WO2021217441A1 - 孵育组件、孵育装置和自动分析装置 - Google Patents
孵育组件、孵育装置和自动分析装置 Download PDFInfo
- Publication number
- WO2021217441A1 WO2021217441A1 PCT/CN2020/087563 CN2020087563W WO2021217441A1 WO 2021217441 A1 WO2021217441 A1 WO 2021217441A1 CN 2020087563 W CN2020087563 W CN 2020087563W WO 2021217441 A1 WO2021217441 A1 WO 2021217441A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- incubation
- assembly
- plate
- hole
- heat preservation
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
Definitions
- the present invention relates to the technical field of immune analyzers, in particular to an incubation component, an incubation device and an automatic analysis device.
- the immunoassay system uses the principle of luminescence or fluorescence and immunoreaction to correlate the optical signal with the concentration of the substance to be tested, and analyze the content of the substance to be tested in the sample. Due to its high sensitivity, specificity, and wide linear range, it is becoming increasingly widely used. . With the increase in the amount of test specimens, clinical laboratories have higher and higher requirements for the volume and test throughput of the immunoassay system.
- an incubation plate or reaction plate is usually used as an incubation place for a reaction vessel containing reactants.
- an incubation pot is usually set outside the incubation plate. Larger size and weight. In order to achieve high-throughput testing, it is necessary to increase the size of the incubation tray to increase the number of incubation positions, thereby further increasing the volume and weight of the incubation device.
- an incubation component an incubation device, and an automatic analysis device are provided.
- An incubation component the incubation component is used to carry a reaction container and incubate the reactants in the reaction container, the incubation component includes:
- a carrying plate is arranged in the housing, the carrying plate includes an upper plate and a lower plate, the lower plate is provided with heat preservation holes for accommodating the reaction vessel, and the upper plate is provided with a position for positioning the reaction vessel Support holes;
- a heater is connected to the lower board to heat the lower board.
- An incubation device including an incubation drive component and an incubation component
- the incubation component is used to carry the reaction container and incubate the reactants in the reaction container, and the incubation component includes:
- a carrier board includes an upper board and a lower board, the lower board is provided with a heat preservation hole for accommodating the lower part of the reaction vessel, and the upper board is provided with a supporting hole for positioning the reaction vessel;
- a heater connected to the lower board to heat the lower board
- the incubation drive assembly is connected to the incubation assembly to drive the incubation assembly to move in a linear direction along the first direction.
- An automatic analysis device including a transfer unit and an incubation device
- the incubation device includes an incubation drive assembly and an incubation assembly, the incubation assembly is used to carry the reaction container and incubate the reactants in the reaction container, and the incubation assembly includes:
- a carrier board includes an upper board and a lower board, the lower board is provided with a heat preservation hole for accommodating the lower part of the reaction vessel, and the upper board is provided with a supporting hole for positioning the reaction vessel;
- a heater connected to the lower board to heat the lower board
- the incubation drive assembly is connected to the incubation assembly to drive the incubation assembly to move in a linear direction along a first direction;
- the transfer unit includes a pick and place assembly and a transfer drive assembly, and the transfer drive assembly is connected to the pick and place assembly;
- the pick-and-place assembly includes a gripper and a pick-and-place drive assembly, the gripper is connected to the pick-and-place drive assembly, and the pick-and-place drive assembly is connected to the transfer drive assembly;
- the transfer drive assembly drives the pick and place assembly to move in the second direction, and cooperates with the incubation drive assembly to drive the incubation assembly to move linearly in the first direction, so that the pick and place assembly moves above each incubation position of the incubation assembly, so
- the gripping and placing driving assembly drives the gripper to move in a third direction to pick and place the reaction container in the incubation position.
- Figure 1 is a schematic diagram of the structure of an incubation component in an embodiment of the present invention.
- Figure 2 is an exploded view of the incubation component shown in Figure 1;
- Figure 3 is a schematic structural diagram of an incubation device in an embodiment of the present invention.
- Figure 4 is a schematic structural diagram of an automatic analysis device in an embodiment of the present invention.
- Figure 5 is a schematic diagram of a reaction vessel in an embodiment of the present invention.
- the immunoassay test is a quantitative or qualitative test of the target substance to be tested, such as the antigen and antibody contained in the blood sample. Immunoassay testing can be generally divided into one-step method, delayed one-step method and two-step method according to the test principle and mode.
- the immunoassay test includes the following steps:
- the incubation is usually a process of reacting the samples and reagents in the reaction container 400 under a stable temperature environment.
- the reaction container 400 contains samples and reagents after the reaction.
- the magnetic particle complex contains unreacted samples and reagents in the reaction chamber.
- the incubation time is usually 3 to 60 minutes.
- FIG. 1 is a schematic structural diagram of the incubation assembly 100 in an embodiment
- FIG. 2 is an exploded view of the incubation assembly 100 shown in FIG. 1.
- the incubation component 100 is mainly used to complete S13 in the above steps.
- the incubation component 100 is used to carry the reaction container 400 and incubate the reactants in the reaction container 400.
- the reactants may be samples and reagents, for example.
- the incubation assembly 100 includes a carrier plate 140 and a heater 130.
- the carrier plate 140 includes an upper plate 141 and a lower plate 142.
- the lower plate 142 is provided with a heat preservation hole 142A for accommodating the lower part of the reaction vessel 400
- the upper plate 141 is provided with a supporting hole 141A for positioning the reaction vessel 400.
- the upper board 141 and the lower board 142 are spaced apart.
