the terminal based on the maximum superimposed transmit power determined through the power indication information, so as to improve the accuracy of base station configuration.
  • the method further includes:
  • Step 501 The base station configures the uplink power of the terminal based on the maximum superimposed transmission power determined by the power indication information.
  • the base station can configure the uplink power of the terminal based on the maximum superimposed transmit power. On the one hand, to meet the signal-to-noise ratio or bit error rate required by the base station, on the other hand, by adjusting the uplink power to avoid interference with the same frequency channel in the same communication system.
  • Step 501 can be implemented alone or in combination with step 401 .
  • the power indication information is also used to indicate the transmit power of each frequency band supported by the terminal in the multi-carrier system.
  • the transmit power of each frequency band supported by the terminal in the multi-carrier system may be the transmit power of each frequency band in the carrier aggregation working mode of the terminal.
  • the terminal may report the power level of the transmit power in the single carrier working mode.
  • the terminal In the single-carrier working mode, the terminal can transmit in a transmit diversity manner.
  • the terminal has two transmits (TX), and the transmit power is PC2 (26dBm) when transmit diversity is adopted.
  • TX transmits
  • PC2 26dBm
  • the transmit power in each frequency band needs to be reduced by 3dB in the carrier aggregation working mode.
  • the base station receives the transmit power reported by the terminal in the single-carrier working mode and the transmit power in each frequency band in the carrier aggregation working mode, and can determine whether the terminal adopts transmit diversity in the single-carrier working mode.
  • the power level of the transmission power reported by the terminal in the single-carrier working mode is PC2, that is, 26dBm, and the transmission power of a certain frequency band supported by the multi-carrier system reported by the terminal is 23dBm, which can be determined in Transmit diversity is employed in the single carrier mode of operation.
  • the terminal can distinguish the power increase brought about by uplink transmit diversity.
  • the power indication information is used to indicate the first type of power level or the second type of power level of the transmit power of each frequency band supported by the terminal in the multi-carrier system.
  • the transmit power of each frequency band supported by the terminal in the multi-carrier system indicated by the power indication information may be a power level.
  • the transmission power of each frequency band may be a power level and may be a first-type power level or a second-type power level.
  • IE: ue-PowerClass-CA-r17 may be used to carry the power class of the transmit power of each frequency band supported in the multi-carrier system.
  • the power levels carried can be ⁇ pc1, pc1.5, pc2, pc3, pc4, pc5... ⁇ .
  • IE: powerClass-v1xxx is used to carry the second type of power class
  • IE: ue-PowerClass-CA-r17 is used to carry multiple carriers
  • the content indicated by the power indication information may be as shown in Table 9.
  • the combined use of the second indication generally refers to the maximum superimposed transmission power, that is, the use of IE:powerClass-v1xxx to carry the second indication, and the use of IE:ue-PowerClass-CA-r17 to carry the information of each frequency band supported in the multi-carrier system
  • the power level of the transmit power may be as shown in Table 10.
  • IE: sumPowerUL-CA-r17 or fullPowerUL-CA-r17 is used to carry the third indication
  • IE : ue-PowerClass-CA-r17 carries the power class of the transmit power of each frequency band supported in the multi-carrier system.
  • the content indicated by the power indication information may be as shown in Table 11.
  • Tx diversity transmit diversity
  • Band A reports IE: ue-PowerClass PC2 and supports transmit diversity
  • the terminal should report PCx (27.8dBm) through IE: powerClass-v1xxx; when Band A reports IE: ue- PowerClass PC2, Band B reports IE: ue-PowerClass PC2, and the terminal should report PC1.5 through IE: powerClass-v1610.
  • a power class that generally refers to the aggregated transmit power, such as IE: powerClass-v1xxx: ⁇ PC0 ⁇ , PC0 does not represent a specific power value, but only represents the maximum aggregated transmit power supported by each frequency band The power superposition value of the power level.
  • the terminal simultaneously reports support for transmit diversity on a certain frequency band the power level of the terminal on this frequency band should be reduced by 3dB.
  • the terminal should report PC0 through IE: powerClass-v1xxx; when Band A reports IE: ue-PowerClass PC2, Band B reports IE: ue-PowerClass PC2, and the terminal should report PC1.5 through IE: powerClass-v1610.
  • a terminal In a multi-carrier system, define whether a terminal supports the maximum superposition power capability, such as IE: sumPowerUL-CA-r17 or fullPowerUL-CA-r17: ⁇ supported ⁇ , if this IE is default, the network will use the existing IE : powerClass-v1530 or powerClass-v1610 configures the corresponding power for the terminal. If the terminal reports support for sumPowerUL-CA-r17 or fullPowerUL-CA-r17, the network will configure the corresponding power level for the terminal according to the maximum power level supported by each frequency band. power. If the terminal simultaneously reports support for transmit diversity on a certain frequency band, the power level of the terminal on this frequency band should be reduced by 3dB.
  • IE sumPowerUL-CA-r17 or fullPowerUL-CA-r17: ⁇ supported ⁇
  • the embodiment of the present invention also provides an information transmission device, as shown in FIG. 6, which is applied to a terminal of cellular mobile wireless communication, wherein the device 100 includes:
  • the sending module 110 is configured to send power indication information, wherein the power indication information is used to determine the maximum superimposed transmit power of the terminal in N frequency bands in the multi-carrier system, wherein the maximum superimposed transmit power is different from the first type The transmission power indicated by the power level, where N is a positive integer greater than or equal to 1.
  • the power indication information includes one of the following:
  • a first indication indicating a second type of power level of the maximum superimposed transmit power, wherein the second type of power level is different from the first type of power level
  • the second indication indicates that the maximum superimposed transmit power is equal to the linear superimposed value of the transmit power on the N frequency bands supported by the terminal;
  • the third indication indicates whether the terminal supports linear superposition of transmit power on N frequency bands.
  • the power indication information is also used to indicate the transmit power of each frequency band supported by the terminal in the multi-carrier system.
  • the power indication information is used to indicate the first type of power level or the second type of power level of the transmission power of each frequency band supported by the terminal in the multi-carrier system.
  • the embodiment of the present invention also provides an information transmission device, as shown in FIG. 7, which is applied to a base station of cellular mobile wireless communication, wherein the device 200 includes:
  • the receiving module 210 is configured to receive power indication information, wherein the power indication information is used to determine the maximum superimposed transmit power of the terminal in N frequency bands in the multi-carrier system, wherein the maximum superimposed transmit power is different from the first type The transmission power indicated by the power level, where N is a positive integer greater than or equal to 1.
  • the power indication information includes one of the following:
  • a first indication indicating a second type of power level of the maximum superimposed transmit power, wherein the second type of power level is different from the first type of power level
  • the second indication indicates that the maximum superimposed transmit power is equal to the linear superimposed value of the transmit power on the N frequency bands supported by the terminal;
  • the third indication indicates whether the terminal supports linear superposition of transmit power on N frequency bands.
  • the device also includes:
  • the determination module 220 in response to the power indication information including the second indication or the third indication, linearly superimposes the transmit powers on the N frequency bands supported by the terminal to obtain the maximum superimposed transmit power.
  • the power indication information is also used to indicate the transmit power of each frequency band supported by the terminal in the multi-carrier system.
  • the power indication information is used to indicate the first type of power level or the second type of power level of the transmit power of each frequency band supported by the terminal in the multi-carrier system.
  • the sending module 110, the receiving module 210 or the determining module 220 may be controlled by one or more central processing units (CPU, Central Processing Unit), graphics processing units (GPU, Graphics Processing Unit), baseband processors ( BP, Baseband Processor), application-specific integrated circuit (ASIC, Application Specific Integrated Circuit), DSP, programmable logic device (PLD, Programmable Logic Device), complex programmable logic device (CPLD, Complex Programmable Logic Device), field programmable A gate array (FPGA, Field-Programmable Gate Array), a general-purpose processor, a controller, a microcontroller (MCU, Micro Controller Unit), a microprocessor (Microprocessor), or other electronic components are used to implement the aforementioned method.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • BP Baseband Processor
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • PLD programmable logic device
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • Fig. 8 is a block diagram of an apparatus 3000 for information transmission according to an exemplary embodiment.
  • the apparatus 3000 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • device 3000 may include one or more of the following components: processing component 3002, memory 3004, power supply component 3006, multimedia component 3008, audio component 3010, input/output (I/O) interface 3012, sensor component 3014, and Communication component 3016.
  • the processing component 3002 generally controls the overall operations of the device 3000, such as those associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 3002 may include one or more processors 3020 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 3002 may include one or more modules that facilitate interaction between processing component 3002 and other components. For example, processing component 3002 may include a multimedia module to facilitate interaction between multimedia component 3008 and processing component 3002 .
  • the memory 3004 is configured to store various types of data to support operations at the device 3000 . Examples of such data include instructions for any application or method operating on device 3000, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 3004 can be realized by any type of volatile or non-volatile memory device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power component 3006 provides power to various components of device 3000 .
  • Power components 3006 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for device 3000.
  • the multimedia component 3008 includes a screen that provides an output interface between the device 3000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or a swipe action, but also detect duration and pressure associated with the touch or swipe operation.
  • the multimedia component 3008 includes a front camera and/or a rear camera. When the device 3000 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 3010 is configured to output and/or input audio signals.
  • the audio component 3010 includes a microphone (MIC), which is configured to receive external audio signals when the device 3000 is in operation modes, such as call mode, recording mode and voice recognition mode. Received audio signals may be further stored in memory 3004 or sent via communication component 3016 .
  • the audio component 3010 also includes a speaker for outputting audio signals.
  • the I/O interface 3012 provides an interface between the processing component 3002 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor assembly 3014 includes one or more sensors for providing status assessments of various aspects of device 3000 .
  • the sensor component 3014 can detect the open/closed state of the device 3000, the relative positioning of components such as the display and the keypad of the device 3000, the sensor component 3014 can also detect a change in the position of the device 3000 or a component of the device 3000, a user Presence or absence of contact with device 3000 , device 3000 orientation or acceleration/deceleration and temperature change of device 3000 .
  • Sensor assembly 3014 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • the sensor assembly 3014 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 3014 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 3016 is configured to facilitate wired or wireless communication between the apparatus 3000 and other devices.
  • the device 3000 can access wireless networks based on communication standards, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 3016 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 3016 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • apparatus 3000 may be programmed by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • non-transitory computer-readable storage medium including instructions, such as the memory 3004 including instructions, which can be executed by the processor 3020 of the device 3000 to implement the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Transmitters (AREA)