- the space between the upper plate 141 and the lower plate 142 is an intermediate layer.
- the heater 130 is connected to the lower board 142 to heat the lower board 142.
- the incubation assembly 100 further includes a housing 110, the housing 110 is provided with a containing groove 111, and the carrying plate 140 and the heater 130 are arranged in the containing groove 111.
- the housing 110 is usually made of thermal insulation materials such as thermal insulation cotton, which can effectively prevent or reduce the heat loss in the accommodating tank 111 and help maintain the temperature uniformity of the incubation assembly 100.
- FIG. 5 is a schematic diagram of a reaction container 400 in an embodiment.
- the reaction container 400 may be a long test tube.
- the sample and the reagent are mixed in the reaction container.
- the amount of samples and reagents usually does not fill the reaction container 400.
- the amount of samples and reagents is about one-third of the volume of the reaction container 400, so the samples and reagents are in the lower part of the reaction container 400.
- the shaded area in the lower part of the reaction container 400 in FIG. 5 represents the sample and the reagent.
- the heat preservation hole 142A on the lower plate 142 accommodates the lower part of the reaction vessel 400.
- the depth of the heat preservation hole 142A on the lower plate 142 is not lower than the liquid level of the reactant in the reaction vessel 400. That is, when the lower part of the reaction container 400 is inserted into the heat preservation hole 142A, the highest liquid level of the samples and reagents in the reaction container 400 is lower than the top of the heat preservation hole 142A, so that the entire heat preservation hole 142A wraps the part of the reaction container 400 that contains the sample and the reagent.
- the depth of the heat preservation hole 142A is one-fifth to three-fifths of the height of the reaction vessel 400.
- the depth of the heat preservation hole 142A may be one-fifth of the height of the reaction vessel 400; the depth of the heat preservation hole 142A may be three-fifths of the height of the reaction vessel 400.
- the upper part of the reaction vessel 400 When the lower part of the reaction vessel 400 is inserted into the heat-preserving hole 142A, the upper part of the reaction vessel 400 is located in the supporting hole 141A of the upper plate 141 to position the reaction vessel 400 through the supporting hole 141A.
- the lower insulation hole 142A provides a stable incubation environment for the samples and reagents in the reaction container 400 to the maximum extent, which can fully improve the heat transfer efficiency.
- a convex ring 410 is provided on the outer side wall of the reaction vessel 400.
- the upper board 141 and the lower board 142 are spaced apart, and the spaced part is defined as the middle layer, that is, the upper board 141 and the lower board 142 are vacant.
- the support hole 141A of the upper plate 141 is supported on the middle and upper part of the reaction vessel 400 to make the reaction vessel 400 more stable.
- the carrier plate 140 is arranged in layers.
- the lower layer can not only provide a stable incubation temperature for the reactants in the reaction vessel 400, but also ensure heat transfer efficiency.
- the upper layer can stably support the reaction vessel 400, and the middle layer between the upper and lower layers is vacant, which can effectively The weight and processing difficulty of the carrying plate 140 are reduced.
- the incubation assembly 100 needs to be moved to cooperate with the external transfer unit 300 to take and place the reaction container 400 at a high speed.
- the weight of the entire incubation assembly 100 can be reduced.
- the 100 can move quickly and sensitively, realize the high-speed pick-and-place of the reaction vessel 400, and improve the test throughput.
- the intermediate layer between the upper and lower layers is left empty, which effectively reduces the weight of the incubation assembly 100 and effectively solves the problem of large load caused by the increase of the incubation assembly 100 in the high-throughput test.
- Test throughput can be understood as the test speed of reactants such as samples and reagents.
- the heater 130 is disposed under the carrier board 140 and directly connected to the lower board 142 in the carrier board 140.
- the other side of the heater 130 is fixed by the fixing plate 120.
- the fixing plate 120 is provided between the heater 130 and the housing 110.
- the heater 130 is directly connected to the lower plate 142 in the carrier plate 140, which improves the heat transfer efficiency, reduces heat loss, increases the heating speed, and makes the temperature in the reaction vessel 400 quickly reach the set temperature.
- it further includes a temperature sensor for detecting the temperature in the heat preservation hole 142A, the temperature sensor is electrically connected to the control unit, and the heater 130 is electrically connected to the control unit.
- the temperature in the heat preservation hole 142A is detected in real time by the temperature sensor.
- the control unit controls the heater 130 to heat; when the temperature in the heat preservation hole 142A reaches the set temperature, the control unit The heater 130 is controlled to stop heating. Thereby ensuring the stability of the incubation temperature.
- the bottom of the lower plate 142 is provided with an exhaust hole 142B, the exhaust hole 142B communicates with the heat preservation hole 142A, and the heater 130 is arranged at an end of the exhaust hole 142B away from the heat preservation hole 142A.
- the inner wall of the heat preservation hole 142A is in close contact with the outer wall of the reaction vessel 400, so that when the reaction vessel 400 is inserted into the heat preservation hole 142A, air can be discharged through the exhaust hole 142B at the bottom, thereby facilitating the reaction vessel 400 Smoothly insert into the heat preservation hole 142A.
- the lower plate 142 is made of a thermally conductive material.
- the thermally conductive material may be aluminum or copper. Since the heater 130 is connected to the lower plate 142, the heat of the heater 130 can be directly transferred to the lower plate 142, and the reaction vessel 400 is heated through the lower plate 142, which improves the heating efficiency.
- the upper plate 141 may be made of an insulating material, so as to reduce heat loss.
- the heater 130 has a plate-like structure, and the temperature distribution of the entire plate surface of the plate-like structure is relatively uniform, so that the heat of the entire incubation assembly 100 is uniform.
- the heat preservation hole 142A of the lower plate 142 is correspondingly provided with a support hole 141A on the upper plate 141, and the heat preservation hole 142A corresponds to the support hole 141A one by one, and forms an incubation position.
- the incubation assembly 100 includes several incubation positions. In one embodiment, the number of incubation positions of the incubation assembly 100 is not less than 200. In this way, when the maximum test throughput is 600 tests per hour, continuous testing of items with an incubation time of 20 minutes can effectively meet the continuous testing requirements of most test items.
- the incubation positions are arranged in an array, that is, the incubation positions are arranged in multiple rows and multiple columns. In one embodiment, the difference between the number of rows and the number of columns of incubation positions does not exceed five. That is, the incubation positions are roughly distributed in a square space, rather than distributed in a rectangular space.
- the incubation component 100 moves linearly in a certain direction, especially when it moves along the length of the rectangle, the moving distance of the incubation component 100 can be reduced, the test speed can be increased, and the transfer efficiency to the reaction container 400 can be improved.
- FIG. 3 is a schematic structural diagram of an incubation device in an embodiment, and the incubation device includes the incubation assembly 100 in any one of the above embodiments.
- the incubation device further includes an incubation drive assembly 200, which is connected to the incubation assembly 100 to drive the incubation assembly 100 to move in a linear direction.
- the incubation assembly 100 moves horizontally along the X-axis direction
- the external transfer unit 300 moves horizontally above the incubation device along the Y-axis direction
- the transfer unit 300 can pick up and place the reaction container 400 for each incubation position on the incubation assembly 100.
- the incubation component 100 is usually a rotating disk, and the rotating disk is also wrapped with a heat preservation pot.
- This technical solution increases as the number of incubation positions on the rotating disk increases, and the size of the rotating disk and the heat preservation pot also increases.
- Increasing the difficulty of processing and manufacturing there are shortcomings of high production cost, large volume, and difficult control. Since the incubation positions are arranged in a ring on the rotating disk, the horizontal movement track of the transfer unit 300 is usually along a certain radius of the rotating disk, and the horizontal movement track of the transfer unit 300 cannot be fully utilized, resulting in waste of resources.
- the incubation component 100 moves horizontally along the X-axis direction
- the external transfer unit 300 moves horizontally above the incubation device along the Y-axis direction.
- the transfer unit 300 can quickly move to the top of each incubation position of the incubation component 100 for picking and placing reactions.
- the container 400 is more efficient in linear motion.
- the incubation driving assembly 200 includes a bottom plate 210, a guide rail 220, a moving block 250, a transmission belt 230 and a driving motor 240.
- the guide rail 220 is fixed on the bottom plate 210
- the guide rail 220 extends linearly in the horizontal direction
- the moving block 250 is slidably connected to the guide rail 220.
- the driving motor 240 drives the transmission belt 230 to move
- the transmission belt 230 is fixedly connected to the moving block 250
- the moving block 250 can be driven to move in a straight line by the driving motor 240.
- the moving block 250 is fixedly connected to the incubation assembly 100.
- FIG. 4 is a schematic structural diagram of an automatic analysis device in an embodiment.
- the automatic analysis device includes an incubation assembly 100, an incubation drive assembly 200 and a transfer unit 300.
- the incubation drive assembly 200 is connected to the incubation assembly 100, and the incubation drive assembly 200 drives the incubation assembly 100 to move linearly in the first direction.
- the incubation component 100 is provided with an incubation position, and the reaction container 400 is carried in the incubation position.
- the transfer unit 300 includes a pick and place assembly 320 and a transfer drive assembly 310.
- the transfer driving assembly 310 is connected to the pick-and-place assembly 320, and drives the pick-and-place assembly 320 to move in the second direction.
- the pick-and-place assembly 320 includes a gripper 322 and a pick-and-place drive assembly 321.
- the gripper 322 is connected to the pick-and-place drive assembly 321, and the pick-and-place drive assembly 321 is connected to the transfer drive assembly 310.
- the pick and place drive assembly 321 drives the gripper 322 to move in the third direction.
- the transfer drive assembly 310 drives the pick and place assembly 320 to move in the second direction, and cooperates with the incubation drive assembly 200 to drive the incubation assembly 100 to move linearly in the first direction, so that the pick and place assembly 320 can move to above each incubation position of the incubation assembly 100 .
- the pick and place drive assembly 321 drives the gripper 322 to move up and down in a third direction, and the reaction container 400 can be moved into or out of the incubation position by the gripper 322.
- an incubation position is arranged on the periphery of the incubation tray in a ring shape, and the incubation tray rotates around its own rotation axis to realize the picking and placement of the incubation position reaction container 400 in different positions.
- the incubation position is usually only set in the outer ring, and the middle of the incubation tray is usually empty or a cleaning separation position is set, which results in a small number of incubation positions on the incubation tray.
- the incubation position processing of the incubation plate The precision requirement is high, and the processing challenge of the incubation plate is extremely great.
- the size and accuracy requirements of the incubation pan that wraps the incubation plate will also increase, and it is difficult to process large-size pans with the existing manufacturing technology.
- the incubation position is provided on the incubation component 100, which can set more incubation positions on the premise of ensuring that the incubation component 100 is smaller in size, can make the incubation component 100 small in size, and can both the incubation component 100 and the transfer unit 300 Independent movement, high movement flexibility, through the division of labor and movement of the incubation assembly 100 and the transfer unit 300, each of the incubation assembly 100 and the transfer unit 300 can maintain high-speed movement, realizing high-throughput testing.