Abstract

本公开实施例是关于信息传输方法、装置、通信设备和存储介质,终端发送功率指示信息,其中,所述功率指示信息,用于确定所述终端在多载波系统中N个频段的最大叠加发射功率,其中,所述最大叠加发射功率不同于第一类功率等级指示的发射功率,其中,N为大于或等于1的正整数。

Description

信息传输方法、装置、通信设备和存储介质 技术领域
本申请涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及信息传输方法、装置、通信设备和存储介质。
背景技术
高功率终端能较好地解决上行受限问题。在网络侧无需额外成本投入的情况下,即可大大缓解高频段小区的上行受限问题,有效扩大上行业务覆盖半径,显著改善边缘用户的业务体验。
在第四代(4G,4 th Generation)蜂窝移动通信系统中,高功率终端一般是指天线口处的最大发射功率可达26dBm的终端。相比于最大发射功率为23dBm的普通终端,高功率终端的最大发射功率提升了3dB。随着新空口(NR,New Radio)技术的不断演进,NR系统中单频段高功率终端在天线口处的最大发射功率可达26dBm或更高的29dBm。
发明内容
有鉴于此,本公开实施例提供了一种信息传输方法、装置、通信设备和存储介质。
根据本公开实施例的第一方面,提供一种信息传输方法,其中,被终端执行,所述方法包括:
发送功率指示信息,其中,所述功率指示信息,用于确定所述终端在多载波系统中N个频段的最大叠加发射功率,其中,所述最大叠加发射功率不同于第一类功率等级指示的发射功率,其中,N为大于或等于1的正整数。
根据本公开实施例的第二方面,提供一种信息传输方法,其中,被基站执行,所述方法包括:
接收功率指示信息,其中,所述功率指示信息,用于确定终端在多载波系统中N个频段的最大叠加发射功率,其中,所述最大叠加发射功率不同于第一类功率等级指示的发射功率,其中,N为大于或等于1的正整数。
根据本公开实施例的第三方面,提供一种信息传输装置,其中,所述装置包括:
发送模块,配置为发送功率指示信息,其中,所述功率指示信息,用于确定终端在多载波系统中N个频段的最大叠加发射功率,其中,所述最大叠加发射功率不同于第一类功率等级指示的发射功率,其中,N为大于或等于1的正整数。
根据本公开实施例的第四方面,提供一种信息传输装置,其中,所述装置包括:
接收模块,配置为接收功率指示信息,其中,所述功率指示信息,用于确定终端在多载波系统中N个频段的最大叠加发射功率,其中,所述最大叠加发射功率不同于第一类功率等级指示的发射功率,其中,N为大于或等于1的正整数。
根据本公开实施例的第五方面,提供一种通信设备装置,包括处理器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如第一方面或第二方面所述信息传输方法的步骤。
根据本公开实施例的第六方面,提供一种存储介质,其上存储有可执行程序,其中,所述可执行程序被处理器执行时实现如第一方面或第二方面所述信息传输方法的步骤根据
本公开实施例提供的信息传输方法、装置、通信设备和存储介质。终 端发送功率指示信息,其中,所述功率指示信息,用于确定所述终端在多载波系统中N个频段的最大叠加发射功率,其中,所述最大叠加发射功率不同于第一类功率等级指示的发射功率,其中,N为大于或等于1的正整数。如此,通过功率指示信息确定第一类功率等级无法指示的最大叠加发射功率,提高了最大叠加发射功率指示的准确性。基站基于通过功率指示信息确定的最大叠加发射功率为终端进行配置,提高基站配置的准确性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种信息传输方法的流程示意图;
图3是根据一示例性实施例示出的一种载波聚合示意图;
图4是根据一示例性实施例示出的另一种信息传输方法的流程示意图;
图5是根据一示例性实施例示出的又一种信息传输方法的流程示意图;
图6是根据一示例性实施例示出的一种信息传输装置的框图;
图7是根据一示例性实施例示出的另一种信息传输装置的框图;
图8是根据一示例性实施例示出的一种用于信息传输的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述 的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端11以及若干个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是 车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to  vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
本公开实施例涉及的执行主体包括但不限于:蜂窝移动通信系统中的手机终端,以及网络侧设备,如基站等接入网设备,以及核心网等。
通常,可以采用功率等级(PC,Power Class)指示最大发射功率,NR单载波系统中的功率等级包括:PC5(20dBm)、PC3(23dBm)、PC2(26dBm)、PC1.5(29dBm)和PC1(31dBm)。
随着比吸收率(SAR,Specific Absorption Rate)的问题通过功率管理最大功率衰减(P-MPR,Power Management Maximum Power Reduction)和占空比的方式被解决后,高功率终端也被应用于多载波系统中。
多载波系统中发射功率可以由不同频段下单载波的发射功率叠加得到。目前,多载波系统中高功率(PC2)包括:PC3加PC3、PC3加PC2、PC2加PC3、PC2加PC3、PC2加PC2对应频段组合,更高功率可以通过PC3、PC2和PC1.5之间的不同组合得到,例如,可以包括PC3加PC1.5、PC2加PC1.5、PC1.5加PC1.5等对应频段组合。
多载波系统中,演进型陆地无线接入和新空口双连接(EN-DC,Evolved terrestrial radio access New radio–Dual Connectivity)接系统终端可以上报聚合的功率等级(EN-DC功率等级),以及分别上报双连接中的LTE和NR的功率等级,NR单载波功率等级。如表1所示。表1同时表明了各功率等级所采用的信息单元。
表1
Figure PCTCN2021141705-appb-000001
在NR多载波系统中,终端只上报载波聚合(CA,Carrier Aggregation)的功率等级,即最大叠加发射功率,且不上报载波聚合中每个频段的功率等级。载波聚合的功率等级以及每个频段的功率等级可如表2所示。
表2
Figure PCTCN2021141705-appb-000002
Figure PCTCN2021141705-appb-000003
表2中,最大叠加发射功率的功率等级是指定的,即最大叠加发射功率并非全都是载波聚合工作模式下各频段上的发射功率进行叠加得到的。
终端在某些频段的功率等级在载波聚合工作模式中和单载波工作模式中出现不一致的情况,是由于上行发射分集的应用而导致的。
如在单载波工作模式中某频段工作的功率等级为26dBm(PC2)是通过发射分集(TxD,Transport Diversity)实现的,如果射频实现有两个发射(Tx)时,在上行载波聚合的工作模式中,此频段只能工作在23dBm(PC3)的功率等级,但是载波聚合系统中,不会单独上报每个频段在载波聚合工作模式中的功率等级。因此,基站在载波聚合的工作模式下无法区分某些频段上功率等级的提升是否是由于上行分集带来的。
在多载波系统中,最大叠加发射功率进一步提升,可达到的最大叠加发射功率如表3所示。现有的功率等级无法准确指示实际的最大叠加发射功率。
表3
Figure PCTCN2021141705-appb-000004
因此,在多载波系统中,如何准确上报多载波的叠加最大功率,以及当各频段在单载波工作模式和载波聚合工作模式中的功率等级不一致时,可以区分上行分集带来的功率提升,是亟待解决的问题。
如图2所示,本示例性实施例提供一种信息传输方法,可以被蜂窝移 动通信系统的终端执行,包括:
步骤201:发送功率指示信息,其中,所述功率指示信息,用于确定所述终端在多载波系统中N个频段的最大叠加发射功率。
其中,N为大于或等于1的正整数。
这里,多载波系统包括但不限于通过NR的多个载波聚合进行通信的蜂窝移动通信系统,可以包括:载波聚合技术系统、双链接技术(DC,Dual connectivity)系统、多接入系统的双链接技术(MRDC,Muti-RAT dual connectivity)系统,如EN-DC和NE-DC等。
载波聚合技术可以将多个载波聚合在一起,实现更大传输带宽,有效提高了上下行传输速率。如图3所示,一个载波的带宽为20MHz,聚合5个载波可以达到100MHz的传输带宽。终端可以根据自己的能力大小决定最多可以同时利用的载波数量。
通过多个载波聚合可以提升传输带宽,提升传输速率。多个载波聚合可以是不同频段的多个载波聚合,也可以是单个频段中多个载波聚合。例如:多个载波聚合可以是频段A和频段B两个频段中的多个载波聚合。
这里。最大叠加发射功率可以是在多载波系统中,终端通过载波聚合工作模式下发射信号时多个载波发射功率的叠加值。其中,最大叠加发射功率可以是多个频段中的多个载波发射功率的叠加值,或单个频段中的多个载波发射功率的叠加值。
所述最大叠加发射功率可不同于第一类功率等级指示的发射功率。
第一类功率等级可以是相关技术中的功率等级。第一类功率等级及其指示的功率如表4所示。