- the first direction and the second direction may be a horizontal direction
- the third direction is a vertical direction
- the first direction is the X-axis direction
- the second direction is the Y-axis direction
- the third direction is the Z-axis direction.
- first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
- the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
- installed can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
- the specific meanings of the above-mentioned terms in the present invention can be understood according to specific situations.
- the first feature “on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. touch.
- the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the level of the first feature is higher than the second feature.
- the “below”, “below” and “below” of the second feature of the first feature may be that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
一种孵育组件,孵育组件用于承载反应容器(400),并对反应容器(400)内的反应物进行孵育,孵育组件(100)包括:承载板(140),承载板(140)包括上层板(141)和下层板(142),下层板(142)设置有用于容置反应容器(400)下部的保温孔(142A),上层板(141)设置有用于定位反应容器(400)的支撑孔(141A);以及加热器(130),连接下层板(142),以对下层板(142)进行加热。一种孵育装置,包括孵育驱动组件(200)和孵育组件(100)。一种自动分析装置包括转移单元(300)和孵育装置。
Description
本发明涉及免疫分析仪技术领域,特别是涉及一种孵育组件、孵育装置和自动分析装置。
免疫分析系统利用发光或荧光和免疫反应原理,将光信号与待测物质浓度关联,分析样本中的待测物质含量,由于其高灵敏度和特异性、宽线性范围等特性正获得日益广泛的应用。随着检测标本量的增加,临床实验室对免疫分析系统的体积和测试通量的要求越来越高。
传统技术中,通常采用孵育盘或称反应盘作为含有反应物的反应容器孵育场所,但是为了提供温度稳定的孵育环境,通常在孵育盘外设置保温锅,而保温锅体积较大,导致孵育装置体积较大和重量大。而为了实现高通量测试,需要增大孵育盘尺寸来增加孵育位的数量,因而使得孵育装置体积和重量进一步增大。
如何实现孵育装置体积的小型化并减轻孵育装置的重量是本领域亟需解决的技术问题。
发明内容
根据本申请的各种实施例,提供一种孵育组件、孵育装置和自动分析装置。
一种孵育组件,所述孵育组件用于承载反应容器,并对反应容器内的反应物进行孵育,所述孵育组件包括:
外壳;
承载板,设置在所述外壳内,所述承载板包括上层板和下层板,所述下层板设置有用于容置所述反应容器的保温孔,所述上层板设置有用于定位所述反应容器的支撑孔;以及
加热器,连接所述下层板,以对所述下层板进行加热。
一种孵育装置,包括孵育驱动组件和孵育组件;
所述孵育组件用于承载反应容器,并对反应容器内的反应物进行孵育,所述孵育组件包括:
承载板,所述承载板包括上层板和下层板,所述下层板设置有用于容置所述反应容器下部的保温孔,所述上层板设置有用于定位所述反应容器的支撑孔;以及
加热器,连接所述下层板,以对所述下层板进行加热;
所述孵育驱动组件连接所述孵育组件,以驱动所述孵育组件沿第一方向直线方向运动。
一种自动分析装置,包括转移单元和孵育装置;
所述孵育装置包括孵育驱动组件孵育组件,所述孵育组件用于承载反应容器,并对反应容器内的反应物进行孵育,所述孵育组件包括:
承载板,所述承载板包括上层板和下层板,所述下层板设置有用于容置所述反应容器下部的保温孔,所述上层板设置有用于定位所述反应容器的支撑孔;以及
加热器,连接所述下层板,以对所述下层板进行加热;
所述孵育驱动组件连接所述孵育组件,以驱动所述孵育组件沿第一方向直线方向运动;
所述转移单元包括抓放组件和转移驱动组件,所述转移驱动组件连接抓放组件;
所述抓放组件包括抓手和抓放驱动组件,所述抓手连接抓放驱动组件,所述抓放驱动组件连接转移驱动组件;
其中,所述转移驱动组件驱动所述抓放组件沿第二方向运动,配合孵育驱动组件驱动孵育组件沿第一方向直线运动,以使抓放组件运动至孵育组件的每个孵育位上方,所述抓放驱动组件驱动抓手沿第三方向运动,以取放所述孵育位内的反应容器。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其他特征、目的和优点将从说明书、附图以及权力要求书变得明显。
图1为本发明一个实施例中的孵育组件的结构示意图;
图2为图1所示的孵育组件的爆炸图;
图3为本发明一个实施例中的孵育装置的结构示意图;
图4为本发明一个实施例中的自动分析装置的结构示意图;
图5为本发明一个实施例中的反应容器的示意图。
附图标记:100、孵育组件;110、外壳;111、容置槽;120、隔热件;130、加热器;140、承载板;141、上层板;141A、支撑孔;142、下层板;142A、保温孔;142B、排气孔;200、孵育驱动组件;210、底板;220、导轨;230、传动带;240、驱动电机;250、移动块;300、转移单元;301、固定板; 310、转移驱动组件;320、抓放组件;321、抓放驱动组件;322、抓手;400、反应容器;410、凸环。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
免疫分析测试是对待测目标物质,如血液样本中所含抗原和抗体等物质进行定量或定性测试。免疫分析测试按测试原理和模式一般可分为一步法、延时一步法和两步法。
以一步法为例进行说明,免疫分析测试包括以下步骤:
S11、提供反应容器400。
S12、向反应容器400中添加样本和试剂;其中,添加的样本和试剂是根据不同的测试项目对应选择不同的样本和试剂。根据样本、试剂以及测试方法的不同,有些测试项目还需要对反应容器400中的样本和试剂进行混匀。
S13、对反应容器400中的样本和试剂进行孵育;孵育通常是在稳定的温度环境下使反应容器400中的样本和试剂进行反应的过程,通常反应后反应容器400中含有样本和试剂形成的磁微粒复合物,反应容置中还含有没有反应的样本和试剂。孵育时间通常为3~60分钟。
S14、对孵育后的样本和试剂进行清洗分离;清洗分离通常是指用磁力捕捉反应容器400中的磁微粒复合物,同时去除没有反应的样本和试剂。
S15、向反应容器400中添加信号试剂或缓冲液;有些测试需要信号孵育,信号孵育通常在稳定的温度环境下进行1~6分钟,信号孵育能够增强磁微粒复合物的发光量。
S16、测量发光量。
如图1所示,图1为一个实施例中的孵育组件100的结构示意图,图2为图1所示的孵育组件100的爆炸图。孵育组件100主要用于完成上述步骤中的S13。
如图1和图2所示,孵育组件100用于承载反应容器400,并对反应容器400内的反应物进行孵育,反应物例如可以为样本和试剂。孵育组件100包括承载板140和加热器130。承载板140包括上层板141和下层板142,下层板142设置有用于容置反应容器400下部的保温孔142A,上层板141设置有用于定位反应容器400的支撑孔141A。上层板141和下层板142间隔设置。上层板141和下层板142间隔的部分为中间层。加热器130连接下层板142,以对下层板142进行加热。
在一些实施例中,孵育组件100还包括外壳110,外壳110设置有容置槽111,承载板140和加热器130设置在容置槽111内。外壳110通常为保温棉等隔热材料构成,可有效防止或减少容置槽111内的热量散失,有利于保持孵育组件100的温度均匀性。
具体地,如图5所示,图5为一个实施例中的反应容器400的示意图,反应容器400可以为长条形的试管状,在进行免疫分析测试时,将样本和试剂混合于反应容器400内,样本和试剂的量通常不会装满反应容器400,例如在一个测试中,样本和试剂的量大约为反应容器400容积的三分之一,因此样本和试剂在反应容器400的下部,图5中反应容器400下部的阴影区域 表示样本和试剂。本申请中,下层板142上的保温孔142A容置反应容器400的下部。进一步地,下层板142上的保温孔142A的深度不低于反应容器400内的反应物的液面高度。即当反应容器400下部插入保温孔142A内时,反应容器400内的样本和试剂的最高液面低于保温孔142A的顶部,以使整个保温孔142A包裹反应容器400中含有样本和试剂的部分,以对样本和试剂提供稳定的反应环境并提高对反应容器400内的反应物传热效率。优选地,所述保温孔142A的深度为所述反应容器400高度的五分之一~五分之三。具体地,所述保温孔142A的深度可以为反应容器400高度的五分之一;所述保温孔142A的深度可以为反应容器400高度的五分之三。
当反应容器400下部插入保温孔142A时,反应容器400的上部位于上层板141的支撑孔141A内,以通过支撑孔141A定位反应容器400。上述方案中,下部的保温孔142A最大限度的为反应容器400内的样本和试剂提供稳定的孵育环境,可以充分提高传热效率。在一个实施例中,反应容器400外侧壁上设置有凸环410,结合图1,当反应容器400下部插入保温孔142A时,反应容器400的上部位于上层板141的支撑孔141A内,以通过支撑孔141A定位反应容器400,且凸环410支撑在上层板141上,以对反应容器400的竖直方向进行定位,防止反应容器400上端部偏移,使反应容器400保证呈竖直状态,以利用反应容器400的取放。
如图1所示,在一个实施例中,上层板141和下层板142间隔设置,间隔的部分定义为中间层,也就是说,上层板141和下层板142之间是空置的。通过上层板141的支撑孔141A支撑在反应容器400的中上部,使反应容器400更加稳定。承载板140分层设置,下层不但能够为反应容器400内的反应物提供稳定的孵育温度,并保证传热效率,上层能够稳定支撑反应容器400, 上、下层之间的中间层空置,可以有效减轻承载板140的重量和加工难度。
在一些实施例中,孵育组件100需要移动以配合外部的转移单元300对反应容器400进行高速取放,通过减少承载板140的重量,进而减小了整个孵育组件100的重量,可以使孵育组件100能够快速且灵敏的移动,实现对反应容器400的高速取放,提高测试通量。本实施例中,上、下层之间的中间层空置,有效降低了孵育组件100的重量,有效解决了高通量测试中由于孵育组件100增大导致的负载大的问题。测试通量可以理解为对样本和试剂等反应物的测试速度。
如图1和图2所示,加热器130设置在承载板140下方,且直接连接承载板140中的下层板142。加热器130另一面由固定板120固定。固定板120设置在加热器130和外壳110之间。通过加热器130直接连接承载板140中的下层板142,提高了传热效率,减少热量损耗,提高加热速度,使反应容器400内的温度快速达到设定的温度。
在一些实施例中,还包括用于检测保温孔142A内的温度的温度传感器,温度传感器与控制单元电连接,加热器130与控制单元电连接。通过温度传感器实时检测保温孔142A内的温度,当保温孔142A内的温度低于设定温度时,控制单元控制加热器130进行加热;当保温孔142A内的温度达到设定温度时,控制单元控制加热器130停止加热。从而保证了孵育温度的稳定。
如图1所示,下层板142底部设置有排气孔142B,排气孔142B与保温孔142A连通,加热器130设置在排气孔142B的远离保温孔142A的一端。为了提高保温孔142A的保温效果,保温孔142A的内壁与反应容器400的外壁贴靠,这样反应容器400插入保温孔142A内时,可以通过底部的排气孔142B排出空气,从而利于反应容器400顺利插入保温孔142A内。