表4
第一类功率等级 相应的功率
PC1 31dBm
PC1.5 29dBm
PC2 26dBm
PC3 23dBm
PC5 20dBm
示例性地,所述功率指示信息指示的发射功率可为表4所述的最大叠加发射功率以外的任意叠加发射功率值。
当终端在单载波工作模式下的发射功率达到表5所示的功率等级情况下,在多载波系统中,即终端在载波聚合工作模式下,可达到的最大叠加发射功率如表5所示。这里,用于叠加的单载波工作模式下的发射功率,可以是非分集的发射功率。
表5
Figure PCTCN2021141705-appb-000005
结合表4和表5,可以确定第一类功率等级PC1、PC1.5、PC2、PC3和PC5均无法指示表5中的最大叠加发射功率。
这里,终端可以向基站发送功率指示信息,功率指示信息可以用于供基站确定PC1、PC1.5、PC2、PC3和PC5无法指示任意一个的最大叠加发射功率,如27.8dBm、30dBm、30.8dBm和32dBm等。
这里,功率指示信息可以直接指示最大叠加发射功率,也可以向基站提供用于确定最大叠加发射功率的关联信息,如终端在单载波工作模式下的发射功率的功率等级等,由基站确定实际的最大叠加发射功率。
如此,通过功率指示信息确定第一类功率等级无法指示的最大叠加发射功率,提高了最大叠加发射功率指示的准确性。基站基于通过功率指示信息确定的最大叠加发射功率为终端进行配置,提高基站配置的准确性。
在一个实施例中,通过功率指示信息确定的最大叠加发射功率,包括:终端在载波聚合工作模式下各频段上的发射功率进行线性叠加得到的。
通过功率指示信息确定的最大叠加发射功率可以是指定的发射功率,也可以是是终端在载波聚合工作模式下各频段上的发射功率进行线性叠加的实际功率。即最大叠加发射功率可以是终端在载波聚合工作模式下各频段上的发射功率累加的结果。而相关技术中,由于第一类功率等级无法准确指示最大叠加发射功率,因此,最大叠加发射功率的功率等级是指定的,即最大叠加发射功率并非全都是载波聚合工作模式下各频段上的发射功率进行叠加得到的。
这里,线性叠加是指在多载波系统中,最大叠加发射功率是终端在载波聚合工作模式下各频段上的发射功率累加得到的,并非基于终端在载波聚合工作模式下各频段上的发射功率或单载波模式下各频段上的发射功率指定的。而指定的功率等级对应的最大叠加发射功率并不一定等于终端在载波聚合工作模式下各频段上的发射功率的叠加值。
如此,通过功率指示信息确定的最大叠加发射功率,真实反应终端在在多载波系统中,即终端在载波聚合工作模式下的实际发射功率,提高了最大叠加发射功率指示的准确性。基站基于通过功率指示信息确定的最大叠加发射功率为终端进行配置,提高基站配置的准确性。
在一个实施例中,所述功率指示信息,包括:
第一指示,指示所述最大叠加发射功率的第二类功率等级,其中所述第二类功率等级不同于第一类功率等级。
这里,在多载波系统中,可以根据终端在载波聚合工作模式下各频段上的发射功率进行叠加得到的最大叠加发射功率定义第二类功率等级。第二类功率等级可以用于指示第一类功率等级无法指示的发射功率。
示例性的,可以采用IE:powerClass-v1xxx承载第二类功率等级。第二 类功率等级可以是:{PCv,PCz,PCy,PCx,…},
示例性的,PCv、PCz、PCy和PCx等,分别用于指示不同的发射功率。
例如,PCv、PCz、PCy和PCx可以分别用于指示如表6所示的最大叠加发射功率。
表6
Figure PCTCN2021141705-appb-000006
通过第二类功率等级指示的最大叠加发射功率可以是线性叠加的终端在载波聚合工作模式下各频段上的发射功率。如果基于终端上报的单载波工作模式中的功率等级确定最大叠加发射功率,并且终端在某频段上同时上报支持发射分集,则终端在该频段上单载波工作模式中的功率等级应该减3dB,得到载波聚合工作模式下该频段上的发射功率,再进行叠加。
示例性的,IE:ue-PowerClass可以用于承载终端在单载波工作模式中的功率等级。如果Band A上报IE:ue-PowerClass PC2,并且Band A支持发射分集,Band B上报IE:ue-PowerClass PC2,那么,终端在Band A载波聚合工作模式下的功率等级为PC3,终端在Band B载波聚合工作模式下的功率等级为PC2,两者叠加的功率为27.8dBm。根据表6的对应关系,此时终端应该通过IE:powerClass-v1xxx上报PCx。
当Band A上报IE:ue-PowerClass PC2,Band B上报IE:ue-PowerClass PC2,此时终端应该通过IE:powerClass-v1610上报PC1.5。
如此,通过第二类功率等级指示实际的最大叠加发射功率,提高了最大叠加发射功率指示的准确性。基站基于通过功率指示信息确定的最大叠加发射功率为终端进行配置,提高基站配置的准确性。
在一个实施例中,所述功率指示信息,包括:
第二指示,指示所述最大叠加发射功率等于终端支持的N个频段上的发射功率的线性叠加值;
第二指示可以用于泛指最大叠加发射功率,例如可以用PC0泛指最大叠加发射功率,PC0并不代表具体的功率值。第二指示所指示的最大叠加发射功率可以是终端在载波聚合工作模式下各频段上的发射功率的线性叠加得到的。
这里,线性叠加是指发射功率通过累加得到最大叠加发射功率,而非基于终端在载波聚合工作模式下各频段上的发射功率指定一个功率等级,而指定的功率等级对应的功率并不一定等于终端在载波聚合工作模式下各频段上的发射功率的叠加值。例如,终端在载波聚合工作模式下两个频段上的发射功率分别是PC3:23dBm和PC2:26dBm,那么线性叠加后的最大叠加发射功率为27.8dBm;而相关技术中,指定的最大叠加发射功率可以是PC2或PC3等。
示例性的,可以采用IE:powerClass-v1xxx承载第二指示,承载第二类功率等级可以是:{pc0},PC0不代表具体的功率值。
PC0可以用于泛指表7所示的由终端在载波聚合工作模式下各频段上的发射功率的线性叠加得到的最大叠加发射功率。
表7
Figure PCTCN2021141705-appb-000007
示例性的,IE:ue-PowerClass可以用于承载单载波工作模式中的功率等级。如果Band A上报IE:ue-PowerClass PC2,并且Band A支持发射分 集,Band B上报IE:ue-PowerClass PC2,那么,终端在Band A载波聚合工作模式下的功率等级为PC3,终端在Band B载波聚合工作模式下的功率等级为PC2,两者叠加的功率为27.8dBm。根据表7的对应关系,此时终端应该通过IE:powerClass-v1xxx上报PC0。
当Band A上报IE:ue-PowerClass PC2,Band B上报IE:ue-PowerClass PC2,此时终端应该通过IE:powerClass-v1610上报PC1.5。
基站接收到第二指示,可以确定由终端在载波聚合工作模式下各频段上的发射功率的线性叠加得到的最大叠加发射功率。
如此,基于第二指示确定最大叠加发射功率,提高了确定最大叠加发射功率指示准确性。基站基于通过功率指示信息确定的最大叠加发射功率为终端进行配置,提高基站配置的准确性。
在一个实施例中,所述功率指示信息,包括:
第三指示,指示所述终端是否支持N个频段上的发射功率的线性叠加。
示例性的,如表8所示,可以采用IE:sumPowerUL-CA-r17或fullPowerUL-CA-r17承载第三指示。
表8
Figure PCTCN2021141705-appb-000008
第三指示用于指示终端在载波聚合工作模式下各频段上的发射功率的叠加能力。如果第三指示指示终端在载波聚合工作模式下各频段上的发射功率的具有叠加能力,那么,可以通过终端在载波聚合工作模式下各频段上的发射功率进行叠加得到的最大叠加发射功率。否则,可以采用相关技 术中指定的功率等级确定最大叠加发射功率。
示例性,第三指示的可以用{supported}指示终端支持N个频段上的发射功率的线性叠加,如果第三指示为缺省值,那么,可以确定终端不支持N个频段上的发射功率的线性叠加
示例性,如果IE:sumPowerUL-CA-r17或fullPowerUL-CA-r17为缺省值,那么网络则根据相关技术中的IE:powerClass-v1530或者powerClass-v1610确定最大叠加发射功率,并为终端配置相应的功率;如果终端上报IE:sumPowerUL-CA-r17或fullPowerUL-CA-r17为supported,网络则终端在单载波工作模式下各频段上的发射功率进行叠加得到的最大叠加发射功率为该终端配置相应的功率。如果终端在某频段上单载波工作模式下同时上报支持发射分集,那么,终端在该频段上的发射功率需要减3dB后进行叠加。
示例性的,IE:ue-PowerClass可以用于承载单载波工作模式中的功率等级。如果Band A上报IE:ue-PowerClass PC2,并且Band A支持发射分集,Band B上报IE:ue-PowerClass PC2,那么,终端在Band A载波聚合工作模式下的功率等级为PC3,终端在Band B载波聚合工作模式下的功率等级为PC2,两者叠加的功率为27.8dBm。
在一个实施例中,所述方法还包括:响应于所述功率指示信息包括所述第二指示或第三指示,基站线性叠加所述终端支持的N个频段上的发射功率,得到所述最大叠加发射功率。
这里,N个频段上的发射功率可以是终端在载波聚合工作模式下各频段上的发射功率。