在一些实施例中,下层板142由导热材料制成。例如,导热材料可以为铝材或铜材等。由于加热器130连接下层板142,加热器130的热量可以直接传递到下层板142上,通过下层板142对反应容器400进行加热,提高了加热效率。
在一些实施例中,上层板141可以由隔热材料制成,从而可以减少热量散失。
为了提高孵育组件100热量的均匀性,加热器130为板状结构,板状结构的整个板面温度分布较为均匀,从而使得整个孵育组件100的热量均匀。
如图2所示,下层板142的保温孔142A对应设置有一个位于上层板141上的支撑孔141A,保温孔142A和支撑孔141A一一对应,且形成孵育位。孵育组件100包括若干孵育位。在一个实施例中,孵育组件100的孵育位的数量不低于200个。这样可以在最大测试通量为每小时600个测试时,对孵育时长为20分钟的项目连续测试,可以有效满足大多数测试项目连续测试的要求。
在一个实施例中,这些孵育位呈阵列设置,即这些孵育位移多行和多列设置。在一个实施例中,孵育位的行数和列数之差不超过5个。即孵育位大致上分布在正方形空间内,而不是分布在长方形空间内。当孵育组件100沿某一个方向直线移动时,特别是沿长方形长度方向移动时,可以减少孵育组件100移动的距离,提高测试速度,提高对反应容器400的转移效率。
如图3所示,图3为一个实施例中的孵育装置的结构示意图,孵育装置包括上述任意一个实施例中的孵育组件100。孵育装置还包括孵育驱动组件200,孵育驱动组件200连接孵育组件100,以驱动孵育组件100沿直线方向运动。例如,孵育组件100沿X轴方向水平移动,外部的转移单元300沿Y 轴方向在孵育装置上方水平移动,进而转移单元300可以对孵育组件100上的每个孵育位取放反应容器400。
在传统实施方式中,孵育组件100通常为旋转盘,旋转盘外还包裹有保温锅,这种技术方案随着旋转盘上的孵育位的数量增加,旋转盘和保温锅尺寸也增大,增大了加工制造的难度,存在生产成本高、体积大、控制难度大的缺点。由于孵育位在旋转盘上呈环形排布,通常转移单元300的水平移动轨迹沿着旋转盘的某一半径方向,不能充分利用转移单元300的水平运行轨迹,造成资源浪费。
本申请中,孵育组件100沿X轴方向水平移动,外部的转移单元300沿Y轴方向在孵育装置上方水平移动,转移单元300可以快速移动到孵育组件100的每个孵育位上方进行取放反应容器400,且直线运动效率更高。
如图3所示,孵育驱动组件200包括底板210、导轨220、移动块250、传动带230和驱动电机240。其中,导轨220固定在底板210上,导轨220沿水平方向直线延伸,移动块250滑动连接在导轨220上。驱动电机240驱动传动带230运动,传动带230与移动块250固定连接,进而通过驱动电机240能够驱动移动块250沿直线运动。移动块250与孵育组件100固定连接。
如图4所示,图4为一个实施例中的自动分析装置的结构示意图,自动分析装置包括孵育组件100、孵育驱动组件200和转移单元300。孵育驱动组件200与孵育组件100连接,孵育驱动组件200驱动孵育组件100沿第一方向直线运动。孵育组件100上设置有孵育位,反应容器400承载在孵育位内。转移单元300包括抓放组件320和转移驱动组件310。转移驱动组件310连接抓放组件320,驱动抓放组件320沿第二方向运动。抓放组件320包括抓手322和抓放驱动组件321,抓手322连接抓放驱动组件321,抓放驱动组件 321连接转移驱动组件310。抓放驱动组件321驱动抓手322沿第三方向运动。其中,转移驱动组件310驱动抓放组件320沿第二方向运动,配合孵育驱动组件200驱动孵育组件100沿第一方向直线运动,能够使抓放组件320运动至孵育组件100的每个孵育位上方。抓放驱动组件321驱动抓手322沿第三方向升降,通过抓手322能够将反应容器400移入或移出孵育位。
传统技术中,孵育盘外围沿环状设置孵育位,孵育盘通过绕自身旋转轴转动以实现不同位置的孵育位反应容器400的取放。孵育位通常只设置在外环,孵育盘中部通常空置或者设置清洗分离位,因此导致孵育盘上的孵育位数量较少。为了实现高通量测试,需要增大孵育盘尺寸来增加孵育位的数量,但增大孵育盘尺寸一方面导致控制负载过大,驱动控制技术难度大,另一方面,孵育盘的孵育位加工精度要求高,孵育盘的加工挑战极大,此外,为了实现孵育,包裹孵育盘的孵育锅尺寸和精度要求也会增大,现有制造工艺很难加工大尺寸的锅体。
本申请中,孵育组件100上设置孵育位,可以在保证孵育组件100体积较小的前提下能设置更多的孵育位,能够使孵育组件100尺寸小,且孵育组件100和转移单元300均能够独立移动,运动灵活性高,通过孵育组件100和转移单元300分工配合运动,孵育组件100和转移单元300各自均能够保持高速运动,实现高通量测试。
在一个实施例中,第一方向和第二方向可以为水平方向,第三方向为竖直方向。例如,第一方向为X轴方向、第二方向为Y轴方向、第三方向为Z轴方向。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、 “右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它 可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (20)
- 一种孵育组件,所述孵育组件用于承载反应容器(400),并对反应容器(400)内的反应物进行孵育,所述孵育组件(100)包括:承载板(140),所述承载板(140)包括上层板(141)和下层板(142),所述下层板(142)设置有用于容置所述反应容器(400)下部的保温孔(142A),所述上层板(141)设置有用于定位所述反应容器(400)的支撑孔(141A);以及加热器(130),连接所述下层板(142),以对所述下层板(142)进行加热。
- 根据权利要求1所述的孵育组件,其特征在于,所述上层板(141)与所述下层板(142)间隔设置。
- 根据权利要求1所述的孵育组件,其特征在于,还包括外壳(110),所述外壳(110)设置有容置槽(111),所述承载板(140)和加热器(130)均设置在所述容置槽(111)内。
- 根据权利要求2所述的孵育组件,其特征在于,所述下层板(142)设置有与所述保温孔(142A)连通的排气孔(142B),所述加热器(130)设置在所述排气孔(142B)的远离所述保温孔(142A)的一端。
- 根据权利要求1所述的孵育组件,其特征在于,所述加热器(130)为板状结构。
- 根据权利要求1所述的孵育组件,其特征在于,所述保温孔(142A)的深度为所述反应容器(400)高度的五分之一~五分之三。
- 根据权利要求1所述的孵育组件,其特征在于,所述下层板(142)为导热板,所述上层板(141)为隔热板。
- 根据权利要求1所述的孵育组件,其特征在于,所述下层板(142)上的保 温孔(142A)对应设置有一个位于所述上层板(141)的支撑孔(141A),所述保温孔(142A)和所述支撑孔(141A)形成孵育位,所述孵育组件(100)包括阵列设置的若干孵育位。
- 一种孵育装置,包括孵育驱动组件(200)和孵育组件;所述孵育组件用于承载反应容器(400),并对反应容器(400)内的反应物进行孵育,所述孵育组件(100)包括:承载板(140),所述承载板(140)包括上层板(141)和下层板(142),所述下层板(142)设置有用于容置所述反应容器(400)下部的保温孔(142A),所述上层板(141)设置有用于定位所述反应容器(400)的支撑孔(141A);以及加热器(130),连接所述下层板(142),以对所述下层板(142)进行加热;所述孵育驱动组件(200)连接所述孵育组件(100),以驱动所述孵育组件(100)沿第一方向直线方向运动。
- 根据权利要求9所述的孵育装置,其特征在于,所述上层板(141)与所述下层板(142)间隔设置。
- 根据权利要求9所述的孵育装置,其特征在于,所述孵育装置的孵育组件还包括外壳(110),所述外壳(110)设置有容置槽(111),所述承载板(140)和加热器(130)均设置在所述容置槽(111)内。
- 根据权利要求10所述的孵育装置,其特征在于,所述下层板(142)设置有与所述保温孔(142A)连通的排气孔(142B),所述加热器(130)设置在所述排气孔(142B)的远离所述保温孔(142A)的一端。
- 根据权利要求9所述的孵育装置,其特征在于,所述加热器(130)为板状结构。
- 根据权利要求9所述的孵育装置,其特征在于,所述保温孔(142A)的深 度为所述反应容器(400)高度的五分之一~五分之三。
- 根据权利要求9所述的孵育装置,其特征在于,所述下层板(142)为导热板,所述上层板(141)为隔热板。
- 根据权利要求9所述的孵育装置,其特征在于,所述下层板(142)上的保温孔(142A)对应设置有一个位于所述上层板(141)的支撑孔(141A),所述保温孔(142A)和所述支撑孔(141A)形成孵育位,所述孵育组件(100)包括阵列设置的若干孵育位。
- 一种自动分析装置,包括转移单元(300)和孵育装置;所述孵育装置包括孵育驱动组件(200)孵育组件(100),所述孵育组件用于承载反应容器(400),并对反应容器(400)内的反应物进行孵育,所述孵育组件(100)包括:承载板(140),所述承载板(140)包括上层板(141)和下层板(142),所述下层板(142)设置有用于容置所述反应容器(400)下部的保温孔(142A),所述上层板(141)设置有用于定位所述反应容器(400)的支撑孔(141A);以及加热器(130),连接所述下层板(142),以对所述下层板(142)进行加热;所述孵育驱动组件(200)连接所述孵育组件(100),以驱动所述孵育组件(100)沿第一方向直线方向运动;所述转移单元(300)包括抓放组件(320)和转移驱动组件(310),所述转移驱动组件(310)连接抓放组件(320);所述抓放组件(320)包括抓手(322)和抓放驱动组件(321),所述抓手(322)连接抓放驱动组件(321),所述抓放驱动组件(321)连接转移驱动组件(310);其中,所述转移驱动组件(310)驱动所述抓放组件(320)沿第二方向运动,配合孵育驱动组件(200)驱动孵育组件(100)沿第一方向直线运动,以使抓放组 件(320)运动至孵育组件(100)的每个孵育位上方,所述抓放驱动组件(321)驱动抓手(322)沿第三方向运动,以取放所述孵育位内的反应容器(400)。
- 根据权利要求17所述的自动分析装置,其特征在于,所述上层板(141)与所述下层板(142)间隔设置。
- 根据权利要求17所述的自动分析装置,其特征在于,所述自动分析装置的孵育组件还包括外壳(110),所述外壳(110)设置有容置槽(111),所述承载板(140)和加热器(130)均设置在所述容置槽(111)内。
- 根据权利要求17所述的自动分析装置,其特征在于,所述下层板(142)设置有与所述保温孔(142A)连通的排气孔(142B),所述加热器(130)设置在所述排气孔(142B)的远离所述保温孔(142A)的一端。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/087563 WO2021217441A1 (zh) | 2020-04-28 | 2020-04-28 | 孵育组件、孵育装置和自动分析装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/087563 WO2021217441A1 (zh) | 2020-04-28 | 2020-04-28 | 孵育组件、孵育装置和自动分析装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021217441A1 true WO2021217441A1 (zh) | 2021-11-04 |
Family
ID=78331567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/087563 WO2021217441A1 (zh) | 2020-04-28 | 2020-04-28 | 孵育组件、孵育装置和自动分析装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021217441A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114184778A (zh) * | 2021-11-10 | 2022-03-15 | 山东博科生物产业有限公司 | 一种震荡孵育装置及酶联免疫分析系统 |