由于第二指示或第三指示并未指示最大叠加发射功率或最大叠加发射功率的功率等级,只直接或间接指示最大叠加发射功率可以通过终端在载波聚合工作模式下各频段上的发射功率线性叠加得到。因此,基站可以将 终端在载波聚合工作模式下各频段上的发射功率进行线性叠加,确定最大叠加发射功率。
基站还可以基于确定的最大叠加发射功率,确定最大叠加发射功率对应的功率等级。最大叠加发射功率对应的功率等级可以是第一类功率等级或第二类功率等级。
如此,基于第二指示或第三指示确定最大叠加发射功率,提高了确定最大叠加发射功率指示准确性。基站基于通过功率指示信息确定的最大叠加发射功率为终端进行配置,提高基站配置的准确性。
在一个实施例中,所述功率指示信息,还用于指示所述终端在所述多载波系统中支持的每个频段的发射功率。
这里,终端在所述多载波系统中支持的每个频段的发射功率,可以是终端在载波聚合工作模式下各频段上的发射功率。
相关技术中,终端可以上报在单载波工作模式下的发射功率的功率等级。在单载波工作模式下,终端可以采用发射分集的方式进行发射。例如,终端具有两个发射(TX),采用发射分集时发射功率为PC2(26dBm)。而在多载波系统中,采用载波聚合工作模式下每个频段下发射功率需要减去3dB。
这里,基站接收到终端上报的在单载波工作模式下的发射功率,以及载波聚合工作模式下每个频段下发射功率,可以确定终端在单载波工作模式下是否采用发射分集。
示例性的,终端上报的在单载波工作模式下的发射功率的功率等级为PC2,即26dBm,终端上报的在所述多载波系统中支持的某频段的发射功率为23dBm,有此可以确定在单载波工作模式下的采用了发射分集。
如此,结合功率指示信息指示的多载波系统中支持的每个频段的发射功和单载波工作模式的发射功率,终端可以区分上行发射分集带来的功率 的提升。
在一个实施例中,所述功率指示信息,用于指示所述终端在所述多载波系统中支持的每个频段的所述发射功率的所述第一类功率等级或第二类功率等级。
这里,功率指示信息指示的终端在多载波系统中支持的每个频段的发射功率可以是功率等级。每个频段的发射功率可以是功率等级可以是第一类功率等级或第二类功率等级。
示例性的,可以采用IE:ue-PowerClass-CA-r17承载多载波系统中支持的每个频段的发射功率的功率等级。承载的功率等级可以是{pc1,pc1.5,pc2,pc3,pc4,pc5…}。
示例性的,结合采用第一指示指示所述最大叠加发射功率的第二类功率等级,采用IE:powerClass-v1xxx承载第二类功率等级,以及采用IE:ue-PowerClass-CA-r17承载多载波系统中支持的每个频段的发射功率的功率等级。功率指示信息指示的内容可以如表9所示。
表9
Figure PCTCN2021141705-appb-000009
示例性的,结合采用第二指示泛指最大叠加发射功率,即采用IE:powerClass-v1xxx承载第二指示,以及采用IE:ue-PowerClass-CA-r17承载多载波系统中支持的每个频段的发射功率的功率等级。功率指示信息指示的内容可以如表10所示。
表10
Figure PCTCN2021141705-appb-000010
示例性的,结合第三指示用于指示终端在载波聚合工作模式下各频段上的发射功率的叠加能力,采用IE:sumPowerUL-CA-r17或fullPowerUL-CA-r17承载第三指示,以及采用IE:ue-PowerClass-CA-r17承载多载波系统中支持的每个频段的发射功率的功率等级。功率指示信息指示的内容可以如表11所示。
表11
Figure PCTCN2021141705-appb-000011
如图4所示,本示例性实施例提供一种信息传输方法,可以被蜂窝移动通信系统的基站执行,包括:
步骤401:接收功率指示信息,其中,所述功率指示信息,用于确定终端在多载波系统中N个频段的最大叠加发射功率。其中,N为大于或等于1的正整数。
这里,多载波系统包括但不限于通过NR的多个载波聚合进行通信的蜂窝移动通信系统,可以包括:载波聚合技术系统、双链接技术(DC,Dual connectivity)系统、多接入系统的双链接技术(MRDC,Muti-RAT dual connectivity)系统,如EN-DC和NE-DC等。
载波聚合技术可以将多个载波聚合在一起,实现更大传输带宽,有效提高了上下行传输速率。如图3所示,一个载波的带宽为20MHz,聚合5个载波可以达到100MHz的传输带宽。终端可以根据自己的能力大小决定最多可以同时利用的载波数量。
通过多个载波聚合可以提升传输带宽,提升传输速率。多个载波聚合可以是不同频段的多个载波聚合,也可以是单个频段中多个载波聚合。例如:多个载波聚合可以是频段A和频段B两个频段中的多个载波聚合。
这里。最大叠加发射功率可以是在多载波系统中,终端通过载波聚合工作模式下发射信号时多个载波发射功率的叠加值。其中,最大叠加发射功率可以是多个频段中的多个载波发射功率的叠加值,或单个频段中的多个载波发射功率的叠加值。
所述最大叠加发射功率可不同于第一类功率等级指示的发射功率。
第一类功率等级可以是相关技术中的功率等级。第一类功率等级及其指示的功率如表4所示。
示例性地,所述功率指示信息指示的发射功率可为表4所述的最大叠加发射功率以外的任意叠加发射功率值。
当终端在单载波工作模式下的发射功率达到表5所示的功率等级情况下,在多载波系统中,即终端在载波聚合工作模式下,可达到的最大叠加发射功率如表5所示。这里,用于叠加的单载波工作模式下的发射功率,可以是非分集的发射功率。
结合表4和表5,可以确定第一类功率等级PC1、PC1.5、PC2、PC3 和PC5均无法指示表5中的最大叠加发射功率。
这里,终端可以向基站发送功率指示信息,功率指示信息可以用于供基站确定PC1、PC1.5、PC2、PC3和PC5无法指示任意一个的最大叠加发射功率,如27.8dBm、30dBm、30.8dBm和32dBm等。
这里,功率指示信息可以直接指示最大叠加发射功率,也可以向基站提供用于确定最大叠加发射功率的关联信息,如终端在单载波工作模式下的发射功率的功率等级等,由基站确定实际的最大叠加发射功率。
如此,通过功率指示信息确定第一类功率等级无法指示的最大叠加发射功率,提高了最大叠加发射功率指示的准确性。基站基于通过功率指示信息确定的最大叠加发射功率为终端进行配置,提高基站配置的准确性。
在一个实施例中,通过功率指示信息确定的最大叠加发射功率,包括:终端在载波聚合工作模式下各频段上的发射功率进行线性叠加得到的。
通过功率指示信息确定的最大叠加发射功率可以是指定的发射功率,也可以是是终端在载波聚合工作模式下各频段上的发射功率进行线性叠加的实际功率。而相关技术中,由于第一类功率等级无法准确指示最大叠加发射功率,因此,最大叠加发射功率的功率等级是指定的,即最大叠加发射功率并非全都是载波聚合工作模式下各频段上的发射功率进行叠加得到的。
这里,线性叠加是指在多载波系统中,最大叠加发射功率是终端在载波聚合工作模式下各频段上的发射功率累加得到的,并非基于终端在载波聚合工作模式下各频段上的发射功率或单载波模式下各频段上的发射功率指定的。而指定的功率等级对应的最大叠加发射功率并不一定等于终端在载波聚合工作模式下各频段上的发射功率的叠加值。
如此,通过功率指示信息确定的最大叠加发射功率,真实反应终端在在多载波系统中,即终端在载波聚合工作模式下的实际发射功率,提高了 最大叠加发射功率指示的准确性。基站基于通过功率指示信息确定的最大叠加发射功率为终端进行配置,提高基站配置的准确性。
在一个实施例中,所述功率指示信息,包括:
第一指示,指示所述最大叠加发射功率的第二类功率等级,其中所述第二类功率等级不同于第一类功率等级。
这里,在多载波系统中,可以根据终端在载波聚合工作模式下各频段上的发射功率进行叠加得到的最大叠加发射功率定义第二类功率等级。第二类功率等级可以用于指示第一类功率等级无法指示的发射功率。
示例性的,可以采用IE:powerClass-v1xxx承载第二类功率等级。第二类功率等级可以是:{PCv,PCz,PCy,PCx,…},
示例性的,PCv、PCz、PCy和PCx等,分别用于指示不同的发射功率。
例如,PCv、PCz、PCy和PCx可以分别用于指示如表6所示的最大叠加发射功率。
通过第二类功率等级指示的最大叠加发射功率可以线性叠加的终端在载波聚合工作模式下各频段上的发射功率。如果基于终端上报的单载波工作模式中的功率等级确定最大叠加发射功率,并且终端在某频段上同时上报支持发射分集,则终端在该频段上单载波工作模式中的功率等级应该减3dB,得到载波聚合工作模式下该频段上的发射功率,再进行叠加。
示例性的,IE:ue-PowerClass可以用于承载终端在单载波工作模式中的功率等级。如果Band A上报IE:ue-PowerClass PC2,并且Band A支持发射分集,Band B上报IE:ue-PowerClass PC2,那么,终端在Band A载波聚合工作模式下的功率等级为PC3,终端在Band B载波聚合工作模式下的功率等级为PC2,两者叠加的功率为27.8dBm。根据表6的对应关系,此时终端应该通过IE:powerClass-v1xxx上报PCx。
当Band A上报IE:ue-PowerClass PC2,Band B上报IE:ue-PowerClass  PC2,此时终端应该通过IE:powerClass-v1610上报PC1.5。
如此,通过第二类功率等级指示实际的最大叠加发射功率,提高了最大叠加发射功率指示的准确性。基站基于通过功率指示信息确定的最大叠加发射功率为终端进行配置,提高基站配置的准确性。
在一个实施例中,所述功率指示信息,包括:
第二指示,指示所述最大叠加发射功率等于终端支持的N个频段上的发射功率的线性叠加值。
第二指示可以用于泛指最大叠加发射功率,例如可以用PC0泛指最大叠加发射功率,PC0并不代表具体的功率值。第二指示所指示的最大叠加发射功率可以是终端在载波聚合工作模式下各频段上的发射功率的线性叠加得到的。
这里,线性叠加是指发射功率通过累加得到最大叠加发射功率,而非基于终端在载波聚合工作模式下各频段上的发射功率指定一个功率等级,而指定的功率等级对应的功率并不一定等于终端在载波聚合工作模式下各频段上的发射功率的叠加值。例如,终端在载波聚合工作模式下两个频段上的发射功率分别是PC3:23dBm和PC2:26dBm,那么线性叠加后的最大叠加发射功率为27.8dBm;而相关技术中,指定的最大叠加发射功率可以是PC2或PC3等。
示例性的,可以采用IE:powerClass-v1xxx承载第二指示,承载第二类功率等级可以是:{pc0},PC0不代表具体的功率值。
PC0可以用于泛指表7所示的由终端在载波聚合工作模式下各频段上的发射功率的线性叠加得到的最大叠加发射功率。
示例性的,IE:ue-PowerClass可以用于承载单载波工作模式中的功率等级。如果Band A上报IE:ue-PowerClass PC2,并且Band A支持发射分集,Band B上报IE:ue-PowerClass PC2,那么,终端在Band A载波聚合 工作模式下的功率等级为PC3,终端在Band B载波聚合工作模式下的功率等级为PC2,两者叠加的功率为27.8dBm。根据表7的对应关系,此时终端应该通过IE:powerClass-v1xxx上报PC0。
当Band A上报IE:ue-PowerClass PC2,Band B上报IE:ue-PowerClass PC2,此时终端应该通过IE:powerClass-v1610上报PC1.5。
基站接收到第二指示,可以确定由终端在载波聚合工作模式下各频段上的发射功率的线性叠加得到的最大叠加发射功率。
如此,基于第二指示确定最大叠加发射功率,提高了确定最大叠加发射功率指示准确性。基站基于通过功率指示信息确定的最大叠加发射功率为终端进行配置,提高基站配置的准确性。
在一个实施例中,所述功率指示信息,包括:
第三指示,指示所述终端是否支持N个频段上的发射功率的线性叠加。
示例性的,如表8所示,可以采用IE:sumPowerUL-CA-r17或fullPowerUL-CA-r17承载第三指示。
第三指示用于指示终端在载波聚合工作模式下各频段上的发射功率的叠加能力。如果第三指示指示终端在载波聚合工作模式下各频段上的发射功率的具有叠加能力,那么,可以通过终端在载波聚合工作模式下各频段上的发射功率进行叠加得到的最大叠加发射功率。否则,可以采用相关技术中指定的功率等级确定最大叠加发射功率。
示例性,第三指示的可以用{supported}指示终端支持N个频段上的发射功率的线性叠加,如果第三指示为缺省值,那么,可以确定终端不支持N个频段上的发射功率的线性叠加
示例性,如果IE:sumPowerUL-CA-r17或fullPowerUL-CA-r17为缺省值,那么网络则根据相关技术中的IE:powerClass-v1530或者powerClass-v1610确定最大叠加发射功率,并为终端配置相应的功率;如果 终端上报IE:sumPowerUL-CA-r17或fullPowerUL-CA-r17为supported,网络则终端在单载波工作模式下各频段上的发射功率进行叠加得到的最大叠加发射功率为该终端配置相应的功率。如果终端在某频段上单载波工作模式下同时上报支持发射分集,那么,终端在该频段上的发射功率需要减3dB后进行叠加。
示例性的,IE:ue-PowerClass可以用于承载单载波工作模式中的功率等级。如果Band A上报IE:ue-PowerClass PC2,并且Band A支持发射分集,Band B上报IE:ue-PowerClass PC2,那么,终端在Band A载波聚合工作模式下的功率等级为PC3,终端在Band B载波聚合工作模式下的功率等级为PC2,两者叠加的功率为27.8dBm。
在一个实施例中,所述方法还包括:响应于所述功率指示信息包括所述第二指示或第三指示,基站线性叠加所述终端支持的N个频段上的发射功率,得到所述最大叠加发射功率。
这里,N个频段上的发射功率可以是终端在载波聚合工作模式下各频段上的发射功率。
由于第二指示或第三指示并未指示最大叠加发射功率或最大叠加发射功率的功率等级,只直接或间接指示最大叠加发射功率可以通过终端在载波聚合工作模式下各频段上的发射功率线性叠加得到。因此,基站可以将终端在载波聚合工作模式下各频段上的发射功率进行线性叠加,确定最大叠加发射功率。
基站还可以基于确定的最大叠加发射功率,确定最大叠加发射功率对应的功率等级。最大叠加发射功率对应的功率等级可以是第一类功率等级或第二类功率等级。
如此,基于第二指示或第三指示确定最大叠加发射功率,提高了确定最大叠加发射功率指示准确性。基站基于通过功率指示信息确定的最大叠 加发射功率为终端进行配置,提高基站配置的准确性。
在一个实施例中,如图5所示,所述方法还包括:
步骤501:基站基于所述功率指示信息确定的最大叠加发射功率,配置终端的上行功率。
基站可以基于最大叠加发射功率配置终端的上行功率。一方面,满足基站所需的信噪比或误码率,另一方面,通过调节上行功率以同个通信系统中同频信道干扰。
步骤501可以单独实施,也可以与步骤401结合实施。
在一个实施例中,所述功率指示信息,还用于指示所述终端在所述多载波系统中支持的每个频段的发射功率。
这里,终端在所述多载波系统中支持的每个频段的发射功率,可以是终端在载波聚合工作模式下各频段上的发射功率。
相关技术中,终端可以上报在单载波工作模式下的发射功率的功率等级。在单载波工作模式下,终端可以采用发射分集的方式进行发射。例如,终端具有两个发射(TX),采用发射分集时发射功率为PC2(26dBm)。而在多载波系统中,采用载波聚合工作模式下每个频段下发射功率需要减去3dB。
这里,基站接收到终端上报的在单载波工作模式下的发射功率,以及载波聚合工作模式下每个频段下发射功率,可以确定终端在单载波工作模式下是否采用发射分集。
示例性的,终端上报的在单载波工作模式下的发射功率的功率等级为PC2,即26dBm,终端上报的在所述多载波系统中支持的某频段的发射功率为23dBm,有此可以确定在单载波工作模式下的采用了发射分集。
如此,结合功率指示信息指示的多载波系统中支持的每个频段的发射功和单载波工作模式的发射功率,终端可以区分上行发射分集带来的功率 的提升。
在一个实施例中,所述功率指示信息,用于指示所述终端在所述多载波系统中支持的每个频段的发射功率的所述第一类功率等级或第二类功率等级。
这里,功率指示信息指示的终端在多载波系统中支持的每个频段的发射功率可以是功率等级。每个频段的发射功率可以是功率等级可以是第一类功率等级或第二类功率等级。
示例性的,可以采用IE:ue-PowerClass-CA-r17承载多载波系统中支持的每个频段的发射功率的功率等级。承载的功率等级可以是{pc1,pc1.5,pc2,pc3,pc4,pc5…}。
示例性的,结合采用第一指示指示所述最大叠加发射功率的第二类功率等级,采用IE:powerClass-v1xxx承载第二类功率等级,以及采用IE:ue-PowerClass-CA-r17承载多载波系统中支持的每个频段的发射功率的功率等级。功率指示信息指示的内容可以如表9所示。
示例性的,结合采用第二指示泛指最大叠加发射功率,即采用IE:powerClass-v1xxx承载第二指示,以及采用IE:ue-PowerClass-CA-r17承载多载波系统中支持的每个频段的发射功率的功率等级。功率指示信息指示的内容可以如表10所示。
示例性的,结合第三指示用于指示终端在载波聚合工作模式下各频段上的发射功率的叠加能力,采用IE:sumPowerUL-CA-r17或fullPowerUL-CA-r17承载第三指示,以及采用IE:ue-PowerClass-CA-r17承载多载波系统中支持的每个频段的发射功率的功率等级。功率指示信息指示的内容可以如表11所示。
以下结合上述任意实施例提供一个具体示例:
如何上报聚合的功率等级是按照各频段上的最大发射功率进行叠加的
1:在多载波系统中,根据最大叠加发射功率定义新的功率等级。例如IE:powerClass-v1xxx:{pcv,pcz,pcy,pcx,…},如PCx(27.8dBm),PCy(30dBm),PCz(30.8dBm),PCv(32dBm),。。。,叠加功率是根据各频段在单载波工作模式中的功率等级叠加的。如果终端在某频段上同时上报支持发射分集(Tx diversity),则终端在该频段上的功率等级应该减3dB。例如Band A上报IE:ue-PowerClass PC2并且支持发射分集,Band B上报IE:ue-PowerClass PC2,此时终端应该通过IE:powerClass-v1xxx上报PCx(27.8dBm);当Band A上报IE:ue-PowerClass PC2,Band B上报IE:ue-PowerClass PC2,此时终端应该通过IE:powerClass-v1610上报PC1.5。
2:结合1并定义终端在多载波系统中各频段支持的功率等级,如IE:ue-PowerClass-CA-r17:{pc1,pc1.5,pc2,pc3,pc4,pc5}。指示内容如表9所示。
3:在多载波系统中,定义一个泛指的聚合发射功率的功率等级,例如IE:powerClass-v1xxx:{PC0},PC0不代表具体的功率值,仅代表最大聚合发射功率为各频段上支持的功率等级的功率叠加值。同样,如果终端在某频段上同时上报支持发射分集,则终端在该频段上的功率等级应该减3dB。例如:Band A上报IE:ue-PowerClass PC2并且支持发射分集,Band B上报IE:ue-PowerClass PC2,此时终端应该通过IE:powerClass-v1xxx上报PC0;当Band A上报IE:ue-PowerClass PC2,Band B上报IE:ue-PowerClass PC2,此时终端应该通过IE:powerClass-v1610上报PC1.5。
4:结合3并定义终端在多载波系统中各频段支持的功率等级,如IE:ue-PowerClass-CA-r17:{pc1,pc1.5,pc2,pc3,pc4,pc5}。指示内容如表10所示。
5:在多载波系统中,定义一个终端是否支持最大叠加功率的能力,如IE:sumPowerUL-CA-r17或fullPowerUL-CA-r17:{supported},如果此IE 缺省,网络则根据现有IE:powerClass-v1530或者powerClass-v1610为终端配置相应的功率,如果终端上报支持sumPowerUL-CA-r17或fullPowerUL-CA-r17,网络则根据各频段上支持的功率等级的最大值为该终端配置相应的功率。如果终端在某频段上同时上报支持发射分集,则终端在该频段上的功率等级应该减3dB。
6:结合5并定义终端在多载波系统中各频段支持的功率等级,如IE:ue-PowerClass-CA-r17:{pc1,pc1.5,pc2,pc3,pc4,pc5}。指示内容如表11所示。
本发明实施例还提供了一种信息传输装置,如图6所示,应用于蜂窝移动无线通信的终端中,其中,所述装置100包括:
发送模块110,配置为发送功率指示信息,其中,所述功率指示信息,用于确定终端在多载波系统中N个频段的最大叠加发射功率,其中,所述最大叠加发射功率不同于第一类功率等级指示的发射功率,其中,N为大于或等于1的正整数。
在一个实施例中,所述功率指示信息,包括以下之一:
第一指示,指示所述最大叠加发射功率的第二类功率等级,其中所述第二类功率等级不同于第一类功率等级;
第二指示,指示所述最大叠加发射功率等于终端支持的N个频段上的发射功率的线性叠加值;
第三指示,指示所述终端是否支持N个频段上的发射功率的线性叠加。
在一个实施例中,所述功率指示信息,还用于指示所述终端在所述多载波系统中支持的每个频段的发射功率。
在一个实施例中,所述功率指示信息,用于指示所述终端在所述多载波系统中支持的每个频段的所述发射功率的所述第一类功率等级或第二类功率等级。
本发明实施例还提供了一种信息传输装置,如图7所示,应用于蜂窝移动无线通信的基站中,其中,所述装置200包括:
接收模块210,配置为接收功率指示信息,其中,所述功率指示信息,用于确定终端在多载波系统中N个频段的最大叠加发射功率,其中,所述最大叠加发射功率不同于第一类功率等级指示的发射功率,其中,N为大于或等于1的正整数。
在一个实施例中,所述功率指示信息,包括以下之一:
第一指示,指示所述最大叠加发射功率的第二类功率等级,其中所述第二类功率等级不同于第一类功率等级;
第二指示,指示所述最大叠加发射功率等于终端支持的N个频段上的发射功率的线性叠加值;
第三指示,指示所述终端是否支持N个频段上的发射功率的线性叠加。
在一个实施例中,所述装置还包括:
确定模块220,响应于所述功率指示信息包括所述第二指示或第三指示,线性叠加所述终端支持的N个频段上的发射功率,得到所述最大叠加发射功率。
在一个实施例中,所述功率指示信息,还用于指示所述终端在所述多载波系统中支持的每个频段的发射功率。
在一个实施例中,所述功率指示信息,用于指示所述终端在所述多载波系统中支持的每个频段的发射功率的所述第一类功率等级或第二类功率等级。
在示例性实施例中,发送模块110、接收模块210或确定模块220可以被一个或多个中央处理器(CPU,Central Processing Unit)、图形处理器(GPU,Graphics Processing Unit)、基带处理器(BP,Baseband Processor)、应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、 可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
图8是根据一示例性实施例示出的一种用于信息传输的装置3000的框图。例如,装置3000可以是移动电话、计算机、数字广播终端、消息收发设备、游戏控制台、平板设备、医疗设备、健身设备、个人数字助理等。
参照图8,装置3000可以包括以下一个或多个组件:处理组件3002、存储器3004、电源组件3006、多媒体组件3008、音频组件3010、输入/输出(I/O)接口3012、传感器组件3014、以及通信组件3016。
处理组件3002通常控制装置3000的整体操作,诸如与显示、电话呼叫、数据通信、相机操作和记录操作相关联的操作。处理组件3002可以包括一个或多个处理器3020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件3002可以包括一个或多个模块,便于处理组件3002和其他组件之间的交互。例如,处理组件3002可以包括多媒体模块,以方便多媒体组件3008和处理组件3002之间的交互。
存储器3004被配置为存储各种类型的数据以支持在装置3000的操作。这些数据的示例包括用于在装置3000上操作的任何应用程序或方法的指令、联系人数据、电话簿数据、消息、图片、视频等。存储器3004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM)、电可擦除可编程只读存储器(EEPROM)、可擦除可编程只读存储器(EPROM)、可编程只读存储器(PROM)、只读存储器(ROM)、磁存储器、快闪存储器、磁盘或光盘。
电源组件3006为装置3000的各种组件提供电力。电源组件3006可以 包括电源管理系统、一个或多个电源、及其他与为装置3000生成、管理和分配电力相关联的组件。
多媒体组件3008包括在装置3000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件3008包括一个前置摄像头和/或后置摄像头。当装置3000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件3010被配置为输出和/或输入音频信号。例如,音频组件3010包括一个麦克风(MIC),当装置3000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器3004或经由通信组件3016发送。在一些实施例中,音频组件3010还包括一个扬声器,用于输出音频信号。
I/O接口3012为处理组件3002和外围接口模块之间提供接口,上述外围接口模块可以是键盘、点击轮、按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件3014包括一个或多个传感器,用于为装置3000提供各个方面的状态评估。例如,传感器组件3014可以检测到装置3000的打开/关闭状态、组件的相对定位,例如组件为装置3000的显示器和小键盘,传感器组件3014还可以检测装置3000或装置3000一个组件的位置改变、用户与装置3000接触的存在或不存在、装置3000方位或加速/减速和装置3000 的温度变化。传感器组件3014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件3014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件3014还可以包括加速度传感器、陀螺仪传感器、磁传感器、压力传感器或温度传感器。
通信组件3016被配置为便于装置3000和其他设备之间有线或无线方式的通信。装置3000可以接入基于通信标准的无线网络,如Wi-Fi、2G或3G,或它们的组合。在一个示例性实施例中,通信组件3016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件3016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术、红外数据协会(IrDA)技术、超宽带(UWB)技术、蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置3000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器3004,上述指令可由装置3000的处理器3020执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明实施例的其它实施方案。本申请旨在涵盖本发明实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明实施例的一般性原理并包括本公开实施例未公开的本技术领域中的公知常识或惯 用技术手段。说明书和实施例仅被视为示例性的,本发明实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明实施例的范围仅由所附的权利要求来限制。