CN115825463A (zh) * | 2023-02-17 | 2023-03-21 | 世纪亿康(天津)医疗科技发展有限公司 | 一种凝血检测设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203705461U (zh) * | 2013-12-25 | 2014-07-09 | 北京艾迪康医学检验所有限公司 | 检测样品孵育仪 |
CN105242056A (zh) * | 2014-06-04 | 2016-01-13 | 东曹株式会社 | 容器收纳托盘和自动分析装置 |
CN106018784A (zh) * | 2016-07-05 | 2016-10-12 | 深圳普门科技有限公司 | 小型电化学发光免疫分析仪及其分析方法 |
CN108414737A (zh) * | 2018-06-13 | 2018-08-17 | 安徽为臻生物工程技术有限公司 | 一种全自动化学发光免疫分析仪 |
CN209590038U (zh) * | 2019-02-20 | 2019-11-05 | 重庆科斯迈生物科技有限公司 | 化学发光免疫分析仪孵育系统 |
-
2020
- 2020-04-28 WO PCT/CN2020/087563 patent/WO2021217441A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203705461U (zh) * | 2013-12-25 | 2014-07-09 | 北京艾迪康医学检验所有限公司 | 检测样品孵育仪 |
CN105242056A (zh) * | 2014-06-04 | 2016-01-13 | 东曹株式会社 | 容器收纳托盘和自动分析装置 |
CN106018784A (zh) * | 2016-07-05 | 2016-10-12 | 深圳普门科技有限公司 | 小型电化学发光免疫分析仪及其分析方法 |
CN108414737A (zh) * | 2018-06-13 | 2018-08-17 | 安徽为臻生物工程技术有限公司 | 一种全自动化学发光免疫分析仪 |
CN209590038U (zh) * | 2019-02-20 | 2019-11-05 | 重庆科斯迈生物科技有限公司 | 化学发光免疫分析仪孵育系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114184778A (zh) * | 2021-11-10 | 2022-03-15 | 山东博科生物产业有限公司 | 一种震荡孵育装置及酶联免疫分析系统 |
CN115825463A (zh) * | 2023-02-17 | 2023-03-21 | 世纪亿康(天津)医疗科技发展有限公司 | 一种凝血检测设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102363674B1 (ko) | 소모성 진탕 장치를 포함하는, 전기화학발광을 이용하여 검정법을 수행하기 위한 고처리율 시스템 | |
US10473650B2 (en) | Reagent mixing and conveying device and reagent mixing method | |
CN110007099B (zh) | 自动分析装置及样本分析方法 | |
WO2018126773A1 (zh) | 自动分析装置及样本分析方法 | |
US6825041B2 (en) | Method and system for automated immunochemistry analysis | |
WO2018126774A1 (zh) | 自动分析装置及样本分析方法 | |
WO2021217441A1 (zh) | 孵育组件、孵育装置和自动分析装置 | |
CN111551758A (zh) | 自动分析装置 | |
CN109975562B (zh) | 化学发光检测仪及其检测方法 | |
CN207866716U (zh) | 化学发光检测仪 | |
EP1612561A1 (en) | Instrument for efficient treatment of analytical devices | |
WO2021147187A1 (zh) | 样本分析方法和样本分析装置 | |
CN113567690B (zh) | 孵育组件、孵育装置和自动分析装置 | |
CN109030809B (zh) | 一种过敏原IgE抗体自动分析仪 | |
US6881572B2 (en) | Assay device incubator | |
WO2022166766A1 (zh) | 一种用于固相萃取及芯片阵列点样的液体工作站 | |
WO2019222445A1 (en) | High throughput system for performing assays using electrochemiluminesence including a consumable shaking apparatus | |
WO2021147183A1 (zh) | 分析装置 | |
CN109709347A (zh) | 一种孵育系统及其孵育方法 | |
CN210775508U (zh) | 一种通用全自动分析系统 | |
US20230046531A1 (en) | Dilution Method and Dilution Apparatus | |
CN210775507U (zh) | 一种通用自动分析系统 | |
CN113567691A (zh) | 孵育装置和自动分析装置 | |
WO2021217443A1 (zh) | 孵育装置和自动分析装置 | |
WO2019154334A1 (zh) | 全自动化学发光免疫分析仪 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20933981 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20933981 Country of ref document: EP Kind code of ref document: A1 |