Claims (20)

  1. 一种信息传输方法,其中,被终端执行,所述方法包括:
    发送功率指示信息,其中,所述功率指示信息,用于确定所述终端在多载波系统中N个频段的最大叠加发射功率,其中,所述最大叠加发射功率不同于第一类功率等级指示的发射功率,其中,N为大于或等于1的正整数。
  2. 根据权利要求1所述的方法,其中,所述功率指示信息,包括以下之一:
    第一指示,指示所述最大叠加发射功率的第二类功率等级,其中所述第二类功率等级不同于第一类功率等级;
    第二指示,指示所述最大叠加发射功率等于终端支持的N个频段上的发射功率的线性叠加值;
    第三指示,指示所述终端是否支持N个频段上的发射功率的线性叠加。
  3. 根据权利要求1或2任一项所述的方法,其中,
    所述功率指示信息,还用于指示所述终端在所述多载波系统中支持的每个频段的发射功率。
  4. 根据权利要求1或2所述的方法,其中,
    所述功率指示信息,还用于指示所述终端在所述多载波系统中支持的每个频段的所述发射功率的所述第一类功率等级或第二类功率等级。
  5. 一种信息传输方法,其中,被基站执行,所述方法包括:
    接收功率指示信息,其中,所述功率指示信息,用于确定终端在多载波系统中N个频段的最大叠加发射功率,其中,所述最大叠加发射功率不同于第一类功率等级指示的发射功率,其中,N为大于或等于1的正整数。
  6. 根据权利要求5所述的方法,其中,所述功率指示信息,包括以下之一:
    第一指示,指示所述最大叠加发射功率的第二类功率等级,其中所述第二类功率等级不同于第一类功率等级;
    第二指示,指示所述最大叠加发射功率等于终端支持的N个频段上的发射功率的线性叠加值;
    第三指示,指示所述终端是否支持N个频段上的发射功率的线性叠加。
  7. 根据权利要求6所述的方法,其中,所述方法还包括:
    响应于所述功率指示信息包括所述第二指示或第三指示,线性叠加所述终端支持的N个频段上的发射功率,得到所述最大叠加发射功率。
  8. 根据权利要求5至7任一项所述的方法,其中,
    所述功率指示信息,还用于指示所述终端在所述多载波系统中支持的每个频段的发射功率。
  9. 根据权利要求5至7任一项所述的方法,其中,
    所述功率指示信息,还用于指示所述终端在所述多载波系统中支持的每个频段的发射功率的所述第一类功率等级或第二类功率等级。
  10. 一种信息传输装置,其中,所述装置包括:
    发送模块,配置为发送功率指示信息,其中,所述功率指示信息,用于确定终端在多载波系统中N个频段的最大叠加发射功率,其中,所述最大叠加发射功率不同于第一类功率等级指示的发射功率,其中,N为大于或等于1的正整数。
  11. 根据权利要求10所述的装置,其中,所述功率指示信息,包括以下之一:
    第一指示,指示所述最大叠加发射功率的第二类功率等级,其中所述第二类功率等级不同于第一类功率等级;
    第二指示,指示所述最大叠加发射功率等于终端支持的N个频段上的发射功率的线性叠加值;
    第三指示,指示所述终端是否支持N个频段上的发射功率的线性叠加。
  12. 根据权利要求10或11任一项所述的装置,其中,
    所述功率指示信息,还用于指示所述终端在所述多载波系统中支持的每个频段的发射功率。
  13. 根据权利要求10或11所述的装置,其中,
    所述功率指示信息,用于指示所述终端在所述多载波系统中支持的每个频段的所述发射功率的所述第一类功率等级或第二类功率等级。
  14. 一种信息传输装置,其中,所述装置包括:
    接收模块,配置为接收功率指示信息,其中,所述功率指示信息,用于确定终端在多载波系统中N个频段的最大叠加发射功率,其中,所述最大叠加发射功率不同于第一类功率等级指示的发射功率,其中,N为大于或等于1的正整数。
  15. 根据权利要求14所述的装置,其中,所述功率指示信息,包括以下之一:
    第一指示,指示所述最大叠加发射功率的第二类功率等级,其中所述第二类功率等级不同于第一类功率等级;
    第二指示,指示所述最大叠加发射功率等于终端支持的N个频段上的发射功率的线性叠加值;
    第三指示,指示所述终端是否支持N个频段上的发射功率的线性叠加。
  16. 根据权利要求15所述的装置,其中,所述装置还包括:
    确定模块,响应于所述功率指示信息包括所述第二指示或第三指示,线性叠加所述终端支持的N个频段上的发射功率,得到所述最大叠加发射功率。
  17. 根据权利要求14至16任一项所述的装置,其中,
    所述功率指示信息,还用于指示所述终端在所述多载波系统中支持的 每个频段的发射功率。
  18. 根据权利要求14至16任一项所述的装置,其中,
    所述功率指示信息,用于指示所述终端在所述多载波系统中支持的每个频段的发射功率的所述第一类功率等级或第二类功率等级。
  19. 一种通信设备装置,包括处理器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至4或5至9任一项所述信息传输方法的步骤。
  20. 一种存储介质,其上存储有可执行程序,其中,所述可执行程序被处理器执行时实现如权利要求1至4或5至9任一项所述信息传输方法的步骤。
PCT/CN2021/141705 2021-12-27 2021-12-27 信息传输方法、装置、通信设备和存储介质 WO2023122893A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/141705 WO2023122893A1 (zh) 2021-12-27 2021-12-27 信息传输方法、装置、通信设备和存储介质
CN202180004755.7A CN114424633A (zh) 2021-12-27 2021-12-27 信息传输方法、装置、通信设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/141705 WO2023122893A1 (zh) 2021-12-27 2021-12-27 信息传输方法、装置、通信设备和存储介质

Publications (1)

Publication Number Publication Date
WO2023122893A1 true WO2023122893A1 (zh) 2023-07-06

Family

ID=81271281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141705 WO2023122893A1 (zh) 2021-12-27 2021-12-27 信息传输方法、装置、通信设备和存储介质

Country Status (2)

Country Link
CN (1) CN114424633A (zh)
WO (1) WO2023122893A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023240580A1 (zh) * 2022-06-17 2023-12-21 Oppo广东移动通信有限公司 通信方法、终端设备及网络设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108306718A (zh) * 2016-08-31 2018-07-20 中国电信股份有限公司 载波聚合的方法、系统以及基站
US20200374808A1 (en) * 2018-02-14 2020-11-26 Huawei Technologies Co., Ltd. Power Control Method and Apparatus
CN113678499A (zh) * 2021-06-18 2021-11-19 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111901859A (zh) * 2020-05-14 2020-11-06 中兴通讯股份有限公司 功率控制方法、装置、服务节点、终端及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108306718A (zh) * 2016-08-31 2018-07-20 中国电信股份有限公司 载波聚合的方法、系统以及基站
US20200374808A1 (en) * 2018-02-14 2020-11-26 Huawei Technologies Co., Ltd. Power Control Method and Apparatus
CN113678499A (zh) * 2021-06-18 2021-11-19 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on Increasing UE power high limit for CA and DC", 3GPP TSG-RAN WG4 MEETING #101-E, R4-2118547, 22 October 2021 (2021-10-22), XP052069937 *
HUAWEI, HISILICON: "Discussion on New Power Limits for Inter-band CA/DC", 3GPP TSG-RAN WG4 MEETING #99-E, R4-2111298, 11 May 2021 (2021-05-11), XP052009572 *
HUAWEI, HISILICON: "Further Discussion on Higher UE Power Limits for Inter-band CA/DC", 3GPP TSG-RAN WG4 MEETING #100-E, R4-2114209, 6 August 2021 (2021-08-06), XP052037484 *
NOKIA, NOKIA SHANGHAI BELL: "On increasing UE maximum power high limit for NR uplink inter band CA", 3GPP TSG-RAN4 MEETING #99-E, R4-2108806, 11 May 2021 (2021-05-11), XP052007827 *
OPPO: "R17 power class report for NR in CA", 3GPP TSG-RAN WG4 MEETING #99-E, R4-2110831, 11 May 2021 (2021-05-11), XP052009265 *
XIAOMI: "Discussion on increasing UE maximum power high limit", 3GPP TSG-RAN WG4 MEETING #100-E, R4-2113305, 6 August 2021 (2021-08-06), XP052036791 *

Also Published As

Publication number Publication date
CN114424633A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
WO2021168664A1 (zh) 通信方法、装置及计算机存储介质
CN110771222B (zh) 寻呼配置方法、装置、通信设备及存储介质
WO2021196133A1 (zh) Rrc状态改变的方法、装置、通信设备及存储介质
WO2020248107A1 (zh) 小区切换方法、装置及存储介质
WO2022052024A1 (zh) 参数配置方法、装置、通信设备和存储介质
CN113170334B (zh) 信息传输方法、装置、通信设备和存储介质
WO2022261973A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2021114274A1 (zh) 无线通信方法、装置及存储介质
WO2021007789A1 (zh) 信息处理方法、装置及计算机存储介质
WO2022000336A1 (zh) 信息传输方法、装置、通信设备及存储介质
KR20240005098A (ko) 리소스 설정 방법, 장치, 통신 장치 및 저장 매체(resource configuration method and apparatus, communication device, and storage medium)
WO2021102990A1 (zh) 短周期配置方法、装置、通信设备及存储介质
WO2023122893A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022006759A1 (zh) 信息传输方法、装置、通信设备和存储介质
CN111699641B (zh) 信道检测方法、装置、通信设备及存储介质
WO2021016771A1 (zh) 信道检测方式切换方法、装置及存储介质
WO2023184121A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022151387A1 (zh) 信息动态指示方法及装置、网络设备、用户设备及存储介质
WO2021142662A1 (zh) 资源配置方法、装置、通信设备及存储介质
US20220408469A1 (en) Downlink control information configuration method and apparatus, and communication device and storage medium
WO2021056362A1 (zh) 控制资源集合的处理方法、装置及计算机存储介质
WO2021077266A1 (zh) 网络接入方法、装置、通信设备及存储介质
WO2021068204A1 (zh) 基本服务集标识符的处理方法、装置及计算机存储介质
WO2022052122A1 (zh) 资源配置方法、装置、通信设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969279

Country of ref document: EP

Kind code of ref document: A1